1
|
Frøbert AM, Brohus M, Roesen TS, Kindberg J, Fröbert O, Conover CA, Overgaard MT. Circulating insulin-like growth factor system adaptations in hibernating brown bears indicate increased tissue IGF availability. Am J Physiol Endocrinol Metab 2022; 323:E307-E318. [PMID: 35830688 DOI: 10.1152/ajpendo.00429.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brown bears conserve muscle and bone mass during 6 mo of inactive hibernation. The molecular mechanisms underlying hibernation physiology may have translational relevance for human therapeutics. We hypothesize that protective mechanisms involve increased tissue availability of insulin-like growth factors (IGFs). In subadult Scandinavian brown bears, we observed that mean plasma IGF-1 and IGF-2 levels during hibernation were reduced to 36 ± 10% and 56 ± 15%, respectively, compared with the active state (n = 12). Western ligand blotting identified IGF-binding protein (IGFBP)-3 as the major IGFBP in the active state, whereas IGFBP-2 was codominant during hibernation. Acid labile subunit (ALS) levels in hibernation were reduced to 41±16% compared with the active state (n = 6). Analysis of available grizzly bear RNA sequencing data revealed unaltered liver mRNA IGF-1, IGFBP-2, and IGFBP-3 levels, whereas ALS levels were significantly reduced during hibernation (n = 6). Reduced ALS synthesis and circulating levels during hibernation should prompt a shift from ternary IGF/IGFBP/ALS to smaller binary IGF/IGFBP complexes, thereby increasing IGF tissue availability. Indeed, size-exclusion chromatography of bear plasma demonstrated a shift to lower molecular weight IGF-containing complexes in the hibernating versus the active state. Furthermore, we note that the major IGF-2 mRNA isoform expressed in livers in both Scandinavian brown bears and grizzly bears was an alternative splice variant in which Ser29 is replaced with a tetrapeptide possessing a positively charged Arg residue. Homology modeling of the bear IGF-2/IGFBP-2 complex showed the tetrapeptide in proximity to the heparin-binding domain involved in bone-specific targeting of this complex. In conclusion, this study provides data which suggest that increased IGF tissue availability combined with tissue-specific targeting contribute to tissue preservation in hibernating bears.NEW & NOTEWORTHY Brown bears shift from circulating ternary IGF/IGFBP/ALS complexes in the active state to binary IGF/IGFBP complexes during hibernation, indicating increased tissue IGF-bioactivity. Furthermore, brown bears use a splice variant of IGF-2, suggesting increased bone-specific targeting of IGF anabolic signaling.
Collapse
Affiliation(s)
- Anne Mette Frøbert
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| | - Malene Brohus
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| | - Tinna S Roesen
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| | - Jonas Kindberg
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - Ole Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
- Department of Clinical Medicine, Aarhus University Health, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Cheryl A Conover
- Division of Endocrinology, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota
| | - Michael T Overgaard
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| |
Collapse
|
2
|
Tzanakakis GN, Giatagana EM, Berdiaki A, Spyridaki I, Hida K, Neagu M, Tsatsakis AM, Nikitovic D. The Role of IGF/IGF-IR-Signaling and Extracellular Matrix Effectors in Bone Sarcoma Pathogenesis. Cancers (Basel) 2021; 13:cancers13102478. [PMID: 34069554 PMCID: PMC8160938 DOI: 10.3390/cancers13102478] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Bone sarcomas are mesenchymal origin tumors. Bone sarcoma patients show a variable response or do not respond to chemotherapy. Notably, improving efficient chemotherapy approaches, dealing with chemoresistance, and preventing metastasis pose unmet challenges in sarcoma therapy. Insulin-like growth factors 1 and 2 (IGF-1 and -2) and their respective receptors are a multifactorial system that significantly contributes to bone sarcoma pathogenesis. Most clinical trials aiming at the IGF pathway have had limited success. Developing combinatorial strategies to enhance antitumor responses and better classify the patients that could best benefit from IGF-axis targeting therapies is in order. A plausible approach for developing a combinatorial strategy is to focus on the tumor microenvironment (TME) and processes executed therein. Herewith, we will discuss how the interplay between IGF-signaling and the TME constituents affects bone sarcomas’ basal functions and their response to therapy. Potential direct and adjunct therapeutical implications of the extracellular matrix (ECM) effectors will also be summarized. Abstract Bone sarcomas, mesenchymal origin tumors, represent a substantial group of varying neoplasms of a distinct entity. Bone sarcoma patients show a limited response or do not respond to chemotherapy. Notably, developing efficient chemotherapy approaches, dealing with chemoresistance, and preventing metastasis pose unmet challenges in sarcoma therapy. Insulin-like growth factors 1 and 2 (IGF-1 and -2) and their respective receptors are a multifactorial system that significantly contributes to bone sarcoma pathogenesis. Whereas failures have been registered in creating novel targeted therapeutics aiming at the IGF pathway, new agent development should continue, evaluating combinatorial strategies for enhancing antitumor responses and better classifying the patients that could best benefit from these therapies. A plausible approach for developing a combinatorial strategy is to focus on the tumor microenvironment (TME) and processes executed therein. Herewith, we will discuss how the interplay between IGF-signaling and the TME constituents affects sarcomas’ basal functions and their response to therapy. This review highlights key studies focusing on IGF signaling in bone sarcomas, specifically studies underscoring novel properties that make this system an attractive therapeutic target and identifies new relationships that may be exploited. Potential direct and adjunct therapeutical implications of the extracellular matrix (ECM) effectors will also be summarized.
Collapse
Affiliation(s)
- George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Ioanna Spyridaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan;
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
- Correspondence:
| |
Collapse
|
3
|
Khan S. IGFBP-2 Signaling in the Brain: From Brain Development to Higher Order Brain Functions. Front Endocrinol (Lausanne) 2019; 10:822. [PMID: 31824433 PMCID: PMC6883226 DOI: 10.3389/fendo.2019.00822] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Insulin-like growth factor-binding protein-2 (IGFBP-2) is a pleiotropic polypeptide that functions as autocrine and/or paracrine growth factors. IGFBP-2 is the most abundant of the IGFBPs in the cerebrospinal fluid (CSF), and developing brain showed the highest expression of IGFBP-2. IGFBP-2 expressed in the hippocampus, cortex, olfactory lobes, cerebellum, and amygdala. IGFBP-2 mRNA expression is seen in meninges, blood vessels, and in small cell-body neurons (interneurons) and astrocytes. The expression pattern of IGFBP-2 is often developmentally regulated and cell-specific. Biological activities of IGFBP-2 which are independent of their abilities to bind to insulin-like growth factors (IGFs) are mediated by the heparin binding domain (HBD). To execute IGF-independent functions, some IGFBPs have shown to bind with their putative receptors or to translocate inside the cells. Thus, IGFBP-2 functions can be mediated both via insulin-like growth factor receptor-1 (IGF-IR) and independent of IGF-Rs. In this review, I suggest that IGFBP-2 is not only involved in the growth, development of the brain but also with the regulation of neuronal plasticity to modulate high-level cognitive operations such as spatial learning and memory and information processing. Hence, IGFBP-2 serves as a neurotrophic factor which acts via metaplastic signaling from embryonic to adult stages.
Collapse
|
4
|
Clemmons DR. Role of IGF-binding proteins in regulating IGF responses to changes in metabolism. J Mol Endocrinol 2018; 61:T139-T169. [PMID: 29563157 DOI: 10.1530/jme-18-0016] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Abstract
The IGF-binding protein family contains six members that share significant structural homology. Their principal function is to regulate the actions of IGF1 and IGF2. These proteins are present in plasma and extracellular fluids and regulate access of both IGF1 and II to the type I IGF receptor. Additionally, they have functions that are independent of their ability to bind IGFs. Each protein is regulated independently of IGF1 and IGF2, and this provides an important mechanism by which other hormones and physiologic variables can regulate IGF actions indirectly. Several members of the family are sensitive to changes in intermediary metabolism. Specifically the presence of obesity/insulin resistance can significantly alter the expression of these proteins. Similarly changes in nutrition or catabolism can alter their synthesis and degradation. Multiple hormones such as glucocorticoids, androgens, estrogen and insulin regulate IGFBP synthesis and bioavailability. In addition to their ability to regulate IGF access to receptors these proteins can bind to distinct cell surface proteins or proteins in extracellular matrix and several cellular functions are influenced by these interactions. IGFBPs can be transported intracellularly and interact with nuclear proteins to alter cellular physiology. In pathophysiologic states, there is significant dysregulation between the changes in IGFBP synthesis and bioavailability and changes in IGF1 and IGF2. These discordant changes can lead to marked alterations in IGF action. Although binding protein physiology and pathophysiology are complex, experimental results have provided an important avenue for understanding how IGF actions are regulated in a variety of physiologic and pathophysiologic conditions.
