1
|
Niu Y, Zhang X, Men S, Xu T, Zhang H, Li X, Storey KB, Chen Q. Effects of hibernation on two important contractile tissues in tibetan frogs, Nanorana parkeri: a perspective from transcriptomics and metabolomics approaches. BMC Genomics 2024; 25:454. [PMID: 38720264 PMCID: PMC11080311 DOI: 10.1186/s12864-024-10357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND In response to seasonal cold and food shortage, the Xizang plateau frogs, Nanorana parkeri (Anura: Dicroglossidae), enter a reversible hypometabolic state where heart rate and oxygen consumption in skeletal muscle are strongly suppressed. However, the effect of winter hibernation on gene expression and metabolic profiling in these two tissues remains unknown. In the present study, we conducted transcriptomic and metabolomic analyses of heart and skeletal muscle from summer- and winter-collected N. parkeri to explore mechanisms involved in seasonal hibernation. RESULTS We identified 2407 differentially expressed genes (DEGs) in heart and 2938 DEGs in skeletal muscle. Enrichment analysis showed that shared DEGs in both tissues were enriched mainly in translation and metabolic processes. Of these, the expression of genes functionally categorized as "response to stress", "defense mechanisms", or "muscle contraction" were particularly associated with hibernation. Metabolomic analysis identified 24 and 22 differentially expressed metabolites (DEMs) in myocardium and skeletal muscle, respectively. In particular, pathway analysis showed that DEMs in myocardium were involved in the pentose phosphate pathway, glycerolipid metabolism, pyruvate metabolism, citrate cycle (TCA cycle), and glycolysis/gluconeogenesis. By contrast, DEMs in skeletal muscle were mainly involved in amino acid metabolism. CONCLUSIONS In summary, natural adaptations of myocardium and skeletal muscle in hibernating N. parkeri involved transcriptional alterations in translation, stress response, protective mechanisms, and muscle contraction processes as well as metabolic remodeling. This study provides new insights into the transcriptional and metabolic adjustments that aid winter survival of high-altitude frogs N. parkeri.
Collapse
Affiliation(s)
- Yonggang Niu
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China.
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Xuejing Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Shengkang Men
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Tisen Xu
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China
| | - Haiying Zhang
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China
| | - Xiangyong Li
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Qiang Chen
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
2
|
Niu Y, Zhang X, Men S, Storey KB, Chen Q. Integrated analysis of transcriptome and metabolome data reveals insights for molecular mechanisms in overwintering Tibetan frogs, Nanorana parkeri. Front Physiol 2023; 13:1104476. [PMID: 36699683 PMCID: PMC9868574 DOI: 10.3389/fphys.2022.1104476] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Nanorana parkeri (Anura, Dicroglossidae) is a unique frog living at high altitude on the Tibetan plateau where they must endure a long winter dormancy at low temperatures without feeding. Here, we presented a comprehensive transcriptomic and metabolomic analysis of liver tissue from summer-active versus overwintering N. parkeri, providing the first broad analysis of altered energy metabolism and gene expression in this frog species. We discovered that significantly up-regulated genes (2,397) in overwintering frogs mainly participated in signal transduction and immune responses, phagosome, endocytosis, lysosome, and autophagy, whereas 2,169 down-regulated genes were mainly involved in metabolic processes, such as oxidation-reduction process, amino acid metabolic process, fatty acid metabolic process, and TCA cycle. Moreover, 35 metabolites were shown to be differentially expressed, including 22 down-regulated and 13 up-regulated in winter. These included particularly notable reductions in the concentrations of most amino acids. These differentially expressed metabolites were mainly involved in amino acid biosynthesis and metabolism. To sum up, these findings suggest that gene expression and metabolic processes show adaptive regulation in overwintering N. parkeri, that contributes to maintaining homeostasis and enhancing protection in the hypometabolic state. This study has greatly expanded our understanding of the winter survival mechanisms in amphibians.
