1
|
Richards BJ, O'Connor FK, Koetje NJ, Janetos KMT, McGarr GW, Kenny GP. Effect of cold beverages on whole-body heat exchange in young and older males during intermittent exercise in the heat. Am J Ind Med 2024. [PMID: 39344985 DOI: 10.1002/ajim.23664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/22/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND To mitigate health risks associated with occupational heat stress, workers are advised to adhere to a work-rest regimen, and hydrate regularly. However, it remains unclear if beverage temperature influences whole-body heat exchange during work-rest cycles, and if responses differ in older workers who have a blunted heat loss capacity. METHODS Ten young (mean [SD]: 22 [3] years) and 10 older (60 [4] years) males performed four 15-min bouts of moderate-intensity cycling at a fixed rate of metabolic heat production (200 W·m-2), each interspersed by 15-min rest in dry heat (40°C, ~12% relative humidity). On separate days, participants consumed either ice-slurry (~0°C), standardized to provide a heat transfer capacity of 75 kJ·m-2, or an identical mass of warm fluid (37.5°C) before the first and third exercise bouts. Evaporative and dry heat exchange (direct calorimetry) and metabolic heat production (indirect calorimetry) were measured continuously to determine cumulative heat storage (summation of heat loss and heat gain) over the entire protocol. Rectal temperature was also measured continuously. RESULTS Relative to warm fluid, ice-slurry ingestion reduced cumulative heat storage in young (69 [181] vs. 216 [94] kJ) and older males (90 [104] vs. 254 [140] kJ, main effect: p < 0.01), but was unaffected by age (p = 0.49). However, rectal temperature was unaffected by beverage temperature in both groups (all p ≥ 0.15). CONCLUSION We show that cold fluid ingestion is an appropriate administrative control for both young and older males as it can mitigate increases in body heat content during moderate-intensity work-rest cycles in dry heat.
Collapse
Affiliation(s)
- Brodie J Richards
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Fergus K O'Connor
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicholas J Koetje
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristina-Marie T Janetos
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Welman S, Breit AM, Levesque DL, Nowack J. The upper limit of thermoneutrality is not indicative of thermotolerance in bats. J Therm Biol 2024; 124:103933. [PMID: 39208468 DOI: 10.1016/j.jtherbio.2024.103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024]
Abstract
To assess the vulnerability of birds and mammals to climate change recent studies have used the upper critical limit of thermoneutrality (TUC) as an indicator of thermal tolerance. But, the association between TUC and thermal tolerance is not straightforward and most studies describe TUC based solely on a deviation in metabolism from basal levels, without also considering the onset of evaporative cooling. It was argued recently that certain torpor-using bat species who survived prolonged exposure to high ambient temperatures (i.e. high thermal tolerance) experienced during extreme heat events did so by entering torpor and using facultative heterothermy to thermoconform and save on body water. Assuming that TUC is indicative of thermal tolerance, we expect TUC in torpor-using species to be higher than that of species which are obligate homeotherms, albeit that this distinction is based on confirmation of torpor use at low temperatures. To test this prediction, we performed a phylogenetically informed comparison of bat species known to use torpor (n = 48) and homeothermic (n = 16) bat species using published thermoregulatory datasets to compare the lower critical limit of thermoneutrality (TLC) and TUC in relation to body temperature. The influence of diet, biogeographical region, body mass and basal metabolic rate (BMR) was also considered. Body mass had a positive relationship with BMR, an inverse relationship with TLC and no relationship with TUC. Normothermic body temperature scaled positively with BMR, TLC and TUC. There was no relationship between diet or region and BMR, but both influenced thermal limits. Torpor-using bats had lower body mass and body temperatures than homeothermic bats, but there was no difference in BMR, TLC and TUC between them. Exceptional examples of physiological flexibility were observed in 34 torpor-using species and eight homeothermic species, which included 15 species of bats maintaining BMR-level metabolism at ambient temperatures as high as 40 °C (and corresponding body temperatures ∼39.2 °C). However, we argue that TUC based on metabolism alone is not an appropriate indicator of thermal tolerance as it disregards differences in the ability of animals to tolerate higher levels of hyperthermia, importance of hydration status and capacity for evaporative cooling. Also, the variability in TUC based on diet challenges the idea of evolutionary conservatism and warrants further consideration.
Collapse
Affiliation(s)
- Shaun Welman
- Department of Biological Sciences, University of Cape Town, Cape Town, 7701, South Africa; Department of Zoology, Nelson Mandela University, Gqeberha, 6031, South Africa.
| | - Ana M Breit
- School of Biology and Ecology, University of Maine, 04469 Orono, ME, USA; School of Life Sciences, University of Nevada Las Vegas, 89154, Las Vegas, NV, USA
| | | | - Julia Nowack
- School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF, Liverpool, UK
| |
Collapse
|
3
|
Dmitrieva NI, Boehm M, Yancey PH, Enhörning S. Long-term health outcomes associated with hydration status. Nat Rev Nephrol 2024; 20:275-294. [PMID: 38409366 DOI: 10.1038/s41581-024-00817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 02/28/2024]
Abstract
Body water balance is determined by fundamental homeostatic mechanisms that maintain stable volume, osmolality and the composition of extracellular and intracellular fluids. Water balance is maintained by multiple mechanisms that continuously match water losses through urine, the skin, the gastrointestinal tract and respiration with water gains achieved through drinking, eating and metabolic water production. Hydration status is determined by the state of the water balance. Underhydration occurs when a decrease in body water availability, due to high losses or low gains, stimulates adaptive responses within the water balance network that are aimed at decreasing losses and increasing gains. This stimulation is also accompanied by cardiovascular adjustments. Epidemiological and experimental studies have linked markers of low fluid intake and underhydration - such as increased plasma concentration of vasopressin and sodium, as well as elevated urine osmolality - with an increased risk of new-onset chronic diseases, accelerated aging and premature mortality, suggesting that persistent activation of adaptive responses may be detrimental to long-term health outcomes. The causative nature of these associations is currently being tested in interventional trials. Understanding of the physiological responses to underhydration may help to identify possible mechanisms that underlie potential adverse, long-term effects of underhydration and inform future research to develop preventative and treatment approaches to the optimization of hydration status.
Collapse
Affiliation(s)
- Natalia I Dmitrieva
- Laboratory of Cardiovascular Regenerative Medicine, National Heart Lung and Blood Institute, NIH, Bethesda, Maryland, USA.
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, National Heart Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Paul H Yancey
- Biology Department, Whitman College, Walla Walla, Washington, USA
| | - Sofia Enhörning
- Perinatal and Cardiovascular Epidemiology, Lund University Diabetes Centre, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
4
|
Kozyreva TV, Orlov IV, Boyarskaya AR, Voronova IP. Hypothalamic TRPM8 and TRPA1 ion channel genes in the regulation of temperature homeostasis at water balance changes. Neurosci Lett 2024; 828:137763. [PMID: 38574849 DOI: 10.1016/j.neulet.2024.137763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
The role of the hypothalamic cold-sensitive ion channels - transient receptor potential melastatin 8 (TRPM8) and transient receptor potential ankyrin 1 (TRPA1) in homeostatic systems of thermoregulation and water-salt balance - is not clear. The interaction of homeostatic systems of thermoregulation and water-salt balance without additional temperature load did not receive due attention, too. On the models of water-balance disturbance, we tried to elucidate some aspect of these problems. Body temperature (Tbody), O2 consumption, CO2 excretion, electrical muscle activity (EMA), temperature of tail skin (Ttail), plasma osmolality, as well as gene expression of hypothalamic TRPM8 and TRPA1 have been registered in rats of 3 groups: control; water-deprived (3 days under dry-eating); and hyperhydrated (6 days without dry food, drinking liquid 4 % sucrose). No relationship was observed between plasma osmolality and gene expression of Trpm8 and Trpa1. In water-deprived rats, the constriction of skin vessels, increased fat metabolism by 10 % and increased EMA by 48 % allowed the animals to maintain Tbody unchanged. The hyperhydrated rats did not develop sufficient mechanisms, and their Tbody decreased by 0.8 °C. The development of reactions was correlated with the expression of genes of thermosensitive ion channels in the anterior hypothalamus. Ttail had a direct correlation with the expression of the Trpm8 gene, whereas EMA directly correlated with the expression of the Trpa1 gene in water-deprived group. The obtained data attract attention from the point of view of management and correction of physiological functions by modulating the ion channel gene expression.
Collapse
Affiliation(s)
- T V Kozyreva
- Institute of Neuroscience and Medicine, Timakov str. 4, Novosibirsk 630117, Russia; Novosibirsk State University, Pirogov str. 2, Novosibirsk 630090, Russia.
| | - I V Orlov
- Institute of Neuroscience and Medicine, Timakov str. 4, Novosibirsk 630117, Russia; Novosibirsk State University, Pirogov str. 2, Novosibirsk 630090, Russia.
| | - A R Boyarskaya
- Institute of Neuroscience and Medicine, Timakov str. 4, Novosibirsk 630117, Russia.
| | - I P Voronova
- Institute of Neuroscience and Medicine, Timakov str. 4, Novosibirsk 630117, Russia.
| |
Collapse
|
5
|
Wheelock CE, Stooks J, Schwob J, Hess HW, Pryor RR, Hostler D. Partial and Complete Fluid Replacement Maintains Exercise Performance in a Warm Environment Following Prolonged Cold-Water Immersion. J Strength Cond Res 2024; 38:290-296. [PMID: 38258830 DOI: 10.1519/jsc.0000000000004611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
ABSTRACT Wheelock, CE, Stooks, J, Schwob, J, Hess, HW, Pryor, RR, and Hostler, D. Partial and complete fluid replacement maintains exercise performance in a warm environment following prolonged cold-water immersion. J Strength Cond Res 38(2): 290-296, 2024-Special warfare operators may be exposed to prolonged immersion before beginning a land-based mission. This immersion will result in substantial hypohydration because of diuresis. This study tested the hypothesis that both partial and full postimmersion rehydration would maintain performance during exercise in the heat. Seven men (23 ± 2 years; V̇o2max: 50.8 ± 5.3 ml·kg-1·min-1) completed a control trial (CON) without prior immersion and 3 immersion (18.0°C) trials without rehydration (NO) or with partial (HALF) or full (FULL) rehydration. After immersion, subjects completed a 60-minute weighted ruck march (20.4 kg; 5.6 kph) and a 15-minute intermittent exercise protocol (iEPT) in a warm environment (30.0°C and 50.0% relative humidity). The primary outcome was distance (km) covered during the iEPT. A priori statistical significance was set to p ≤ 0.05. Immersion resulted in 2.3 ± 0.4% loss of body mass in all immersion trials (p < 0.01). Distance covered during the first 13-minute interval run portion of iEPT was reduced in the NO rehydration trial (1.59 ± 0.18 km) compared with all other conditions (CON: 1.88 ± 0.18 km, p = 0.03; HALF: 1.80 ± 0.18 km, p < 0.01; FULL: 1.86 ± 0.28 km, p = 0.01). During the final 2 minutes of the iEPT, distance in the NO rehydration trial (0.31 ± 0.07 km) was reduced compared with the FULL rehydration trial (0.37 ± 0.07 km; p < 0.01) but not compared with CON (0.35 ± 0.07 km; p = 0.09) or HALF (0.35 ± 0.07 km; p = 0.08). Both partial and full postimmersion fluid replacement maintained intermittent exercise performance and should be applied as rehydration strategies.