Collapse
Affiliation(s)
- David R Clemmons
- Department of MedicineUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Alkharobi HE, Al-Khafaji H, Beattie J, Devine DA, El-Gendy R. Insulin-Like Growth Factor Axis Expression in Dental Pulp Cells Derived From Carious Teeth. Front Bioeng Biotechnol 2018; 6:36. [PMID: 29707538 PMCID: PMC5906522 DOI: 10.3389/fbioe.2018.00036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/15/2018] [Indexed: 01/03/2023] Open
Abstract
The insulin-like growth factor (IGF) axis plays an important role in dental tissue regeneration and most components of this axis are expressed in human dental pulp cells (DPCs). In our previous study, we analyzed IGF axis gene expression in DPCs and demonstrated a novel role of IGF binding protein (IGFBP)-2 and -3 in coordinating mineralized matrix formation in differentiating DPCs. A more recent study from our laboratory partially characterized dental pulp stem cells from teeth with superficial caries (cDPCs) and showed that their potential to differentiate odontoblasts and/or into osteoblasts is enhanced by exposure to the mild inflammatory conditions characteristic of superficial caries. In the present study, we examine whether changes apparent in IGF axis expression during osteogenic differentiation of healthy DPCs are also apparent in DPCs derived from carious affected teeth.
Collapse
Affiliation(s)
- Hanaa Esa Alkharobi
- Division of Oral Biology, Leeds School of Dentistry, St James University Hospital, University of Leeds, Leeds, United Kingdom.,Department of Oral Biology, Faculty of Dentistry, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Hasanain Al-Khafaji
- Division of Oral Biology, Leeds School of Dentistry, St James University Hospital, University of Leeds, Leeds, United Kingdom.,Department of Oral Biology, Faculty of Dentistry, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - James Beattie
- Division of Oral Biology, Leeds School of Dentistry, St James University Hospital, University of Leeds, Leeds, United Kingdom
| | - Deirdre Ann Devine
- Division of Oral Biology, Leeds School of Dentistry, St James University Hospital, University of Leeds, Leeds, United Kingdom
| | - Reem El-Gendy
- Division of Oral Biology, Leeds School of Dentistry, St James University Hospital, University of Leeds, Leeds, United Kingdom.,Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
Beattie J, Al-Khafaji H, Noer PR, Alkharobi HE, Alhodhodi A, Meade J, El-Gendy R, Oxvig C. Insulin- like Growth Factor-Binding Protein Action in Bone Tissue: A Key Role for Pregnancy- Associated Plasma Protein-A. Front Endocrinol (Lausanne) 2018; 9:31. [PMID: 29503631 PMCID: PMC5820303 DOI: 10.3389/fendo.2018.00031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
The insulin-like growth factor (IGF) axis is required for the differentiation, development, and maintenance of bone tissue. Accordingly, dysregulation of this axis is associated with various skeletal pathologies including growth abnormalities and compromised bone structure. It is becoming increasingly apparent that the action of the IGF axis must be viewed holistically taking into account not just the actions of the growth factors and receptors, but also the influence of soluble high affinity IGF binding proteins (IGFBPs).There is a recognition that IGFBPs exert IGF-dependent and IGF-independent effects in bone and other tissues and that an understanding of the mechanisms of action of IGFBPs and their regulation in the pericellular environment impact critically on tissue physiology. In this respect, a group of IGFBP proteinases (which may be considered as ancillary members of the IGF axis) play a crucial role in regulating IGFBP function. In this model, cleavage of IGFBPs by specific proteinases into fragments with lower affinity for growth factor(s) regulates the partition of IGFs between IGFBPs and cell surface IGF receptors. In this review, we examine the importance of IGFBP function in bone tissue with special emphasis on the role of pregnancy associated plasma protein-A (PAPP-A). We examine the function of PAPP-A primarily as an IGFBP-4 proteinase and present evidence that PAPP-A induced cleavage of IGFBP-4 is potentially a key regulatory step in bone metabolism. We also highlight some recent findings with regard to IGFBP-2 and IGFBP-5 (also PAPP-A substrates) function in bone tissue and briefly discuss the actions of the other three IGFBPs (-1, -3, and -6) in this tissue. Although our main focus will be in bone we will allude to IGFBP activity in other cells and tissues where appropriate.
Collapse
Affiliation(s)
- James Beattie
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom
- *Correspondence: James Beattie,
| | - Hasanain Al-Khafaji
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom
| | - Pernille R. Noer
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Hanaa Esa Alkharobi
- Department of Oral Biology, Dental College, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Aishah Alhodhodi
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom
| | - Josephine Meade
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom
| | - Reem El-Gendy
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Schindler N, Mayer J, Saenger S, Gimsa U, Walz C, Brenmoehl J, Ohde D, Wirthgen E, Tuchscherer A, Russo VC, Frank M, Kirschstein T, Metzger F, Hoeflich A. Phenotype analysis of male transgenic mice overexpressing mutant IGFBP-2 lacking the Cardin-Weintraub sequence motif: Reduced expression of synaptic markers and myelin basic protein in the brain and a lower degree of anxiety-like behaviour. Growth Horm IGF Res 2017; 33:1-8. [PMID: 27919008 DOI: 10.1016/j.ghir.2016.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/18/2016] [Accepted: 11/14/2016] [Indexed: 01/07/2023]
Abstract
Brain growth and function are regulated by insulin-like growth factors I and II (IGF-I and IGF-II) but also by IGF-binding proteins (IGFBPs), including IGFBP-2. In addition to modulating IGF activities, IGFBP-2 interacts with a number of components of the extracellular matrix and cell membrane via a Cardin-Weintraub sequence or heparin binding domain (HBD1). The nature and the signalling elicited by these interactions are not fully understood. Here, we examined transgenic mice (H1d-hBP2) overexpressing a mutant human IGFBP-2 that lacks a specific heparin binding domain (HBD1) known as the Cardin-Weintraub sequence. H1d-hBP2 transgenic mice have the genetic background of FVB mice and are characterized by severe deficits in brain growth throughout their lifetime (p<0.05). In tissue lysates from brain hemispheres of 12-21day old male mice, protein levels of the GTPase dynamin-I were significantly reduced (p<0.01). Weight reductions were also found in distinct brain regions in two different age groups (12 and 80weeks). In the younger group, impaired weights were observed in the hippocampus (-34%; p<0.001), cerebellum (-25%; p<0.0001), olfactory bulb (-31%; p<0.05) and prefrontal cortex (-29%; p<0.05). At an age of 12weeks expression of myelin basic protein was reduced (p<0.01) in H1d-BP-2 mice in the cerebellum but not in the hippocampus. At 80weeks of age, weight reductions were similarly present in the cerebellum (-28%; p<0.001) and hippocampus (-31; p<0.05). When mice were challenged in the elevated plus maze, aged but not younger H1d-hBP2 mice displayed significantly less anxiety-like behaviour, which was also observed in a second transgenic mouse model overexpressing mouse IGFBP-2 lacking HBD1 (H1d-mBP2). These in vivo studies provide, for the first time, evidence for a specific role of IGFBP-2 in brain functions associated with anxiety and risk behaviour. These activities of IGFBP-2 could be mediated by the Cardin-Weintraub/HBD1 sequence and are altered in mice expressing IGFBP-2 lacking the HBD1.
Collapse
Affiliation(s)
- N Schindler
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - J Mayer
- Oscar Langendorff Institute of Physiology, University of Rostock, Germany
| | - S Saenger
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, DTA CNS, Basel, Switzerland
| | - U Gimsa
- Institute of Behavioural Physiology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - C Walz
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - J Brenmoehl
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - D Ohde
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - E Wirthgen
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - A Tuchscherer
- Institute of Genetic and Biometry, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - V C Russo
- Hormone Research, Murdoch Childrens Research Institute, University of Melbourne, Australia
| | - M Frank
- Medical Biology and Electron Microscopy Centre, University Medicine Rostock, Rostock, Germany
| | - T Kirschstein
- Oscar Langendorff Institute of Physiology, University of Rostock, Germany
| | - F Metzger
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, DTA CNS, Basel, Switzerland
| | - A Hoeflich
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
| |
Collapse
|
8
|
DeMambro VE, Le PT, Guntur AR, Maridas DE, Canalis E, Nagano K, Baron R, Clemmons DR, Rosen CJ. Igfbp2 Deletion in Ovariectomized Mice Enhances Energy Expenditure but Accelerates Bone Loss. Endocrinology 2015; 156:4129-40. [PMID: 26230658 PMCID: PMC4606757 DOI: 10.1210/en.2014-1452] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previously, we reported sexually dimorphic bone mass and body composition phenotypes in Igfbp2(-/-) mice (-/-), where male mice exhibited decreased bone and increased fat mass, whereas female mice displayed increased bone but no changes in fat mass. To investigate the interaction between IGF-binding protein (IGFBP)-2 and estrogen, we subjected Igfbp2 -/- and +/+ female mice to ovariectomy (OVX) or sham surgery at 8 weeks of age. At 20 weeks of age, mice underwent metabolic cage analysis and insulin tolerance tests before killing. At harvest, femurs were collected for microcomputed tomography, serum for protein levels, brown adipose tissue (BAT) and inguinal white adipose tissue (IWAT) adipose depots for histology, gene expression, and mitochondrial respiration analysis of whole tissue. In +/+ mice, serum IGFBP-2 dropped 30% with OVX. In the absence of IGFBP-2, OVX had no effect on preformed BAT; however, there was significant "browning" of the IWAT depot coinciding with less weight gain, increased insulin sensitivity, lower intraabdominal fat, and increased bone loss due to higher resorption and lower formation. Likewise, after OVX, energy expenditure, physical activity and BAT mitochondrial respiration were decreased less in the OVX-/- compared with OVX+/+. Mitochondrial respiration of IWAT was reduced in OVX+/+ yet remained unchanged in OVX-/- mice. These changes were associated with significant increases in Fgf21 and Foxc2 expression, 2 proteins known for their insulin sensitizing and browning of WAT effects. We conclude that estrogen deficiency has a profound effect on body and bone composition in the absence of IGFBP-2 and may be related to changes in fibroblast growth factor 21.
