1
|
Nagasawa K, Kanamori M, Yoon J, Kobayashi M, Mokrina M, Kato T, Osada M. Hemocytes of Yesso scallop characterized by cytological, molecular marker, and functional analyses. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108751. [PMID: 37105424 DOI: 10.1016/j.fsi.2023.108751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/22/2023]
Abstract
Bivalve hemocytes have pivotal role as cellular biodefense. However, no information is available for cytological parameters, marker gene and function of the hemocytes in Yesso scallop, a commercially important aquaculture species worldwide. Due to their extremely strong cell aggregation ability, the scallop hemocytes were not able to assess as a single cell so far. In the present study, we established methodologies for studying the hemocytes of Yesso scallop, assessed cell morphology, measured seasonal fluctuation, and analyzed transcriptomes and cellular behavior during the immune response. Our results showed that the Yesso scallop possesses a single type of leukocyte-type hemocytes similar to other bivalve granulocytes circulating at an average of 1 × 107 cells/ml throughout the year. In addition, we identified five molecular marker genes specific to the scallop hemocytes. These hemocyte markers enabled us to precisely detect the hemocyte localization. Using these markers, we confirmed that tissue transplantation can experimentally induce an immune response, leading to the mobilization of circulating hemocytes for encapsulation. This study provides a comprehensive understanding of scallop hemocytes and their role in the cellular biodefense system of bivalves and various methods for cytological analysis.
Collapse
Affiliation(s)
- Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan.
| | - Makoto Kanamori
- Hakodate Fisheries Research Institute, Fisheries Research Department, Hokkaido Research Organization, 20-5 Benten-cho, Hakodate, Hokkaido, 040-0051, Japan
| | - Jeongwoong Yoon
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Mutsuko Kobayashi
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Mariia Mokrina
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Takahiro Kato
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
2
|
A comprehensive review of the control and utilization of aquatic animal products by autolysis-based processes: Mechanism, process, factors, and application. Food Res Int 2023; 164:112325. [PMID: 36737919 DOI: 10.1016/j.foodres.2022.112325] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Animal aquatic products have high water content, abundant enzyme system and their own diverse microbial flora. These products are severely susceptible to autolysis and degradation after death, resulting in many adverse effects on storage, processing, and transportation. Among them, the endogenous enzyme are the key factor that caused the autolysis and degradation. Autolytic hydrolysis provides an effective way to maximize the use of aquatic by-products and achieve increased protein resources and reduce environmental pollution from by-products. To better acquaintance the autolysis phenomenon and regulation of the autolysis phenomenon. This paper reviews the autolytic mechanism, biochemical changes, influencing factors, and potential applications of animal aquatic products and their by-products to explore autolysis and its effective utilization and regulation. In addition, this study also emphasizes the importance of making full use of aquatic by-products. Furthermore, the research trends and future challenges of autolysis are also discussed. Autolysis can effectively transform aquatic products and by-products into bioactive hydrolysates. The hydrolysates produced by the autolysis of aquatic products and their by-products have attracted attention because of their wide applications in food, healthcare, and animal feed industries. However, the mechanism and regulation (promotion or inhibition) of autolysis should be further studied, and autolysate at the industrial level should be produced to provide high-value-added products for by-product processing and realize the sustainable utilization of resources.
