1
|
Olthof A, Schwoerer C, Girardini K, Weber A, Doggett K, Mieruszynski S, Heath J, Moore T, Biran J, Kanadia R. Taxonomy of introns and the evolution of minor introns. Nucleic Acids Res 2024; 52:9247-9266. [PMID: 38943346 PMCID: PMC11347168 DOI: 10.1093/nar/gkae550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024] Open
Abstract
Classification of introns, which is crucial to understanding their evolution and splicing, has historically been binary and has resulted in the naming of major and minor introns that are spliced by their namesake spliceosome. However, a broad range of intron consensus sequences exist, leading us to here reclassify introns as minor, minor-like, hybrid, major-like, major and non-canonical introns in 263 species across six eukaryotic supergroups. Through intron orthology analysis, we discovered that minor-like introns are a transitory node for intron conversion across evolution. Despite close resemblance of their consensus sequences to minor introns, these introns possess an AG dinucleotide at the -1 and -2 position of the 5' splice site, a salient feature of major introns. Through combined analysis of CoLa-seq, CLIP-seq for major and minor spliceosome components, and RNAseq from samples in which the minor spliceosome is inhibited we found that minor-like introns are also an intermediate class from a splicing mechanism perspective. Importantly, this analysis has provided insight into the sequence elements that have evolved to make minor-like introns amenable to recognition by both minor and major spliceosome components. We hope that this revised intron classification provides a new framework to study intron evolution and splicing.
Collapse
Affiliation(s)
- Anouk M Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
| | - Charles F Schwoerer
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
| | - Kaitlin N Girardini
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
| | - Audrey L Weber
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
| | - Karen Doggett
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Stephen Mieruszynski
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Joan K Heath
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Timothy E Moore
- Statistical Consulting Services, Center for Open Research Resources & Equipment, University of Connecticut, Storrs, CT, USA
| | - Jakob Biran
- Department of Poultry and Aquaculture, Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon, Israel
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
2
|
Powell-Rodgers G, Pirzada MUR, Richee J, Jungers CF, Colijn S, Stratman AN, Djuranovic S. Role of U11/U12 minor spliceosome gene ZCRB1 in Ciliogenesis and WNT Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607392. [PMID: 39149385 PMCID: PMC11326282 DOI: 10.1101/2024.08.09.607392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Despite the fact that 0.5% of human introns are processed by the U11/U12 minor spliceosome, the latter influences gene expression across multiple cellular processes. The ZCRB1 protein is a recently described core component of the U12 mono-snRNP minor spliceosome, but its functional significance to minor splicing, gene regulation, and biological signaling cascades is poorly understood. Using CRISPR-Cas9 and siRNA targeted knockout and knockdown strategies, we show that human cell lines with a partial reduction in ZCRB1 expression exhibit significant dysregulation of the splicing and expression of U12-type genes, primarily due to dysregulation of U12 mono-snRNA. RNA-Seq and targeted analyses of minor intron-containing genes indicate a downregulation in the expression of genes involved in ciliogenesis, and consequentially an upregulation in WNT signaling. Additionally, zcrb1 CRISPR-Cas12a knockdown in zebrafish embryos led to gross developmental and body axis abnormalities, disrupted ciliogenesis, and upregulated WNT signaling, complementing our human cell studies. This work highlights a conserved and essential biological role of the minor spliceosome in general, and the ZCRB1 protein specifically in cellular and developmental processes across species, shedding light on the multifaceted relationship between splicing regulation, ciliogenesis, and WNT signaling.
Collapse
Affiliation(s)
- Geralle Powell-Rodgers
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Mujeeb Ur Rehman Pirzada
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Jahmiera Richee
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Courtney F. Jungers
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Sarah Colijn
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Amber N. Stratman
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Sergej Djuranovic
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| |
Collapse
|
3
|
Kwon YS, Jin SW, Song H. Global analysis of binding sites of U2AF1 and ZRSR2 reveals RNA elements required for mutually exclusive splicing by the U2- and U12-type spliceosome. Nucleic Acids Res 2024; 52:1420-1434. [PMID: 38088204 PMCID: PMC10853781 DOI: 10.1093/nar/gkad1180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 02/10/2024] Open
Abstract
Recurring mutations in genes encoding 3' splice-site recognition proteins, U2AF1 and ZRSR2 are associated with human cancers. Here, we determined binding sites of the proteins to reveal that U2-type and U12-type splice sites are recognized by U2AF1 and ZRSR2, respectively. However, some sites are spliced by both the U2-type and U12-type spliceosomes, indicating that well-conserved consensus motifs in some U12-type introns could be recognized by the U2-type spliceosome. Nucleotides flanking splice sites of U12-type introns are different from those flanking U2-type introns. Remarkably, the AG dinucleotide at the positions -1 and -2 of 5' splice sites of U12-type introns with GT-AG termini is not present. AG next to 5' splice site introduced by a single nucleotide substitution at the -2 position could convert a U12-type splice site to a U2-type site. The class switch of introns by a single mutation and the bias against G at the -1 position of U12-type 5' splice site support the notion that the identities of nucleotides in exonic regions adjacent to splice sites are fine-tuned to avoid recognition by the U2-type spliceosome. These findings may shed light on the mechanism of selectivity in U12-type intron splicing and the mutations that affect splicing.