Collapse
Affiliation(s)
- Victoria E DeMambro
- Maine Medical Center Research Institute (V.E.M., P.T.L., A.R.G., D.E.M., C.J.R.), Scarborough, Maine 04074; Departments of Orthopedic Surgery and Medicine (E.C.), University of Connecticut Health Center, Farmington, Connecticut 06032; Department of Medicine (K.N., R.B.), Harvard Medical School and Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115; and University of North Carolina (D.R.C.), Chapel Hill, North Carolina 27514
| | - Phuong T Le
- Maine Medical Center Research Institute (V.E.M., P.T.L., A.R.G., D.E.M., C.J.R.), Scarborough, Maine 04074; Departments of Orthopedic Surgery and Medicine (E.C.), University of Connecticut Health Center, Farmington, Connecticut 06032; Department of Medicine (K.N., R.B.), Harvard Medical School and Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115; and University of North Carolina (D.R.C.), Chapel Hill, North Carolina 27514
| | - Anyonya R Guntur
- Maine Medical Center Research Institute (V.E.M., P.T.L., A.R.G., D.E.M., C.J.R.), Scarborough, Maine 04074; Departments of Orthopedic Surgery and Medicine (E.C.), University of Connecticut Health Center, Farmington, Connecticut 06032; Department of Medicine (K.N., R.B.), Harvard Medical School and Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115; and University of North Carolina (D.R.C.), Chapel Hill, North Carolina 27514
| | - David E Maridas
- Maine Medical Center Research Institute (V.E.M., P.T.L., A.R.G., D.E.M., C.J.R.), Scarborough, Maine 04074; Departments of Orthopedic Surgery and Medicine (E.C.), University of Connecticut Health Center, Farmington, Connecticut 06032; Department of Medicine (K.N., R.B.), Harvard Medical School and Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115; and University of North Carolina (D.R.C.), Chapel Hill, North Carolina 27514
| | - Ernesto Canalis
- Maine Medical Center Research Institute (V.E.M., P.T.L., A.R.G., D.E.M., C.J.R.), Scarborough, Maine 04074; Departments of Orthopedic Surgery and Medicine (E.C.), University of Connecticut Health Center, Farmington, Connecticut 06032; Department of Medicine (K.N., R.B.), Harvard Medical School and Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115; and University of North Carolina (D.R.C.), Chapel Hill, North Carolina 27514
| | - Kenichi Nagano
- Maine Medical Center Research Institute (V.E.M., P.T.L., A.R.G., D.E.M., C.J.R.), Scarborough, Maine 04074; Departments of Orthopedic Surgery and Medicine (E.C.), University of Connecticut Health Center, Farmington, Connecticut 06032; Department of Medicine (K.N., R.B.), Harvard Medical School and Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115; and University of North Carolina (D.R.C.), Chapel Hill, North Carolina 27514
| | - Roland Baron
- Maine Medical Center Research Institute (V.E.M., P.T.L., A.R.G., D.E.M., C.J.R.), Scarborough, Maine 04074; Departments of Orthopedic Surgery and Medicine (E.C.), University of Connecticut Health Center, Farmington, Connecticut 06032; Department of Medicine (K.N., R.B.), Harvard Medical School and Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115; and University of North Carolina (D.R.C.), Chapel Hill, North Carolina 27514
| | - David R Clemmons
- Maine Medical Center Research Institute (V.E.M., P.T.L., A.R.G., D.E.M., C.J.R.), Scarborough, Maine 04074; Departments of Orthopedic Surgery and Medicine (E.C.), University of Connecticut Health Center, Farmington, Connecticut 06032; Department of Medicine (K.N., R.B.), Harvard Medical School and Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115; and University of North Carolina (D.R.C.), Chapel Hill, North Carolina 27514
| | - Clifford J Rosen
- Maine Medical Center Research Institute (V.E.M., P.T.L., A.R.G., D.E.M., C.J.R.), Scarborough, Maine 04074; Departments of Orthopedic Surgery and Medicine (E.C.), University of Connecticut Health Center, Farmington, Connecticut 06032; Department of Medicine (K.N., R.B.), Harvard Medical School and Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115; and University of North Carolina (D.R.C.), Chapel Hill, North Carolina 27514
| |
Collapse
|
9
|
Wu ZS, Huang XL, Gao YY, Wu JD, Shao WY, Han GY, Ding WZ. Significance of serum insulin-like growth factor Ⅱ mRNA binding protein 3 level in patients with hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2014; 22:4151-4155. [DOI: 10.11569/wcjd.v22.i27.4151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine serum insulin-like growth factor Ⅱ mRNA binding protein 3 (IMP3) level in patients with hepatocellular carcinoma, and to assess its value in early diagnosis and evaluation of progression of hepatocellular carcinoma.
METHODS: One hundred and twenty patients who were diagnosed with hepatocellular carcinoma from December 2011 to November 2013 were selected and served as an observation group, and 30 healthy volunteers were used as a control group. According to the severity of the disease, the observation group was further divided into three subgroups: Ⅰ, Ⅱ and Ⅲ. RT-PCR was performed to detect IMP3 mRNA levels, and ELISA assays were used to measure serum IMP3 concentrations.
RESULTS: IMP3 mRNA level was significantly higher in subgroup Ⅰ than in the control group (t = 19.72, P = 0.000), in subgroup Ⅱ than in subgroup Ⅰ (t = 9.67, P = 0.000), and in subgroup Ⅲ than in subgroup Ⅱ (t = 23.34, P = 0.000). Mean serum IMP3 concentration was significantly higher in the observation group than in the control group (134.25 ng/mL ± 19.33 ng/mL vs 9.37 ng/mL ± 1.23 ng/mL, t = 70.22, P = 0.000), in subgroup Ⅰ (48.35 ng/mL± 12.03 ng/mL) than in the control group ( t = 19.84, P = 0.000), in subgroup Ⅱ (95.36 ng/mL ± 9.25 ng/mL) than in subgroup Ⅰ (t = 19.67, P = 0.000), and in subgroup Ⅲ (214.23 ng/mL ± 23.64 ng/mL) than in subgroup Ⅱ (t = 28.83, P = 0.000).
CONCLUSION: With the progression of hepatocellular carcinoma, serum IMP3 concentration increases significantly. Serum IMP3 detection has potential value in early diagnosis and evaluation of progression of hepatocellular carcinoma.
Collapse
|
10
|
Lund J, Søndergaard MT, Conover CA, Overgaard MT. Heparin-binding mechanism of the IGF2/IGF-binding protein 2 complex. J Mol Endocrinol 2014; 52:345-55. [PMID: 24604839 DOI: 10.1530/jme-13-0184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
IGF1 and IGF2 are potent stimulators of diverse cellular activities such as differentiation and mitosis. Six IGF-binding proteins (IGFBP1-IGFBP6) are primary regulators of IGF half-life and receptor availability. Generally, the binding of IGFBPs inhibits IGF receptor activation. However, it has been shown that IGFBP2 in complex with IGF2 (IGF2/IGFBP2) stimulates osteoblast function in vitro and increases skeletal mass in vivo. IGF2 binding to IGFBP2 greatly increases the affinity for 2- or 3-carbon O-sulfated glycosaminoglycans (GAGs), e.g. heparin and heparan sulfate, which is hypothesized to preferentially and specifically target the IGF2/IGFBP2 complex to the bone matrix. In order to obtain a more detailed understanding of the interactions between the IGF2/IGFBP2 complex and GAGs, we investigated heparin-binding properties of IGFBP2 and the IGF2/IGFBP2 complex in a quantitative manner. For this study, we mutated key positively charged residues within the two heparin-binding domains (HBDs) in IGFBP2 and in one potential HBD in IGF2. Using heparin affinity chromatography, we demonstrate that the two IGFBP2 HBDs contribute differentially to GAG binding in free IGFBP2 and the IGF2/IGFBP2 protein complex. Moreover, we identify a significant contribution from the HBD in IGF2 to the increased IGF2/IGFBP2 heparin affinity. Using molecular modeling, we present a novel model for the IGF2/IGFBP2 interaction with heparin where all three proposed HBDs constitute a positively charged and surface-exposed area that would serve to promote the increased heparin affinity of the complex compared with free intact IGFBP2.