Collapse
|
3
|
Hu B, Xiao J, Yi P, Hu C, Zhu M, Yin S, Wen C, Wu J. Cloning and characteristic of MMP1 gene from Hyriopsis cumingii and collagen hydrolytic activity of its recombinant protein. Gene 2019; 693:92-100. [PMID: 30716434 DOI: 10.1016/j.gene.2018.12.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/04/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
Abstract
Matrix metalloproteinases (MMPs) play an essential role in a variety of biological processes including wound healing, inflammation, cell invasion, angiogenesis and immune defense. In this study, a putative MMP1 cDNA was cloned and characterized from Hyriopsis cumingii (designated as HcMMP1). The cDNA was 1822 bp in length and encoded a putative protein of 510 amino acids, with a predicted molecular mass of 58.28 kDa and an isoelectric point (pI) of 9.27. HcMMP1 contained all prototype MMPs family signatures, such as signal peptide, prodomain, catalytic center, hinge region, and hemopexin like domain. Quantitative real time-PCR (qRT-PCR) revealed that in mussels HcMMP1 mRNA was expressed in all tissues tested, and the transcriptional expression levels were significantly up-regulated in hepatopancreas and hemocytes after Aeromonas hydrophila, peptidoglycan stimulations and in mantle after wounding. Moreover, the recombination HcMMP1 protein, successfully expressed in Escherichia coli, was purified by affinity chromatography with the concentration of final yield at 0.3 mg/mL. The recombinase had an essentially hydrolytic activity toward rat type I collagen, mouse II and IV collagen after renaturation.
Collapse
Affiliation(s)
- Baoqing Hu
- College of Life Science, Nanchang University, Nanchang 330031, China.
| | - Jun Xiao
- Jiangxi Fisheries Research Institute, Nanchang 330039, China
| | - Peipei Yi
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Chenxi Hu
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Mingxing Zhu
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Shuyuan Yin
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Chungen Wen
- College of Life Science, Nanchang University, Nanchang 330031, China.
| | - Jielian Wu
- College of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
4
|
Liu C, Liu B, Zhang Y, Jiang F, Ren Y, Li S, Wang H, Fan W. Ancient horizontally transferred genes in the genome of California two-spot octopus, Octopus bimaculoides. Gene 2018; 667:34-44. [PMID: 29738840 DOI: 10.1016/j.gene.2018.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 04/10/2018] [Accepted: 05/02/2018] [Indexed: 11/28/2022]
Abstract
Horizontal gene transfer (HGT), a mechanism that shares genetic material between the host and donor from separated offspring branches, has been described as a means of producing novel and beneficial phenotypes for the host organisms. However, in molluscs, the second most diverse group, the existence of HGT is still controversial. In the present study, 12 HGT genes were identified from California two-spot octopus Octopus bimaculoides based on a similarity search, phylogenetic construction, gene composition analysis and PCR (Polymerase Chain Reaction) validation. Based on the phylogenetic topologies, ten HGT genes were identified to have been transferred into the possible molluscan ancestor, possibly before its radiation. Furthermore, most of the donor organisms were predicted to be familiar bacteria in marine environments. These horizontally transferred genes were under a strong negative selection and could be transcribed in octopus functionally. The predicted biochemical functions of these genes include metabolism, neurotransmission, immune defense and tissue integrity. Seven Zn-metalloproteinases were validated as the main type of HGT genes in octopus with divergent motif composition, intron presence and phylogenetic relationship to the endogenous ones. Furthermore, the functions of Zn-metalloproteinase were predicted to be responsible for immune defense and tissue remolding. Three HGT genes were distributed mainly in the nervous system and were predicted to regulate the neurotransmission through glia-neuronal interactions. The results collectively indicated the existence of HGT in molluscs and its potential contribution to the evolution of octopus with regards to functional innovation and adaptability.
Collapse
Affiliation(s)
- Conghui Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| | - Bo Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yan Zhang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Fan Jiang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuwei Ren
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Shuqu Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Hengchao Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Wei Fan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| |
Collapse
|
5
|
Chovar-Vera O, Valenzuela-Muñoz V, Gallardo-Escárate C. Molecular characterization of collagen IV evidences early transcription expression related to the immune response against bacterial infection in the red abalone (Haliotis rufescens). FISH & SHELLFISH IMMUNOLOGY 2015; 42:241-248. [PMID: 25463284 DOI: 10.1016/j.fsi.2014.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 06/04/2023]
Abstract
Collagen IV has been described as a structural protein of the basement membrane, which as a whole forms a specialized extracellular matrix. Recent studies have indicated a possible relationship between collagen IV and the innate immune response of invertebrate organisms. The present study characterized the alpha-1 chain of collagen IV in the red abalone Haliotis rufescens (Hr-ColIV) and evaluated its association with the innate immune response against Vibrio anguillarum. To further evidence the immune response, the matrix metalloproteinase-1 (Hr-MMP-1) and C-type lectin (Hr-CLEC) genes were also assessed. The complete sequence of Hr-ColIV was composed of 6658 bp, with a 5'UTR of 154 bp, a 3'UTR of 1177 bp, and an ORF of 5327 bp that coded for 1776 amino acids. The innate immune response generated against V. anguillarum resulted in a significant increase in the transcript levels of Hr-ColIV between 3 and 6 hpi, whereas Hr-MMP-1 and Hr-CLEC had the highest transcript activity 6 and 12 hpi, respectively. The results obtained in this study propose a putative biological function for collagen IV involved in the early innate immune response of the red abalone H. rufescens.