Collapse
Affiliation(s)
- Courtney E Wheelock
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York
| | - Jocelyn Stooks
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York
| | - Jacqueline Schwob
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York
| | - Hayden W Hess
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Riana R Pryor
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York
| | - David Hostler
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York
| |
Collapse
|
6
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 3: Heat and cold tolerance during exercise. Eur J Appl Physiol 2024; 124:1-145. [PMID: 37796292 DOI: 10.1007/s00421-023-05276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/04/2023] [Indexed: 10/06/2023]
Abstract
In this third installment of our four-part historical series, we evaluate contributions that shaped our understanding of heat and cold stress during occupational and athletic pursuits. Our first topic concerns how we tolerate, and sometimes fail to tolerate, exercise-heat stress. By 1900, physical activity with clothing- and climate-induced evaporative impediments led to an extraordinarily high incidence of heat stroke within the military. Fortunately, deep-body temperatures > 40 °C were not always fatal. Thirty years later, water immersion and patient treatments mimicking sweat evaporation were found to be effective, with the adage of cool first, transport later being adopted. We gradually acquired an understanding of thermoeffector function during heat storage, and learned about challenges to other regulatory mechanisms. In our second topic, we explore cold tolerance and intolerance. By the 1930s, hypothermia was known to reduce cutaneous circulation, particularly at the extremities, conserving body heat. Cold-induced vasodilatation hindered heat conservation, but it was protective. Increased metabolic heat production followed, driven by shivering and non-shivering thermogenesis, even during exercise and work. Physical endurance and shivering could both be compromised by hypoglycaemia. Later, treatments for hypothermia and cold injuries were refined, and the thermal after-drop was explained. In our final topic, we critique the numerous indices developed in attempts to numerically rate hot and cold stresses. The criteria for an effective thermal stress index were established by the 1930s. However, few indices satisfied those requirements, either then or now, and the surviving indices, including the unvalidated Wet-Bulb Globe-Thermometer index, do not fully predict thermal strain.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Sperlich B, Matzka M, Holmberg HC. The proportional distribution of training by elite endurance athletes at different intensities during different phases of the season. Front Sports Act Living 2023; 5:1258585. [PMID: 37964776 PMCID: PMC10641476 DOI: 10.3389/fspor.2023.1258585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023] Open
Abstract
The present review examines retrospective analyses of training intensity distribution (TID), i.e., the proportion of training at moderate (Zone 1, Z1), heavy (Z2) and severe (Z3) intensity by elite-to-world-class endurance athletes during different phases of the season. In addition, we discuss potential implications of our findings for research in this field, as well as for training by these athletes. Altogether, we included 175 TIDs, of which 120 quantified exercise intensity on the basis of heart rate and measured time-in-zone or employed variations of the session goal approach, with demarcation of zones of exercise intensity based on physiological parameters. Notably, 49% of the TIDs were single-case studies, predominantly concerning cross-country skiing and/or the biathlon. Eighty-nine TIDs were pyramidal (Z1 > Z2 > Z3), 65 polarized (Z1 > Z3 > Z2) and 8 "threshold" (Z2 > Z1 = Z3). However, these relative numbers varied between sports and the particular phases of the season. In 91% (n = 160) of the TIDs >60% of the endurance exercise was of low intensity. Regardless of the approach to quantification or phase of the season, cyclists and swimmers were found to perform a lower proportion of exercise in Z1 (<72%) and higher proportion in Z2 (>16%) than athletes involved in the triathlon, speed skating, rowing, running, cross-country skiing or biathlon (>80% in Z1 and <12% in Z2 in all these cases). For most of the athletes their proportion of heavy-to-severe exercise was higher during the period of competition than during the preparatory phase, although with considerable variability between sports. In conclusion, the existing literature in this area does not allow general conclusions to be drawn. The methods utilized for quantification vary widely and, moreover, contextual information concerning the mode of exercise, environmental conditions, and biomechanical aspects of the exercise is often lacking. Therefore, we recommend a more comprehensive approach in connection with future investigations on the TIDs of athletes involved in different endurance sports.
Collapse
Affiliation(s)
- Billy Sperlich
- Integrative and Experimental Training Science, Institute of Sport Sciences, University of Würzburg, Würzburg, Germany
| | - Manuel Matzka
- Integrative and Experimental Training Science, Institute of Sport Sciences, University of Würzburg, Würzburg, Germany
| | - Hans-Christer Holmberg
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Stockholm, Sweden
- Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
8
|
Langer CE, Armitage TL, Beckman S, Tancredi DJ, Mitchell DC, Schenker MB. How Does Environmental Temperature Affect Farmworkers' Work Rates in the California Heat Illness Prevention Study? J Occup Environ Med 2023; 65:e458-e464. [PMID: 37026741 PMCID: PMC10332655 DOI: 10.1097/jom.0000000000002853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
OBJECTIVE Estimate the association between environmental temperature (wet bulb globe temperature [WBGT]) and work rate over the course of a workday. METHODS Repeated-measures regression was used to identify characteristics impacting work rate in a cross-sectional study of Latino farmworkers. Minute-by-minute work rate (measured by accelerometer) and WBGT were averaged over 15-minute intervals. RESULTS Work rate decreased by 4.34 (95% confidence interval [CI], -7.09 to -1.59) counts per minute per degree Celsius WBGT in the previous 15-minute interval. Cumulative quarter hours worked (2.13; 95% CI, 0.82 to 3.45), age (-3.64; 95% CI, -4.50 to -2.79), and dehydration at the end of workday (51.37; 95% CI, 19.24 to 83.50) were associated with counts per minute as were gender, pay type (piece rate vs hourly) and body mass index ≥25 kg/m 2 . The effects of pay type and body mass index were modified by gender. CONCLUSION Increased temperature was associated with a decrease in work rate.
Collapse
|
9
|
Kang H, Zsoldos RR, Sole-Guitart A, Narayan E, Cawdell-Smith AJ, Gaughan JB. Heat stress in horses: a literature review. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:957-973. [PMID: 37060454 DOI: 10.1007/s00484-023-02467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 06/15/2023]
Abstract
Healthy adult horses can balance accumulation and dissipation of body heat to maintain their body temperature between 37.5 and 38.5 °C, when they are in their thermoneutral zone (5 to 25 °C). However, under some circumstances, such as following strenuous exercise under hot, or hot and humid conditions, the accumulation of body heat exceeds dissipation and horses can suffer from heat stress. Prolonged or severe heat stress can lead to anhidrosis, heat stroke, or brain damage in the horse. To ameliorate the negative effects of high heat load in the body, early detection of heat stress and immediate human intervention is required to reduce the horse's elevated body temperature in a timely manner. Body temperature measurement and deviations from the normal range are used to detect heat stress. Rectal temperature is the most commonly used method to monitor body temperature in horses, but other body temperature monitoring technologies, percutaneous thermal sensing microchips or infrared thermometry, are currently being studied for routine monitoring of the body temperature of horses as a more practical alternative. When heat stress is detected, horses can be cooled down by cool water application, air movement over the horse (e.g., fans), or a combination of these. The early detection of heat stress and the use of the most effective cooling methods is important to improve the welfare of heat stressed horses.
Collapse
Affiliation(s)
- Hyungsuk Kang
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia.
| | - Rebeka R Zsoldos
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Albert Sole-Guitart
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Edward Narayan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia
| | - A Judith Cawdell-Smith
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia
| | - John B Gaughan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia
| |
Collapse
|
10
|
Meneses JAM, de Sá OAAL, Ramirez-Zamudio GD, Nascimento KB, Gionbelli TRS, Luz MH, Ladeira MM, Casagrande DR, Gionbelli MP. Heat stress promotes adaptive physiological responses and alters mrna expression of ruminal epithelium markers in Bos taurus indicus cattle fed low- or high-energy diets. J Therm Biol 2023; 114:103562. [PMID: 37344024 DOI: 10.1016/j.jtherbio.2023.103562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 06/23/2023]
Abstract
This research aimed to evaluate the impact of temperature and energy status on the thermal indices, physiological parameters, and ruminal papilla mRNA expression levels of Zebu beef heifers (Bos taurus indicus). In this trial, we used six ruminal-cannulated Nellore females. The experimental design was a 6 × 6 Latin square, with six treatments and six periods. The research used a 2 × 2 + 2 factorial scheme. The arrangement comprised: two thermal conditions [thermoneutrality (TN; 21.6 °C) or heat stress (HS, 34 °C)]; two dietary energy levels (low or high-energy); and two additional treatments, with heifers exposed to the TN, but pair-fed with females exposed to HS (PFTN). For our purposes, body temperature, heart and respiratory rates were measured and the relative mRNA expression was quantified using the PCR-RT technique. Compared to TN or PFTN, the HS increased the body temperature measurements in the morning and evening (p ≤ 0.04). Heart rate was 22% greater for heifers under HS than for TN (p < 0.01) and 13% higher for those under HS than PFTN (p = 0.03) in the morning. Respiratory rates increased with HS exposure compared to TN or PFTN (p < 0.01). Heifers submitted to HS and fed low-energy diets had and tended to have lower caspase 3 (CASP3, p <i=></i> 0.001) and sodium-glucose cotransporter type 1 (SGLT1; p = 0.17) mRNA expressions, respectively. Heat-stressed heifers fed low-energy diets also increased the putative anion transporter (PAT1; p ≤ 0.01) mRNA expressions by 60%. Heifers under HS-fed high-energy diets had greater kallikrein-related peptidase (KLK) 9 expressions (p = 0.02), while KLK10 (p = 0.11) tended to be up-regulated in heifers in TN-fed a low-energy diets. In conclusion, heat stress down-regulated the mRNA expression of rumen markers related to short-chain fatty acids transport and pH modulation.
Collapse
Affiliation(s)
- Javier A M Meneses
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil; Department of Medicine Veterinary and Animal Science, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Cartagena, Bolivar, 130001, Colombia.
| | - Olavo A A L de Sá
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil; De Heus industry, Rio Claro, SP, 13505-600, Brazil.
| | | | - Karolina B Nascimento
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil.
| | - Tathyane R S Gionbelli
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil.
| | - Matheus H Luz
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil.
| | - Márcio M Ladeira
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil.
| | - Daniel R Casagrande
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil.
| | - Mateus P Gionbelli
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil.
| |
Collapse
|
11
|
James RS, Seebacher F, Tallis J. Can animals tune tissue mechanics in response to changing environments caused by anthropogenic impacts? J Exp Biol 2023; 226:287009. [PMID: 36779312 DOI: 10.1242/jeb.245109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Anthropogenic climate change and pollution are impacting environments across the globe. This Review summarises the potential impact of such anthropogenic effects on animal tissue mechanics, given the consequences for animal locomotor performance and behaviour. More specifically, in light of current literature, this Review focuses on evaluating the acute and chronic effects of temperature on the mechanical function of muscle tissues. For ectotherms, maximal muscle performance typically occurs at temperatures approximating the natural environment of the species. However, species vary in their ability to acclimate to chronic changes in temperature, which is likely to have longer-term effects on species range. Some species undergo periods of dormancy to avoid extreme temperature or drought. Whilst the skeletal muscle of such species generally appears to be adapted to minimise muscle atrophy and maintain performance for emergence from dormancy, the increased occurrence of extreme climatic conditions may reduce the survival of individuals in such environments. This Review also considers the likely impact of anthropogenic pollutants, such as hormones and heavy metals, on animal tissue mechanics, noting the relative paucity of literature directly investigating this key area. Future work needs to determine the direct effects of anthropogenic environmental changes on animal tissues and related changes in locomotor performance and behaviour, including accounting for currently unknown interactions between environmental factors, e.g. temperature and pollutants.
Collapse
Affiliation(s)
- Rob S James
- Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Jason Tallis
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| |
Collapse
|
12
|
Naldo R, Boeckman J, Vanos JK, Kavouras SA, Wardenaar FC. Short hydration education video and hiker fluid selection and consumption at trails, a non-randomized quasi-experimental field study. Nutr Health 2023:2601060221150303. [PMID: 36632648 DOI: 10.1177/02601060221150303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background: Education may improve hiker safety on trails. Aim: To investigate the impact of an educational video on hiker fluid selection and fluid consumption in a hot environment. Methods: Quasi-experimental field study at hiking trails in which the intervention group (INT) viewed a three-minute hydration education video, whereas the control group (CON) did not. Before the hike, all hikers were asked if they wanted to select extra fluid, which was provided by the research team. Results: A total of n = 97 hikers participated in the study, with n = 56 in INT (32 male) and n = 41 in CON (25 male). Despite absolute differences in environmental conditions, the differences fell within the same WBGT category. The total amount of fluid brought to the trails by participants was different between INT: 904 (503-1758) mL and CON: 1509 (880-2176) mL (P = 0.006), but participants in the INT group selected extra fluid (41%; n = 23) significantly more often when compared with participants in the CON group (7%; n = 3; P < 0.001). As a result, there was no difference in the amount of fluid brought on the trail between INT: 1047 (611-1936) mL and CON: 1509 (932-2176) mL (P = 0.069), nor for fluid consumption between INT: 433 (289-615) mL/h and CON: 489 (374-719) mL/h (P = 0.18). Conclusions and Implications: A 3-min educational video may encourage hikers to select additional fluid before the start of their hike but does not appear to increase fluid intake.