Collapse
Affiliation(s)
- Young-Soo Kwon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Korea
| | - Sang Woo Jin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| | - Hoseok Song
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| |
Collapse
|
4
|
Martins DJ, Di Lazzaro Filho R, Bertola DR, Hoch NC. Rothmund-Thomson syndrome, a disorder far from solved. FRONTIERS IN AGING 2023; 4:1296409. [PMID: 38021400 PMCID: PMC10676203 DOI: 10.3389/fragi.2023.1296409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Rothmund-Thomson syndrome (RTS) is a rare autosomal recessive disorder characterized by a range of clinical symptoms, including poikiloderma, juvenile cataracts, short stature, sparse hair, eyebrows/eyelashes, nail dysplasia, and skeletal abnormalities. While classically associated with mutations in the RECQL4 gene, which encodes a DNA helicase involved in DNA replication and repair, three additional genes have been recently identified in RTS: ANAPC1, encoding a subunit of the APC/C complex; DNA2, which encodes a nuclease/helicase involved in DNA repair; and CRIPT, encoding a poorly characterized protein implicated in excitatory synapse formation and splicing. Here, we review the clinical spectrum of RTS patients, analyze the genetic basis of the disease, and discuss molecular functions of the affected genes, drawing some novel genotype-phenotype correlations and proposing avenues for future studies into this enigmatic disorder.
Collapse
Affiliation(s)
- Davi Jardim Martins
- Genomic Stability Unit, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ricardo Di Lazzaro Filho
- Center for Human Genome Studies, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Dasa Genômica/Genera, Genômica, São Paulo, Brazil
| | - Debora Romeo Bertola
- Center for Human Genome Studies, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Genetics Unit, Department of Pediatrics, Faculty of Medicine, Children’s Institute, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Nícolas Carlos Hoch
- Genomic Stability Unit, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Larue GE, Roy SW. Where the minor things are: a pan-eukaryotic survey suggests neutral processes may explain much of minor intron evolution. Nucleic Acids Res 2023; 51:10884-10908. [PMID: 37819006 PMCID: PMC10639083 DOI: 10.1093/nar/gkad797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Spliceosomal introns are gene segments removed from RNA transcripts by ribonucleoprotein machineries called spliceosomes. In some eukaryotes a second 'minor' spliceosome is responsible for processing a tiny minority of introns. Despite its seemingly modest role, minor splicing has persisted for roughly 1.5 billion years of eukaryotic evolution. Identifying minor introns in over 3000 eukaryotic genomes, we report diverse evolutionary histories including surprisingly high numbers in some fungi and green algae, repeated loss, as well as general biases in their positional and genic distributions. We estimate that ancestral minor intron densities were comparable to those of vertebrates, suggesting a trend of long-term stasis. Finally, three findings suggest a major role for neutral processes in minor intron evolution. First, highly similar patterns of minor and major intron evolution contrast with both functionalist and deleterious model predictions. Second, observed functional biases among minor intron-containing genes are largely explained by these genes' greater ages. Third, no association of intron splicing with cell proliferation in a minor intron-rich fungus suggests that regulatory roles are lineage-specific and thus cannot offer a general explanation for minor splicing's persistence. These data constitute the most comprehensive view of minor introns and their evolutionary history to date, and provide a foundation for future studies of these remarkable genetic elements.