Collapse
Affiliation(s)
- Ornella Chovar-Vera
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile
| | - Valentina Valenzuela-Muñoz
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile.
| |
Collapse
|
6
|
Yan F, Jiao Y, Deng Y, Du X, Huang R, Wang Q, Chen W. Tissue inhibitor of metalloproteinase gene from pearl oyster Pinctada martensii participates in nacre formation. Biochem Biophys Res Commun 2014; 450:300-5. [PMID: 24942875 DOI: 10.1016/j.bbrc.2014.05.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/24/2014] [Indexed: 01/31/2023]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are nature inhibitors of matrix metalloproteinases and play a vital role in the regulation of extracellular matrix turnover, tissue remodeling and bone formation. In this study, the molecular characterization of TIMP and its potential function in nacre formation was described in pearl oyster Pinctada martensii. The cDNA of TIMP gene in P. martensii (Pm-TIMP) was 901 bp long, containing a 5' untranslated region (UTR) of 51 bp, a 3' UTR of 169 bp, and an open reading fragment (ORF) of 681 bp encoding 226 amino acids with an estimated molecular mass of 23.37 kDa and a theoretical isoelectric point of 5.42; The predicted amino acid sequence had a signal peptide, 13 cysteine residues, a N-terminal domain and a C-terminal domain, similar to that from other species. Amino acid multiple alignment showed Pm-TIMP had the highest (41%) identity to that from Crassostrea gigas. Tissue expression analysis indicated Pm-TIMP was highly expressed in nacre formation related-tissues, including mantle and pearl sac. After decreasing Pm-TIMP gene expression by RNA interference (RNAi) technology in the mantle pallium, the inner nacreous layer of the shells showed a disordered growth. These results indicated that the obtained Pm-TIMP in this study participated in nacre formation.
Collapse
Affiliation(s)
- Fang Yan
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang City, Guangdong 524025, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang City, Guangdong 524025, China.
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang City, Guangdong 524025, China.
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang City, Guangdong 524025, China
| | - Ronglian Huang
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang City, Guangdong 524025, China
| | - Qingheng Wang
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang City, Guangdong 524025, China
| | - Weiyao Chen
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang City, Guangdong 524025, China
| |
Collapse
|
7
|
Wang C, Zhan CL, Cai QF, Du CH, Liu GM, Su WJ, Cao MJ. Expression and characterization of common carp (Cyprinus carpio) matrix metalloproteinase-2 and its activity against type I collagen. J Biotechnol 2014; 177:45-52. [DOI: 10.1016/j.jbiotec.2014.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/19/2014] [Accepted: 02/26/2014] [Indexed: 01/05/2023]
|
8
|
Koropatnick T, Goodson MS, Heath-Heckman EAC, McFall-Ngai M. Identifying the cellular mechanisms of symbiont-induced epithelial morphogenesis in the squid-Vibrio association. THE BIOLOGICAL BULLETIN 2014; 226:56-68. [PMID: 24648207 PMCID: PMC4245202 DOI: 10.1086/bblv226n1p56] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The symbiotic association between the Hawaiian bobtail squid Euprymna scolopes and the luminous marine bacterium Vibrio fischeri provides a unique opportunity to study epithelial morphogenesis. Shortly after hatching, the squid host harvests bacteria from the seawater using currents created by two elaborate fields of ciliated epithelia on the surface of the juvenile light organ. After light organ colonization, the symbiont population signals the gradual loss of the ciliated epithelia through apoptosis of the cells, which culminates in the complete regression of these tissues. Whereas aspects of this process have been studied at the morphological, biochemical, and molecular levels, no in-depth analysis of the cellular events has been reported. Here we describe the cellular structure of the epithelial field and present evidence that the symbiosis-induced regression occurs in two steps. Using confocal microscopic analyses, we observed an initial epithelial remodeling, which serves to disable the function of the harvesting apparatus, followed by a protracted regression involving actin rearrangements and epithelial cell extrusion. We identified a metal-dependent gelatinolytic activity in the symbiont-induced morphogenic epithelial fields, suggesting the involvement of Zn-dependent matrix metalloproteinase(s) (MMP) in light organ morphogenesis. These data show that the bacterial symbionts not only induce apoptosis of the field, but also change the form, function, and biochemistry of the cells as part of the morphogenic program.