Collapse
Affiliation(s)
- Rebecca Naldo
- 465849College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Josh Boeckman
- 465849College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Jennifer K Vanos
- School of Sustainability, College of Global Futures, Arizona State University, Tempe, AZ, USA
| | - Stavros A Kavouras
- 465849College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Floris C Wardenaar
- 465849College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| |
Collapse
|
13
|
Wijering LAJ, Cotter JD, Rehrer NJ. A randomized, cross-over trial assessing effects of beverage sodium concentration on plasma sodium concentration and plasma volume during prolonged exercise in the heat. Eur J Appl Physiol 2023; 123:81-89. [PMID: 36173481 PMCID: PMC9813217 DOI: 10.1007/s00421-022-05025-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/31/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE This study assessed whether increasing sodium in a sports drink above that typical (~ 20 mmol L-1) affects plasma sodium and volume responses during prolonged exercise in the heat. METHODS Endurance trained males (N = 11, 36 ± 14 y, 75.36 ± 5.30 kg, [Formula: see text]O2max 60 ± 3 mL min-1 kg-1) fulfilled requirements of the study including one 1-h exercise pre-trial, to estimate fluid losses (to prescribe fluid intake), and two, experimental trials (3-h or until tolerance), in random order, cycling (55% [Formula: see text]O2max, 34 °C, 65% RH). Beverages contained 6% carbohydrate and either 21 mmol L-1 (Low Na+) or 60 mmol L-1 sodium (High Na+). Analyses included linear mixed models and t-tests. RESULTS Cycling time was similar 176 ± 9 min (Low Na+); 176 ± 7 min (High Na+). Fluid intake was 1.12 ± 0.19 L h-1; 1.14 ± 0.21 L h-1, resp. Body mass change was - 0.53 ± 0.40%; - 0.30 ± 0.45%, resp. Sodium intake was 69 ± 12 mmol; 201 ± 40 mmol, resp. Plasma sodium concentration was greater in High Na+ than Low Na+ (p < 0.001); decreasing in Low Na+ (- 1.5 ± 2.2 mmol L-1), increasing in High Na+ (0.8 ± 2.4 mmol L-1) (p = 0.048, 95% CI [- 4.52, - 0.02], d = 0.99). Plasma volume decreased in Low Na+ (- 2 ± 2%) but remained unchanged in High Na+ (0 ± 3%) (p = 0.01, 95% CI [- 3.2, - 0.5], d = 0.80). CONCLUSIONS When conducting prolonged exercise in the heat, those who fully hydrate would benefit by increased sodium content of the beverage by improved plasma volume and sodium maintenance. Australian New Zealand Clinical Trials Registry (ACTRN12616000239460) 22/02/16.
Collapse
Affiliation(s)
- L A J Wijering
- School of Physical Education Sport and Exercise Sciences, Otago University, P.O. Box 56, Dunedin, 9054, New Zealand
| | - J D Cotter
- School of Physical Education Sport and Exercise Sciences, Otago University, P.O. Box 56, Dunedin, 9054, New Zealand
| | - N J Rehrer
- School of Physical Education Sport and Exercise Sciences, Otago University, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
14
|
Komka Z, Szilágyi B, Molnár D, Sipos B, Tóth M, Sonkodi B, Ács P, Elek J, Szász M. Exercise-related hemoconcentration and hemodilution in hydrated and dehydrated athletes: An observational study of the Hungarian canoeists. PLoS One 2022; 17:e0277978. [PMID: 36584041 PMCID: PMC9803156 DOI: 10.1371/journal.pone.0277978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 11/08/2022] [Indexed: 12/31/2022] Open
Abstract
Hemoconcentration during exercise is a well-known phenomenon, however, the extent to which dehydration is involved is unclear. In our study, the effect of dehydration on exercise-induced hemoconcentration was examined in 12 elite Hungarian kayak-canoe athletes. The changes of blood markers were examined during acute maximal workload in hydrated and dehydrated states. Dehydration was achieved by exercise, during a 120-minute extensive-aerobic preload. Our research is one of the first studies in which the changes in blood components were examined with a higher time resolution and a wider range of the measured parameters. Hydration status had no effect on the dynamics of hemoconcentration during both the hydrated (HS) and dehydrated (DHS) load, although lower maximal power output were measured after the 120-minute preload [HS Hemoglobin(Hgb)Max median 17.4 (q1 17.03; q3 17.9) g/dl vs. DHS HgbMax median 16.9 (q1 16.43; q3 17.6) g/dl (n.s); HS Hematocrit(Hct)Max 53.50 (q1 52.28; q3 54.8) % vs. DHS HctMax 51.90 (q1 50.35; q3 53.93) % (n.s)]. Thirty minutes after the maximal loading, complete hemodilution was confirmed in both exercises. Dehydration had no effect on hemoconcentration or hemodilution in the recovery period [HS HgbR30' 15.7 (q1 15.15; q3 16.05) g/dl (n.s.) vs. DHS HgbR30' 15.75 (q1 15.48; q3 16.13) g/dl (n.s.), HS HctR30' 48.15 (q1 46.5; q3 49.2) % vs. DHS HctR30' 48.25 (q1 47.48; q3 49.45) % (n.s.)], however, plasma osmolality did not follow a corresponding decrease in hemoglobin and hematocrit in the dehydrated group. Based on our data, metabolic products (glucose, lactate, sodium, potassium, chloride, bicarbonate ion, blood urea nitrogen) induced osmolality may not play a major role in the regulation of hemoconcentration and post-exercise hemodilution. From our results, we can conclude that hemoconcentration depends mainly on the intensity of the exercise.
Collapse
Affiliation(s)
- Zsolt Komka
- Department of Health Sciences and Sports Medicine, Hungarian University of Sports Science, Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Hungarian Canoe Federation, Budapest, Hungary
- * E-mail:
| | - Brigitta Szilágyi
- Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
- Institute of Mathematics and Statistical Modelling, Corvinus University of Budapest, Budapest, Hungary
| | - Dóra Molnár
- Hungarian Canoe Federation, Budapest, Hungary
| | - Bence Sipos
- Faculty of Natural Sciences Department of Geometry, Budapest University of Technology and Economics, Budapest, Hungary
| | - Miklós Tóth
- Department of Health Sciences and Sports Medicine, Hungarian University of Sports Science, Budapest, Hungary
- Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
- Szentágothai Research Center, Pécs, Hungary
| | - Balázs Sonkodi
- Department of Health Sciences and Sports Medicine, Hungarian University of Sports Science, Budapest, Hungary
| | - Pongrác Ács
- Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Szentágothai Research Center, Pécs, Hungary
| | - János Elek
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
15
|
Dolci A, Vanhaecke T, Qiu J, Ceccato R, Arboretti R, Salmaso L. Personalized prediction of optimal water intake in adult population by blended use of machine learning and clinical data. Sci Rep 2022; 12:19692. [PMID: 36385111 PMCID: PMC9669042 DOI: 10.1038/s41598-022-21869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Growing evidence suggests that sustained concentrated urine contributes to chronic metabolic and kidney diseases. Recent results indicate that a daily urinary concentration of 500 mOsm/kg reflects optimal hydration. This study aims at providing personalized advice for daily water intake considering personal intrinsic (age, sex, height, weight) and extrinsic (food and fluid intakes) characteristics to achieve a target urine osmolality (UOsm) of 500 mOsm/kg using machine learning and optimization algorithms. Data from clinical trials on hydration (four randomized and three non-randomized trials) were analyzed. Several machine learning methods were tested to predict UOsm. The predictive performance of the developed algorithm was evaluated against current dietary guidelines. Features linked to urine production and fluid consumption were listed among the most important features with relative importance values ranging from 0.10 to 0.95. XGBoost appeared the most performing approach (Mean Absolute Error (MAE) = 124.99) to predict UOsm. The developed algorithm exhibited the highest overall correct classification rate (85.5%) versus that of dietary guidelines (77.8%). This machine learning application provides personalized advice for daily water intake to achieve optimal hydration and may be considered as a primary prevention tool to counteract the increased incidence of chronic metabolic and kidney diseases.
Collapse
Affiliation(s)
- Alberto Dolci
- grid.433367.60000 0001 2308 1825Health, Hydration and Nutrition Science Department, Danone Research, Route Départementale 128, 91767 Palaiseau, France
| | - Tiphaine Vanhaecke
- grid.433367.60000 0001 2308 1825Health, Hydration and Nutrition Science Department, Danone Research, Route Départementale 128, 91767 Palaiseau, France
| | - Jiqiong Qiu
- grid.433367.60000 0001 2308 1825Health, Hydration and Nutrition Science Department, Danone Research, Route Départementale 128, 91767 Palaiseau, France
| | - Riccardo Ceccato
- grid.5608.b0000 0004 1757 3470Department of Management and Engineering, University of Padova, Vicenza, Italy
| | - Rosa Arboretti
- grid.5608.b0000 0004 1757 3470Department of Civil, Environmental and Architectural Engineering, University of Padova, Padua, Italy
| | - Luigi Salmaso
- grid.5608.b0000 0004 1757 3470Department of Management and Engineering, University of Padova, Vicenza, Italy
| |
Collapse
|
16
|
Zhang N, Zhang J, Wang X, Li Y, Yan Y, Ma G. Behaviors of Water Intake, Hydration Status, and Related Hydration Biomarkers among Physically Active Male Young Adults in Beijing, China: A Cross-Sectional Study. Int J Clin Pract 2022; 2022:9436186. [PMID: 36320894 PMCID: PMC9592216 DOI: 10.1155/2022/9436186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2022] Open
Abstract
Studies on the water intake of athletes in daily life are insufficient. The objective was to determine the water intake and hydration status among physically active male young adults. In this cross-sectional studies study, 111 physically active male young adults were recruited. The amount of daily total drinking fluid intake (TDF) among participants was recorded and evaluated in real time over 7 days using the "7-day 24-hour fluid intake questionnaire" (liq. In 7). The daily water intake from food (WFF) was calculated using the weighing, duplicate portion, and direct-drying method over 3 days. All urine samples over 3 days were collected, and urine biomarkers were determined. According to 24 h urine osmolality, the participants were divided into three groups with euhydration status, middle hydration, and hypo hydration statuses. Finally, 109 participants completed the study. The median daily total water intake (TWI), TDF, and WFF were 2701, ik1789, and 955 mL, respectively. Among participants, 17 participants (16%) were in euhydration status, 47 participants (43%) were in hypohydration, and 45 participants (41%) were in middle hydration. There were statistical significances in the 24 h urine volume, osmolality, urine specific gravity, and concentrations of K, Na, and Cl in different hydration statuses (χ 2 = 28.212, P < 0.01; χ 2 = 91.341, P < 0.01; χ 2 = 47.721, P < 0.01; χ 2 = 41.548, P < 0.01; χ 2 = 46.863, P < 0.01; and χ 2 = 40.839, P < 0.01). Moderate-intensity correlations were found between the TDF and 24 h urine volume, 24 h urine osmolality, 24 h urine Na concentration, morning urine osmolality, and morning urine Na concentration (r = 0.408, P < 0.01; r = -0.378, P < 0.01; r = -0.325, P < 0.01; r = -0.344, P < 0.01; and r = -0.329, P < 0.01). There were also moderate-intensity correlations between the TDF and 24 h urine osmolality, morning urine osmolality, and morning urine Na concentration (r = -0.365, P < 0.01; r = -0.371, P < 0.01; and r = -0.322, P = 0.01). Increased and higher moderate-intensity correlations were found between plain water and 24 h urine volume, 24 h urine osmolality, 24 h urine K and Na concentration, morning urine osmolality, and morning urine Na concentration (r = 0.374, P < 0.01; r = -0.520, P < 0.01; r = -0.312,P < 0.01; r = -0.355, P < 0.01; r = -0.446, P < 0.01; and r = -0.378, P < 0.01). Insufficient water intake and hypohydration were common among physically active male young adults. The amount and type of water intake were correlated with hydration status and urine biomarkers. The results could provide scientific and accurate references for the development of recommendations on water intake for athletes.
Collapse
Affiliation(s)
- Na Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China
- Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China
| | - Jianfen Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China
- Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China
| | - Xing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China
| | - Yibin Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China
| | - Yi Yan
- College of Sports and Human Sciences, Beijing Sport University, 48 XinXi Road, Hai Dian District, Beijing 100084, China
| | - Guansheng Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China
- Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China
| |
Collapse
|
17
|
Hess HW, Tarr ML, Baker TB, Hostler D, Schlader ZJ. Ad libitum drinking prevents dehydration during physical work in the heat when adhering to occupational heat stress recommendations. Temperature (Austin) 2022; 9:292-302. [PMID: 36211944 PMCID: PMC9542357 DOI: 10.1080/23328940.2022.2094160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022] Open
Abstract
Government entities issue recommendations that aim to maintain core temperature below 38.0°C and prevent dehydration [>2% body mass loss] in unacclimated workers exposed to heat. Hydration recommendations suggest drinking 237 mL of a cool sport drink every 15-20 min. This is based on the premise that ad libitum drinking results in dehydration due to inadequate fluid replacement, but this has never been examined in the background of recommendation compliant work in the heat. Therefore, we tested the hypothesis that ad libitum drinking results in >2% body mass loss during heat stress recommendation compliant work. Ten subjects completed four trials consisting of 4 hours of exposure to wet bulb globe temperatures (WBGT) of 24.1 ± 0.3°C (A), 26.6 ± 0.2°C (B), 28.5 ± 0.2°C (C), 29.3 ± 0.6°C (D). Subjects walked on a treadmill and work-rest ratios were prescribed as a function of WBGT [work:rest per hour - A: 60:0, B: 45:15, C: 30:30, D: 15:45] and were provided 237 mL of a cool sport drink every 15 min to drink ad libitum. Mean core temperature was higher in Trial A (37.8 ± 0.4°C; p = 0.03) and Trial B (37.6 ± 0.3°C; p = 0.01) versus Trial D (37.3 ± 0.3°C) but did not differ between the other trials (p ≥ 0.20). Body mass loss (A: -0.9 ± 0.7%, B: -0.7 ± 0.5%, C: -0.3 ± 0.5%, D: -0.4 ± 0.6%) was greater in Trial A compared to Trial D (p = 0.04) and was different from 2% body mass loss in all trials (p ≤ 0.01). Ad libitum drinking during recommendation compliant work in the heat rarely resulted in dehydration. Registered Clinical Trial (NCT04767347).