Collapse
Affiliation(s)
- Yonggang Niu
- Department of Life Sciences, Dezhou University, Dezhou, China,School of Life Sciences, Lanzhou University, Lanzhou, China,*Correspondence: Yonggang Niu, ; Qiang Chen,
| | - Xuejing Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shengkang Men
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | | | - Qiang Chen
- School of Life Sciences, Lanzhou University, Lanzhou, China,*Correspondence: Yonggang Niu, ; Qiang Chen,
| |
Collapse
|
3
|
Nikonova EV, Gilliland JDA, Tanis KQ, Podtelezhnikov AA, Rigby AM, Galante RJ, Finney EM, Stone DJ, Renger JJ, Pack AI, Winrow CJ. Transcriptional Profiling of Cholinergic Neurons From Basal Forebrain Identifies Changes in Expression of Genes Between Sleep and Wake. Sleep 2017; 40:3608773. [PMID: 28419375 PMCID: PMC6075396 DOI: 10.1093/sleep/zsx059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Study objective To assess differences in gene expression in cholinergic basal forebrain cells between sleeping and sleep-deprived mice sacrificed at the same time of day. Methods Tg(ChAT-eGFP)86Gsat mice expressing enhanced green fluorescent protein (eGFP) under control of the choline acetyltransferase (Chat) promoter were utilized to guide laser capture of cholinergic cells in basal forebrain. Messenger RNA expression levels in these cells were profiled using microarrays. Gene expression in eGFP(+) neurons was compared (1) to that in eGFP(-) neurons and to adjacent white matter, (2) between 7:00 am (lights on) and 7:00 pm (lights off), (3) between sleep-deprived and sleeping animals at 0, 3, 6, and 9 hours from lights on. Results There was a marked enrichment of ChAT and other markers of cholinergic neurons in eGFP(+) cells. Comparison of gene expression in these eGFP(+) neurons between 7:00 am and 7:00 pm revealed expected differences in the expression of clock genes (Arntl2, Per1, Per2, Dbp, Nr1d1) as well as mGluR3. Comparison of expression between spontaneous sleep and sleep-deprived groups sacrificed at the same time of day revealed a number of transcripts (n = 55) that had higher expression in sleep deprivation compared to sleep. Genes upregulated in sleep deprivation predominantly were from the protein folding pathway (25 transcripts, including chaperones). Among 42 transcripts upregulated in sleep was the cold-inducible RNA-binding protein. Conclusions Cholinergic cell signatures were characterized. Whether the identified genes are changing as a consequence of differences in behavioral state or as part of the molecular regulatory mechanism remains to be determined.
Collapse
Affiliation(s)
- Elena V Nikonova
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Jason DA Gilliland
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA
| | - Keith Q Tanis
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Alexei A Podtelezhnikov
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Alison M Rigby
- Department of Neuroscience, Merck & Co., Inc., West Point, PA
| | - Raymond J Galante
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA
| | - Eva M Finney
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - David J Stone
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - John J Renger
- Department of Neuroscience, Merck & Co., Inc., West Point, PA
| | - Allan I Pack
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
4
|
Pirger Z, Lubics A, Reglodi D, Laszlo Z, Mark L, Kiss T. Mass spectrometric analysis of activity-dependent changes of neuropeptide profile in the snail, Helix pomatia. Neuropeptides 2010; 44:475-83. [PMID: 20716464 DOI: 10.1016/j.npep.2010.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/21/2010] [Accepted: 07/20/2010] [Indexed: 01/25/2023]
Abstract
Terrestrial snails are able to transform themselves into inactivity ceasing their behavioral activity under unfavorable environmental conditions. In the present study, we report on the activity-dependent changes of the peptide and/or polypeptide profile in the brain and hemolymph of the snail, Helix pomatia, using MALDI TOF and quadrupole mass spectrometry. The present data indicate that the snails respond to low temperature by increasing or decreasing the output of selected peptides. Average mass spectra of the brain and hemolymph revealed numerous peaks predominantly present during the active state (19 and 10 peptides/polypeptides, respectively), while others were observed only during hibernation (11 and 13). However, there were peptides and/or polypeptides or their fragments present irrespective of the activity states (49 and 18). The intensity of fourteen peaks that correspond to previously identified neuropeptides varied in the brain of active snails compared to those of hibernating animals. Among those the intensity of eight peptides increased significantly in active animals while in hibernated animals the intensity of another six peptides increased significantly. A new peptide or peptide fragment at m/z 1110.7 was identified in a brain of the snail with the following suggested amino acid sequence: GSGASGSMPATTS. This peptide was found to be more abundant in active animals because the intensity of the peptide was significantly higher compared to hibernating animals. In summary, our results revealed substantial differences in the peptide/polypeptide profile of the brain and hemolymph of active and hibernating snails suggesting a possible contribution of peptides in the process of hibernation.