Collapse
Affiliation(s)
| | | | | | - Margaret McFall-Ngai
- To whom correspondence should be addressed: Dept. of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706 USA Telephone: 608 262 2393; Fax: 608 262 8418;
| |
Collapse
|
9
|
Wu GP, Cao MJ, Chen SH, Weng WY, Cai QF, Su WJ. Purification and characterization of a gelatinolytic metalloproteinase from the skeletal muscle of red sea bream (Pagrus major). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:5730-5736. [PMID: 20384341 DOI: 10.1021/jf100320d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A gelatinolytic metalloproteinase (gMP) from red sea bream ( Pagrus major ) skeletal muscle was highly purified by ammonium sulfate fractionation and column chromatographies including (diethylamino)ethyl (DEAE)-Sephacel, phenyl-Sepharose, and gelatin-Sepharose. Purified gMP revealed two bands with molecular masses of 52 and 55 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under reducing conditions. The 55 kDa band is quite possibly a glycosylated form of the 52 kDa band. The proteinase revealed optimal activity at 40 degrees C and pH 8.0. Metalloproteinase inhibitors including ethylenediaminetetraacetic acid (EDTA), ethylene glycol bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), and 1,10-phenanthroline specifically suppressed its activity. gMP was also significantly inhibited by cysteine and dithiothreitol. Divalent metal ion Ca(2+) is essential for its gelatinolytic activity. Thus, the proteinase is regarded as a matrix metalloproteinase-like proteinase. Furthermore, gMP hydrolyzed gelatin and type-I collagen effectively even at 4 degrees C, suggesting the possibility of its involvement in the texture tenderization of fish muscle during the post-mortem stage.
Collapse
Affiliation(s)
- Guo-Ping Wu
- Fisheries College, The Key Laboratory of Science and Technology for Aquaculture and Food Safety, Jimei University, Xiamen, China
| | | | | | | | | | | |
Collapse
|
10
|
Chemical properties of the extracellular matrix of the snail nervous system: a comprehensive study using a combination of histochemical techniques. Micron 2010; 41:461-71. [PMID: 20219380 DOI: 10.1016/j.micron.2010.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/08/2010] [Accepted: 02/10/2010] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM) consists of various types of protein and carbohydrate polymers with red-ox and acid-base properties that have a crucial impact on tissue homeostasis. In the present study, a combination of both frequently applied and also specialized histochemical staining methods were used to reveal the chemical properties of the ECM of the snail central nervous system (CNS) which has a long been favored experimental model for comparative neurobiologists. Reactions such as silver ion reduction to label oxidative elements and different protein fibers, visible and fluorescent periodic-Schiff (PAS) reaction for the detection of unbranched chain of carbohydrates, and cationic dyes (acridine orange and alcian blue) for differentiating acidic carbohydrates were used. Illumination of sections stained with toluidine blue at pH 4.0 by a fluorescent light (lambda ex546/em580 nm), visualized components of the extraneural space (ECM molecules and glial cells) of the adult and also the developing CNS. Silver, toluidine blue and azure A were used to detect specific molecule bands in CNS extracts separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Some molecules showed both negative character and had carbohydrate side chains revealed by the Solanum tuberosum lectin probe. In a comparison of a freshwater aquatic (Lymnaea stagnalis) and a terrestrial (Helix pomatia) species, the ECM showed similarities in the composition of the periganglionic sheath and interperikaryonal