1
|
Pu Y, Zhou Y, Liu J, Zhang H. A high-quality chromosomal genome assembly of the sea cucumber Chiridota heheva and its hydrothermal adaptation. Gigascience 2024; 13:giad107. [PMID: 38171490 PMCID: PMC10764150 DOI: 10.1093/gigascience/giad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/05/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Chiridota heheva is a cosmopolitan holothurian well adapted to diverse deep-sea ecosystems, especially chemosynthetic environments. Besides high hydrostatic pressure and limited light, high concentrations of metal ions also represent harsh conditions in hydrothermal environments. Few holothurian species can live in such extreme conditions. Therefore, it is valuable to elucidate the adaptive genetic mechanisms of C. heheva in hydrothermal environments. FINDINGS Herein, we report a high-quality reference genome assembly of C. heheva from the Kairei vent, which is the first chromosome-level genome of Apodida. The chromosome-level genome size was 1.43 Gb, with a scaffold N50 of 53.24 Mb and BUSCO completeness score of 94.5%. Contig sequences were clustered, ordered, and assembled into 19 natural chromosomes. Comparative genome analysis found that the expanded gene families and positively selected genes of C. heheva were involved in the DNA damage repair process. The expanded gene families and the unique genes contributed to maintaining iron homeostasis in an iron-enriched environment. The positively selected gene RFC2 with 10 positively selected sites played an essential role in DNA repair under extreme environments. CONCLUSIONS This first chromosome-level genome assembly of C. heheva reveals the hydrothermal adaptation of holothurians. As the first chromosome-level genome of order Apodida, this genome will provide the resource for investigating the evolution of class Holothuroidea.
Collapse
Affiliation(s)
- Yujin Pu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhou
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Jun Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| |
Collapse
|
2
|
Liu N, Jiang T, Cui WP, Qi XQ, Li XG, Lu Y, Wu LF, Zhang WJ. The TorRS two component system regulates expression of TMAO reductase in response to high hydrostatic pressure in Vibrio fluvialis. Front Microbiol 2023; 14:1291578. [PMID: 38029070 PMCID: PMC10662104 DOI: 10.3389/fmicb.2023.1291578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
High hydrostatic pressure (HHP) regulated gene expression is one of the most commonly adopted strategies for microbial adaptation to the deep-sea environments. Previously we showed that the HHP-inducible trimethylamine N-oxide (TMAO) reductase improves the pressure tolerance of deep-sea strain Vibrio fluvialis QY27. Here, we investigated the molecular mechanism of HHP-responsive regulation of TMAO reductase TorA. By constructing torR and torS deletion mutants, we demonstrated that the two-component regulator TorR and sensor TorS are responsible for the HHP-responsive regulation of torA. Unlike known HHP-responsive regulatory system, the abundance of torR and torS was not affected by HHP. Complementation of the ΔtorS mutant with TorS altered at conserved phosphorylation sites revealed that the three sites were indispensable for substrate-induced regulation, but only the histidine located in the alternative transmitter domain was involved in pressure-responsive regulation. Taken together, we demonstrated that the induction of TMAO reductase by HHP is mediated through the TorRS system and proposed a bifurcation of signal transduction in pressure-responsive regulation from the substrate-induction. This work provides novel knowledge of the pressure regulated gene expression and will promote the understanding of the microbial adaptation to the deep-sea HHP environment.
Collapse
Affiliation(s)
- Na Liu
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting Jiang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Peng Cui
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qing Qi
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-sea Life Sciences, IDSSE-BGI, Sanya, China
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CAS, Sanya, China
| | - Xue-Gong Li
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-sea Life Sciences, IDSSE-BGI, Sanya, China
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CAS, Sanya, China
| | - Yuan Lu
- College of Information Science & Engineering, Ocean University of China, Qingdao, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CAS, Sanya, China
- Aix Marseille University, CNRS, LCB, Marseille, France
| | - Wei-Jia Zhang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-sea Life Sciences, IDSSE-BGI, Sanya, China
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CAS, Sanya, China
| |
Collapse
|
3
|
Chen J, Zeng H, Lv W, Sun N, Wang C, Xu W, Hu M, Gan X, He L, He S, Fang C. Pseudo-chromosome-length genome assembly for a deep-sea eel Ilyophis brunneus sheds light on the deep-sea adaptation. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2251-8. [PMID: 36648612 DOI: 10.1007/s11427-022-2251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 01/18/2023]
Abstract
High hydrostatic pressure, low temperature, and scarce food supply are the major factors that limit the survival of vertebrates in extreme deep-sea environments. Here, we constructed a high-quality genome of the deep-sea Muddy arrowtooth eel (MAE, Ilyophis brunneus, captured below a depth of 3,500 m) by using Illumina, PacBio, and Hi-C sequencing. We compare it against those of shallow-water eel and other outgroups to explore the genetic basis that underlies the adaptive evolution to deep-sea biomes. The MAE genome was estimated to be 1.47 Gb and assembled into 14 pseudo-chromosomes. Phylogenetic analyses indicated that MAE diverged from its closely related shallow-sea species, European eel, ∼111.9 Mya and experienced a rapid evolution. The genome evolutionary analyses primarily revealed the following: (i) under high hydrostatic pressure, the positively selected gene TUBGCP3 and the expanded family MLC1 may improve the cytoskeleton stability; ACOX1 may enhance the fluidity of cell membrane and maintain transport activity; the expansion of ABCC12 gene family may enhance the integrity of DNA; (ii) positively selected HARS likely maintain the transcription ability at low temperatures; and (iii) energy metabolism under a food-limited environment may be increased by expanded and positively selected genes in AMPK and mTOR signaling pathways.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wenqi Lv
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjie Xu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Mingliang Hu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lisheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shunping He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China. .,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Chengchi Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Mitogenomics provides new insights into the phylogenetic relationships and evolutionary history of deep-sea sea stars (Asteroidea). Sci Rep 2022; 12:4656. [PMID: 35304532 PMCID: PMC8933410 DOI: 10.1038/s41598-022-08644-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
The deep sea (> 200 m) is considered as the largest and most remote biome, which characterized by low temperatures, low oxygen level, scarce food, constant darkness, and high hydrostatic pressure. The sea stars (class Asteroidea) are ecologically important and diverse echinoderms in all of the world’s oceans, occurring from the intertidal to the abyssal zone (to about 6000 m). To date, the phylogeny of the sea stars and the relationships of deep-sea and shallow water groups have not yet been fully resolved. Here, we recovered five mitochondrial genomes of deep-sea asteroids. The A+T content of the mtDNA in deep-sea asteroids were significantly higher than that of the shallow-water groups. The gene orders of the five new mitogenomes were identical to that of other asteroids. The phylogenetic analysis showed that the orders Valvatida, Paxillosida, Forcipulatida are paraphyletic. Velatida was the sister order of all the others and then the cladeValvatida-Spinulosida-Paxillosida-Notomyotida versus Forcipulatida-Brisingida. Deep-sea asteroids were nested in different lineages, instead of a well-supported clade. The tropical Western Pacific was suggested as the original area of asteroids, and the temperate water was initially colonized with asteroids by the migration events from the tropical and cold water. The time-calibrated phylogeny showed that Asteroidea originated during Devonian-Carboniferous boundary and the major lineages of Asteroidea originated during Permian–Triassic boundary. The divergence between the deep-sea and shallow-water asteroids coincided approximately with the Triassic-Jurassic extinction. Total 29 positively selected sites were detected in fifteen mitochondrial genes of five deep-sea lineages, implying a link between deep-sea adaption and mitochondrial molecular biology in asteroids.