Collapse
Affiliation(s)
- Graham E Larue
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA 95343, USA
| | - Scott W Roy
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA 95343, USA
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| |
Collapse
|
6
|
Girardini KN, Olthof AM, Kanadia RN. Introns: the "dark matter" of the eukaryotic genome. Front Genet 2023; 14:1150212. [PMID: 37260773 PMCID: PMC10228655 DOI: 10.3389/fgene.2023.1150212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
The emergence of introns was a significant evolutionary leap that is a major distinguishing feature between prokaryotic and eukaryotic genomes. While historically introns were regarded merely as the sequences that are removed to produce spliced transcripts encoding functional products, increasingly data suggests that introns play important roles in the regulation of gene expression. Here, we use an intron-centric lens to review the role of introns in eukaryotic gene expression. First, we focus on intron architecture and how it may influence mechanisms of splicing. Second, we focus on the implications of spliceosomal snRNAs and their variants on intron splicing. Finally, we discuss how the presence of introns and the need to splice them influences transcription regulation. Despite the abundance of introns in the eukaryotic genome and their emerging role regulating gene expression, a lot remains unexplored. Therefore, here we refer to introns as the "dark matter" of the eukaryotic genome and discuss some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Kaitlin N. Girardini
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
| | - Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
7
|
Ding Z, Meng YR, Fan YJ, Xu YZ. Roles of minor spliceosome in intron recognition and the convergence with the better understood major spliceosome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1761. [PMID: 36056453 DOI: 10.1002/wrna.1761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/06/2022] [Accepted: 08/06/2022] [Indexed: 01/31/2023]
Abstract
Catalyzed by spliceosomes in the nucleus, RNA splicing removes intronic sequences from precursor RNAs in eukaryotes to generate mature RNA, which also significantly increases proteome complexity and fine-tunes gene expression. Most metazoans have two coexisting spliceosomes; the major spliceosome, which removes >99.5% of introns, and the minor spliceosome, which removes far fewer introns (only 770 at present have been predicted in the human genome). Both spliceosomes are large and dynamic machineries, each consisting of five small nuclear RNAs (snRNAs) and more than 100 proteins. However, the dynamic assembly, catalysis, and protein composition of the minor spliceosome are still poorly understood. With different splicing signals, minor introns are rare and usually distributed alone and flanked by major introns in genes, raising questions of how they are recognized by the minor spliceosome and how their processing deals with the splicing of neighboring major introns. Due to large numbers of introns and close similarities between the two machinery, cooperative, and competitive recognition by the two spliceosomes has been investigated. Functionally, many minor-intron-containing genes are evolutionarily conserved and essential. Mutations in the minor spliceosome exhibit a variety of developmental defects in plants and animals and are linked to numerous human diseases. Here, we review recent progress in the understanding of minor splicing, compare currently known components of the two spliceosomes, survey minor introns in a wide range of organisms, discuss cooperation and competition of the two spliceosomes in splicing of minor-intron-containing genes, and contributions of minor splicing mutations in development and diseases. This article is categorized under: RNA Processing > Processing of Small RNAs RNA Processing > Splicing Mechanisms RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Zhan Ding
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Ran Meng
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yu-Jie Fan
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yong-Zhen Xu
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Weinstein R, Bishop K, Broadbridge E, Yu K, Carrington B, Elkahloun A, Zhen T, Pei W, Burgess SM, Liu P, Bresciani E, Sood R. Zrsr2 Is Essential for the Embryonic Development and Splicing of Minor Introns in RNA and Protein Processing Genes in Zebrafish. Int J Mol Sci 2022; 23:10668. [PMID: 36142581 PMCID: PMC9501576 DOI: 10.3390/ijms231810668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
ZRSR2 (zinc finger CCCH-type, RNA binding motif and serine/arginine rich 2) is an essential splicing factor involved in 3' splice-site recognition as a component of both the major and minor spliceosomes that mediate the splicing of U2-type (major) and U12-type (minor) introns, respectively. Studies of ZRSR2-depleted cell lines and ZRSR2-mutated patient samples revealed its essential role in the U12-dependent minor spliceosome. However, the role of ZRSR2 during embryonic development is not clear, as its function is compensated for by Zrsr1 in mice. Here, we utilized the zebrafish model to investigate the role of zrsr2 during embryonic development. Using CRISPR/Cas9 technology, we generated a zrsr2-knockout zebrafish line, termed zrsr2hg129/hg129 (p.Trp167Argfs*9) and examined embryo development in the homozygous mutant embryos. zrsr2hg129/hg129 embryos displayed multiple developmental defects starting at 4 days post fertilization (dpf) and died after 8 dpf, suggesting that proper Zrsr2 function is required during embryonic development. The global transcriptome analysis of 3 dpf zrsr2hg129/hg129 embryos revealed that the loss of Zrsr2 results in the downregulation of essential metabolic pathways and the aberrant retention of minor introns in about one-third of all minor intron-containing genes in zebrafish. Overall, our study has demonstrated that the role of Zrsr2 as a component of the minor spliceosome is conserved and critical for proper embryonic development in zebrafish.
Collapse
Affiliation(s)
- Rachel Weinstein
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Bishop
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth Broadbridge
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Yu
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Blake Carrington
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abdel Elkahloun
- Microarray Core, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tao Zhen
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wuhong Pei
- Developmental Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shawn M. Burgess
- Developmental Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Liu
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erica Bresciani
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raman Sood
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Jacquier V, Prévot M, Gostan T, Bordonné R, Benkhelifa-Ziyyat S, Barkats M, Soret J. Splicing efficiency of minor introns in a mouse model of SMA predominantly depends on their branchpoint sequence and can involve the contribution of major spliceosome components. RNA (NEW YORK, N.Y.) 2022; 28:303-319. [PMID: 34893560 PMCID: PMC8848931 DOI: 10.1261/rna.078329.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Spinal muscular atrophy (SMA) is a devastating neurodegenerative disease caused by reduced amounts of the ubiquitously expressed Survival of Motor Neuron (SMN) protein. In agreement with its crucial role in the biogenesis of spliceosomal snRNPs, SMN-deficiency is correlated to numerous splicing alterations in patient cells and various tissues of SMA mouse models. Among the snRNPs whose assembly is impacted by SMN-deficiency, those involved in the minor spliceosome are particularly affected. Importantly, splicing of several, but not all U12-dependent introns has been shown to be affected in different SMA models. Here, we have investigated the molecular determinants of this differential splicing in spinal cords from SMA mice. We show that the branchpoint sequence (BPS) is a key element controlling splicing efficiency of minor introns. Unexpectedly, splicing of several minor introns with suboptimal BPS is not affected in SMA mice. Using in vitro splicing experiments and oligonucleotides targeting minor or major snRNAs, we show for the first time that splicing of these introns involves both the minor and major machineries. Our results strongly suggest that splicing of a subset of minor introns is not affected in SMA mice because components of the major spliceosome compensate for the loss of minor splicing activity.