Collapse
Affiliation(s)
- Hayden W. Hess
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Macie L. Tarr
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Tyler B. Baker
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zachary J. Schlader
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
18
|
Ioannou LG, Foster J, Morris NB, Piil JF, Havenith G, Mekjavic IB, Kenny GP, Nybo L, Flouris AD. Occupational heat strain in outdoor workers: A comprehensive review and meta-analysis. Temperature (Austin) 2022; 9:67-102. [PMID: 35655665 PMCID: PMC9154804 DOI: 10.1080/23328940.2022.2030634] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/29/2022] Open
Abstract
The present comprehensive review (i) summarizes the current knowledge on the impacts of occupational heat stress on outdoor workers, (ii) provides a historical background on this issue, (iii) presents a meta-analysis of published data, (iv) explores inter-individual and intra-individual factors, (v) discusses the available heat mitigation strategies, (vi) estimates physical work capacity, labour productivity, and metabolic rate for the year 2030, and (vii) provides an overview of existing policy and legal frameworks on occupational heat exposure. Meta-analytic findings from 38 field studies that involved monitoring 2,409 outdoor workers across 41 jobs in 21 countries suggest that occupational heat stress increases the core (r = 0.44) and skin (r = 0.44) temperatures, as well as the heart rate (r = 0.38) and urine specific gravity (r = 0.13) of outdoor workers (all p < 0.05). Moreover, it diminishes the capacity of outdoor workers for manual labour (r = -0.82; p < 0.001) and is responsible for more than two thirds of the reduction in their metabolic rate. Importantly, our analysis shows that physical work capacity is projected to be highly affected by the ongoing anthropogenic global warming. Nevertheless, the metabolic rate and, therefore, labour productivity are projected to remain at levels higher than the workers' physical work capacity, indicating that people will continue to work more intensely than they should to meet their financial obligations for food and shelter. In this respect, complementary measures targeting self-pacing, hydration, work-rest regimes, ventilated garments, and mechanization can be adopted to protect outdoor workers.
Collapse
Affiliation(s)
- Leonidas G. Ioannou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Josh Foster
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nathan B. Morris
- Department of Human Physiology & Nutrition, University of Colorado, Springs, Colorado, USA
| | - Jacob F. Piil
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, UK
| | - Igor B. Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Andreas D. Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Fullagar H, Notley SR, Fransen J, Richardson A, Stadnyk A, Lu D, Brown G, Duffield R. Cooling strategies for firefighters: Effects on physiological, physical, and visuo-motor outcomes following fire-fighting tasks in the heat. J Therm Biol 2022; 106:103236. [DOI: 10.1016/j.jtherbio.2022.103236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/21/2022] [Accepted: 03/26/2022] [Indexed: 11/25/2022]
|
20
|
Kwan K, Helms E. Prevalence, Magnitude, and Methods of Weight Cutting Used by World Class Powerlifters. J Strength Cond Res 2022; 36:998-1002. [DOI: 10.1519/jsc.0000000000004199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Ramirez RW, Riddell EA, Beissinger SR, Wolf BO. Keeping your cool: thermoregulatory performance and plasticity in desert cricetid rodents. J Exp Biol 2022; 225:274292. [PMID: 35132993 DOI: 10.1242/jeb.243131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/02/2022] [Indexed: 11/20/2022]
Abstract
Small mammals in hot deserts often avoid heat via nocturnality and fossoriality and are thought to have a limited capacity to dissipate heat using evaporative cooling. Research to date has focused on thermoregulatory responses to air temperatures (Ta) below body temperature (Tb). Consequently, the thermoregulatory performance of small mammals exposed to high air temperatures is poorly understood, particularly responses across geographic and seasonal scales. We quantified the seasonal thermoregulatory performance of four cricetid rodents (Neotoma albigula, N. lepida, Peromyscus eremicus, P. crinitus) exposed to high Ta, at four sites in the Mojave Desert. We measured metabolism, evaporative water loss and Tb using flow-through respirometry. When exposed to Ta≥Tb, rodents showed steep increases in Tb, copious salivation and limited evaporative heat dissipation. Most individuals were only capable of maintaining Ta-Tb gradients of ∼1 °C resulting in heat tolerance limits (HTL) ranging from Ta=43-45°C. All species exhibited a thermoneutral Tb of ∼35-36 °C, and Tb increased to maximal levels of∼43°C. Metabolic rates and rates of evaporative water loss increased steeply in all species as Ta approached Tb. We also observed significant increases in resting metabolism and evaporative water loss from summer to winter at Tas within and above the thermoneutral zone. In contrast, we found few differences in the thermoregulatory performance within species across sites. Our results suggest that cricetid rodents have a limited physiological capacity to cope with environmental temperatures that exceed Tb and that a rapidly warming environment may increasingly constrain their nocturnal activity.
Collapse
Affiliation(s)
- Richard W Ramirez
- Department of Biology, University of New Mexico Castetter Hall 1480, 219 Yale Blvd NE Albuquerque, NM 87131, USA
| | - Eric A Riddell
- Museum of Vertebrate Zoology, 3101 Valley Life Science Building, University of California, Berkeley, Berkeley CA 94720, USA
| | - Steven R Beissinger
- Museum of Vertebrate Zoology, 3101 Valley Life Science Building, University of California, Berkeley, Berkeley CA 94720, USA.,Department of Environmental Science, Policy, and Management, 130 Mulford Hall, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Blair O Wolf
- Department of Biology, University of New Mexico Castetter Hall 1480, 219 Yale Blvd NE Albuquerque, NM 87131, USA
| |
Collapse
|
22
|
Atkins WC, Butts CL, Kelly MR, Troyanos C, Laursen RM, Duckett A, Emerson DM, Rosa-Caldwell ME, McDermott BP. Acute Kidney Injury Biomarkers and Hydration Outcomes at the Boston Marathon. Front Physiol 2022; 12:813554. [PMID: 35046841 PMCID: PMC8761943 DOI: 10.3389/fphys.2021.813554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
The purpose of our field study was to investigate the effects of running the Boston Marathon on acute kidney injury (AKI) biomarkers. We hypothesized that biomarker values would be elevated immediately post-marathon but would resolve in the 24-h post-marathon. Secondarily, we sought to identify sex differences related to renal stress. Participants were 65 runners who completed the Boston Marathon (46 ± 9 years, 65.4 ± 10.8 kg). Urine samples were collected at three different time points (pre-marathon, post-marathon, and 24-h post-marathon). Blood samples were collected post-marathon and 24-h post-marathon. Urine specific gravity (USG) and AKI biomarkers were evaluated. Pre-marathon USG (1.012 ± 0.007) was significantly less than post-marathon (1.018 ± 0.008) and 24-h post-marathon (1.020 ± 0.009; P < 0.001). Male USG (1.024 ± 0.009) was significantly greater 24-h post-marathon than females (1.017 ± 0.008; P = 0.019). Urinary neutrophil gelatinase-associated lipocalin values were significantly greater over time (P < 0.001), and there was a main effect of sex with female urinary creatinine (UCr) greater than males at all three time points (P = 0.040). Post-marathonUCr (366.24 ± 295.16 mg/dl) was significantly greater than pre-marathon (206.65 ± 145.28.56 mg/dl; p < 0.001) and 24-h post-marathon was significantly lower than other time-points (93.90 ± 125.07 mg/dl; P < 0.001). FemaleUCr values were significantly greater than males 24-h post-marathon (P < 0.001). There was no difference in serum cystatin C (SCys) values post- or 24-h post-marathon (P = 0.178). Serum creatinine (SCr) significantly decreased between post-marathon and 24-h post-marathon, (P < 0.001). We can infer that the characteristics unique to the Boston Marathon may have attributed to prolonged elevations in AKI biomarkers. Sex differences were observed during the Boston Marathon warranting further investigation.
Collapse
Affiliation(s)
- Whitley C Atkins
- Exercise Science Research Center, College of Education and Health Professions, University of Arkansas, Fayetteville, AR, United States
| | - Cory L Butts
- Department of Exercise and Nutrition Sciences, Weber State University, Ogden, UT, United States
| | - Melani R Kelly
- Department of Exercise Science and Pre-Health Professions, Creighton University, Omaha, NE, United States
| | - Chris Troyanos
- Medical Coordinator for the Boston Marathon, Boston, MA, United States
| | - R Mark Laursen
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, United States
| | - Andrew Duckett
- Athletic Training Department, Boston University, Boston, MA, United States
| | - Dawn M Emerson
- University of Kansas Medical Center, Department of Physical Therapy, Rehabilitation Science, and Athletic Training, Kansas City, KS, United States
| | - Megan E Rosa-Caldwell
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Brendon P McDermott
- Exercise Science Research Center, College of Education and Health Professions, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
23
|
Razi O, Tartibian B, Teixeira AM, Zamani N, Govindasamy K, Suzuki K, Laher I, Zouhal H. Thermal dysregulation in patients with multiple sclerosis during SARS-CoV-2 infection. The potential therapeutic role of exercise. Mult Scler Relat Disord 2022; 59:103557. [PMID: 35092946 PMCID: PMC8785368 DOI: 10.1016/j.msard.2022.103557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022]
Abstract
Thermoregulation is a homeostatic mechanism that is disrupted in some neurological diseases. Patients with multiple sclerosis (MS) are susceptible to increases in body temperature, especially with more severe neurological signs. This condition can become intolerable when these patients suffer febrile infections such as coronavirus disease-2019 (COVID-19). We review the mechanisms of hyperthermia in patients with MS, and they may encounter when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Finally, the thermoregulatory role and relevant adaptation to regular physical exercise are summarized.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Allameh Tabataba'i University, Tehran, Iran
| | - Ana Maria Teixeira
- University of Coimbra, Research Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Karuppasamy Govindasamy
- Department of Physical Education & Sports Science, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé) - EA 1274, Rennes F-35000, France; Institut International des Sciences du Sport (2I2S), Irodouer 35850, France.
| |
Collapse
|
24
|
Berry CW, Wolf ST, Cottle RM, Kenney WL. Hydration Is More Important Than Exogenous Carbohydrate Intake During Push-to-the-Finish Cycle Exercise in the Heat. Front Sports Act Living 2021; 3:742710. [PMID: 34746777 PMCID: PMC8568039 DOI: 10.3389/fspor.2021.742710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Dehydration ≥2% loss of body mass is associated with reductions in performance capacity, and carbohydrate (CHO)-electrolyte solutions (CES) are often recommended to prevent dehydration and provide a source of exogenous carbohydrate during exercise. It is also well established that performance capacity in the heat is diminished compared to cooler conditions, a response attributable to greater cardiovascular strain caused by high skin and core temperatures. Because hydration status, environmental conditions, and carbohydrate availability interact to influence performance capacity, we sought to determine how these factors affect push-to-the-finish cycling performance. Ten young trained cyclists exercised at a moderate intensity (2.5 W·kg-1) in a hot-dry condition [40°C, 20% relative humidity (RH)] until dehydration of ~2% body mass. Subjects then consumed either no fluid (NF) or enough fluid (water, WAT; Gatorade®, GAT; or GoodSport™, GS) to replace 75% of lost body mass over 30 min. After a 30-min light-intensity warm-up (1.5 W·kg-1) in a 35°C, 20% RH environment, subjects then completed a 120-kJ time trial (TT). TT time-to-completion, absolute power, and relative power were significantly improved in WAT (535 ± 214 s, 259 ± 99 W, 3.3 ± 0.9 W·kg-1), GAT (539 ± 226 s, 260 ± 110 W, 3.3 ± 1.0 W·kg-1), and GS (534 ± 238 s, 262 ± 105 W, 3.4 ± 1.0 W·kg-1) compared to NF (631 ± 310 s, 229 ± 96 W, 3.0 ± 0.9 W·kg-1) all (p < 0.01) with no differences between WAT, GAT, and GS, suggesting that hydration is more important than carbohydrate availability during exercise in the heat. A subset of four subjects returned to the laboratory to repeat the WAT, GAT, and GS treatments to determine if between-beverage differences in time-trial performance were evident with a longer TT in thermoneutral conditions. Following dehydration, the ambient conditions in the environmental chamber were reduced to 21°C and 20% RH and subjects completed a 250-kJ TT. All four subjects improved TT performance in the GS trial (919 ± 353 s, 300 ± 100 W, 3.61 ± 0.86 W·kg-1) compared to WAT (960 ± 376 s, 283 ± 91 W, 3.43 ± 0.83 W·kg-1), while three subjects improved TT performance in the GAT trial (946 ± 365 s, 293 ± 103 W, 3.60 ± 0.97 W·kg-1) compared to WAT, highlighting the importance of carbohydrate availability in cooler conditions as the length of a push-to-the-finish cycling task increases.