Collapse
|
5
|
New Record of Hydrothermal Vent Squat Lobster (Munidopsis lauensis) Provides Evidence of a Dispersal Corridor between the Pacific and Indian Oceans. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrothermal vents are chemosynthetically driven ecosystems and one of the most extreme environments on Earth. Vent communities exhibit remarkable taxonomic novelty at the species and supra-species levels, and over 80% of vent species are endemic. Here, we used mitochondrial DNA to identify the biogeographic distribution of Munidopsis lauensis and the heme-binding regions of A1-type COX1 from six species (including M. lauensis) to investigate whether genetic variation in the protein structure affects oxygen-binding ability. We verified the identity of Indian Ocean specimens by comparing sequences from the barcoding gene mitochondrial cytochrome oxidase subunit 1 (COI) with known M. lauensis sequences from the NCBI database. The data show that these are the first recorded specimens of M. lauensis in the Indian Ocean; previously, this species had been reported only in the southwest Pacific. Our findings support the hypothesis that vent fauna in the Pacific and Indian Oceans can interact via active ridges. In the case of the mitochondrial DNA-binding site, the arrangement of heme-binding ligands and type A1 motif of M. lauensis was identical to that in other species. Moreover, our findings suggest that the mechanism of oxygen binding is well conserved among species from terrestrial organisms to hydrothermal extremophiles. Overall, dispersal of the same species to geologically separated hydrothermal vents and conserved heme-binding regions in mitochondrial proteins suggest that hydrothermal species might have evolved from shallow sea organisms and became distributed geographically using a dispersion corridor.
Collapse
|
6
|
Yancey PH. Cellular responses in marine animals to hydrostatic pressure. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:398-420. [DOI: 10.1002/jez.2354] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Paul H. Yancey
- Department of BiologyWhitman CollegeWalla Walla Washington
| |
Collapse
|
7
|
Liang L, Chen J, Li Y, Zhang H. Insights into high-pressure acclimation: comparative transcriptome analysis of sea cucumber Apostichopus japonicus at different hydrostatic pressure exposures. BMC Genomics 2020; 21:68. [PMID: 31964339 PMCID: PMC6974979 DOI: 10.1186/s12864-020-6480-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Global climate change is predicted to force the bathymetric migrations of shallow-water marine invertebrates. Hydrostatic pressure is proposed to be one of the major environmental factors limiting the vertical distribution of extant marine invertebrates. However, the high-pressure acclimation mechanisms are not yet fully understood. Results In this study, the shallow-water sea cucumber Apostichopus japonicus was incubated at 15 and 25 MPa at 15 °C for 24 h, and subjected to comparative transcriptome analysis. Nine samples were sequenced and assembled into 553,507 unigenes with a N50 length of 1204 bp. Three groups of differentially expressed genes (DEGs) were identified according to their gene expression patterns, including 38 linearly related DEGs whose expression patterns were linearly correlated with hydrostatic pressure, 244 pressure-sensitive DEGs which were up-regulated at both 15 and 25 MPa, and 257 high-pressure-induced DEGs which were up-regulated at 25 MPa but not up-regulated at 15 MPa. Conclusions Our results indicated that the genes and biological processes involving high-pressure acclimation are similar to those related to deep-sea adaptation. In addition to representative biological processes involving deep-sea adaptation (such as antioxidation, immune response, genetic information processing, and DNA repair), two biological processes, namely, ubiquitination and endocytosis, which can collaborate with each other and regulate the elimination of misfolded proteins, also responded to high-pressure exposure in our study. The up-regulation of these two processes suggested that high hydrostatic pressure would lead to the increase of misfolded protein synthesis, and this may result in the death of shallow-water sea cucumber under high-pressure exposure.