Collapse
Affiliation(s)
- Valentin Jacquier
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
| | - Manon Prévot
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
| | - Thierry Gostan
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
| | - Rémy Bordonné
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
| | - Sofia Benkhelifa-Ziyyat
- Centre de Recherche en Myologie (CRM), Institut de Myologie, Sorbonne Universités, UPMC Univ Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France
| | - Martine Barkats
- Centre de Recherche en Myologie (CRM), Institut de Myologie, Sorbonne Universités, UPMC Univ Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France
| | - Johann Soret
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
| |
Collapse
|
10
|
de Wolf B, Oghabian A, Akinyi MV, Hanks S, Tromer EC, van Hooff JJE, van Voorthuijsen L, van Rooijen LE, Verbeeren J, Uijttewaal ECH, Baltissen MPA, Yost S, Piloquet P, Vermeulen M, Snel B, Isidor B, Rahman N, Frilander MJ, Kops GJPL. Chromosomal instability by mutations in the novel minor spliceosome component CENATAC. EMBO J 2021; 40:e106536. [PMID: 34009673 PMCID: PMC8280824 DOI: 10.15252/embj.2020106536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Aneuploidy is the leading cause of miscarriage and congenital birth defects, and a hallmark of cancer. Despite this strong association with human disease, the genetic causes of aneuploidy remain largely unknown. Through exome sequencing of patients with constitutional mosaic aneuploidy, we identified biallelic truncating mutations in CENATAC (CCDC84). We show that CENATAC is a novel component of the minor (U12-dependent) spliceosome that promotes splicing of a specific, rare minor intron subtype. This subtype is characterized by AT-AN splice sites and relatively high basal levels of intron retention. CENATAC depletion or expression of disease mutants resulted in excessive retention of AT-AN minor introns in ˜ 100 genes enriched for nucleocytoplasmic transport and cell cycle regulators, and caused chromosome segregation errors. Our findings reveal selectivity in minor intron splicing and suggest a link between minor spliceosome defects and constitutional aneuploidy in humans.
Collapse
Affiliation(s)
- Bas de Wolf
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Ali Oghabian
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
- Present address:
Faculty of MedicineResearch Programs UnitUniversity of HelsinkiHelsinkiFinland
| | - Maureen V Akinyi
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Sandra Hanks
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Eelco C Tromer
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
- Present address:
Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Jolien J E van Hooff
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
- Present address:
Unité d'EcologieSystématique et EvolutionCNRSUniversité Paris‐SudUniversité Paris‐SaclayAgroParisTechOrsayFrance
| | - Lisa van Voorthuijsen
- Oncode InstituteDepartment of Molecular BiologyFaculty of ScienceRadboud Institute for Molecular Life ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Laura E van Rooijen
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
| | - Jens Verbeeren
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Esther C H Uijttewaal
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Marijke P A Baltissen
- Oncode InstituteDepartment of Molecular BiologyFaculty of ScienceRadboud Institute for Molecular Life ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Shawn Yost
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Philippe Piloquet
- Service de Génétique MédicaleUnité de génétique CliniqueCHU Hotel DieuNantes CedexFrance
| | - Michiel Vermeulen
- Oncode InstituteDepartment of Molecular BiologyFaculty of ScienceRadboud Institute for Molecular Life ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
| | - Bertrand Isidor
- Service de Génétique MédicaleUnité de génétique CliniqueCHU Hotel DieuNantes CedexFrance
| | - Nazneen Rahman
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Mikko J Frilander
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Geert J P L Kops
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
| |
Collapse
|
11
|
Minor Intron Splicing from Basic Science to Disease. Int J Mol Sci 2021; 22:ijms22116062. [PMID: 34199764 PMCID: PMC8199999 DOI: 10.3390/ijms22116062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023] Open
Abstract
Pre-mRNA splicing is an essential step in gene expression and is catalyzed by two machineries in eukaryotes: the major (U2 type) and minor (U12 type) spliceosomes. While the majority of introns in humans are U2 type, less than 0.4% are U12 type, also known as minor introns (mi-INTs), and require a specialized spliceosome composed of U11, U12, U4atac, U5, and U6atac snRNPs. The high evolutionary conservation and apparent splicing inefficiency of U12 introns have set them apart from their major counterparts and led to speculations on the purpose for their existence. However, recent studies challenged the simple concept of mi-INTs splicing inefficiency due to low abundance of their spliceosome and confirmed their regulatory role in alternative splicing, significantly impacting the expression of their host genes. Additionally, a growing list of minor spliceosome-associated diseases with tissue-specific pathologies affirmed the importance of minor splicing as a key regulatory pathway, which when deregulated could lead to tissue-specific pathologies due to specific alterations in the expression of some minor-intron-containing genes. Consequently, uncovering how mi-INTs splicing is regulated in a tissue-specific manner would allow for better understanding of disease pathogenesis and pave the way for novel therapies, which we highlight in this review.