space. The sheath was rich in alcian blue-positive sulfated proteoglycans infiltrated the space between collagen and reticular fibers, whereas in the interperikaryonal space PAS- and acridine orange-positive neutral and weakly acidic carbohydrates were detected. The ganglionic neuropil was mostly filled with PAS-positive material, but negatively charged sulfated and carboxylated molecules detected by acridine orange and alcian blue were present only in Helix. A low carbohydrate content was also found in the neuropil of both adult and developing Lymnaea, but most of the ECM components appeared only during the postembryonic juvenile stages. Comparing the SDS-PAGE of the periganglionic sheath and neural tissue extracts, toluidine blue (pH 4.0) and azure A (pH 2.0) revealed negatively charged molecules; some were found in both fractions. These results show, for the first time, the general chemical characteristics of the ECM of the snail CNS, indicating differences in the composition of the ganglion neuropil between aquatic and terrestrial species. Hence, a different strategy for retaining water by the neural tissue is suggested in species living in different environments.
Collapse
|
11
|
Lectin-binding glycoproteins in the developing and adult snail CNS. Brain Struct Funct 2009; 214:67-78. [DOI: 10.1007/s00429-009-0229-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 11/01/2009] [Indexed: 10/20/2022]
|
12
|
WU JIULIN, CAO MINJIE, FU XIAOPING, LIU GUANGMING, ZHOU LIGEN, HARA KENJI, SU WENJIN. IDENTIFICATION AND CHARACTERIZATION OF MATRIX METALLOPROTEINASES FROM THE SARCOPLASMIC FRACTION OF COMMON CARP (CYPRINUS CARPIO) DARK MUSCLE. J Food Biochem 2009. [DOI: 10.1111/j.1745-4514.2009.00248.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Lang RP, Bayne CJ, Camara MD, Cunningham C, Jenny MJ, Langdon CJ. Transcriptome profiling of selectively bred Pacific oyster Crassostrea gigas families that differ in tolerance of heat shock. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:650-68. [PMID: 19205802 PMCID: PMC2882249 DOI: 10.1007/s10126-009-9181-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 01/13/2009] [Indexed: 05/08/2023]
Abstract
Sessile inhabitants of marine intertidal environments commonly face heat stress, an important component of summer mortality syndrome in the Pacific oyster Crassostrea gigas. Marker-aided selection programs would be useful for developing oyster strains that resist summer mortality; however, there is currently a need to identify candidate genes associated with stress tolerance and to develop molecular markers associated with those genes. To identify candidate genes for further study, we used cDNA microarrays to test the hypothesis that oyster families that had high (>64%) or low (<29%) survival of heat shock (43 degrees C, 1 h) differ in their transcriptional responses to stress. Based upon data generated by the microarray and by real-time quantitative PCR, we found that transcription after heat shock increased for genes putatively encoding heat shock proteins and genes for proteins that synthesize lipids, protect against bacterial infection, and regulate spawning, whereas transcription decreased for genes for proteins that mobilize lipids and detoxify reactive oxygen species. RNAs putatively identified as heat shock protein 27, collagen, peroxinectin, S-crystallin, and two genes with no match in Genbank had higher transcript concentrations in low-surviving families than in high-surviving families, whereas concentration of putative cystatin B mRNA was greater in high-surviving families. These ESTs should be studied further for use in marker-aided selection programs. Low survival of heat shock could result from a complex interaction of cell damage, opportunistic infection, and metabolic exhaustion.