Collapse
Affiliation(s)
- Linying Liang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiawei Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Li
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
| |
Collapse
|
8
|
Wang B, Hao X, Xu J, Ma Y, Ma L. Transcriptome-Based Analysis Reveals a Crucial Role of BxGPCR17454 in Low Temperature Response of Pine Wood Nematode ( Bursaphelenchus xylophilus). Int J Mol Sci 2019; 20:ijms20122898. [PMID: 31197083 PMCID: PMC6628231 DOI: 10.3390/ijms20122898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/02/2022] Open
Abstract
Background: The causal agent of pine wilt disease is the pine wood nematode (PWN) (Bursaphelenchus xylophilus), whose ability to adapt different ecological niches is a crucial determinant of their invasion to colder regions. To discover the molecular mechanism of low temperature response mechanism, we attempted to study the molecular response patterns under low temperature from B. xylophilus with a comprehensive RNA sequencing analysis and validated the differentially expressed genes (DEGs) with quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatic software was utilized to isolate and identify the low-temperature-related BxGPCR genes. Transcript abundance of six low-temperature-related BxGPCR genes and function of one of the BxGPCR genes are studied by qRT-PCR and RNA interference. Results: The results showed that we detected 432 DEGs through RNA sequencing between low-temperature-treated and ambient-temperature-treated groups nematodes. The transcript level of 6 low-temperature-related BxGPCR genes increased at low temperature. And, the survival rates of BxGPCR17454 silenced B. xylophilus revealed a significant decrease at low temperature. Conclusion: in conclusion, this transcriptome-based study revealed a crucial role of BxGPCR17454 in low temperature response process of pine wood nematode. These discoveries would assist the development of management and methods for efficient control of this devastating pine tree pest.
Collapse
Affiliation(s)
- Bowen Wang
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Xin Hao
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Jiayao Xu
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Yan Ma
- College of Management, Harbin University of Commerce, Harbin 150028, China.
| | - Ling Ma
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
9
|
Chen J, Liu H, Cai S, Zhang H. Comparative transcriptome analysis of Eogammarus possjeticus at different hydrostatic pressure and temperature exposures. Sci Rep 2019; 9:3456. [PMID: 30837550 PMCID: PMC6401005 DOI: 10.1038/s41598-019-39716-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Hydrostatic pressure is an important environmental factor affecting the vertical distribution of marine organisms. Laboratory-based studies have shown that many extant shallow-water marine benthic invertebrates can tolerate hydrostatic pressure outside their known natural distributions. However, only a few studies have focused on the molecular mechanisms of pressure acclimatisation. In the present work, we examined the pressure tolerance of the shallow-water amphipod Eogammarus possjeticus at various temperatures (5, 10, 15, and 20 °C) and hydrostatic pressures (0.1–30 MPa) for 16 h. Six of these experimental groups were used for transcriptome analysis. We found that 100% of E. possjeticus survived under 20 MPa at all temperature conditions for 16 h. Sequence assembly resulted in 138, 304 unigenes. Results of differential expression analysis revealed that 94 well-annotated genes were up-regulated under high pressure. All these findings indicated that the pressure tolerance of E. possjeticus was related to temperature. Several biological processes including energy metabolism, antioxidation, immunity, lipid metabolism, membrane-related process, genetic information processing, and DNA repair are probably involved in the acclimatisation in deep-sea environments.
Collapse
Affiliation(s)
- Jiawei Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Helu Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Shanya Cai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
| |
Collapse
|
10
|
Genome analysis of Rubritalea profundi SAORIC-165 T, the first deep-sea verrucomicrobial isolate, from the northwestern Pacific Ocean. J Microbiol 2019; 57:413-422. [PMID: 30806980 DOI: 10.1007/s12275-019-8712-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Abstract
Although culture-independent studies have shown the presence of Verrucomicrobia in the deep sea, verrucomicrobial strains from deep-sea environments have been rarely cultured and characterized. Recently, Rubritalea profundi SAORIC-165T, a psychrophilic bacterium of the phylum Verrucomicrobia, was isolated from a depth of 2,000 m in the northwestern Pacific Ocean. In this study, the genome sequence of R. profundi SAORIC-165T, the first deep-sea verrucomicrobial isolate, is reported with description of the genome properties and comparison to surface-borne Rubritalea genomes. The draft genome consisted of four contigs with an entire size of 4,167,407 bp and G+C content of 47.5%. The SAORIC-165T genome was predicted to have 3,844 proteincoding genes and 45 non-coding RNA genes. The genome contained a repertoire of metabolic pathways, including the Embden-Meyerhof-Parnas pathway, pentose phosphate pathway, tricarboxylic acid cycle, assimilatory sulfate reduction, and biosynthesis of nicotinate/nicotinamide, pantothenate/coenzyme A, folate, and lycopene. The comparative genomic analyses with two surface-derived Rubritalea genomes showed that the SAORIC-165T genome was enriched in genes involved in transposition of mobile elements, signal transduction, and carbohydrate metabolism, some of which might be related to bacterial enhancement of ecological fitness in the deep-sea environment. Amplicon sequencing of 16S rRNA genes from the water column revealed that R. profundi-related phylotypes were relatively abundant at 2,000 m and preferred a particle-associated life style in the deep sea. These findings suggest that R. profundi represents a genetically unique and ecologically relevant verrucomicrobial group well adapted to the deep-sea environment.
Collapse
|
11
|
Li JY, Zeng C, Yan GY, He LS. Characterization of the mitochondrial genome of an ancient amphipod Halice sp. MT-2017 (Pardaliscidae) from 10,908 m in the Mariana Trench. Sci Rep 2019; 9:2610. [PMID: 30796230 PMCID: PMC6385184 DOI: 10.1038/s41598-019-38735-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/11/2018] [Indexed: 01/02/2023] Open
Abstract
Small amphipods (Halice sp. MT-2017) with body length <1 cm were collected from the Challenger Deep (~10,920 m below sea level). The divergence time of their lineage was approximately 109 Mya, making this group ancient compared to others under study. The mitochondrial genome of Halice sp. shared the usual gene components of metazoans, comprising 13 protein coding genes (PCGs), 22 transfer RNAs (tRNAs), and 2 ribosomal RNAs (rRNAs). The arrangement of these genes, however, differed greatly from that of other amphipods. Of the 15 genes that were rearranged with respect to the pancrustacean gene pattern, 12 genes (2 PCGs, 2 rRNAs, and 8 tRNAs) were both translocated and strand-reversed. In contrast, the mitochondrial genomes in other amphipods never show so many reordered genes, and in most instances, only tRNAs were involved in strand-reversion-coupled translocation. Other characteristics, including reversed strand nucleotide composition bias, relatively higher composition of non-polar amino acids, and lower evolutionary rate, were also identified. Interestingly, the latter two features were shared with another hadal amphipod, Hirondellea gigas, suggesting their possible associations with the adaptation to deep-sea extreme habitats. Overall, our data provided a useful resource for future studies on the evolutionary and adaptive mechanisms of hadal faunas.