Collapse
Affiliation(s)
- Jacob Lund
- Department of BiotechnologyChemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, DenmarkDivision of EndocrinologyEndocrine Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| | - Mads T Søndergaard
- Department of BiotechnologyChemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, DenmarkDivision of EndocrinologyEndocrine Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| | - Cheryl A Conover
- Department of BiotechnologyChemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, DenmarkDivision of EndocrinologyEndocrine Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael T Overgaard
- Department of BiotechnologyChemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, DenmarkDivision of EndocrinologyEndocrine Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Exogenous administration of protease-resistant, non-matrix-binding IGFBP-2 inhibits tumour growth in a murine model of breast cancer. Br J Cancer 2014; 110:2855-64. [PMID: 24853186 PMCID: PMC4056053 DOI: 10.1038/bjc.2014.232] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/06/2014] [Accepted: 04/08/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Insulin-like growth factors (IGF-I and IGF-II) signal via the type 1 IGF receptor (IGF-1R) and IGF-II also activates the insulin receptor isoform A (IR-A). Signalling via both receptors promotes tumour growth, survival and metastasis. In some instances IGF-II action via the IR-A also promotes resistance to anti-IGF-1R inhibitors. This study assessed the efficacy of two novel modified IGF-binding protein-2 (IGFBP-2) proteins that were designed to sequester both IGFs. The two modified IGFBP-2 proteins were either protease resistant alone or also lacked the ability to bind extracellular matrix (ECM). METHODS The modified IGFBP-2 proteins were tested in vitro for their abilities to inhibit cancer cell proliferation and in vivo to inhibit MCF-7 breast tumour xenograft growth. RESULTS Both mutants retained low nanomolar affinity for IGF-I and IGF-II (0.8-2.1-fold lower than IGFBP-2) and inhibited cancer cell proliferation in vitro. However, the combined protease resistant, non-matrix-binding mutant was more effective in inhibiting MCF-7 tumour xenograft growth and led to inhibition of angiogenesis. CONCLUSIONS By removing protease cleavage and matrix-binding sites, modified IGFBP-2 was effective in inhibiting tumour growth and reducing tumour angiogenesis.
Collapse
|
12
|
Al-Kharobi H, El-Gendy R, Devine DA, Beattie J. The role of the insulin‑like growth factor (IGF) axis in osteogenic and odontogenic differentiation. Cell Mol Life Sci 2014; 71:1469-76. [PMID: 24232361 PMCID: PMC11113200 DOI: 10.1007/s00018-013-1508-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/25/2013] [Indexed: 11/28/2022]
Abstract
The insulin-like growth factor (IGF) axis is a multicomponent molecular network which has important biological functions in the development and maintenance of differentiated tissue function(s). One of the most important functions of the IGF axis is the control of skeletal tissue metabolism by the finely tuned regulation of the process of osteogenesis. To achieve this, the IGF axis controls the activity of several cell types—osteoprogenitor cells, osteoblasts, osteocytes and osteoclasts to achieve the co-ordinated development of appropriate hard tissue structure and associated matrix deposition. In addition, there is an increasing awareness that the IGF axis also plays a role in the process of odontogenesis (tooth formation). In this review, we highlight some of the key findings in both of these areas. A further understanding of the role of the IGF axis in hard tissue biology may contribute to tissue regeneration strategies in cases of skeletal tissue trauma.
Collapse
Affiliation(s)
- H. Al-Kharobi
- Leeds University School of Dentistry, University of Leeds, Clarendon Way, Leeds, LS2 9LU UK
| | - R. El-Gendy
- Leeds University School of Dentistry, University of Leeds, Clarendon Way, Leeds, LS2 9LU UK
| | - D. A. Devine
- Leeds University School of Dentistry, University of Leeds, Clarendon Way, Leeds, LS2 9LU UK
| | - J. Beattie
- Leeds University School of Dentistry, University of Leeds, Clarendon Way, Leeds, LS2 9LU UK
| |
Collapse
|
13
|
Jeong EY, Kim S, Jung S, Kim G, Son H, Lee DH, Roh GS, Kang SS, Cho GJ, Choi WS, Kim HJ. Enhancement of IGF-2-induced neurite outgrowth by IGF-binding protein-2 and osteoglycin in SH-SY5Y human neuroblastoma cells. Neurosci Lett 2013; 548:249-54. [PMID: 23714241 DOI: 10.1016/j.neulet.2013.05.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/29/2013] [Accepted: 05/14/2013] [Indexed: 02/04/2023]
Abstract
A previous study using a mouse model of depression showed that chronic immobilization stress (CIS) reduces levels of insulin-like growth factor (IGF)-2, IGF binding protein 2 (IGFBP2), osteoglycin, and fibromodulin in the amygdala. Here, using human neuroblastoma cells, we tested whether these four proteins cooperatively modulate neuronal plasticity. We found that IGF-2 and IGFBP2 synergistically increased neurite outgrowth via enhanced early signaling through the IGF type 1 receptor. Furthermore, we found that osteoglycin, a small leucine-rich proteoglycan, significantly increased IGF-2/IGFPB2-induced neurite outgrowth, but fibromodulin had no effect. We also found that central amygdala neurons of CIS-induced depressive mouse showed a decreased total dendritic length. These findings suggest that CIS-responsive proteins modulate neuronal morphology during chronic stress.
Collapse
Affiliation(s)
- Eun Young Jeong
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Foulstone EJ, Zeng L, Perks CM, Holly JMP. Insulin-like growth factor binding protein 2 (IGFBP-2) promotes growth and survival of breast epithelial cells: novel regulation of the estrogen receptor. Endocrinology 2013; 154:1780-93. [PMID: 23515291 DOI: 10.1210/en.2012-1970] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In breast tumors IGF binding protein-2 (IGFBP-2) is elevated, and the presence of IGFBP-2 has been shown to correlate with malignancy. However, how IGFBP-2 contributes to the malignant state is still unclear. Silencing IGFBP-2 blocked cell proliferation and in MCF-7 cells increased cell death, indicating that IGFBP-2 was acting in both a mitogenic and a survival capacity. Exogenous IGFBP-2 acting via integrin receptors to reduce phosphatase and tensin homolog deleted from chromosome 10 (PTEN) levels protected these cells against death induced by various chemotherapeutic agents. This was dependent on a functional estrogen receptor (ER)-α because silencing ER-α blocked the ability of IGFBP-2 to confer cell survival. Loss of IGFBP-2 increased levels of PTEN and improved chemosensitivity of the cells, confirming its role as a survival factor. Silencing IGFBP-2 had no effect on the response to IGF-II, but responses to estrogen and tamoxifen were no longer observed due to loss of ER-α, which could be prevented by the inhibition of PTEN. Conversely, exogenous IGFBP-2 increased ER-α mRNA and protein in both normal and cancer cells via its interaction with integrin receptors. These actions of IGFBP-2 on ER-α involved the IGF-I receptor and activation of phosphatidylinositol 3-kinase in the cancer cells but were independent of this in normal breast cells. The production of IGFBP-2 by breast cancer cells enhances their proliferative potential, increases their survival, and protects them against chemotherapy-induced death. IGFBP-2 not only modulates IGFs and directly regulates PTEN but also has a role in maintaining ER-α expression.