Collapse
Affiliation(s)
- R Paul Lang
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University, Newport, OR 97365, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Wu JL, Lu BJ, Du MH, Liu GM, Hara KJ, Su WJ, Cao MJ. Purification and characterization of gelatinase-like proteinases from the dark muscle of common carp (Cyprinus carpio). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:2216-2222. [PMID: 18293920 DOI: 10.1021/jf0728808] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Gelatinolytic proteinases from common carp dark muscle were purified by 30-60% ammonium sulfate fractionation and a combination of chromatographic steps including ion exchange on DEAE-Sephacel, gel filtration on Sephacryl S-200, ion exchange on High-Q, and affinity on gelatin-Sepharose. The molecular masses of these proteinases as estimated by SDS-PAGE were 75, 67, and 64 kDa under nonreducing conditions. The enzymes revealed high activity at a slightly alkaline pH range, and their activities were investigated using gelatin as substrate. Metalloproteinase inhibitors, EDTA, EGTA, and 1,10-phenanthroline, almost completely suppressed the gelatinolytic activity, whereas other proteinase inhibitors did not show any inhibitory effect. Divalent metal ion Ca (2+) is essential for the gelatinolytic activity. Furthermore, these gelatinolytic proteinases hydrolyze native type I collagen effectively even at 4 degrees C, strongly suggesting their involvement in the texture softening of fish muscle during the post-mortem stage.
Collapse
Affiliation(s)
- Jiu-Lin Wu
- College of Biological Engineering, The Key Laboratory of Science and Technology for Aquaculture and Food Safety, Jimei University, Xiamen, China 361021
| | | | | | | | | | | | | |
Collapse
|
15
|
Xiong X, Feng Q, Chen L, Xie L, Zhang R. Cloning and characterization of an IKK homologue from pearl oyster, Pinctada fucata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:15-25. [PMID: 17568671 DOI: 10.1016/j.dci.2007.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 03/25/2007] [Accepted: 03/29/2007] [Indexed: 05/15/2023]
Abstract
IkappaB kinase (IKK) play central roles in cell signaling by regulating nuclear factor-kappaB (NF-kappaB) activation, which is involved in inflammatory response, proliferation, development and bone homeostasis. We report here for the first time that an IKK homologue was cloned and functionally characterized in pearl oyster, Pinctada fucata. The full-length cDNA consists of 2546bp with an ORF encoding a 737 amino acids protein. The putative pearl oyster IKK protein (Pf-IKK) possesses the characteristic organization of the mammalian IKK proteins, namely an amino-terminal kinase domain followed by a leucine zipper region and a carboxylterminal helix-loop-helix motif. Real-time PCR (RT-PCR) analysis indicated that Pf-IKK was ubiquitously expressed in pearl oyster. We also found that lipopolysaccharides (LPS) transiently stimulates IkappaBalpha degradation, but not expression levels of Pf-IKK. When transfected into NIH3T3 cells, Pf-IKK activated the expression of NF-kappaB-controlled reporter gene and induced NF-kappaB translocation, whereas the activation was greatly deduced by pyrrolidine dithiocarbamate (PDTC). We also found that overexpression of Pf-IKK increased the alkaline phosphatase (ALP) activity significantly. Based on the results and the homology to the vertebrate NF-kappaB cascade, these studies help to highlight a potentially important regulatory pathway to the study of the related functions in mollusks.