Collapse
Affiliation(s)
- Jun-Yuan Li
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cong Zeng
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-Yong Yan
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Sheng He
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China.
| |
Collapse
|
12
|
Shen X, Pu Z, Chen X, Murphy RW, Shen Y. Convergent Evolution of Mitochondrial Genes in Deep-Sea Fishes. Front Genet 2019; 10:925. [PMID: 31632444 PMCID: PMC6785628 DOI: 10.3389/fgene.2019.00925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/04/2019] [Indexed: 02/05/2023] Open
Abstract
Deep seas have extremely harsh conditions including high hydrostatic pressure, total darkness, cold, and little food and oxygen. The adaptations of fishes to deep-sea environment apparently have occurred independently many times. The genetic basis of adaptation for obtaining their energy remains unknown. Mitochondria play a central role in aerobic respiration. Analyses of the available 2,161 complete mitochondrial genomes of 1,042 fishes, including 115 deep-sea species, detect signals of positive selection in mitochondrial genes in nine branches of deep-sea fishes. Aerobic metabolism yields much more energy per unit of source material than anaerobic metabolism. The adaptive evolution of the mtDNA may reflect that aerobic metabolism plays a more important role than anaerobic metabolism in deep-sea fishes, whose energy sources (food) are extremely limited. This strategy maximizes the usage of energy sources. Eleven mitochondrial genes have convergent/parallel amino acid changes between branches of deep-sea fishes. Thus, these amino acid sites may be functionally important in the acquisition of energy, and reflect convergent evolution during their independent invasion of the harsh deep-sea ecological niche.
Collapse
Affiliation(s)
- Xuejuan Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiqing Pu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Robert W. Murphy
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, Canada
| | - Yongyi Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China
- *Correspondence: Yongyi Shen,
| |
Collapse
|
13
|
Lemaire B. Hydrostatic pressure and the experimental toxicology of marine fishes: The elephant in the room. MARINE POLLUTION BULLETIN 2017; 124:206-210. [PMID: 28739107 DOI: 10.1016/j.marpolbul.2017.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Hydrostatic pressure (HP) increases linearly with depth in aquatic environments, so that many fish species routinely experience moderate-to-high HP levels (i.e., from a few to dozens of MPa). Biological effects of this thermodynamic variable are evidenced by a reduced functionality of many biomolecular systems, even in barotolerant and barophilic species. It is likely that environmentally-relevant HP levels (i.e., above atmospheric) could also modulate the responsiveness to and toxic effects of pollutants in fish. Still, only a few laboratories have investigated this possibility. The already-published ecobarotoxicological studies have brought strong support to the notion that HP can indeed modulate pollutant response in shallow-water and deep-sea animals. A careful reassessment of toxicity responses is therefore required. To quantify the exact influence of HP in marine fish toxicology, a research framework is proposed that should ensure the collection of meaningful data for risk assessment, using standard toxicity testing and mechanistic approaches.
Collapse
Affiliation(s)
- Benjamin Lemaire
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| |
Collapse
|
14
|
Porter ML, Roberts NW, Partridge JC. Evolution under pressure and the adaptation of visual pigment compressibility in deep-sea environments. Mol Phylogenet Evol 2016; 105:160-165. [DOI: 10.1016/j.ympev.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/22/2016] [Accepted: 08/11/2016] [Indexed: 11/24/2022]
|
15
|
Thompson LA, Romano TA. Pressure Induced Changes in Adaptive Immune Function in Belugas ( Delphinapterus leucas); Implications for Dive Physiology and Health. Front Physiol 2016; 7:442. [PMID: 27746745 PMCID: PMC5043014 DOI: 10.3389/fphys.2016.00442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022] Open
Abstract
Increased pressure, associated with diving, can alter cell function through several mechanisms and has been shown to impact immune functions performed by peripheral blood mononuclear cells (PBMC) in humans. While marine mammals possess specific adaptations which protect them from dive related injury, it is unknown how their immune system is adapted to the challenges associated with diving. The purpose of this study was to measure PBMC activation (IL2R expression) and Concanavalin A induced lymphocyte proliferation (BrdU incorporation) in belugas following in vitro pressure exposures during baseline, Out of Water Examination (OWE) and capture/release conditions. Beluga blood samples (n = 4) were obtained from animals at the Mystic Aquarium and from free ranging animals in Alaska (n = 9). Human blood samples (n = 4) (Biological Specialty Corporation) were run for comparison. In vivo catecholamines and cortisol were measured in belugas to characterize the neuroendocrine response. Comparison of cellular responses between controls and pressure exposed cells, between conditions in belugas, between belugas and humans as well as between dive profiles, were run using mixed generalized linear models (α = 0.05). Cortisol was significantly higher in Bristol Bay belugas and OWE samples as compared with baseline for aquarium animals. Both IL2R expression and proliferation displayed significant pressure induced changes, and these responses varied between conditions in belugas. Both belugas and humans displayed increased IL2R expression, while lymphocyte proliferation decreased for aquarium animals and increased for humans and Bristol Bay belugas. Results suggest beluga PBMC function is altered during diving and changes may represent dive adaptation as the response differs from humans, a non-dive adapted mammal. In addition, characteristics of a dive (i.e., duration, depth) as well as neuroendocrine activity can alter the response of beluga cells, potentially impacting the ability of animals to fight infection or avoid dive related pathologies.