Collapse
Affiliation(s)
- Z Pirger
- Department of Experimental Zoology, Balaton Limnological Research Institute of the Hungarian Academy of Sciences, Tihany, Hungary.
| | | | | | | | | | | |
Collapse
|
5
|
Willens S, Stoskopf MK, Martin LD, Lewbart GA. Viability of glycerol-preserved and cryopreserved anuran skin. In Vitro Cell Dev Biol Anim 2006; 41:258-63. [PMID: 16409111 DOI: 10.1290/0409064r.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Anurans are important animal models for studying the effects of anthropogenic chemical contamination of the environment. Two-compartment Teflon flow-through diffusion cells can be used to study percutaneous absorption of xenobiotics across harvested skin. However, such an approach currently necessitates that skin be harvested just before experimentation, a requirement that calls for the continuous growth and housing of living animals. The ability to preserve and store skin would allow more efficient use of animals and more flexibility in experimental design. To this end, we examined the viability of harvested anuran skin stored under various protocols consistent with current practices of mammalian skin preservation. Skin from the American bullfrog maintained 80-85% viability after 28 d, whereas viability of skin from the marine toad was only maintained for 7-10 d.
Collapse
Affiliation(s)
- Scott Willens
- Environmental Medicine Consortium, and Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606, USA.
| | | | | | | |
Collapse
|
6
|
Lambert LA, Perri H, Halbrooks PJ, Mason AB. Evolution of the transferrin family: Conservation of residues associated with iron and anion binding. Comp Biochem Physiol B Biochem Mol Biol 2005; 142:129-41. [PMID: 16111909 DOI: 10.1016/j.cbpb.2005.07.007] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 07/18/2005] [Accepted: 07/18/2005] [Indexed: 11/23/2022]
Abstract
The transferrin family spans both vertebrates and invertebrates. It includes serum transferrin, ovotransferrin, lactoferrin, melanotransferrin, inhibitor of carbonic anhydrase, saxiphilin, the major yolk protein in sea urchins, the crayfish protein, pacifastin, and a protein from green algae. Most (but not all) contain two domains of around 340 residues, thought to have evolved from an ancient duplication event. For serum transferrin, ovotransferrin and lactoferrin each of the duplicated lobes binds one atom of Fe (III) and one carbonate anion. With a few notable exceptions each iron atom is coordinated to four conserved amino acid residues: an aspartic acid, two tyrosines, and a histidine, while anion binding is associated with an arginine and a threonine in close proximity. These six residues in each lobe were examined for their evolutionary conservation in the homologous N- and C-lobes of 82 complete transferrin sequences from 61 different species. Of the ligands in the N-lobe, the histidine ligand shows the most variability in sequence. Also, of note, four of the twelve insect transferrins have glutamic acid substituted for aspartic acid in the N-lobe (as seen in the bacterial ferric binding proteins). In addition, there is a wide spread substitution of lysine for the anion binding arginine in the N-lobe in many organisms including all of the fish, the sea squirt and many of the unusual family members i.e., saxiphilin and the green alga protein. It is hoped that this short analysis will provide the impetus to establish the true function of some of the TF family members that clearly lack the ability to bind iron in one or both lobes and additionally clarify the evolutionary history of this important family of proteins.
Collapse
Affiliation(s)
- Lisa A Lambert
- Department of Biology, Chatham College, Woodland Road, Pittsburgh, PA 15232, USA
| | | | | | | |
Collapse
|