Collapse
|
12
|
Larue GE, Eliáš M, Roy SW. Expansion and transformation of the minor spliceosomal system in the slime mold Physarum polycephalum. Curr Biol 2021; 31:3125-3131.e4. [PMID: 34015249 DOI: 10.1016/j.cub.2021.04.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/14/2021] [Accepted: 04/20/2021] [Indexed: 12/25/2022]
Abstract
Spliceosomal introns interrupt nuclear genes and are removed from RNA transcripts ("spliced") by machinery called spliceosomes. Although the vast majority of spliceosomal introns are removed by the so-called major (or "U2") spliceosome, diverse eukaryotes also contain a rare second form, the minor ("U12") spliceosome, and associated ("U12-type") introns.1-3 In all characterized species, U12-type introns are distinguished by several features, including being rare in the genome (∼0.5% of all introns),4-6 containing extended evolutionarily conserved splicing motifs,4,5,7,8 being generally ancient,9,10 and being inefficiently spliced.11-13 Here, we report a remarkable exception in the slime mold Physarum polycephalum. The P. polycephalum genome contains >20,000 U12-type introns-25 times more than any other species-enriched in a diversity of non-canonical splice boundaries as well as transformed splicing signals that appear to have co-evolved with the spliceosome due to massive gain of efficiently spliced U12-type introns. These results reveal an unappreciated dynamism of minor spliceosomal introns and spliceosomal introns in general.
Collapse
Affiliation(s)
- Graham E Larue
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95343, USA.
| | - Marek Eliáš
- Department of Biology and Ecology Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Scott W Roy
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95343, USA; Department of Biology, San Francisco State University, San Francisco, CA 94132, USA.
| |
Collapse
|
13
|
El Marabti E, Abdel-Wahab O. Therapeutic Modulation of RNA Splicing in Malignant and Non-Malignant Disease. Trends Mol Med 2021; 27:643-659. [PMID: 33994320 DOI: 10.1016/j.molmed.2021.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/24/2023]
Abstract
RNA splicing is the enzymatic process by which non-protein coding sequences are removed from RNA to produce mature protein-coding mRNA. Splicing is thereby a major mediator of proteome diversity as well as a dynamic regulator of gene expression. Genetic alterations disrupting splicing of individual genes or altering the function of splicing factors contribute to a wide range of human genetic diseases as well as cancer. These observations have resulted in the development of therapies based on oligonucleotides that bind to RNA sequences and modulate splicing for therapeutic benefit. In parallel, small molecules that bind to splicing factors to alter their function or modify RNA processing of individual transcripts are being pursued for monogenic disorders as well as for cancer.
Collapse
Affiliation(s)
- Ettaib El Marabti
- Clinical Transplant Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
14
|
Bai R, Wan R, Wang L, Xu K, Zhang Q, Lei J, Shi Y. Structure of the activated human minor spliceosome. Science 2021; 371:science.abg0879. [PMID: 33509932 DOI: 10.1126/science.abg0879] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022]
Abstract
The minor spliceosome mediates splicing of the rare but essential U12-type precursor messenger RNA. Here, we report the atomic features of the activated human minor spliceosome determined by cryo-electron microscopy at 2.9-angstrom resolution. The 5' splice site and branch point sequence of the U12-type intron are recognized by the U6atac and U12 small nuclear RNAs (snRNAs), respectively. Five newly identified proteins stabilize the conformation of the catalytic center: The zinc finger protein SCNM1 functionally mimics the SF3a complex of the major spliceosome, the RBM48-ARMC7 complex binds the γ-monomethyl phosphate cap at the 5' end of U6atac snRNA, the U-box protein PPIL2 coordinates loop I of U5 snRNA and stabilizes U5 small nuclear ribonucleoprotein (snRNP), and CRIPT stabilizes U12 snRNP. Our study provides a framework for the mechanistic understanding of the function of the human minor spliceosome.