Collapse
Affiliation(s)
- Laura A Thompson
- Research and Veterinary Services, Mystic Aquarium, A Division of Sea Research Foundation Inc. Mystic, CT, USA
| | - Tracy A Romano
- Research and Veterinary Services, Mystic Aquarium, A Division of Sea Research Foundation Inc. Mystic, CT, USA
| |
Collapse
|
16
|
Yancey PH, Siebenaller JF. Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. ACTA ACUST UNITED AC 2016; 218:1880-96. [PMID: 26085665 DOI: 10.1242/jeb.114355] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Organisms experience a wide range of environmental factors such as temperature, salinity and hydrostatic pressure, which pose challenges to biochemical processes. Studies on adaptations to such factors have largely focused on macromolecules, especially intrinsic adaptations in protein structure and function. However, micromolecular cosolutes can act as cytoprotectants in the cellular milieu to affect biochemical function and they are now recognized as important extrinsic adaptations. These solutes, both inorganic and organic, have been best characterized as osmolytes, which accumulate to reduce osmotic water loss. Singly, and in combination, many cosolutes have properties beyond simple osmotic effects, e.g. altering the stability and function of proteins in the face of numerous stressors. A key example is the marine osmolyte trimethylamine oxide (TMAO), which appears to enhance water structure and is excluded from peptide backbones, favoring protein folding and stability and counteracting destabilizers like urea and temperature. Co-evolution of intrinsic and extrinsic adaptations is illustrated with high hydrostatic pressure in deep-living organisms. Cytosolic and membrane proteins and G-protein-coupled signal transduction in fishes under pressure show inhibited function and stability, while revealing a number of intrinsic adaptations in deep species. Yet, intrinsic adaptations are often incomplete, and those fishes accumulate TMAO linearly with depth, suggesting a role for TMAO as an extrinsic 'piezolyte' or pressure cosolute. Indeed, TMAO is able to counteract the inhibitory effects of pressure on the stability and function of many proteins. Other cosolutes are cytoprotective in other ways, such as via antioxidation. Such observations highlight the importance of considering the cellular milieu in biochemical and cellular adaptation.
Collapse
Affiliation(s)
- Paul H Yancey
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA
| | - Joseph F Siebenaller
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
17
|
Munro C, Morris JP, Brown A, Hauton C, Thatje S. The role of ontogeny in physiological tolerance: decreasing hydrostatic pressure tolerance with development in the northern stone crab Lithodes maja. Proc Biol Sci 2016; 282:20150577. [PMID: 26041343 DOI: 10.1098/rspb.2015.0577] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Extant deep-sea invertebrate fauna represent both ancient and recent invasions from shallow-water habitats. Hydrostatic pressure may present a significant physiological challenge to organisms seeking to colonize deeper waters or migrate ontogenetically. Pressure may be a key factor contributing to bottlenecks in the radiation of taxa and potentially drive speciation. Here, we assess shifts in the tolerance of hydrostatic pressure through early ontogeny of the northern stone crab Lithodes maja, which occupies a depth range of 4-790 m in the North Atlantic. The zoea I, megalopa and crab I stages were exposed to hydrostatic pressures up to 30.0 MPa (equivalent of 3000 m depth), and the relative fold change of genes putatively coding for the N-methyl-D-aspartate receptor-regulated protein 1 (narg gene), two heat-shock protein 70 kDa (HSP70) isoforms and mitochondrial Citrate Synthase (CS gene) were measured. This study finds a significant increase in the relative expression of the CS and hsp70a genes with increased hydrostatic pressure in the zoea I stage, and an increase in the relative expression of all genes with increased hydrostatic pressure in the megalopa and crab I stages. Transcriptional responses are corroborated by patterns in respiratory rates in response to hydrostatic pressure in all stages. These results suggest a decrease in the acute high-pressure tolerance limit as ontogeny advances, as reflected by a shift in the hydrostatic pressure at which significant differences are observed.
Collapse
Affiliation(s)
- Catriona Munro
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton SO14 3ZH, UK
| | - James P Morris
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton SO14 3ZH, UK
| | - Alastair Brown
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton SO14 3ZH, UK
| | - Chris Hauton
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton SO14 3ZH, UK
| | - Sven Thatje
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton SO14 3ZH, UK
| |
Collapse
|
18
|
Suladze S, Cinar S, Sperlich B, Winter R. Pressure Modulation of the Enzymatic Activity of Phospholipase A2, A Putative Membrane-Associated Pressure Sensor. J Am Chem Soc 2015; 137:12588-96. [DOI: 10.1021/jacs.5b07009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Saba Suladze
- Department of Chemistry and
Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, D-44221 Dortmund, Germany
| | - Suleyman Cinar
- Department of Chemistry and
Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, D-44221 Dortmund, Germany
| | - Benjamin Sperlich
- Department of Chemistry and
Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, D-44221 Dortmund, Germany
| | - Roland Winter
- Department of Chemistry and
Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, D-44221 Dortmund, Germany
| |
Collapse
|
19
|
Is the deep-sea crab Chaceon affinis able to induce a thermal stress response? Comp Biochem Physiol A Mol Integr Physiol 2015; 181:54-61. [DOI: 10.1016/j.cbpa.2014.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 11/17/2022]
|
20
|
Brown A, Thatje S. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. Biol Rev Camb Philos Soc 2014; 89:406-26. [PMID: 24118851 PMCID: PMC4158864 DOI: 10.1111/brv.12061] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 08/01/2013] [Accepted: 08/14/2013] [Indexed: 12/01/2022]
Abstract
Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity-depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity-depth pattern over time. Thermal effects on metabolic-rate-dependent mutation and on generation times have been proposed to drive differences in speciation rates, which result in modern latitudinal biodiversity patterns over time. Clearly, this thermal mechanism alone cannot explain bathymetric patterns since temperature generally decreases with depth. We hypothesise that demonstrated physiological effects of high hydrostatic pressure and low temperature at bathyal depths, acting on shallow-water taxa invading the deep sea, may invoke a stress-evolution mechanism by increasing mutagenic activity in germ cells, by inactivating canalisation during embryonic or larval development, by releasing hidden variation or mutagenic activity, or by activating or releasing transposable elements in larvae or adults. In this scenario, increased variation at a physiological bottleneck at bathyal depths results in elevated speciation rate. Adaptation that increases tolerance to high hydrostatic pressure and low temperature allows colonisation of abyssal depths and reduces the stress-evolution response, consequently returning speciation of deeper taxa to the background rate. Over time this mechanism could contribute to the unimodal diversity-depth pattern.