Collapse
Affiliation(s)
- Xunhao Xiong
- Institute of Marine Biotechnology, Department of Biological Science and Biotechnology, Tsinghua University, Beijing, 100084, China
| | | | | | | | | |
Collapse
|
16
|
Greenlee KJ, Werb Z, Kheradmand F. Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol Rev 2007; 87:69-98. [PMID: 17237343 PMCID: PMC2656382 DOI: 10.1152/physrev.00022.2006] [Citation(s) in RCA: 326] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The matrix metalloproteinases (MMPs), a family of 25 secreted and cell surface-bound neutral proteinases, process a large array of extracellular and cell surface proteins under normal and pathological conditions. MMPs play critical roles in lung organogenesis, but their expression, for the most part, is downregulated after generation of the alveoli. Our knowledge about the resurgence of the MMPs that occurs in most inflammatory diseases of the lung is rapidly expanding. Although not all members of the MMP family are found within the lung tissue, many are upregulated during the acute and chronic phases of these diseases. Furthermore, potential MMP targets in the lung include all structural proteins in the extracellular matrix (ECM), cell adhesion molecules, growth factors, cytokines, and chemokines. However, what is less known is the role of MMP proteolysis in modulating the function of these substrates in vivo. Because of their multiplicity and substantial substrate overlap, MMPs are thought to have redundant functions. However, as we explore in this review, such redundancy most likely evolved as a necessary compensatory mechanism given the critical regulatory importance of MMPs. While inhibition of MMPs has been proposed as a therapeutic option in a variety of inflammatory lung conditions, a complete understanding of the biology of these complex enzymes is needed before we can reasonably consider them as therapeutic targets.
Collapse
Affiliation(s)
- Kendra J Greenlee
- Departments of Medicine and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
17
|
Xiong X, Chen L, Li Y, Xie L, Zhang R. Pf-ALMP, a novel astacin-like metalloproteinase with cysteine arrays, is abundant in hemocytes of pearl oyster Pinctada fucata. ACTA ACUST UNITED AC 2006; 1759:526-34. [PMID: 17207871 DOI: 10.1016/j.bbaexp.2006.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/28/2006] [Accepted: 09/28/2006] [Indexed: 10/24/2022]
Abstract
The astacin family metalloproteinase is a family of zinc-dependent endopeptidases which play crucial roles in embryonic development, bone growth and morphogenesis. A cDNA clone encoding a putative astacin-like metalloproteinase (pf-ALMP) was isolated from hemocytes of pearl oyster, Pinctada fucata. The novel metalloproteinase presents a molecular organization close to the astacins, but has a novel C-terminal domain with cysteine arrays. RT-PCR analysis revealed that pf-ALMP was expressed dramatically high in hemocytes, which was affected by lipopolysaccharides (LPS) challenge. High expression of pf-ALMP was also found in gill, gonad and digestion gland, and in situ hybridization demonstrated that pf-ALMP was expressed in the epithelia cells of these tissues. Substrate analysis studies indicated that the recombinant pf-ALMP catalytic domain could digest gelatin. Interestingly, the pf-ALMP also could be involved in cell proliferation processes and the cysteine arrays were necessary for the proliferative activity. Taken together, these studies also help to further understand the functions of astacins which may be related to the processes of molluscan inflammatory response, embryo development, proliferation and shell formation.
Collapse
Affiliation(s)
- Xunhao Xiong
- Institute of Marine Biotechnology, Department of Biological Science and Biotechnology, Tsinghua University, Beijing, 100084, China
| | | | | | | | | |
Collapse
|
18
|
Earnhart CG, Vogelbein MA, Brown GD, Reece KS, Kaattari SL. Supplementation of Perkinsus marinus cultures with host plasma or tissue homogenate enhances their infectivity. Appl Environ Microbiol 2004; 70:421-31. [PMID: 14711671 PMCID: PMC321304 DOI: 10.1128/aem.70.1.421-431.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan oyster parasite Perkinsus marinus can be cultured in vitro in a variety of media; however, this has been associated with a rapid attenuation of infectivity. Supplementation of defined media with products of P. marinus-susceptible (Crassostrea virginica) and -tolerant (Crassostrea gigas, Crassostrea ariakensis) oysters alters proliferation and protease expression profiles and induces differentiation into morphological forms typically seen in vivo. It was not known if attenuation could be reversed by host extract supplementation. To investigate correlations among these changes as well as their association with infectivity, the effects of medium supplementation with tissue homogenates from both susceptible and tolerant oyster species were examined. The supplements markedly altered both cell size and proliferation, regardless of species; however, upregulation of low-molecular-weight protease expression was most prominent with susceptible oysters extracts. Increased infectivity occurred with the use of oyster product-supplemented media, but it was not consistently associated with changes in cell size, cell morphology, or protease secretion and was not related to the susceptibility of the oyster species used as the supplement source.