Collapse
Affiliation(s)
- Rui Bai
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Ruixue Wan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Lin Wang
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kui Xu
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiangfeng Zhang
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Defective minor spliceosomes induce SMA-associated phenotypes through sensitive intron-containing neural genes in Drosophila. Nat Commun 2020; 11:5608. [PMID: 33154379 PMCID: PMC7644725 DOI: 10.1038/s41467-020-19451-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 10/13/2020] [Indexed: 01/31/2023] Open
Abstract
The minor spliceosome is evolutionarily conserved in higher eukaryotes, but its biological significance remains poorly understood. Here, by precise CRISPR/Cas9-mediated disruption of the U12 and U6atac snRNAs, we report that a defective minor spliceosome is responsible for spinal muscular atrophy (SMA) associated phenotypes in Drosophila. Using a newly developed bioinformatic approach, we identified a large set of minor spliceosome-sensitive splicing events and demonstrate that three sensitive intron-containing neural genes, Pcyt2, Zmynd10, and Fas3, directly contribute to disease development as evidenced by the ability of their cDNAs to rescue the SMA-associated phenotypes in muscle development, neuromuscular junctions, and locomotion. Interestingly, many splice sites in sensitive introns are recognizable by both minor and major spliceosomes, suggesting a new mechanism of splicing regulation through competition between minor and major spliceosomes. These findings reveal a vital contribution of the minor spliceosome to SMA and to regulated splicing in animals.
Collapse
|
16
|
The biological function and clinical significance of SF3B1 mutations in cancer. Biomark Res 2020; 8:38. [PMID: 32905346 PMCID: PMC7469106 DOI: 10.1186/s40364-020-00220-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Spliceosome mutations have become the most interesting mutations detected in human cancer in recent years. The spliceosome, a large, dynamic multimegadalton small nuclear ribonucleoprotein composed of small nuclear RNAs associated with proteins, is responsible for removing introns from precursor mRNA (premRNA) and generating mature, spliced mRNAs. SF3B1 is the largest subunit of the spliceosome factor 3b (SF3B) complex, which is a core component of spliceosomes. Recurrent somatic mutations in SF3B1 have been detected in human cancers, including hematological malignancies and solid tumors, and indicated to be related to patient prognosis. This review summarizes the research progress of SF3B1 mutations in cancer, including SF3B1 mutations in the HEAT domain, the multiple roles and aberrant splicing events of SF3B1 mutations in the pathogenesis of tumors, and changes in mutated cancer cells regarding sensitivity to SF3B small-molecule inhibitors. In addition, the potential of SF3B1 or its mutations to serve as biomarkers or therapeutic targets in cancer is discussed. The accumulated knowledge about SF3B1 mutations in cancer provides critical insight into the integral role the SF3B1 protein plays in mRNA splicing and suggests new targets for anticancer therapy.
Collapse
|
17
|
Moyer DC, Larue GE, Hershberger CE, Roy SW, Padgett RA. Comprehensive database and evolutionary dynamics of U12-type introns. Nucleic Acids Res 2020; 48:7066-7078. [PMID: 32484558 PMCID: PMC7367187 DOI: 10.1093/nar/gkaa464] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
During nuclear maturation of most eukaryotic pre-messenger RNAs and long non-coding RNAs, introns are removed through the process of RNA splicing. Different classes of introns are excised by the U2-type or the U12-type spliceosomes, large complexes of small nuclear ribonucleoprotein particles and associated proteins. We created intronIC, a program for assigning intron class to all introns in a given genome, and used it on 24 eukaryotic genomes to create the Intron Annotation and Orthology Database (IAOD). We then used the data in the IAOD to revisit several hypotheses concerning the evolution of the two classes of spliceosomal introns, finding support for the class conversion model explaining the low abundance of U12-type introns in modern genomes.
Collapse
Affiliation(s)
- Devlin C Moyer
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic and Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Graham E Larue
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95343, USA
| | - Courtney E Hershberger
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic and Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Scott W Roy
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Richard A Padgett
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic and Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Olthof AM, Rasmussen JS, Campeau PM, Kanadia RN. Disrupted minor intron splicing is prevalent in Mendelian disorders. Mol Genet Genomic Med 2020; 8:e1374. [PMID: 32573973 PMCID: PMC7507305 DOI: 10.1002/mgg3.1374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Background Splicing is crucial for proper gene expression, and is predominately executed by the major spliceosome. Conversely, 722 introns in 699 human minor intron‐containing genes (MIGs) are spliced by the minor spliceosome. Splicing of these minor introns is disrupted in diseases caused by pathogenic variants in the minor spliceosome, ultimately leading to the aberrant expression of a subset of these MIGs. However, the effect of variants in minor introns and MIGs on diseases remains unexplored. Methods Variants in MIGs and associated clinical manifestations were identified using ClinVar. The HPO database was then used to curate the related symptoms and affected organ systems. Results: We found pathogenic variants in 211 MIGs, which commonly resulted in intellectual disability, seizures and microcephaly. This revealed a subset of MIGs whose aberrant splicing may contribute to the pathogenesis of minor spliceosome‐related diseases. Moreover, we identified 51 pathogenic variants in minor intron splice sites that reduce the splice site strength and can induce alternative splicing. Conclusion These findings highlight that disrupted minor intron splicing has a broader impact on human diseases than previously appreciated. The hope is that this knowledge will aid in the development of therapeutic strategies that incorporate the minor intron splicing pathway.