Collapse
Affiliation(s)
- Alastair Brown
- Ocean and Earth Science, University of Southampton, National Oceanography Centre SouthamptonEuropean Way, Southampton, SO14 3ZH, U.K.
| | - Sven Thatje
- Ocean and Earth Science, University of Southampton, National Oceanography Centre SouthamptonEuropean Way, Southampton, SO14 3ZH, U.K.
| |
Collapse
|
21
|
Kapoor S, Werkmüller A, Goody RS, Waldmann H, Winter R. Pressure modulation of Ras-membrane interactions and intervesicle transfer. J Am Chem Soc 2013; 135:6149-56. [PMID: 23560466 DOI: 10.1021/ja312671j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins attached to the plasma membrane frequently encounter mechanical stresses, including high hydrostatic pressure (HHP) stress. Signaling pathways involving membrane-associated small GTPases (e.g., Ras) have been identified as critical loci for pressure perturbation. However, the impact of mechanical stimuli on biological outputs is still largely terra incognita. The present study explores the effect of HHP on the membrane association, dissociation, and intervesicle transfer process of N-Ras by using a FRET-based assay to obtain the kinetic parameters and volumetric properties along the reaction path of these processes. Notably, membrane association is fostered upon pressurization. Conversely, depending on the nature and lateral organization of the lipid membrane, acceleration or retardation is observed for the dissociation step. In addition, HHP can be inferred as a positive regulator of N-Ras clustering, in particular in heterogeneous membranes. The susceptibility of membrane interaction to pressure raises the idea of a role of lipidated signaling molecules as mechanosensors, transducing mechanical stimuli to chemical signals by regulating their membrane binding and dissociation. Finally, our results provide first insights into the influence of pressure on membrane-associated Ras-controlled signaling events in organisms living under extreme environmental conditions such as those that are encountered in the deep sea and sub-seafloor environments, where pressures reach the kilobar (100 MPa) range.
Collapse
Affiliation(s)
- Shobhna Kapoor
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry, TU Dortmund University, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
22
|
Revealing conformational substates of lipidated N-Ras protein by pressure modulation. Proc Natl Acad Sci U S A 2011; 109:460-5. [PMID: 22203965 DOI: 10.1073/pnas.1110553109] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of protein function is often linked to a conformational switch triggered by chemical or physical signals. To evaluate such conformational changes and to elucidate the underlying molecular mechanisms of subsequent protein function, experimental identification of conformational substates and characterization of conformational equilibria are mandatory. We apply pressure modulation in combination with FTIR spectroscopy to reveal equilibria between spectroscopically resolved substates of the lipidated signaling protein N-Ras. Pressure has the advantage that its thermodynamic conjugate is volume, a parameter that is directly related to structure. The conformational dynamics of N-Ras in its different nucleotide binding states in the absence and presence of a model biomembrane was probed by pressure perturbation. We show that not only nucleotide binding but also the presence of the membrane has a drastic effect on the conformational dynamics and selection of conformational substates of the protein, and a new substate appearing upon membrane binding could be uncovered. Population of this new substate is accompanied by structural reorientations of the G domain, as also indicated by complementary ATR-FTIR and IRRAS measurements. These findings thus illustrate that the membrane controls signaling conformations by acting as an effective interaction partner, which has consequences for the G-domain orientation of membrane-associated N-Ras, which in turn is known to be critical for its effector and modulator interactions. Finally, these results provide insights into the influence of pressure on Ras-controlled signaling events in organisms living under extreme environmental conditions as they are encountered in the deep sea where pressures reach the kbar range.
Collapse
|
23
|
Hughes SJM, Ruhl HA, Hawkins LE, Hauton C, Boorman B, Billett DSM. Deep-sea echinoderm oxygen consumption rates and an interclass comparison of metabolic rates in Asteroidea, Crinoidea, Echinoidea, Holothuroidea and Ophiuroidea. ACTA ACUST UNITED AC 2011; 214:2512-21. [PMID: 21753044 DOI: 10.1242/jeb.055954] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Echinoderms are important components of deep-sea communities because of their abundance and the fact that their activities contribute to carbon cycling. Estimating the echinoderm contribution to food webs and carbon cycling is important to our understanding of the functioning of the deep-sea environment and how this may alter in the future as climatic changes take place. Metabolic rate data from deep-sea echinoderm species are, however, scarce. To obtain such data from abyssal echinoderms, a novel in situ respirometer system, the benthic incubation chamber system (BICS), was deployed by remotely operated vehicle (ROV) at depths ranging from 2200 to 3600 m. Oxygen consumption rates were obtained in situ from four species of abyssal echinoderm (Ophiuroidea and Holothuroidea). The design and operation of two versions of BICS are presented here, together with the in situ respirometry measurements. These results were then incorporated into a larger echinoderm metabolic rate data set, which included the metabolic rates of 84 echinoderm species from all five classes (Asteroidea, Crinoidea, Echinoidea, Holothuroidea and Ophiuroidea). The allometric scaling relationships between metabolic rate and body mass derived in this study for each echinoderm class were found to vary. Analysis of the data set indicated no change in echinoderm metabolic rate with depth (by class or phylum). The allometric scaling relationships presented here provide updated information for mass-dependent deep-sea echinoderm metabolic rate for use in ecosystem models, which will contribute to the study of both shallow water and deep-sea ecosystem functioning and biogeochemistry.