Collapse
Affiliation(s)
- Emily J Foulstone
- IGF and Metabolic Endocrinology Group, School of Clinical Sciences, University of Bristol, Learning and Research Building, Southmead Hospital, Bristol BS10 1TD, United Kingdom
| | | | | | | |
Collapse
|
15
|
Insulin-like growth factor (IGF) binding protein 2 functions coordinately with receptor protein tyrosine phosphatase β and the IGF-I receptor to regulate IGF-I-stimulated signaling. Mol Cell Biol 2012; 32:4116-30. [PMID: 22869525 DOI: 10.1128/mcb.01011-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Insulin-like growth factor I (IGF-I) is a mitogen for vascular smooth muscle cells (VSMC) and has been implicated in the development and progression of atherosclerosis. IGF binding proteins (IGFBPs) modify IGF-I actions independently of IGF binding, but a receptor-based mechanism by which they function has not been elucidated. We investigated the role of IGFBP-2 and receptor protein tyrosine phosphatase β (RPTPβ) in regulating IGF-I signaling and cellular proliferation. IGFBP-2 bound RPTPβ, which led to its dimerization and inactivation. This enhanced PTEN tyrosine phosphorylation and inhibited PTEN activity. Utilization of substrate trapping and phosphatase-dead mutants showed that RPTPβ bound specifically to PTEN and dephosphorylated it. IGFBP-2 knockdown led to decreased PTEN tyrosine phosphorylation and decreased AKT Ser473 activation. IGFBP-2 enhanced IGF-I-stimulated VSMC migration and proliferation. Analysis of aortas obtained from IGFBP-2(-/-) mice showed that RPTPβ was activated, and this was associated with inhibition of IGF-I stimulated AKT Ser473 phosphorylation and VSMC proliferation. These changes were rescued following administration of IGFBP-2. These findings present a novel mechanism for coordinate regulation of IGFBP-2 and IGF-I signaling functions that lead to stimulation of VSMC proliferation. The results have important implications for understanding how IGFBPs modulate the cellular response to IGF-I.
Collapse
|
16
|
Hamidouche Z, Fromigué O, Ringe J, Häupl T, Marie PJ. Crosstalks between integrin alpha 5 and IGF2/IGFBP2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiation. BMC Cell Biol 2010; 11:44. [PMID: 20573191 PMCID: PMC2901205 DOI: 10.1186/1471-2121-11-44] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 06/23/2010] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The potential of mesenchymal stromal cells (MSCs) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors that trigger osteoblast differentiation in MSCs is therefore critical to promote the osteogenic potential of human MSCs. In this study, we used microarray analysis to identify signalling molecules that promote osteogenic differentiation in human bone marrow stroma derived MSCs. RESULTS Microarray analysis and validation experiments showed that the expression of IGF2 and IGFBP2 was increased together with integrin alpha5 (ITGA5) during dexamethasone-induced osteoblast differentiation in human MSCs. This effect was functional since we found that IGF2 and IGFBP2 enhanced the expression of osteoblast phenotypic markers and in vitro osteogenic capacity of hMSCs. Interestingly, we showed that downregulation of endogenous ITGA5 using specific shRNA decreased IGF2 and IGFBP2 expression in hMSCs. Conversely, ITGA5 overexpression upregulated IGF2 and IGFBP2 expression in hMSCs, which indicates tight crosstalks between these molecules. Consistent with this concept, activation of endogenous ITGA5 using a specific antibody that primes the integrin, or a peptide that specifically activates ITGA5 increased IGF2 and IGFBP2 expression in hMSCs. Finally, we showed that pharmacological inhibition of FAK/ERK1/2-MAPKs or PI3K signalling pathways that are enhanced by ITGA5 activation, blunted IGF2 and IGFBP2 expression in hMSCs. CONCLUSION The results show that ITGA5 is a key mediator of IGF2 and IGFBP2 expression that promotes osteoblast differentiation in human MSCs, and reveal that crosstalks between ITGA5 and IGF2/IGFBP2 signalling are important mechanisms that trigger osteogenic differentiation in human bone marrow derived mesenchymal stromal cells.
Collapse
Affiliation(s)
- Zahia Hamidouche
- Laboratory of Osteoblast Biology and Pathology, INSERM U606, Paris F-75475, France
| | | | | | | | | |
Collapse
|
17
|
Saugspier M, Felthaus O, Viale-Bouroncle S, Driemel O, Reichert TE, Schmalz G, Morsczeck C. The Differentiation and Gene Expression Profile of Human Dental Follicle Cells. Stem Cells Dev 2010; 19:707-17. [PMID: 20491563 DOI: 10.1089/scd.2010.0027] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Michael Saugspier
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Oliver Felthaus
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Sandra Viale-Bouroncle
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Oliver Driemel
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Gottfried Schmalz
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Christian Morsczeck
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
18
|
Qiu Q, Yan X, Bell M, Di J, Tsang BK, Gruslin A. Mature IGF-II prevents the formation of "big" IGF-II/IGFBP-2 complex in the human circulation. Growth Horm IGF Res 2010; 20:110-117. [PMID: 19962924 DOI: 10.1016/j.ghir.2009.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 11/30/2022]
Abstract
IGF-II plays an important role in physiological and pathological processes involved in growth and metabolism. Despite the fact that "big" IGF-IIs, IGF-II(1-87) and IGF-II(1-104), have been identified in the circulation for decades in addition to "mature" IGF-II, the biological properties of these "big" IGF-IIs and the mechanisms regulating their bioavailability have not been fully elucidated. In this study we demonstrated that IGF-II (1-87), as an abundant "big" IGF-II form, exists at a molar ratio of 0.24 (CI 0.13-0.62) with respect to mature IGF-II in the normal human circulation. Mature and "big" IGF-II can equally form complexes with IGFBP-2 and IGFBP-3 in vitro, resulting in the inhibition of IGF-II's biological function. However, under physiological conditions which entails the presence of both "big" and mature IGF-II, "big" IGF-IIs preferably formed complexes with IGFBP-3 but not IGFBP-2, unlike mature IGF-II which was equally associated with both IGFBP-3 and IGFBP-2. "Big" IGF-II binding to IGFBP-2 was only evident when the "big"/mature IGF-II ratio approached 1 or higher. We concluded that mature IGF-II prevents the formation of "big" IGF-II/IGFBP-2 complex in the circulation of healthy human controls. This finding suggests the presence of previously unknown mechanisms in the regulation of IGF-II bioavailability. Elevation of the ratio of "big" to mature IGF-II in the circulation may result in altered bioavailability of "big" IGF-IIs. This mechanism is relevant in pathological conditions such as Non-Islet Cell Tumor-induced Hypoglycemia (NICTH) and Hepatitis C-associated Osteosclerosis (HCAO), in which "big" IGF-II(1-87) and IGF-II(1-104) are significantly elevated.
Collapse
Affiliation(s)
- Qing Qiu
- Chronic Disease Program, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Paxson JA, Parkin CD, Iyer LK, Mazan MR, Ingenito EP, Hoffman AM. Global gene expression patterns in the post-pneumonectomy lung of adult mice. Respir Res 2009; 10:92. [PMID: 19804646 PMCID: PMC2770038 DOI: 10.1186/1465-9921-10-92] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 10/05/2009] [Indexed: 11/29/2022] Open
Abstract
Background Adult mice have a remarkable capacity to regenerate functional alveoli following either lung resection or injury that exceeds the regenerative capacity observed in larger adult mammals. The molecular basis for this unique capability in mice is largely unknown. We examined the transcriptomic responses to single lung pneumonectomy in adult mice in order to elucidate prospective molecular signaling mechanisms used in this species during lung regeneration. Methods Unilateral left pneumonectomy or sham thoracotomy was performed under general anesthesia (n = 8 mice per group for each of the four time points). Total RNA was isolated from the remaining lung tissue at four time points post-surgery (6 hours, 1 day, 3 days, 7 days) and analyzed using microarray technology. Results The observed transcriptomic patterns revealed mesenchymal cell signaling, including up-regulation of genes previously associated with activated fibroblasts (Tnfrsf12a, Tnc, Eln, Col3A1), as well as modulation of Igf1-mediated signaling. The data set also revealed early down-regulation of pro-inflammatory cytokine transcripts and up-regulation of genes involved in T cell development/function, but few similarities to transcriptomic patterns observed during embryonic or post-natal lung development. Immunohistochemical analysis suggests that early fibroblast but not myofibroblast proliferation is important during lung regeneration and may explain the preponderance of mesenchymal-associated genes that are over-expressed in this model. This again appears to differ from embryonic alveologenesis. Conclusion These data suggest that modulation of mesenchymal cell transcriptome patterns and proliferation of S100A4 positive mesenchymal cells, as well as modulation of pro-inflammatory transcriptome patterns, are important during post-pneumonectomy lung regeneration in adult mice.