Collapse
Affiliation(s)
- Anouk M Olthof
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Jeffrey S Rasmussen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | | | - Rahul N Kanadia
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
19
|
Frey K, Pucker B. Animal, Fungi, and Plant Genome Sequences Harbor Different Non-Canonical Splice Sites. Cells 2020; 9:E458. [PMID: 32085510 PMCID: PMC7072748 DOI: 10.3390/cells9020458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 11/17/2022] Open
Abstract
Most protein-encoding genes in eukaryotes contain introns, which are interwoven with exons. Introns need to be removed from initial transcripts in order to generate the final messenger RNA (mRNA), which can be translated into an amino acid sequence. Precise excision of introns by the spliceosome requires conserved dinucleotides, which mark the splice sites. However, there are variations of the highly conserved combination of GT at the 5' end and AG at the 3' end of an intron in the genome. GC-AG and AT-AC are two major non-canonical splice site combinations, which have been known for years. Recently, various minor non-canonical splice site combinations were detected with numerous dinucleotide permutations. Here, we expand systematic investigations of non-canonical splice site combinations in plants across eukaryotes by analyzing fungal and animal genome sequences. Comparisons of splice site combinations between these three kingdoms revealed several differences, such as an apparently increased CT-AC frequency in fungal genome sequences. Canonical GT-AG splice site combinations in antisense transcripts are a likely explanation for this observation, thus indicating annotation errors. In addition, high numbers of GA-AG splice site combinations were observed in Eurytemoraaffinis and Oikopleuradioica. A variant in one U1 small nuclear RNA (snRNA) isoform might allow the recognition of GA as a 5' splice site. In depth investigation of splice site usage based on RNA-Seq read mappings indicates a generally higher flexibility of the 3' splice site compared to the 5' splice site across animals, fungi, and plants.
Collapse
Affiliation(s)
- Katharina Frey
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615 Bielefeld, Germany
| | - Boas Pucker
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
20
|
Baumgartner M, Drake K, Kanadia RN. An Integrated Model of Minor Intron Emergence and Conservation. Front Genet 2019; 10:1113. [PMID: 31798628 PMCID: PMC6865273 DOI: 10.3389/fgene.2019.01113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Minor introns constitute <0.5% of the introns in the human genome and have remained an enigma since their discovery. These introns are removed by a distinct splicing complex, the minor spliceosome. Both are ancient, tracing back to the last eukaryotic common ancestor (LECA), which is reflected by minor intron enrichment in specific gene families, such as the mitogen activated-protein kinase kinases, voltage-gated sodium and calcium ion channels, and E2F transcription factors. Most minor introns occur as single introns in genes with predominantly major introns. Due to this organization, minor intron-containing gene (MIG) expression requires the coordinated action of two spliceosomes, which increases the probability of missplicing. Thus, one would expect loss of minor introns via purifying selection. This has resulted in complete minor intron loss in at least nine eukaryotic lineages. However, minor introns are highly conserved in land plants and metazoans, where their importance is underscored by embryonic lethality when the minor spliceosome is inactivated. Conditional inactivation of the minor spliceosome has shown that rapidly dividing progenitor cells are highly sensitive to minor spliceosome loss. Indeed, we found that MIGs were significantly enriched in a screen for genes essential for survival in 341 cycling cell lines. Here, we propose that minor introns inserted randomly into genes in LECA or earlier and were subsequently conserved in genes crucial for cycling cell survival. We hypothesize that the essentiality of MIGs allowed minor introns to endure through the unicellularity of early eukaryotic evolution. Moreover, we identified 59 MIGs that emerged after LECA, and that many of these are essential for cycling cell survival, reinforcing our essentiality model for MIG conservation. This suggests that minor intron emergence is dynamic across eukaryotic evolution, and that minor introns should not be viewed as molecular fossils. We also posit that minor intron splicing was co-opted in multicellular evolution as a regulatory switch for en masse control of MIG expression and the biological processes they regulate. Specifically, this mode of regulation could control cell proliferation and thus body size, an idea supported by domestication syndrome, wherein MIGs are enriched in common candidate animal domestication genes.