Collapse
Affiliation(s)
- Sarah Jane Murty Hughes
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton SO14 3HZ, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Vevers WF, Dixon DR, Dixon LRJ. The role of hydrostatic pressure on developmental stages of Pomatoceros lamarcki (Polychaeta: Serpulidae) exposed to water accommodated fractions of crude oil and positive genotoxins at simulated depths of 1000-3000 m. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:1702-1709. [PMID: 20022152 DOI: 10.1016/j.envpol.2009.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 11/22/2009] [Accepted: 11/25/2009] [Indexed: 05/28/2023]
Abstract
The effect of high hydrostatic pressures on the ecotoxicological profile of pollutants is an unexplored research area. Using Pomatoceros lamarcki as a surrogate organism for this eco-barotoxicological study, it was found that in a 48 h larval bioassay with water accommodated fractions (WAF) of crude oil of up to 15.1 mg L(-1) (total hydrocarbon content) and hydrostatic pressures up to 300 bar (3000 m), an additive response was found (p < 0.001) rather than any synergism (p = 0.881). Comprehensive cytogenetic analysis of 6-h (15 degrees C) embryos exposed to WAF (0.19 mg L(-1)) at 100 bar showed no effects on mitotic fidelity or cell division rate over the 1 bar treatment. However, embryo's treated with the clastogen mitomycin-c at 100 bar exhibited a significant increase in mitotic aberrations over 1 bar treated as was the case with hypo/hypersaline treatments (p < 0.05). Conversely, an increase in hydrostatic pressure actually reduced the effects of spindle inhibition by the aneugen colchicine (p < 0.05).
Collapse
Affiliation(s)
- William F Vevers
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.
| | | | | |
Collapse
|
25
|
Biyani N, Paul S. Hydrophobic Interactions in Water−Trimethylamine-N-oxide Solutions: The Effects of Pressure. J Phys Chem B 2009; 113:9644-5. [DOI: 10.1021/jp904703c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nikhil Biyani
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
26
|
Partridge JC, White EM, Douglas RH. The effect of elevated hydrostatic pressure on the spectral absorption of deep-sea fish visual pigments. J Exp Biol 2006; 209:314-9. [PMID: 16391353 DOI: 10.1242/jeb.01984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of hydrostatic pressure (0.1-54 MPa, equivalent to pressures experienced by fish from the ocean's surface to depths of ca. 5,400 m) on visual pigment absorption spectra was investigated for rod visual pigments extracted from the retinae of 12 species of deep-sea fish of diverse phylogeny and habitat. The wavelength of peak absorption (lambda(max)) was shifted to longer wavelengths by an average of 1.35 nm at 40 MPa (a pressure approximately equivalent to average ocean depth) relative to measurements made at one atmosphere (ca. 0.1 MPa), but with little evidence of a change in absorbance at the lambda(max). We conclude that previous lambda(max) measurements of deep-sea fish visual pigments, made at a pressure close to 0.1 MPa, provide a good indication of lambda(max) values at higher pressures when considering the ecology of vision in the deep-sea. Although not affecting the spectral sensitivity of the animal to any important degree, the observed shift in lambda(max) may be of interest in the context of understanding opsin-chromophore interaction and spectral tuning of visual pigments.
Collapse
Affiliation(s)
- J C Partridge
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK.
| | | | | |
Collapse
|
27
|
Dixon DR, Pruski AM, Dixon LRJ. The effects of hydrostatic pressure change on DNA integrity in the hydrothermal-vent mussel Bathymodiolus azoricus: implications for future deep-sea mutagenicity studies. Mutat Res 2004; 552:235-46. [PMID: 15288555 DOI: 10.1016/j.mrfmmm.2004.06.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 05/13/2004] [Accepted: 05/17/2004] [Indexed: 04/30/2023]
Abstract
Comet and agarose gel electrophoresis (AGE) assays were used to show that haemocytes (blood cells) and gill tissues of vent mussels, Bathymodiolus azoricus, are sensitive to hydrostatic pressure change, but can repair DNA damage induced by retrieval from 840 m to the sea surface. In contrast, animals collected from 1700 m survived for only a few days in the laboratory, which was reflected in their poor DNA quality. These findings support the hypothesis of a physiological barrier to survival around 1000-1500 m depth, which these results show affects both vent and non-vent species alike. Based on in vitro experimental exposures to hydrogen peroxide and MMC, vent mussels appear to have sensitivities to the environmental mutagens that are not significantly different from those of coastal mussels.
Collapse
Affiliation(s)
- David R Dixon
- Southampton Oceanography Centre, Waterfront Campus, Empress Dock, Southampton SO14 3ZH, UK.
| | | | | |
Collapse
|
28
|
Panesar NS, Chan KW. Low temperature blocks the stimulatory effect of human chorionic gonadotropin on steroidogenic acute regulatory protein mRNA and testosterone production but not cyclic adenosine monophosphate in mouse Leydig tumor cells. Metabolism 2004; 53:955-8. [PMID: 15281000 DOI: 10.1016/j.metabol.2004.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Low temperatures slow down metabolism, partly because the kinetic energy of molecules is reduced and enzymes may be structurally impaired. We now report that relative to its maximal activity at 37 degrees C, adenylate cyclase (AC) still retained 25% functionality (determined as cyclic adenosine monophosphate [cAMP] production) at 4 degrees C in mouse Leydig tumor cells (MLTC-1) in response to 50 IU/L human chorionic gonadotropin (hCG), whereas steroidogenic acute regulatory (StAR) protein mRNA and testosterone production were completely impaired. The incubation of MLTC-1 with the phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine; IBMX) resulted in significantly increased intracellular cAMP concentration at all 3 temperatures, but this had no impact on testosterone production. AC, cAMP, and phosphodiesterase form an important intracellular second-messenger mechanism in many organisms, some that inhabit very low temperature niches. The cold-resistance of AC and phosphodiesterase may thus have evolved to cope with adverse conditions. Although hibernation may lead to decreased steroid hormone production, it is also likely that cold-mediated decreased steroid hormone production induces hibernation.