Collapse
Affiliation(s)
- Craig W Berry
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - S Tony Wolf
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - Rachel M Cottle
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - W Larry Kenney
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States.,Graduate Program in Physiology, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
25
|
Peel JS, McNarry MA, Heffernan SM, Nevola VR, Kilduff LP, Waldron M. The Effect of Dietary Supplements on Endurance Exercise Performance and Core Temperature in Hot Environments: A Meta-analysis and Meta-regression. Sports Med 2021; 51:2351-2371. [PMID: 34129223 PMCID: PMC8514372 DOI: 10.1007/s40279-021-01500-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND The ergogenic effects of dietary supplements on endurance exercise performance are well-established; however, their efficacy in hot environmental conditions has not been systematically evaluated. OBJECTIVES (1) To meta-analyse studies investigating the effects of selected dietary supplements on endurance performance and core temperature responses in the heat. Supplements were included if they were deemed to: (a) have a strong evidence base for 'directly' improving thermoneutral endurance performance, based on current position statements, or (b) have a proposed mechanism of action that related to modifiable factors associated with thermal balance. (2) To conduct meta-regressions to evaluate the moderating effect of selected variables on endurance performance and core temperature responses in the heat following dietary supplementation. METHODS A search was performed using various databases in May 2020. After screening, 25 peer-reviewed articles were identified for inclusion, across three separate meta-analyses: (1) exercise performance; (2) end core temperature; (3) submaximal core temperature. The moderating effect of several variables were assessed via sub-analysis and meta-regression. RESULTS Overall, dietary supplementation had a trivial significant positive effect on exercise performance (Hedges' g = 0.18, 95% CI 0.007-0.352, P = 0.042), a trivial non-significant positive effect on submaximal core temperature (Hedges' g = 0.18, 95% CI - 0.021 to 0.379, P = 0.080) and a small non-significant positive effect on end core temperature (Hedges' g = 0.20, 95% CI - 0.041 to 0.439, P = 0.104) in the heat. There was a non-significant effect of individual supplements on exercise performance (P = 0.973) and submaximal core temperature (P = 0.599). However, end core temperature was significantly affected by supplement type (P = 0.003), which was attributable to caffeine's large significant positive effect (n = 8; Hedges' g = 0.82, 95% CI 0.433-1.202, P < 0.001) and taurine's medium significant negative effect (n = 1; Hedges' g = - 0.96, 95% CI - 1.855 to - 0.069, P = 0.035). CONCLUSION Supplements such as caffeine and nitrates do not enhance endurance performance in the heat, with caffeine also increasing core temperature responses. Some amino acids might offer the greatest performance benefits in the heat. Exercising in the heat negatively affected the efficacy of many dietary supplements, indicating that further research is needed and current guidelines for performance in hot environments likely require revision.
Collapse
Affiliation(s)
- Jennifer S Peel
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK.
| | - Melitta A McNarry
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
| | - Shane M Heffernan
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
| | - Venturino R Nevola
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Defence Science and Technology Laboratory (Dstl), Fareham, Hampshire, UK
| | - Liam P Kilduff
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
| | - Mark Waldron
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
26
|
Ioannou LG, Mantzios K, Tsoutsoubi L, Nintou E, Vliora M, Gkiata P, Dallas CN, Gkikas G, Agaliotis G, Sfakianakis K, Kapnia AK, Testa DJ, Amorim T, Dinas PC, Mayor TS, Gao C, Nybo L, Flouris AD. Occupational Heat Stress: Multi-Country Observations and Interventions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6303. [PMID: 34200783 PMCID: PMC8296111 DOI: 10.3390/ijerph18126303] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Occupational heat exposure can provoke health problems that increase the risk of certain diseases and affect workers' ability to maintain healthy and productive lives. This study investigates the effects of occupational heat stress on workers' physiological strain and labor productivity, as well as examining multiple interventions to mitigate the problem. METHODS We monitored 518 full work-shifts obtained from 238 experienced and acclimatized individuals who work in key industrial sectors located in Cyprus, Greece, Qatar, and Spain. Continuous core body temperature, mean skin temperature, heart rate, and labor productivity were collected from the beginning to the end of all work-shifts. RESULTS In workplaces where self-pacing is not feasible or very limited, we found that occupational heat stress is associated with the heat strain experienced by workers. Strategies focusing on hydration, work-rest cycles, and ventilated clothing were able to mitigate the physiological heat strain experienced by workers. Increasing mechanization enhanced labor productivity without increasing workers' physiological strain. CONCLUSIONS Empowering laborers to self-pace is the basis of heat mitigation, while tailored strategies focusing on hydration, work-rest cycles, ventilated garments, and mechanization can further reduce the physiological heat strain experienced by workers under certain conditions.
Collapse
Affiliation(s)
- Leonidas G. Ioannou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Konstantinos Mantzios
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Lydia Tsoutsoubi
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Eleni Nintou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Maria Vliora
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Paraskevi Gkiata
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Constantinos N. Dallas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Giorgos Gkikas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Gerasimos Agaliotis
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Kostas Sfakianakis
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Areti K. Kapnia
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Davide J. Testa
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Tânia Amorim
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Petros C. Dinas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Tiago S. Mayor
- SIMTECH Laboratory, Transport Phenomena Research Centre, Engineering Faculty of Porto University, 4200-465 Porto, Portugal;
| | - Chuansi Gao
- Thermal Environment Laboratory, Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, 22100 Lund, Sweden;
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Andreas D. Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| |
Collapse
|
27
|
Langer CE, Mitchell DC, Armitage TL, Moyce SC, Tancredi DJ, Castro J, Vega-Arroyo AJ, Bennett DH, Schenker MB. Are Cal/OSHA Regulations Protecting Farmworkers in California From Heat-Related Illness? J Occup Environ Med 2021; 63:532-539. [PMID: 33741829 PMCID: PMC8893044 DOI: 10.1097/jom.0000000000002189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Determine compliance with and effectiveness of California regulations in reducing farmworkers' heat-related illness (HRI) risk and identify main factors contributing to HRI. METHODS In a cross-sectional study of Latino farmworkers, core body temperature (CBT), work rate, and environmental temperature (WBGT) were monitored over a work shift by individual ingestible thermistors, accelerometers, and weather stations, respectively. Multiple logistic modeling was used to identify risk factors for elevated CBT. RESULTS Although farms complied with Cal/OSHA regulations, worker training of HRI prevention and hydration replacement rates were insufficient. In modeling (AOR [95% CI]) male sex (3.74 [1.22 - 11.54]), WBGT (1.22 [1.08 - 1.38]), work rate (1.004 [1.002 - 1.006]), and increased BMI (1.11 [1.10 - 1.29]) were all independently associated with elevated CBT. CONCLUSION Risk of HRI was exacerbated by work rate and environmental temperature despite farms following Cal/OSHA regulations.
Collapse
Affiliation(s)
- Chelsea Eastman Langer
- Center for Health and the Environment, University of California, Davis, Davis, California, USA (Dr Langer, Castro); Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, California, USA (Dr Mitchell, Armitage, Dr Vega-Arroyo, Dr Bennett, Dr Schenker); Betty Irene Moore School of Nursing, University of California, Davis, Davis, California, USA (Dr Moyce); College of Nursing, Montana State University, Bozeman, Montana, USA (Dr Moyce); Department of Pediatrics , Center for Healthcare Policy and Research, School of Medicine, University of California, Davis, Sacramento, California, USA (Dr Tancredi)
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Smith JW, Bello ML, Price FG. A Case-Series Observation of Sweat Rate Variability in Endurance-Trained Athletes. Nutrients 2021; 13:nu13061807. [PMID: 34073387 PMCID: PMC8226773 DOI: 10.3390/nu13061807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/31/2023] Open
Abstract
Adequate fluid replacement during exercise is an important consideration for athletes, however sweat rate (SR) can vary day-to-day. The purpose of this study was to investigate day-to-day variations in SR while performing self-selected exercise sessions to evaluate error in SR estimations in similar temperature conditions. Thirteen endurance-trained athletes completed training sessions in a case-series design 1x/week for a minimum 30 min of running/biking over 24 weeks. Body mass was recorded pre/post-training and corrected for fluid consumption. Data were split into three Wet-Bulb Globe Thermometer (WBGT) conditions: LOW (<10 °C), MOD (10–19.9 °C), HIGH (>20 °C). No significant differences existed in exercise duration, distance, pace, or WBGT for any group (p > 0.07). Significant differences in SR variability occurred for all groups, with average differences of: LOW = 0.15 L/h; MOD = 0.14 L/h; HIGH = 0.16 L/h (p < 0.05). There were no significant differences in mean SR between LOW-MOD (p > 0.9), but significant differences between LOW-HIGH and MOD-HIGH (p < 0.03). The assessment of SR can provide useful data for determining hydration strategies. The significant differences in SR within each temperature range indicates a single assessment may not accurately represent an individual’s typical SR even in similar environmental conditions.
Collapse
|
29
|
Burke LM, Slater GJ, Matthews JJ, Langan-Evans C, Horswill CA. ACSM Expert Consensus Statement on Weight Loss in Weight-Category Sports. Curr Sports Med Rep 2021; 20:199-217. [PMID: 33790193 DOI: 10.1249/jsr.0000000000000831] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT Weight-category sports are defined by the requirement of a weigh-in before competition to provide performance equity and reduced injury risks by eliminating size discrepancies. Athletes in these sports try to gain a theoretical advantage by competing in weight divisions that are lower than their day-to-day body mass (BM), using a combination of chronic strategies (body-fat losses) and acute manipulations over a period of hours to days before weigh-in ("making weight"). Strategies to support safer practices include minimal competition weight classification based on preseason body composition, reductions in the period between weigh-in and competition, and prohibition of unhealthy weight loss techniques. At an individual level, expert guidance by a sports nutrition professional can help an athlete to establish a pragmatic and long-term approach to BM management, recognizing the nuances of their sport, to achieve favorable outcomes for both health and performance.
Collapse
Affiliation(s)
- Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic, AUSTRALIA
| | - Gary J Slater
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, AUSTRALIA
| | | | - Carl Langan-Evans
- Applied Sport Physiology and Nutrition Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES), Liverpool, Merseyside, UNITED KINGDOM
| | - Craig A Horswill
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
30
|
Wiśniewski D, Śliwicka E, Malik J, Durkalec-Michalski K. Evaluation of Fluid Loss and Customary Fluid Intake among a Selected Group of Young Swimmers: A Preliminary Field Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18063205. [PMID: 33808826 PMCID: PMC8003718 DOI: 10.3390/ijerph18063205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/26/2022]
Abstract
This study aimed to assess fluid loss (FL) and customary fluid intake (FI) during a training session, and the relationship between FL and total body water (TBW) content in a selected group of young swimmers. The study involved 17 (seven females, 10 males) individuals whose anthropometric and body composition analyses and FI during training units were carried out. The total average FI and total actual FL oscillated around 531 mL and −513 mL for the whole study group (469 mL and −284 mL for females, 574 mL and −674 mL for males). The dependent and independent sample t-tests, the Cohen’s d effect size and Pearson’s correlation coefficient were analysed. Significant differences were observed between pre-workout and post-workout body weights after training without FI in the whole group (66.5 kg vs. 66.0 kg, p < 0.001, d = 0.06), in females (61.2 kg vs. 60.9 kg, p = 0.015, d = 0.04) and males (70.3 kg vs. 69.6 kg, p < 0.001, d = 0.9). For the TBW content and fat-free mass (FFM) before and after training, significant differences were observed only in males (TBW: 43.8 L vs. 43.2 L, p = 0.002, d = 0.14; and 62.4% vs. 61.7%, p < 0.001, d = 0.36; FFM: 59.8 kg vs. 59.1 kg, p = 0.002, d = 0.12). Moreover, the relationship between the actual FL and TBW before training was observed in the whole (mL vs. %: r = −0.64, p = 0.006; mL vs. L: r = −0.84, p < 0.001) and the male group (mL vs. L: r = −0.73, p = 0.017). These results indicated FL in young swimmers during training and the relationship between FL and pre-training TBW content, which suggests that it is important to also pay special attention to effective hydration procedures before and during training in aquatic environments.