Collapse
Affiliation(s)
- Julia A Paxson
- Department of Clinical Sciences, Lung Function Testing Laboratory, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Uebersax L, Merkle HP, Meinel L. Biopolymer-Based Growth Factor Delivery for Tissue Repair: From Natural Concepts to Engineered Systems. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:263-89. [DOI: 10.1089/ten.teb.2008.0668] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lorenz Uebersax
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Hans P. Merkle
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Lorenz Meinel
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zurich, Switzerland
| |
Collapse
|
21
|
Kim DS, Cho HJ, Yang SK, Shin JW, Huh CH, Park KC. Insulin-like growth factor-binding protein contributes to the proliferation of less proliferative cells in forming skin equivalents. Tissue Eng Part A 2009; 15:1075-80. [PMID: 18803482 DOI: 10.1089/ten.tea.2008.0236] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, the effects and the mediating factors of dermal cells on the epidermal regenerative ability were investigated. Human epidermal cells were separated into rapidly adhering (RA) cells and slowly adhering (SA) cells and used for culturing skin equivalents (SEs). For dermal part, normal human fibroblasts, dermal sheath cells (DSCs), and dermal papilla cells were used. SEs produced using SA cells and DSCs showed a thicker epidermis and higher expressions of alpha(6)- and beta1-integrin than SEs using SA cells and normal fibroblasts showed. We hypothesized that DSCs may secrete specific cytokines that can influence the regenerative potential of epidermal cells, and compared cytokine secretion by DSCs and normal human fibroblasts. Using RayBio human cytokine antibody array C (series 1000), 120 cytokines were tested. Results showed that DSCs produced a much greater amount of insulin-like growth factor-binding protein (IGFBP-2), angiogenin, and BMP-6 than normal human fibroblasts produced. On the basis of the cytokine antibody array, we next investigated whether IGFBP-2, angiogenin, or BMP-6 has effects on SEs reconstruction. The addition of IGFBP-2 induced a thicker and more mature epidermis and higher expressions of alpha(6)- and beta1-integrin, whereas BMP-6 exhibited little effect. Thus, the SEs with IGFBP-2 showed almost the same morphology of the SEs using DSCs. Further, p63, a putative keratinocyte stem cell marker, was more frequently observed in the basal layer of SE with IGFBP-2. In conclusion, IGFBP-2 is a major factor from DSCs that affects epidermal regenerative capacity of skin and may play an important role for stemness maintenance in human epidermal keratinocytes.
Collapse
Affiliation(s)
- Dong-Seok Kim
- Department of Biochemistry, College of Medicine, Chung-Ang University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Aonuma H, Ogura N, Kamino Y, Ito K, Kondoh T. Microarray Analysis of Human Dental Follicle Cells in Osteogenic Differentiation. J HARD TISSUE BIOL 2009. [DOI: 10.2485/jhtb.18.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Zou X, Zou L, Foldager C, Bendtsen M, Feng W, Bünger CE. Different mechanisms of spinal fusion using equine bone protein extract, rhBMP-2 and autograft during the process of anterior lumbar interbody fusion. Biomaterials 2008; 30:991-1004. [PMID: 19046765 DOI: 10.1016/j.biomaterials.2008.10.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
To elucidate the molecular mechanisms of spinal fusion with different graft materials during an anterior lumbar interbody fusion, we examined the gene-expression profiles after implantation of equine bone protein extract, rhBMP-2 and autograft using microarray technology and data analysis, including hierarchical clustering, self-organizing maps (SOM), KEGG pathway and Biological process GO analyses in a porcine model. The results suggest that equine bone protein extract exhibited a more similar expression pattern with autograft than that of rhBMP-2. rhBMP-2 recruits progenitor cells, proliferation and differentiation possibly by inducing various factors including PGHS-2, IFGBP-2, VEGF and chemokines and then leads to preferable membranous ossification and bone remodeling. Conversely, equine bone protein extract results in endochondral ossification via upregulation of cartilage-related genes. Ossification by inducing direct osteoblastic differentiation and obviating the cartilaginous intermediate phases may increase spinal fusion rate.
Collapse
Affiliation(s)
- Xuenong Zou
- Department of Spine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
24
|
Lu FZ, Wang XX, Pan QX, Huang RH, Liu HL. Expression of genes involved in the somatotropic, thyrotropic, and corticotropic axes during development of Langshan and Arbor Acres chickens. Poult Sci 2008; 87:2087-97. [PMID: 18809871 DOI: 10.3382/ps.2007-00493] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated changes in mRNA expression of the somatotropic, thyrotropic, and corticotropic axes of Langshan (LS) and Arbor Acres (AA) broiler chickens during embryonic and postnatal development. We found an inverse expression profile between pituitary growth hormone (GH) and hepatic GH receptor mRNA [postnatal d (P)28 to P42], insulin-like growth factor (IGF)-I, and IGF-IR (P0 to P42), respectively. Hepatic IGF-I was a major point of control in the GH-IGF axis from P0 to P28. Pituitary GH-releasing hormone receptor may serve an autocrine-paracrine function from P0 to P28, and hypothalamic ghrelin may affect growth by stimulating the release of hepatic IGF-I from embryonic d (E)8 to P28. Hypothalamic ghrelin might interact with corticotropin-releasing hormone (CRH) from P0 to P28. Hepatic IGF-binding protein-2 regulated growth by regulating hepatic IGF-II bioavailability from P0 to P42. Hepatic IGF-binding protein-5 was an important IGF mediator. A coexpression profile was found between hypothalamic GH-releasing hormone (E10 to E16 and P0 to P42), somatostatin (SS; P0 to P28), thyrotropin-releasing hormone (E10 to E16 and P0 to P28), ghrelin (P0 to P42), and pituitary GH mRNA, hypothalamic SS (P0 to P28), corticotropin-releasing hormone (P0 to P42), thyrotropin-releasing hormone (E10 to E18 and P0-P42), and thyroid-stimulating hormone-beta mRNA, respectively. Moreover, AA chickens were fed a nutrient-rich AA diet (as a control group) and LS chickens were fed either a less nutritious LS diet or the AA diet. Langshan and AA chickens fed the same AA diet showed no differences in pituitary GH, hypothalamic SS, ghrelin, hepatic IGF-I, or GH receptor mRNA. Our data indicate that select genes may show parallel expression during certain periods of development, and that differences in BW and gene expression respond differently to nutrient intake in LS and AA chickens. Our findings may help improve the molecular breeding of chickens.
Collapse
Affiliation(s)
- F Z Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | | | | | | | | |
Collapse
|
25
|
Davis LK, Rodgers BD, Kelley KM. Angiotensin II- and glucose-stimulated extracellular matrix production: mediation by the insulin-like growth factor (IGF) axis in a murine mesangial cell line. Endocrine 2008; 33:32-9. [PMID: 18392786 PMCID: PMC2684556 DOI: 10.1007/s12020-008-9055-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 01/22/2008] [Accepted: 03/06/2008] [Indexed: 02/05/2023]
Abstract
In diabetic nephropathy, glomerular mesangial cells exhibit aberrant anabolic activity that includes excessive production of extracellular matrix (ECM) proteins, leading to crowding of filtration surface areas and possible renal failure. In the present study, a murine mesangial cell line (MES-13 cells) was studied to determine the roles of the renin-angiotensin system (RAS) and the insulin-like growth factor (IGF) axis in the anabolic response to elevated glucose levels. Culture of MES-13 cells in medium containing supra-physiological glucose concentrations (>5.5 mmol/l) resulted in increased production of ECM proteins including laminin, fibronectin, and heparan sulfate proteoglycan with concurrent increases in IGF-binding protein (IGFBP)-2 production. These responses were blocked by the angiotensin receptor antagonists saralasin and losartan, while exogenous angiotensin II (Ang II) treatment directly stimulated increases in ECM and IGFBP-2. In all experiments, IGFBP-2 levels were correlated with anabolic activity implicating IGFBP-2 as a possible mediator in cellular responses to high glucose and Ang II. Such mediation appears to involve IGFBP-2 modulation of IGF-I signaling, since all responses to high glucose or Ang II were blocked by immuno-neutralization of IGF-I. These data suggest alterations in the IGF axis as key mechanisms underlying nephropathic responses of mesangial cells to Ang II and high glucose.
Collapse
Affiliation(s)
- Lori K. Davis
- Endocrinology Laboratory, Department of Biological Sciences, California State University, Long Beach, Long Beach, CA 90840, USA, e-mail:
| | - Buel D. Rodgers
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Kevin M. Kelley
- Endocrinology Laboratory, Department of Biological Sciences, California State University, Long Beach, Long Beach, CA 90840, USA, e-mail:
| |
Collapse
|
26
|
Chen RL, Kassem NA, Sadeghi M, Preston JE. Insulin-Like Growth Factor-II Uptake Into Choroid Plexus and Brain of Young and Old Sheep. J Gerontol A Biol Sci Med Sci 2008; 63:141-8. [DOI: 10.1093/gerona/63.2.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
27
|
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) are important regulators of bone metabolism. However, their precise roles are not fully understood, since IGFBPs can have both enhancing and inhibiting effects on IGF action, depending on context and posttranslational modifications, as well as IGF-independent effects. This review focuses on recent findings from cell culture, rodent models, and clinical studies concerning local IGFBP-2, IGFBP-4, and IGFBP-5 action in bone.