Collapse
Affiliation(s)
- N S Panesar
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin
| | | |
Collapse
|
29
|
Siebenaller JF. Pressure effects on the GTPase activity of brain membrane G proteins of deep-living marine fishes. Comp Biochem Physiol B Biochem Mol Biol 2003; 135:697-705. [PMID: 12892762 DOI: 10.1016/s1096-4959(03)00165-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In marine fishes, heterotrimeric guanyl nucleotide binding proteins (G proteins), which couple cell surface membrane receptors to their effector elements, are sensitive to hydrostatic pressure. The intrinsic high affinity GTPase activity of the alpha subunits of G proteins in three signaling systems coupled to adenylyl cyclase, the A(1) adenosine receptor, the muscarinic cholinergic receptor and the beta-adrenergic receptor, was tested at pressures up to 340 atm. Brain membrane preparations from four members of the deep-sea teleost fish family Macrouridae were studied. Coryphaenoides armatus, C. filifer, C. rupestris and Macrourus berglax have depth distributions which together span 100-5810 m. Increased pressure inhibited basal GTPase activity only in M. berglax, which of the four species has the shallowest center of abundance. Increased hydrostatic pressure did not alter the response of GTPase activity to the beta-adrenergic receptor agonist isoproterenol. Increased pressure decreased the stimulation of GTPase activity by the A(1) adenosine receptor agonist cyclopentyladenosine (CPA) in C. armatus and M. berglax, and by the muscarinic cholinergic receptor agonist carbamyl choline in C. armatus, C. filifer and M. berglax. Decreased agonist-stimulation of the GTPase activity at elevated pressure may result from pressure-induced changes in conformational states or inhibition of agonist binding. The binding of the non-hydrolyzable GTP analog guanosine 5'-[gamma-thio]triphosphate (GTP[S]) in response to CPA was determined at 5 degrees C and atmospheric pressure. Six macrourid species and a morid were studied. The halftime (t(1/2)) values for GTP[S] binding, ranging from 20.8 to 40.9 min, are similar to values previously reported for two other cold-adapted fishes.
Collapse
Affiliation(s)
- Joseph F Siebenaller
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
30
|
Castellini MA, Rivera PM, Castellini JM. Biochemical aspects of pressure tolerance in marine mammals. Comp Biochem Physiol A Mol Integr Physiol 2002; 133:893-9. [PMID: 12443945 DOI: 10.1016/s1095-6433(02)00142-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Some marine mammals can dive to depths approaching 2000 m. At these hydrostatic pressures (200 atm), some fish species show alterations in enzyme structure and function that make them pressure-tolerant. Do marine mammals also possess biochemical adaptations to withstand such pressures? In theory, biochemical alterations might occur at the control of enzymatic pathways, by impacting cell membrane fluidity changes or at a higher level, such as cellular metabolism. Studies of marine mammal tissues show evidence of all of these changes, but the results are not consistent across species or diving depth. This review discusses whether the elevated body temperature of marine mammals imparts pressure tolerance at the biochemical level, whether there are cell membrane structural differences in marine mammals and whether whole, living cells from marine mammals alter their metabolism when pressure stressed. We conclude that temperature alone is probably not protective against pressure and that cell membrane composition data are not conclusive. Whole cell studies suggest that marine mammals either respond positively to pressure or are not impacted by pressure. However, the range of tissue types and enzyme systems that have been studied is extremely limited and needs to be expanded before more general conclusions about how these mammals tolerate elevated pressures on a biochemical level can be drawn.
Collapse
Affiliation(s)
- Michael A Castellini
- Institute of Marine Science, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| | | | | |
Collapse
|
31
|
Yancey PH, Blake WR, Conley J. Unusual organic osmolytes in deep-sea animals: adaptations to hydrostatic pressure and other perturbants. Comp Biochem Physiol A Mol Integr Physiol 2002; 133:667-76. [PMID: 12443924 DOI: 10.1016/s1095-6433(02)00182-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Shallow-living marine invertebrates use free amino acids as cellular osmolytes, while most teleosts use almost no organic osmolytes. Recently we found unusual osmolyte compositions in deep-sea animals. Trimethylamine N-oxide (TMAO) increases with depth in muscles of some teleosts, skates, and crustaceans (up to 300 mmol/kg at 2900 m). Other deep-sea animals had high levels of (1). scyllo-inositol in echinoderms, gastropods, and polychaetes, (2). that polyol plus beta-alanine and betaine in octopods, (3). hypotaurine, N-methyltaurine, and unidentified methylamines in vestimentiferans from hydrothermal vents and cold seeps, and (4). a depth-correlated serine-phosphate osmolyte in vesicomyid clams from trench seeps. We hypothesize that some of these solutes counteract effects of hydrostatic pressure. With lactate dehydrogenase, actin, and pyruvate kinase, 250 mM TMAO (but not glycine) protected both ligand binding and protein stability against pressure. To test TMAO in living cells, we grew yeast under pressure. After 1 h at 71 MPa, 3.5 h at 71 MPa, and 17 h at 30 MPa, 150 mM TMAO generally doubled the number of cells that formed colonies. Sulfur-based osmolytes which are not correlated with depth, such as hypotaurine and thiotaurine, are probably involved in sulfide metabolism and detoxification. Thus deep-sea osmolytes may have at least two other roles beyond acting as simple compatible osmotica.
Collapse
Affiliation(s)
- Paul H Yancey
- Biology Department, Whitman College, Walla Walla, WA 99362, USA.
| | | | | |
Collapse
|