Collapse
Affiliation(s)
- Damian Wiśniewski
- Department of Sports Dietetics, Poznan University of Physical Education, 61-871 Poznań, Poland;
| | - Ewa Śliwicka
- Department of Physiology and Biochemistry, Poznan University of Physical Education, 61-871 Poznań, Poland;
| | - Jakub Malik
- Department of Physical Activity and Health Promotion Science, Poznan University of Physical Education, 61-871 Poznań, Poland;
| | - Krzysztof Durkalec-Michalski
- Department of Sports Dietetics, Poznan University of Physical Education, 61-871 Poznań, Poland;
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, 61-871 Poznań, Poland
- Correspondence: ; Tel.: +48-61-835-52-87
| |
Collapse
|
31
|
Ioannou LG, Mantzios K, Tsoutsoubi L, Panagiotaki Z, Kapnia AK, Ciuha U, Nybo L, Flouris AD, Mekjavic IB. Effect of a Simulated Heat Wave on Physiological Strain and Labour Productivity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3011. [PMID: 33804091 PMCID: PMC7998810 DOI: 10.3390/ijerph18063011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The aim of the study was to investigate the effect of a simulated heat-wave on the labour productivity and physiological strain experienced by workers. METHODS Seven males were confined for ten days in controlled ambient conditions. A familiarisation day was followed by three (pre, during, and post-heat-wave) 3-day periods. During each day volunteers participated in a simulated work-shift incorporating two physical activity sessions each followed by a session of assembly line task. Conditions were hot (work: 35.4 °C; rest: 26.3 °C) during, and temperate (work: 25.4 °C; rest: 22.3 °C) pre and post the simulated heat-wave. Physiological, biological, behavioural, and subjective data were collected throughout the study. RESULTS The simulated heat-wave undermined human capacity for work by increasing the number of mistakes committed, time spent on unplanned breaks, and the physiological strain experienced by the participants. Early adaptations were able to mitigate the observed implications on the second and third days of the heat-wave, as well as impacting positively on the post-heat-wave period. CONCLUSIONS Here, we show for first time that a controlled simulated heat-wave increases workers' physiological strain and reduces labour productivity on the first day, but it promotes adaptations mitigating the observed implications during the subsequent days.
Collapse
Affiliation(s)
- Leonidas G. Ioannou
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; (U.C.); (I.B.M.)
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42131 Trikala, Greece; (K.M.); (L.T.); (Z.P.); (A.K.K.); (A.D.F.)
| | - Konstantinos Mantzios
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42131 Trikala, Greece; (K.M.); (L.T.); (Z.P.); (A.K.K.); (A.D.F.)
| | - Lydia Tsoutsoubi
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42131 Trikala, Greece; (K.M.); (L.T.); (Z.P.); (A.K.K.); (A.D.F.)
| | - Zoe Panagiotaki
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42131 Trikala, Greece; (K.M.); (L.T.); (Z.P.); (A.K.K.); (A.D.F.)
| | - Areti K. Kapnia
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42131 Trikala, Greece; (K.M.); (L.T.); (Z.P.); (A.K.K.); (A.D.F.)
| | - Ursa Ciuha
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; (U.C.); (I.B.M.)
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Andreas D. Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42131 Trikala, Greece; (K.M.); (L.T.); (Z.P.); (A.K.K.); (A.D.F.)
| | - Igor B. Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; (U.C.); (I.B.M.)
| |
Collapse
|
32
|
Individual Anthropometric, Aerobic Capacity and Demographic Characteristics as Predictors of Heat Intolerance in Military Populations. ACTA ACUST UNITED AC 2021; 57:medicina57020173. [PMID: 33671414 PMCID: PMC7922340 DOI: 10.3390/medicina57020173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022]
Abstract
Background and objectives: The Australian Defence Force (ADF) engages in combat-related activities in hot climatic conditions, which exposes ADF members to the threat of exertional heat illness (EHI). After an episode of EHI, the heat tolerance test (HTT) is conducted to determine heat tolerance. Heat intolerance is the inability to maintain thermal balance while exercising in a hot environment. This study investigated the predictive roles of individual characteristics (age, gender, aerobic capacity (VO2max) and body composition) on physiological responses to the HTT in a group comprising ADF personnel and civilian volunteers. Materials and Methods: A quasi-experimental design was used and 52 (38 males and 14 females) participants were recruited from the ADF and the general population for the HTT. Heat intolerance was defined following the standard criteria for the HTT (temperature and heart rate). Data were analysed using inferential statistics. Results: The mean age of the participants was 31.1 ± 11.6 years, and 44% (23 people: 19 males and 4 females) of the participants were heat intolerant. Independent samples T-test showed that body mass index (p = 0.011) and body fat% (p = 0.034) of heat-intolerant participants were significantly higher than their heat-tolerant counterparts. Body surface area to mass ratio (p = 0.005) and aerobic capacity (p = 0.001) were significantly lower in heat-intolerant participants. Regression analyses showed that age, gender, aerobic capacity and body fat% were significant (p < 0.001) predictors of heat tolerance outcomes, with R2 values ranging from 0.505 to 0.636. Conclusions: This study showed that aerobic capacity, body fat%, age and gender are predictors of heat intolerance among military and non-military populations. However, there may be a need for future studies to consider identifying other indicators such as clinical biomarkers of heat intolerance, which could be used to develop a more reliable HTT protocol.
Collapse
|
33
|
Venugopal V, Latha PK, Shanmugam R, Krishnamoorthy M, Omprashanth R, Lennqvist R, Johnson P. Epidemiological evidence from south Indian working population-the heat exposures and health linkage. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:177-186. [PMID: 32892212 DOI: 10.1038/s41370-020-00261-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/05/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Changing climate and rising temperatures are predicted to affect millions of workers due to heat stress risks, especially in tropical settings. We used a cross-sectional study design to profile the heat exposures of ~1500 workers from eight-industrial sectors using a QuesTemp wet bulb globe temperature (WBGT) monitor, quantified the heat-strain indicators viz., rise in Core Body Temperature (CBT), Sweat Rate (SwR), and Urine Specific Gravity (USG) by standard methods and evaluated the health impacts of heat stress using a structured questionnaire. Heat exposures (Avg.WBGT: 28.4 ± 2.6 °C) exceeded the Threshold Limit Value (TLV) for 70% of workers and was significantly associated with the rise in CBT >1 °C in 11.3% and elevated USG >1.020 in 10.5% of the workers. The heat-exposed workers had 2.3 times higher odds of reporting adverse health outcomes (84%) compared to the unexposed workers (95% CI: 1.74-3.19; p value ≤ 0.0001). Mild reduction in kidney function observed in 49% of salt - pan workers, and a high prevalence of kidney stones (33%) among the 91 steelworkers subjected to kidney ultrasound had a significant association with chronic high WBGT exposure above the TLV (p value < 0.034). Further, in-depth assessments are warranted to develop strategies for interventions and protective labor policies to avert adverse occupational health and productivity consequences for millions of workers globally, especially in the rising temperature scenario.
Collapse
Affiliation(s)
- Vidhya Venugopal
- Faculty of Public Health, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India.
| | - P K Latha
- Faculty of Public Health, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Rekha Shanmugam
- Faculty of Public Health, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Manikandan Krishnamoorthy
- Faculty of Public Health, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - R Omprashanth
- Faculty of Public Health, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Robin Lennqvist
- Department of Public Health and Community Medicine/Section of Occupational and Environmental Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Priscilla Johnson
- Department of Physiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
34
|
Eith JM, Haggard CR, Emerson DM, Yeargin SW. Practices of Athletic Trainers Using Weight Charts to Determine Hydration Status and Fluid-Intervention Strategies. J Athl Train 2021; 56:64-70. [PMID: 33259579 DOI: 10.4085/1062-6050-0373.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Determining an athlete's hydration status allows hydration-related concerns to be identified before significant medical or performance concerns arise. Weight charts are an accurate measure of hydration status changes, yet their clinical use by athletic trainers (ATs) is unknown. OBJECTIVE To investigate ATs' use of weight charts in athletic settings and describe their subsequent clinical decisions. DESIGN Cross-sectional survey. SETTING High schools and National Collegiate Athletic Association Divisions I, II, III and National Association Intercollegiate Athletics colleges. PATIENTS OR OTHER PARTICIPANTS A total of 354 ATs (men = 162, women = 175; 17 respondents did not answer the demographic questions) responded across athletic settings (Division I [45.7%]; Division II, Division III, National Association Intercollegiate Athletics combined [n = 19.9%]; and high school [34.4%]). MAIN OUTCOME MEASURE(S) The 26-question online survey was developed by content experts and pilot tested before data collection. Participants answered questions focused on weight-chart use (implementation, timing, and calculations) and clinical decision processes (policies, interventions, and referral). Frequency statistics were calculated. RESULTS The majority of ATs (57.2%) did not use weight charts. Of those who did, most (76.0%) used charts with football, soccer (28%), and wrestling (6%) athletes. They calculated changes as either an absolute (42.2%) or percentage (36.7%) change from prepractice to postpractice; only 11.7% used a baseline weight for calculations. Of those who used the percentage change in body mass, 66.0% selected a threshold of -3% to -4% for an intervention. Most ATs (97.0%) intervened with verbal education, whereas only one-third (37.0%) provided specific fluid amounts based on body mass changes. CONCLUSIONS Typically, ATs in athletic settings did not use weight charts. They considered a body mass change of -3% the indication for intervention but did not specify rehydration amounts for hypohydrated athletes. Educational workshops or technology applications could be developed to encourage ATs to use weight charts and calculate appropriate individual fluid interventions for their athletes.
Collapse
|
35
|
Tabuchi S, Horie S, Kawanami S, Inoue D, Morizane S, Inoue J, Nagano C, Sakurai M, Serizawa R, Hamada K. Efficacy of ice slurry and carbohydrate-electrolyte solutions for firefighters. J Occup Health 2021; 63:e12263. [PMID: 34375489 PMCID: PMC8354579 DOI: 10.1002/1348-9585.12263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES To examine the thermoregulatory and fluid-electrolyte responses of firefighters ingesting ice slurry and carbohydrate-electrolyte solutions before and after firefighting operations. METHODS Twelve volunteer firefighters put on fireproof clothing and ingested 5 g/kg of beverage in an anteroom at 25°C and 50% relative humidity (RH; pre-ingestion), and then performed 30 minutes of exercise on a cycle ergometer (at 125 W for 10 minutes and then 75 W for 20 minutes) in a room at 35℃ and 50% RH. The participants then returned to the anteroom, removed their fireproof clothing, ingested 20 g/kg of beverage (post-ingestion), and rested for 90 minutes. Three combinations of pre-ingestion and post-ingestion beverages were provided: a 25℃ carbohydrate-electrolyte solution for both (CH condition); 25℃ water for both (W condition); and a -1.7℃ ice slurry pre-exercise and 25℃ carbohydrate-electrolyte solution post-exercise (ICE condition). RESULTS The elevation of body temperature during exercise was lower in the ICE condition than in the other conditions. The sweat volume during exercise was lower in the ICE condition than in the other conditions. The serum sodium concentration and serum osmolality were lower in the W condition than in the CH condition. CONCLUSIONS The ingestion of ice slurry while firefighters were wearing fireproof clothing before exercise suppressed the elevation of body temperature during exercise. Moreover, the ingestion of carbohydrate-electrolyte solution by firefighters after exercise was useful for recovery from dehydration.