Collapse
Affiliation(s)
- Cheryl A Conover
- Endocrine Research Unit, Division of Endocrinology and Metabolosm, Department of Medicine, Mayo Clinic, 200 First St. SW, 5-194 Joseph, Rochester, MN 55905, USA.
| |
Collapse
|
28
|
Viereck V, Siggelkow H, Pannem R, Braulke T, Scharf JG, Kübler B. Alteration of the insulin-like growth factor axis during in vitro differentiation of the human osteosarcoma cell line HOS 58. J Cell Biochem 2007; 102:28-40. [PMID: 17372931 DOI: 10.1002/jcb.21274] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The insulin-like growth factors I and II (IGF-I, IGF-II), their receptors, and high affinity binding proteins (IGFBPs) represent a family of cellular modulators that play essential roles in the development and differentiation of cells and tissues including the skeleton. Recently, the human osteosarcoma cell line HOS 58 cells were used as an in vitro model of osteoblast differentiation characterized by (i) a rapid proliferation rate in low-density cells that decreased continuously with time of culture and (ii) an increasing secretion of matrix proteins during their in vitro differentiation. In the present paper, HOS 58 cells with low cell density at early time points of the in vitro differentiation (i) displayed a low expression of IGF-I and -II; (ii) synthesized low levels of IGFBP-2, -3, -4, and -5, but (iii) showed high expression levels of both the type I and II IGF receptors. During the in vitro differentiation of HOS 58 cells, IGF-I and -II expressions increased continuously in parallel with an upregulation of IGFBP-2, -3, -4, and -5 whereas the IGF-I receptor and IGF-II/M6P receptor mRNA were downregulated. In conclusion, the high proliferative activity in low cell density HOS 58 cells was associated with high mRNA levels of the IGF-IR, but low concentrations of IGFBP-2. The rate of proliferation of HOS 58 cells continuously decreased during cultivation in parallel with a decline in IGF-IR expression, but increase of mitoinhibitory IGFBP-2. These data are indicative for a role of the IGF axis during the in vitro differentiation of HOS 58 cells.
Collapse
Affiliation(s)
- Volker Viereck
- Department of Obstetrics and Gynecology, Georg-August-Universität, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The extracellular matrix (ECM) is a substrate upon which cells migrate, proliferate and differentiate. It is involved in the maintenance of cytoarchitecture, regulation of homeostasis, and it influences interactions between cells and molecules via specific receptors. Although a substantial body of knowledge has accumulated concerning the role of the ECM in peripheral tissues, little is known of the structure and function of the ECM in the CNS. However, marked changes in the expression of ECM constituents have been documented in various neurological disorders, including multiple sclerosis. This review focuses on the structure and function of the ECM in the CNS and in particular on the occurrence and involvement of ECM changes in the pathology of multiple sclerosis. Increased knowledge of the expression and functional role of ECM proteins in the CNS can lead to a better understanding of complex neurobiological processes both under normal as well as pathological conditions.
Collapse
Affiliation(s)
- Jack van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
30
|
Miyamoto S, Nakamura M, Yano K, Ishii G, Hasebe T, Endoh Y, Sangai T, Maeda H, Shi-Chuang Z, Chiba T, Ochiai A. Matrix metalloproteinase-7 triggers the matricrine action of insulin-like growth factor-II via proteinase activity on insulin-like growth factor binding protein 2 in the extracellular matrix. Cancer Sci 2007; 98:685-91. [PMID: 17359288 PMCID: PMC11158237 DOI: 10.1111/j.1349-7006.2007.00448.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Many growth factors and cytokines are immobilized on the extracellular matrix (ECM) by binding to glycosaminoglycans and are stored in an inactive form in the cellular microenvironment. However, the mechanisms of ECM-bound growth factor or cytokine activation have not been well documented. We showed that the insulin-like growth factor type-1 receptor (IGF-1R) was rapidly phosphorylated after the addition of matrix metalloproteinase (MMP)-7 to a serum-starved human colon cancer cell line (HT29) and that phosphorylation was completely inhibited by an IGF-II neutralizing antibody. In the ECM of this cell line, IGF-II and IGF binding protein (BP)-2 coexisted, but IGFBP-2 disappeared from the ECM fraction after treatment with MMP-7 or heparinase III. On the other hand, in a cell line in which IGF-1R was overexpressed, IGF-1R was phosphorylated by supernatant from the MMP-7-treated ECM fraction of HT29 but not by that from a heparinase-III-treated ECM fraction. We also demonstrated that MMP-7 degrades IGFBP-2 in vitro at three cleavage sites (peptide bonds E(151)-L(152), G(175)-L(176) and K(181)-L(182)), which have not been documented previously. Taken together, these results demonstrate that MMP-7 generates bioactive IGF-II by degrading the IGF-II/IGFBP-2 complex binding to heparan sulfate proteoglycan in the ECM, resulting in IGF-II-induced signal transduction. This evidence indicates that some ECM-associated growth factors enhance their ability to bind to their receptors by some proteases in the tumor microenvironment. This mechanism of action ('protease-triggered matricrine') represents an attractive model for understanding ECM-tumor interactions.
Collapse
Affiliation(s)
- Shin'ichi Miyamoto
- Pathology Division, National Cancer Center Research Institute East, Chiba 277-8577, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Effect of Low-Level Laser Irradiation on IGF-II and IGFBP-2 Gene Expressions in Osteoblasts. ACTA ACUST UNITED AC 2007. [DOI: 10.5466/ijoms.5.74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Martin JL, Jambazov S. Insulin-like growth factor binding protein-3 in extracellular matrix stimulates adhesion of breast epithelial cells and activation of p44/42 mitogen-activated protein kinase. Endocrinology 2006; 147:4400-9. [PMID: 16763062 DOI: 10.1210/en.2006-0094] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF-binding protein-3 (IGFBP-3) is a multifunctional protein that regulates the potent mitogenic and antiapoptotic effects of IGF-I and IGF-II and exerts bioactivity independent of modulating IGF receptor activation. Previous studies have shown that in solution, IGFBP-3 binds constituent proteins of the extracellular matrix (ECM) such as fibronectin and collagen and is present in ECM deposited by fibroblasts in vitro; however, binding of IGFBP-3 to matrix has not been characterized, nor has its function in this environment been investigated. In this study, we show that IGFBP-3 binds to ECM deposited by human breast epithelial and cancer cells and neonatal human fibroblasts. IGF-I and heparin blocked binding of IGFBP-3 to matrix when added with the binding protein but were unable to displace IGFBP-3 already bound to the matrix. IGF-I bound to matrix-immobilized IGFBP-3 with approximately 25-fold reduced affinity compared with IGFBP-3 in solution. Mutation of the C-terminal basic domain of IGFBP-3 (228KGRKR-->MDGEA) resulted in markedly reduced binding to matrix compared with wild-type IGFBP-3, whereas mutation of the adjacent consensus heparin-binding domain (220KKK-->HSR) had relatively little effect. In the presence of matrix-bound IGFBP-3, adhesion of breast epithelial cells was increased by approximately 25%, and activation of the signaling pathway intermediate p44/42 MAPK was enhanced greater than 3-fold. These results indicate a previously unrecognized and potentially important role for IGFBP-3 in the extracellular matrix.
Collapse
Affiliation(s)
- Janet L Martin
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| | | |
Collapse
|
33
|
Silha JV, Murphy LJ. Insulin-like growth factor binding proteins in development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 567:55-89. [PMID: 16370136 DOI: 10.1007/0-387-26274-1_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IGFBPs regulate growth and development by regulating IGF transport to tissues and IGF bioavailability to IGF receptors at cell membrane level. IGFBP excess leads predominantly to inhibition of IGF action and growth retardation with impaired organogenesis. Absence of human and also mouse ALS leads to decreased IGF-I levels in circulation and causes mild growth retardation. Although IGFBP KO mice demonstrate relatively minor phenotypes, the possibility of compensatory mechanisms that mask the phenotypic manifestation of lack of individual binding proteins needs to be further investigated. Recent studies of hepatic regeneration in IGFBP-1 KO mice and also with mutant IGFBP-3 Tg mice provide some limited support for the existence of IGF-independent mechanism of action in vivo.