Collapse
Affiliation(s)
- Christopher G Earnhart
- Department of Environmental and Aquatic Animal Health, School of Marine Science, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia 23062, USA
| | | | | | | | | |
Collapse
|
19
|
Muñoz P, Vance K, Gómez-Chiarri M. Protease activity in the plasma of American oysters, Crassostrea virginica, experimentally infected with the protozoan parasite Perkinsus marinus. J Parasitol 2003; 89:941-51. [PMID: 14627141 DOI: 10.1645/ge-3126] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Perkinsus marinus is responsible for disease and mortality of the American oyster, Crassostrea virginica. To investigate the interactions between P. marinus and oyster hemocytes, protease activity was measured in plasma of oysters collected 4 hr, 24 hr, 4 days, and 2 mo after experimental infection with P. marinus. A significant increase in protease activity was observed in oyster plasma 4 hr after injection with P. marinus, followed by a sharp decrease within 24 hr. Gelatin-impregnated gel electrophoresis showed the presence of 2 major bands (60 and 112 kDa) and 3 less prevalent bands (35, 92, and 200 kDa) with metalloproteinaselike activity in the plasma of noninfected oysters. Additional bands in the 40- to 60-kDa range, corresponding to P. marinus serine proteases, were observed in oyster plasma at early time points after infection. A transient, but significant, decrease in the activity of oyster metalloproteinases was observed at early time points after infection. Coincubation of oyster plasma with P. marinus extracellular products resulted in a decrease in oyster metalloproteinases and several P. marinus proteases. This study provides insights into the role of proteases in the pathogenesis of Dermo disease.
Collapse
Affiliation(s)
- P Muñoz
- Department of Fisheries, Animal, and Veterinary Science, University of Rhode Island, 23 Woodward Hall, Kingston, Rhode Island 02881, USA
| | | | | |
Collapse
|
20
|
Mannello F, Canesi L, Faimali M, Piazza V, Gallo G, Geraci S. Characterization of metalloproteinase-like activities in barnacle (Balanus amphitrite) nauplii. Comp Biochem Physiol B Biochem Mol Biol 2003; 135:17-24. [PMID: 12781969 DOI: 10.1016/s1096-4959(03)00049-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The presence of extracellular matrix (ECM) degrading enzymes was investigated in naupliar stages of the barnacle Balanus amphitrite Darwin. The results of substrate gel-zymography and quantitative assays demonstrated that naupliar extracts contain several protease activities that are specific towards gelatin substrates; some caseinolytic activity was also detected. Substrate specificity was observed in all naupliar stages (II-VI). The gelatinolytic activities showed dependence on both Ca(2+) and Zn(2+) and inhibition by EDTA, EGTA, and 1,10-phenanthroline. Also Mg(2+) partially activated the enzymes, whereas Cd(2+), Cu(2+), Hg(2+) and Pb(2+) were inhibitory. The thermal denaturation profile was significantly different in the presence and absence of Ca(2+) and Zn(2+). Overall, the results indicate that the Ca(2+)/Zn(2+)-dependent gelatinase activities in barnacle nauplii belong to the subfamily of matrix metalloproteases. Barnacle larvae MMPs showed biochemical characteristics different from those of vertebrate MMPs but common to other gelatinases from marine invertebrates: they were unaffected by several protease inhibitors and insensitive to specific activators/inhibitors of vertebrate MMPs. The presence of MMP-like activities in different naupliar stages suggests a constitutive role for these enzymes in ECM remodeling during barnacle larvae growth and development.
Collapse
Affiliation(s)
- Ferdinando Mannello
- Istituto di Istologia ed Analisi di Laboratorio, Facoltà di Scienze, Via Zeppi, Università di Urbino Carlo Bo, 61029 Urbino (PU), Italy.
| | | | | | | | | | | |
Collapse
|