Collapse
Affiliation(s)
- Shota Tabuchi
- Department of Health Policy and ManagementInstitute of Industrial Ecological SciencesUniversity of Occupational and Environmental Health, Japan (UOEH)KitakyushuJapan
| | - Seichi Horie
- Department of Health Policy and ManagementInstitute of Industrial Ecological SciencesUniversity of Occupational and Environmental Health, Japan (UOEH)KitakyushuJapan
| | | | - Daisuke Inoue
- Department of Health Policy and ManagementInstitute of Industrial Ecological SciencesUniversity of Occupational and Environmental Health, Japan (UOEH)KitakyushuJapan
| | - Shuhei Morizane
- Department of Health Policy and ManagementInstitute of Industrial Ecological SciencesUniversity of Occupational and Environmental Health, Japan (UOEH)KitakyushuJapan
| | - Jinro Inoue
- Department of Health Policy and ManagementInstitute of Industrial Ecological SciencesUniversity of Occupational and Environmental Health, Japan (UOEH)KitakyushuJapan
| | - Chikage Nagano
- Department of Health Policy and ManagementInstitute of Industrial Ecological SciencesUniversity of Occupational and Environmental Health, Japan (UOEH)KitakyushuJapan
| | - Masao Sakurai
- Saga Nutraceuticals Research InstituteOtsuka Pharmaceutical Co., Ltd.KanzakiJapan
| | - Ryo Serizawa
- Saga Nutraceuticals Research InstituteOtsuka Pharmaceutical Co., Ltd.KanzakiJapan
| | - Koichiro Hamada
- Saga Nutraceuticals Research InstituteOtsuka Pharmaceutical Co., Ltd.KanzakiJapan
| |
Collapse
|
36
|
Lim CL. Fundamental Concepts of Human Thermoregulation and Adaptation to Heat: A Review in the Context of Global Warming. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7795. [PMID: 33114437 PMCID: PMC7662600 DOI: 10.3390/ijerph17217795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
The international community has recognized global warming as an impending catastrophe that poses significant threat to life on earth. In response, the signatories of the Paris Agreement (2015) have committed to limit the increase in global mean temperature to < 1.5 °C from pre-industry period, which is defined as 1950-1890. Considering that the protection of human life is a central focus in the Paris Agreement, the naturally endowed properties of the human body to protect itself from environmental extremes should form the core of an integrated and multifaceted solution against global warming. Scholars believe that heat and thermoregulation played important roles in the evolution of life and continue to be a central mechanism that allows humans to explore, labor and live in extreme conditions. However, the international effort against global warming has focused primarily on protecting the environment and on the reduction of greenhouse gases by changing human behavior, industrial practices and government policies, with limited consideration given to the nature and design of the human thermoregulatory system. Global warming is projected to challenge the limits of human thermoregulation, which can be enhanced by complementing innate human thermo-plasticity with the appropriate behavioral changes and technological innovations. Therefore, the primary aim of this review is to discuss the fundamental concepts and physiology of human thermoregulation as the underlying bases for human adaptation to global warming. Potential strategies to extend human tolerance against environmental heat through behavioral adaptations and technological innovations will also be discussed. An important behavioral adaptation postulated by this review is that sleep/wake cycles would gravitate towards a sub-nocturnal pattern, especially for outdoor activities, to avoid the heat in the day. Technologically, the current concept of air conditioning the space in the room would likely steer towards the concept of targeted body surface cooling. The current review was conducted using materials that were derived from PubMed search engine and the personal library of the author. The PubMed search was conducted using combinations of keywords that are related to the theme and topics in the respective sections of the review. The final set of articles selected were considered "state of the art," based on their contributions to the strength of scientific evidence and novelty in the domain knowledge on human thermoregulation and global warming.
Collapse
Affiliation(s)
- Chin Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
37
|
Chapman CL, Johnson BD, Parker MD, Hostler D, Pryor RR, Schlader Z. Kidney physiology and pathophysiology during heat stress and the modification by exercise, dehydration, heat acclimation and aging. Temperature (Austin) 2020; 8:108-159. [PMID: 33997113 PMCID: PMC8098077 DOI: 10.1080/23328940.2020.1826841] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
The kidneys' integrative responses to heat stress aid thermoregulation, cardiovascular control, and water and electrolyte regulation. Recent evidence suggests the kidneys are at increased risk of pathological events during heat stress, namely acute kidney injury (AKI), and that this risk is compounded by dehydration and exercise. This heat stress related AKI is believed to contribute to the epidemic of chronic kidney disease (CKD) occurring in occupational settings. It is estimated that AKI and CKD affect upwards of 45 million individuals in the global workforce. Water and electrolyte disturbances and AKI, both of which are representative of kidney-related pathology, are the two leading causes of hospitalizations during heat waves in older adults. Structural and physiological alterations in aging kidneys likely contribute to this increased risk. With this background, this comprehensive narrative review will provide the first aggregation of research into the integrative physiological response of the kidneys to heat stress. While the focus of this review is on the human kidneys, we will utilize both human and animal data to describe these responses to passive and exercise heat stress, and how they are altered with heat acclimation. Additionally, we will discuss recent studies that indicate an increased risk of AKI due to exercise in the heat. Lastly, we will introduce the emerging public health crisis of older adults during extreme heat events and how the aging kidneys may be more susceptible to injury during heat stress.
Collapse
Affiliation(s)
- Christopher L. Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Blair D. Johnson
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Mark D. Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Riana R. Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zachary Schlader
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
38
|
Gutiérrez-Vargas R, Martín-Rodríguez S, Sánchez-Ureña B, Rodríguez-Montero A, Salas-Cabrera J, Gutiérrez-Vargas JC, Simunic B, Rojas-Valverde D. Biochemical and Muscle Mechanical Postmarathon Changes in Hot and Humid Conditions. J Strength Cond Res 2020; 34:847-856. [PMID: 30024483 DOI: 10.1519/jsc.0000000000002746] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gutiérrez-Vargas, R, Martín-Rodríguez, S, Sánchez-Ureña, B, Rodríguez-Montero, A, Salas-Cabrera, J, Gutiérrez-Vargas, JC, Simunic, B, and Rojas-Valverde, D. Biochemical and muscle mechanical postmarathon changes in hot and humid conditions. J Strength Cond Res 34(3): 847-856, 2020-The aim of this study was to compare biochemical changes and mechanical changes in the lower-limb muscles before and after a marathon race in hot and humid conditions. Eighteen healthy runners participated in a marathon at between 28 and 34° C and 81% humidity in Costa Rica. Serum magnesium (Mg), creatine phosphokinase (CPK), lactate dehydrogenase, and hematocrit (HCT) were measured before and after the marathon. Tensiomyography measurements from the rectus femoris (RF) and vastus medialis, muscle displacement (Dm), contraction time (Tc), and velocities of contraction to 10 and 90% of Dm (V10 and V90) were obtained before and after the marathon. Postrace measurements showed a 544% increase in CPK (t(17): -6.925, p < 0.01), a 16% increase in HCT (t(17): -7.466, p < 0.01), a 29% decrease in Mg (t(17): 3.91, p = 0.001), a 2% decrease in body mass (t(17): 4.162, p = 0.001), a 4% increase in Tc of the RF (t(17): -2.588, p = 0.019), and a 12% increase in Dm of the RF (t(17): -2.131, p < 0.048) compared with prerace measurements. No significant biochemical or mechanical differences were found between runners in terms of their finish times. These findings showed that completing a marathon in hot and humid conditions induced a significant reduction in lower-limb muscle stiffness, body mass, and Mg, and increased neuromuscular fatigue, CPK, and HCT, because of muscle damage and dehydration. Knowledge of the effects of heat and humidity may be of value for coaches and sports medicine practitioners in developing effective hydration and recovery protocols for marathon runners in these special conditions.
Collapse
Affiliation(s)
- Randall Gutiérrez-Vargas
- Health and Sport Research and Diagnosis Center (CIDISAD).,School of Human Movement and Quality of Life, National University, Heredia, Costa Rica
| | - Saúl Martín-Rodríguez
- Canarian Physical Education Licenciates College (COLEF), Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Braulio Sánchez-Ureña
- School of Human Movement and Quality of Life, National University, Heredia, Costa Rica.,Health and Exercise Sciences Program; and
| | | | - Jorge Salas-Cabrera
- School of Human Movement and Quality of Life, National University, Heredia, Costa Rica
| | | | - Bostjan Simunic
- Institute of Kinesiology Research, University of Priomorska, Koper, Slovenia
| | - Daniel Rojas-Valverde
- Health and Sport Research and Diagnosis Center (CIDISAD).,School of Human Movement and Quality of Life, National University, Heredia, Costa Rica
| |
Collapse
|
39
|
Eslamizad M, Albrecht D, Kuhla B. The effect of chronic, mild heat stress on metabolic changes of nutrition and adaptations in rumen papillae of lactating dairy cows. J Dairy Sci 2020; 103:8601-8614. [PMID: 32600758 DOI: 10.3168/jds.2020-18417] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 12/25/2022]
Abstract
Global warming and accompanying high ambient temperatures reduce feed intake of dairy cows and shift the blood flow from the core of the body to the periphery. As a result, hypoxia may occur in the digestive tract accompanied by disruption of the intestinal barrier, local endotoxemia and inflammation, and altered nutrient absorption. However, whether the barrier of the rumen, like the intestine, is affected by ambient heat has not been studied so far. Lactating Holstein dairy cows were subjected to heat stress at 28°C (temperature-humidity index = 76; n = 5) with ad libitum feed intake or to thermoneutral conditions at 15°C (temperature-humidity index = 60; n = 5) and pair-feeding to heat-stressed animals for a total of 4 d. Gas exchange and feed intake behavior were measured in a respiration chamber, and rumen epithelia were taken after slaughter. Heat stress significantly reduced meal size and whole-body fat oxidation but increased meal frequency and carbohydrate oxidation. The mRNA expression of toll-like receptor 4 (TLR4) and tight junction proteins and the phosphorylation of TLR4 downstream targets (interleukin-1 receptor-associated kinase 4, stress-activated protein kinase, p38 mitogen-activated protein kinase, and nuclear factor k-B) in the rumen epithelium were not affected by heat. The proteomics approach revealed increased expression of rumen epithelium proteins involved in the AMP-activated protein kinase (AMPK) and insulin signaling pathways in heat-stressed cows. Also, proteins involved in chaperone-mediated folding of proteins were upregulated, whereas those involved in antioxidant defense system were downregulated. Further, we found evidence for increased carbohydrate phosphorylation accompanied with an increased flux of carbohydrates through the hexosamine biosynthetic pathway, providing substrates for protein glycosylation. In conclusion, the mild heat stress did not induce barrier dysfunction or inflammatory responses in the rumen epithelium of dairy cows, probably because of adaptations in feed intake behavior and defense mechanisms at the tissue level.
Collapse
Affiliation(s)
- Mehdi Eslamizad
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Dirk Albrecht
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Felix-Hausdorff-Straße 8, 17487 Greifswald, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
40
|
Schneider M, Ziegler T, Kolter L. Thermoregulation in Malayan sun bears (Helarctos malayanus) and its consequences for in situ conservation. J Therm Biol 2020; 91:102646. [PMID: 32716887 DOI: 10.1016/j.jtherbio.2020.102646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 11/29/2022]
Abstract
Thermoregulation in Malayan sun bears is not fully understood. Therefore, in this study the effect of meteorological variables on both behavioural and autonomic thermoregulatory mechanisms in sun bears was examined in order to identify temperature thresholds for the activation of various thermoregulatory mechanisms. Infrared thermography was used to non‒invasively determine body surface temperature (TS) distribution in relation to ambient temperature (TA) and to determine the thermoneutral zone (TNZ) of sun bears. Thermographic measurements were performed on 10 adult sun bears at TA between 5 °C and 30 °C in three European zoos. To assess behaviours that contribute to thermoregulation, nine adult sun bears were observed at TA ranging from 5 °C to 34 °C by instantaneous scan sampling in 60 s intervals for a total of 787 h. Thermographic measurements revealed that the TNZ of sun bears lies between 24 °C and 28 °C and that heat is equally dissipated over the body surface. Behavioural data showed that behaviours related to thermoregulation occurred in advance of energetically costly autonomic mechanisms, and were highly correlated with TA and solar radiation. While the temperature threshold for the onset of thermoregulatory behaviours below the TNZ lies around 15 °C, which is well below the lower critical temperature (TLC) assessed by thermography, the onset for behaviours to prevent overheating occurred at 28 °C, which was closer to the estimated upper critical temperature (TUC) of sun bears. These findings provide useful data on the thermal requirements of sun bears with respect to the species potential to cope with the effects of climate change and deforestation which are occurring in their natural range. Furthermore, these results may have important implications for the care and welfare of bears in captivity and should be taken into consideration, when designing and managing facilities.
Collapse
Affiliation(s)
- Marion Schneider
- AG Zoologischer Garten Köln, Riehler Str. 173, 50735, Cologne, Germany.
| | - Thomas Ziegler
- AG Zoologischer Garten Köln, Riehler Str. 173, 50735, Cologne, Germany.
| | - Lydia Kolter
- AG Zoologischer Garten Köln, Riehler Str. 173, 50735, Cologne, Germany.
| |
Collapse
|
41
|
Bethancourt HJ, Swanson ZS, Nzunza R, Huanca T, Conde E, Kenney WL, Young SL, Ndiema E, Braun D, Pontzer H, Rosinger AY. Hydration in relation to water insecurity, heat index, and lactation status in two small-scale populations in hot-humid and hot-arid environments. Am J Hum Biol 2020; 33:e23447. [PMID: 32583580 DOI: 10.1002/ajhb.23447] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES This study compared the prevalence of concentrated urine (urine specific gravity ≥1.021), an indicator of hypohydration, across Tsimane' hunter-forager-horticulturalists living in hot-humid lowland Bolivia and Daasanach agropastoralists living in hot-arid Northern Kenya. It tested the hypotheses that household water and food insecurity would be associated with higher odds of hypohydration. METHODS This study collected spot urine samples and corresponding weather data along with data on household water and food insecurity, demographics, and health characteristics among 266 Tsimane' households (N = 224 men, 235 women, 219 children) and 136 Daasanach households (N = 107 men, 120 women, 102 children). RESULTS The prevalence of hypohydration among Tsimane' men (50.0%) and women (54.0%) was substantially higher (P < .001) than for Daasanach men (15.9%) and women (17.5%); the prevalence of hypohydration among Tsimane' (37.0%) and Daasanach (31.4%) children was not significantly different (P = .33). Multiple logistic regression models suggested positive but not statistically significant trends between household water insecurity and odds of hypohydration within populations, yet some significant joint effects of water and food insecurity were observed. Heat index (2°C) was associated with a 23% (95% confidence interval [CI]: 1.09-1.40, P = .001), 34% (95% CI: 1.18-1.53, P < .0005), and 23% (95% CI: 1.04-1.44, P = .01) higher odds of hypohydration among Tsimane' men, women, and children, respectively, and a 48% (95% CI: 1.02-2.15, P = .04) increase in the odds among Daasanach women. Lactation status was also associated with hypohydration among Tsimane' women (odds ratio = 3.35, 95% CI: 1.62-6.95, P = .001). CONCLUSION These results suggest that heat stress and reproductive status may have a greater impact on hydration status than water insecurity across diverse ecological contexts.