Collapse
Affiliation(s)
- Josef V Silha
- Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
34
|
Fisher MC, Meyer C, Garber G, Dealy CN. Role of IGFBP2, IGF-I and IGF-II in regulating long bone growth. Bone 2005; 37:741-50. [PMID: 16183342 DOI: 10.1016/j.bone.2005.07.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/20/2005] [Accepted: 07/05/2005] [Indexed: 01/15/2023]
Abstract
The IGF axis is important for long bone development, homeostasis and disease. The activities of IGF-I and IGF-II are regulated by IGF binding proteins (IGFBPs). IGF-I and IGFBP2 are co-expressed in dynamic fashions in the developing long bones of the chick wing, and we have found that IGF-II is present in the cartilage model and surrounding perichondrium, proliferative and hypertrophic chondrocytes and developing periosteum. To gain insight into endogenous roles of IGF-I, IGF-II and IGFBP2 in long bone development, we have overexpressed IGFBP2 in the developing skeletal elements of the embryonic chick wing in vivo, using an RCAS retroviral vector. IGFBP2 overexpression led to an obvious shortening of the long bones of the wing. We have investigated, at the cellular and molecular levels, the mechanism of action whereby IGFBP2 overexpression impairs long bone development in vivo. At an early stage, IGFBP2 excess dramatically inhibits proliferation by the chondrocytes of the cartilage models that prefigure the developing long bones. Later, IGFBP2 excess also reduces proliferation of the maturing chondrocytes and attenuates proliferation by the perichondrium/developing periosteum. IGFBP2 excess does not affect morphological or molecular indicators of chondrocyte maturation, osteoblast differentiation or cell/matrix turnover, such as expression of Ihh, PTHrP, type X collagen and osteopontin, or distribution and relative abundance of putative clast cells. We also have found that IGFBP2 blocks the ability of IGF-I and IGF-II to promote proliferation and matrix synthesis by wing chondrocytes in vitro. Together, our results suggest that the mechanism of action whereby IGFBP2 excess impairs long bone development is to inhibit IGF-mediated proliferation and matrix synthesis by the cartilage model; reduce the proliferation and progression to hypertrophy by the maturing chondrocytes; and attenuate proliferation and formation of the periosteal bony collar. These actions retard the growth and longitudinal expansion of the developing long bones, resulting in shortened wing skeletal elements. Our results emphasize the importance of a balance of IGF/IGFBP2 action at several stages during normal long bone development.
Collapse
Affiliation(s)
- Melanie C Fisher
- Center for Limb and Skeletal Development, Department of BioStructure and Function, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
35
|
Gordon PV, Paxton JB, Kuemmerle JF, Fox NS. A 14-kDa cathepsin L-derived carboxyl IGFBP-2 fragment is sequestered by cultured rat ileal crypt cells. Am J Physiol Gastrointest Liver Physiol 2005; 289:G79-87. [PMID: 15705658 DOI: 10.1152/ajpgi.00384.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
IGF-II gut drives mucosal growth during gestation. IGF binding protein-2 (IGFBP-2) has a high affinity for IGF-II and tightly regulates IGF-II availability during fetal and early neonatal growth. We have previously demonstrated that glucocorticoids alter IGF homeostasis in the neonatal ileum, but the mechanism(s) by which this occurs is poorly understood. We hypothesized that dexamethasone alters proteolytic regulation of IGFBP-2 in ileal crypt cells. To test this, ileal crypt [ileal epithelial (IEC)-18] cells were cultured in serum-free media and used to study IGFBP-2 catabolism by immunochemistry, gene array analysis, and pharmacological perturbation with dexamethasone. In addition, isolated human IGFBP-2, IGF-II, and cathepsins B, D, and L were utilized for in vitro protease assays. We found IGFBP-2 to be highly abundant in IEC-18 culture, and sequestration of carboxyl IGFBP-2 antigen was seen within vesicular bodies of some cells. Dexamethasone significantly decreased the number of these cells and decreased IGFBP-2 in the media. On gene array analysis, cathepsin L's message abundance was significantly increased by dexamethasone, and, by in vitro assay, cathepsin L created a 14-kDa carboxyl fragment that corresponded to the sole antigen detected in IEC-18 cell lysates as well as a 16.5-kDa fragment found in the media. The sequestered fragment size was formed preferentially when IGF-II was present, whereas the larger fragment size was formed preferentially when IGF-II was absent. Cathepsins B and D did not produce these fragments in vitro and were not detected in IEC-18 media. We conclude that dexamethasone alters IGFBP-2 catabolism through its effects on cathepsin L.
Collapse
Affiliation(s)
- Phillip V Gordon
- Division of Neonatology, Department of Pediatrics, University of Virginia Health Sciences, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|
36
|
Govoni KE, Baylink DJ, Mohan S. The multi-functional role of insulin-like growth factor binding proteins in bone. Pediatr Nephrol 2005; 20:261-8. [PMID: 15549410 PMCID: PMC2923924 DOI: 10.1007/s00467-004-1658-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2004] [Revised: 07/23/2004] [Accepted: 07/27/2004] [Indexed: 01/09/2023]
Abstract
The insulin-like growth factor (IGF) system is an important regulator of bone formation. The IGFs (IGF-I and IGF-II) are the most abundant growth factors produced by bone, and are regulated by their six high affinity binding proteins (IGFBPs). The IGFBPs are produced by osteoblasts and are responsible for transporting the IGFs and extending their half-lives. In general, IGFBP-1, -2, -4, and -6 inhibit and IGFBP-3 and -5 stimulate osteoblast function. IGFBP-4 and -5 are the most abundant IGFBPs produced by osteoblasts, and therefore they are the primary focus of this review. IGFBP-5 is an important stimulator of bone formation and may also function independently of IGFs. IGFBP-4 inhibits osteoblast function by sequestering IGF and preventing it from binding to its receptor. This review focuses on the specific IGF-dependent and IGF-independent roles of the IGFBPs in bone formation, as well as their potential mechanisms of action. In addition, discussion of the regulation of the IGFBPs by post-translational modification (i.e., proteolysis) has been included. Studies on the regulation of production and actions of IGFBPs suggest that the IGFBP system in bone is pleiotropic and capable of serving multiple effector inputs from systemic and local sources.
Collapse
Affiliation(s)
- Kristen E. Govoni
- Musculoskeletal Disease Center, Jerry L. Pettis VA Medical Center, 11201 Benton Street, Loma Linda, CA 92357, USA. Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - David J. Baylink
- Musculoskeletal Disease Center, Jerry L. Pettis VA Medical Center, 11201 Benton Street, Loma Linda, CA 92357, USA. Department of Biochemistry, Loma Linda University, Loma Linda, California, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L. Pettis VA Medical Center, 11201 Benton Street, Loma Linda, CA 92357, USA, Tel.: +1-909-8257084 ext. 2932, Fax: +1-909-7961680. Departments of Medicine, Biochemistry and Physiology, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
37
|
Carrington JL. Aging bone and cartilage: cross-cutting issues. Biochem Biophys Res Commun 2005; 328:700-8. [PMID: 15694404 DOI: 10.1016/j.bbrc.2004.12.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Indexed: 10/26/2022]
Abstract
Aging is a major risk factor for osteoarthritis and osteoporosis. Yet, these are not necessary outcomes of aging, and the relationship between age-related changes in bone and cartilage and development of disease is not clear. There are some well-described cellular changes associated with aging in multiple tissues that appear to be fundamental to the decline in function of cartilage and bone. A better understanding of age-related changes in cells and tissues is necessary to mitigate or, hopefully, avoid loss of bone and cartilage with aging. In addition, a better understanding of the dynamics of tissue maintenance in vivo is critical to developing tissue replacement and repair therapies. The role of stem cells in this process, and why tissues are not well maintained with advancing age, are frontiers for future aging research.
Collapse
Affiliation(s)
- Jill L Carrington
- Department of Health and Human Services, Biology of Aging Program, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
38
|
Shibata Y, Tsukazaki T, Hirata K, Xin C, Yamaguchi A. Role of a new member of IGFBP superfamily, IGFBP-rP10, in proliferation and differentiation of osteoblastic cells. Biochem Biophys Res Commun 2004; 325:1194-200. [PMID: 15555553 DOI: 10.1016/j.bbrc.2004.10.157] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Indexed: 11/29/2022]
Abstract
Bone regeneration is critically regulated by various molecules. To identify the new genes involved in bone regeneration, we performed microarray-based gene expression analysis using a mouse bone regeneration model. We identified a new member of the IGFBP superfamily, designated IGFBP-rP10, whose expression is up-regulated at the early phase of bone regeneration. IGFBP-rP10 consists of an IGFBP homologous domain followed by a Kazal-type protein inhibitor domain and an immunoglobulin G-like domain. A real-time-based RT-PCR analysis demonstrated that various tissues including bone expressed IGFBP-rP10 mRNA in various degrees, and confirmed an up-regulation at the early phase of bone regeneration. In situ hybridization revealed that osteoblastic cells expressed IGFPB-rP10 mRNA during bone regeneration. Bone morphogenetic protein-2 increased the expression level of IGFBP-rP10 mRNA in various cells including C3H10T1/2, MC3T3-E1, C2C12, and primary murine osteoblastic cells. The addition of recombinant mouse IGFBP-rP10 promoted the proliferation of these cells but failed to stimulate alkaline phosphatase activity. These results suggest that IGFBP-rP10 is involved in the proliferation of osteoblasts during bone formation and bone regeneration.
Collapse
Affiliation(s)
- Yasuaki Shibata
- Division of Oral Pathology and Bone Metabolism, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | | | | | | | | |
Collapse
|