Collapse
Affiliation(s)
- Hilary J Bethancourt
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Zane S Swanson
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | | | - Tomas Huanca
- Centro Boliviano de Investigacion y Desarrollo Socio Integral (CBIDSI), San Borja, Bolivia
| | - Esther Conde
- Centro Boliviano de Investigacion y Desarrollo Socio Integral (CBIDSI), San Borja, Bolivia
| | - W Larry Kenney
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sera L Young
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Emmanuel Ndiema
- Department of Earth Sciences, National Museums of Kenya, Nairobi, Kenya
| | - David Braun
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA.,Department of Human Evolution, Max Planck Institute of Evolutionary Anthropology, Leipzig, Germany
| | - Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA.,Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Asher Y Rosinger
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Anthropology, The Pennsylvania State University, Pennsylvania, USA
| |
Collapse
|
42
|
Pasiakos SM. Nutritional Requirements for Sustaining Health and Performance During Exposure to Extreme Environments. Annu Rev Nutr 2020; 40:221-245. [PMID: 32530730 DOI: 10.1146/annurev-nutr-011720-122637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary guidelines are formulated to meet minimum nutrient requirements, which prevent deficiencies and maintain health, growth, development, and function. These guidelines can be inadequate and contribute to disrupted homeostasis, lean body mass loss, and deteriorated performance in individuals who are working long, arduous hours with limited access to food in environmentally challenging locations. Environmental extremes can elicit physiological adjustments that alone alter nutrition requirements by upregulating energy expenditure, altering substrate metabolism, and accelerating body water and muscle protein loss. The mechanisms by which the environment, including high-altitude, heat, and cold exposure, alters nutrition requirements have been studied extensively. This contemporary review discusses physiological adjustments to environmental extremes, particularly when those adjustments alter dietary requirements.
Collapse
Affiliation(s)
- Stefan M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts 01760, USA;
| |
Collapse
|
43
|
Potential Biomarkers of Peripheral and Central Fatigue in High-Intensity Trained Athletes at High-Temperature: A Pilot Study with Momordica charantia (Bitter Melon). J Immunol Res 2020; 2020:4768390. [PMID: 32587872 PMCID: PMC7298321 DOI: 10.1155/2020/4768390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/19/2020] [Indexed: 11/17/2022] Open
Abstract
Among potent dietary supplements, Momordica charantia, commonly called bitter melon, has various biological effects, such as antioxidant and anti-inflammatory effects, and improves energy metabolism and fatigue recovery. However, it is unknown whether Momordica charantia extract (MCE) induces antifatigue effects during exercise training in high-temperature environments. This study aimed at investigating the efficacy of MCE by examining 10 male tennis players consuming 100 mL MCE/dose (6 times a day over 4 weeks) during the summer training season. Peripheral (ammonia and uric acid) and central (serotonin, dopamine, and prolactin) fatigue parameters were measured before and after MCE consumption; before, during, and after exercise; and the next morning. After consuming MCE supplements, ammonia levels were higher during and after exercise and recovered the next morning, whereas uric acid levels did not change at any time point. Serotonin levels were lower during exercise. Dopamine levels were higher, especially during exercise. Prolactin levels were lower at all time points, especially during and after exercise. Although high-intensity training in a hot environment causes accumulation of fatigue-related metabolites, our results indicate that 4 weeks of MCE intake positively influenced fatigue parameters, suggesting that MCE can efficiently combat fatigue.
Collapse
|
44
|
KIM DH, BAE GT, LEE JY. A novel vest with dual functions for firefighters: combined effects of body cooling and cold fluid ingestion on the alleviation of heat strain. INDUSTRIAL HEALTH 2020; 58:91-106. [PMID: 31257232 PMCID: PMC7118065 DOI: 10.2486/indhealth.2018-0205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the separate and combined effects of skin cooling and cold fluid ingestion on the alleviation of heat strain when wearing protective firefighting clothing at an air temperature of 30°C with 50%RH. A vest with the dual functions of cooling and providing sports drink supply (1.2% body mass) was developed. Eight males participated in the following four conditions: control [CON], drinking only [DO], cooling only [CO], and both cooling and drinking [CD]. The results showed that rectal (Tre), mean skin temperature (Tsk) and heart rate (HR) during recovery were lower for CD than for CON (p<0.05), while no significant differences between the four conditions were found during exercise. CO significantly reduced mean Tsk and HR and improved thermal sensation, whereas DO was effective for relieving thirst and lowering HR in recovery. In summary, the combined effect of skin cooling and fluid ingestion was synergistically manifested in Tre, Tsk and thermal sensation in recovery.Practitioner Summary: The present results provide data on a novel vest that contributes to alleviating firefighters' heat strain. Because a cooling vest after melting may be a burden for firefighters, this study indicates a practical way to reduce the additional weight load of the vest by drinking the melted fluid of the cooling packs.
Collapse
Affiliation(s)
- Do-Hyung KIM
- Department of Textiles, Merchandising and Fashion Design,
Seoul National University, Korea
| | - Gyu-Tae BAE
- Department of Textiles, Merchandising and Fashion Design,
Seoul National University, Korea
| | - Joo-Young LEE
- Department of Textiles, Merchandising and Fashion Design,
Seoul National University, Korea
- Research Institute for Human Ecology, Seoul National
University, Korea
| |
Collapse
|
45
|
Ely BR, Ely MR. Running in the Heat: Performance Consequences and Strategies to Prepare for Hot-Weather Racing. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Smith JW, Chen Q. Liquid-phase electron microscopy imaging of cellular and biomolecular systems. J Mater Chem B 2020; 8:8490-8506. [DOI: 10.1039/d0tb01300e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liquid-phase electron microscopy, a new method for real-time nanoscopic imaging in liquid, makes it possible to study cells or biomolecules with a singular combination of spatial and temporal resolution. We review the state of the art in biological research in this growing and promising field.
Collapse
Affiliation(s)
- John W. Smith
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign
- Urbana
- USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign
- Urbana
- USA
- Department of Chemistry
- University of Illinois at Urbana–Champaign
| |
Collapse
|
47
|
Giersch GEW, Charkoudian N, Stearns RL, Casa DJ. Fluid Balance and Hydration Considerations for Women: Review and Future Directions. Sports Med 2019; 50:253-261. [DOI: 10.1007/s40279-019-01206-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Smith CJ. Pediatric Thermoregulation: Considerations in the Face of Global Climate Change. Nutrients 2019; 11:E2010. [PMID: 31454933 PMCID: PMC6770410 DOI: 10.3390/nu11092010] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/10/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022] Open
Abstract
Predicted global climate change, including rising average temperatures, increasing airborne pollution, and ultraviolet radiation exposure, presents multiple environmental stressors contributing to increased morbidity and mortality. Extreme temperatures and more frequent and severe heat events will increase the risk of heat-related illness and associated complications in vulnerable populations, including infants and children. Historically, children have been viewed to possess inferior thermoregulatory capabilities, owing to lower sweat rates and higher core temperature responses compared to adults. Accumulating evidence counters this notion, with limited child-adult differences in thermoregulation evident during mild and moderate heat exposure, with increased risk of heat illness only at environmental extremes. In the context of predicted global climate change, extreme environmental temperatures will be encountered more frequently, placing children at increased risk. Thermoregulatory and overall physiological strain in high temperatures may be further exacerbated by exposure to/presence of physiological and environmental stressors including pollution, ultraviolet radiation, obesity, diabetes, associated comorbidities, and polypharmacy that are more commonly occurring at younger ages. The aim of this review is to revisit fundamental differences in child-adult thermoregulation in the face of these multifaceted climate challenges, address emerging concerns, and emphasize risk reduction strategies for the health and performance of children in the heat.
Collapse
Affiliation(s)
- Caroline J Smith
- Department of Health and Exercise Science, Appalachian State University, Boone, NC 28608, USA.
| |
Collapse
|
49
|
Hermand E, Chabert C, Hue O. Ultra-endurance events in tropical environments and countermeasures to optimize performances and health. Int J Hyperthermia 2019; 36:753-760. [PMID: 31429600 DOI: 10.1080/02656736.2019.1635718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Physical performance in a tropical environment, combining high heat and humidity, is a difficult physiological challenge that requires specific preparation. The elevated humidity of a tropical climate impairs the thermoregulatory mechanisms by limiting the rate of sweat evaporation. Hence, a proper management of whole-body temperature is required to complete an ultra-endurance event in such an environment. In these long-duration events, which can last from 8 to 20 h, held in hot and humid settings, performance is tightly linked to the ability in maintaining an optimal hydration status. Indeed, the rate of withdrawal in these longer races was associated with lower water intake, and the majority of finishers exhibited alterations in electrolyte balance (e.g., sodium). Hence, this work reviews the effects on performance of high heat and humidity in two representative ultra-endurance sports, ultramarathons and long-distance triathlons, and several countermeasures to counteract the impact of these harsh environmental stresses and maintain a high level of performance, such as hydration, cooling strategies and heat acclimation.
Collapse
Affiliation(s)
- E Hermand
- Laboratory « Adaptations au Climat Tropical, Exercice et Santé » (EA 3596 ACTES), French West Indies University , Pointe-à-Pitre , France.,Laboratory « Handicap, Activité, Vieillissement, Autonomie, Environnement » (EA 6310 HAVAE), University of Limoges , Limoges , France
| | - C Chabert
- Laboratory « Adaptations au Climat Tropical, Exercice et Santé » (EA 3596 ACTES), French West Indies University , Pointe-à-Pitre , France
| | - O Hue
- Laboratory « Adaptations au Climat Tropical, Exercice et Santé » (EA 3596 ACTES), French West Indies University , Pointe-à-Pitre , France
| |
Collapse
|
50
|
Johnson EC, Huffman AE, Yoder H, Dolci A, Perrier ET, Larson-Meyer DE, Armstrong LE. Urinary markers of hydration during 3-day water restriction and graded rehydration. Eur J Nutr 2019; 59:2171-2181. [PMID: 31428854 PMCID: PMC7351875 DOI: 10.1007/s00394-019-02065-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE This investigation had three purposes: (a) to evaluate changes in hydration biomarkers in response to a graded rehydration intervention (GRHI) following 3 days of water restriction (WR), (b) assess within-day variation in urine concentrations, and (c) quantify the volume of fluid needed to return to euhydration as demonstrated by change in Ucol. METHODS 115 adult males and females were observed during 1 week of habitual fluid intake, 3 days of fluid restriction (1000 mL day-1), and a fourth day in which the sample was randomized into five different GRHI groups: no additional water, CON; additional 500 mL, G+0.50; additional 1000 mL, G+1.00; additional 1500 mL, G+1.50; additional 2250 mL, G+2.25. All urine was collected on 1 day of the baseline week, during the final 2 days of the WR, and during the day of GRHI, and evaluated for urine osmolality, color, and specific gravity. RESULTS Following the GRHI, only G+1.50 and G+2.25 resulted in all urinary values being significantly different from CON. The mean volume of water increase was significantly greater for those whose Ucol changed from > 4 to < 4 (+ 1435 ± 812 mL) than those whose Ucol remained ≥ 4 (+ 667 ± 722 mL, p < 0.001). CONCLUSIONS An additional 500 mL of water is not sufficient, while approximately 1500 mL of additional water (for a total intake between 2990 and 3515 mL day-1) is required to return to a urine color associated with adequate water intake, following 3 days of WR.
Collapse
Affiliation(s)
- Evan C Johnson
- Human Integrated Physiology Laboratory, University of Wyoming, 1000 E. University Ave, Laramie, WY, 82071, USA.
| | - Ainsley E Huffman
- Human Integrated Physiology Laboratory, University of Wyoming, 1000 E. University Ave, Laramie, WY, 82071, USA.,University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hillary Yoder
- Human Integrated Physiology Laboratory, University of Wyoming, 1000 E. University Ave, Laramie, WY, 82071, USA.,Department of Kinesiology, University of Alabama, Tuscaloosa, AL, USA
| | | | | | | | | |
Collapse
|