Collapse
Affiliation(s)
- Marybeth Baumgartner
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, CT, United States.,Institute of Brain and Cognitive Sciences, University of Connecticut, Mansfield, CT, United States
| | - Kyle Drake
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, CT, United States
| | - Rahul N Kanadia
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, CT, United States.,Institute of Systems Genomics, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
21
|
Olthof AM, Hyatt KC, Kanadia RN. Minor intron splicing revisited: identification of new minor intron-containing genes and tissue-dependent retention and alternative splicing of minor introns. BMC Genomics 2019; 20:686. [PMID: 31470809 PMCID: PMC6717393 DOI: 10.1186/s12864-019-6046-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mutations in minor spliceosome components such as U12 snRNA (cerebellar ataxia) and U4atac snRNA (microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1)) result in tissue-specific symptoms. Given that the minor spliceosome is ubiquitously expressed, we hypothesized that these restricted phenotypes might be caused by the tissue-specific regulation of the minor spliceosome targets, i.e. minor intron-containing genes (MIGs). The current model of inefficient splicing is thought to apply to the regulation of the ~ 500 MIGs identified in the U12DB. However this database was created more than 10 years ago. Therefore, we first wanted to revisit the classification of minor introns in light of the most recent reference genome. We then sought to address specificity of MIG expression, minor intron retention, and alternative splicing (AS) across mouse and human tissues. RESULTS We employed position-weight matrices to obtain a comprehensive updated list of minor introns, consisting of 722 mouse and 770 human minor introns. These can be found in the Minor Intron DataBase (MIDB). Besides identification of 99% of the minor introns found in the U12DB, we also discovered ~ 150 new MIGs. We then analyzed the RNAseq data from eleven different mouse tissues, which revealed tissue-specific MIG expression and minor intron retention. Additionally, many minor introns were efficiently spliced compared to their flanking major introns. Finally, we identified several novel AS events across minor introns in both mouse and human, which were also tissue-dependent. Bioinformatics analysis revealed that several of the AS events could result in the production of novel tissue-specific proteins. Moreover, like the major introns, we found that these AS events were more prevalent in long minor introns, while retention was favoured in shorter introns. CONCLUSION Here we show that minor intron splicing and AS across minor introns is a highly organised process that might be regulated in coordination with the major spliceosome in a tissue-specific manner. We have provided a framework to further study the impact of the minor spliceosome and the regulation of MIG expression. These findings may shed light on the mechanism underlying tissue-specific phenotypes in diseases associated with minor spliceosome inactivation. MIDB can be accessed at https://midb.pnb.uconn.edu .
Collapse
Affiliation(s)
- Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269 USA
| | - Katery C. Hyatt
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269 USA
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269 USA
- Institute of Systems Genomics, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
22
|
Pucker B, Brockington SF. Genome-wide analyses supported by RNA-Seq reveal non-canonical splice sites in plant genomes. BMC Genomics 2018; 19:980. [PMID: 30594132 PMCID: PMC6310983 DOI: 10.1186/s12864-018-5360-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Most eukaryotic genes comprise exons and introns thus requiring the precise removal of introns from pre-mRNAs to enable protein biosynthesis. U2 and U12 spliceosomes catalyze this step by recognizing motifs on the transcript in order to remove the introns. A process which is dependent on precise definition of exon-intron borders by splice sites, which are consequently highly conserved across species. Only very few combinations of terminal dinucleotides are frequently observed at intron ends, dominated by the canonical GT-AG splice sites on the DNA level. RESULTS Here we investigate the occurrence of diverse combinations of dinucleotides at predicted splice sites. Analyzing 121 plant genome sequences based on their annotation revealed strong splice site conservation across species, annotation errors, and true biological divergence from canonical splice sites. The frequency of non-canonical splice sites clearly correlates with their divergence from canonical ones indicating either an accumulation of probably neutral mutations, or evolution towards canonical splice sites. Strong conservation across multiple species and non-random accumulation of substitutions in splice sites indicate a functional relevance of non-canonical splice sites. The average composition of splice sites across all investigated species is 98.7% for GT-AG, 1.2% for GC-AG, 0.06% for AT-AC, and 0.09% for minor non-canonical splice sites. RNA-Seq data sets of 35 species were incorporated to validate non-canonical splice site predictions through gaps in sequencing reads alignments and to demonstrate the expression of affected genes. CONCLUSION We conclude that bona fide non-canonical splice sites are present and appear to be functionally relevant in most plant genomes, although at low abundance.
Collapse
Affiliation(s)
- Boas Pucker
- Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Samuel F. Brockington
- Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Nguyen H, Das U, Wang B, Xie J. The matrices and constraints of GT/AG splice sites of more than 1000 species/lineages. Gene 2018; 660:92-101. [PMID: 29588184 DOI: 10.1016/j.gene.2018.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
To provide a resource for the splice sites (SS) of different species, we calculated the matrices of nucleotide compositions of about 38 million splice sites from >1000 species/lineages. The matrices are enriched of aGGTAAGT (5'SS) or (Y)6N(C/t)AG(g/a)t (3'SS) overall; however, they are quite diverse among hundreds of species. The diverse matrices remain prominent even under sequence selection pressures, suggesting the existence of diverse constraints as well as U snRNAs and other spliceosomal factors and/or their interactions with the splice sites. Using an algorithm to measure and compare the splice site constraints across all species, we demonstrate their distinct differences quantitatively. As an example of the resource's application to answering specific questions, we confirm that high constraints of particular positions are significantly associated with transcriptome-wide, increased occurrences of alternative splicing when uncommon nucleotides are present. More interestingly, the abundance of alternative splicing in 16 species correlates with the average constraint index of splice sites in a bell curve. This resource will allow users to assess specific sequences/splice sites against the consensus of every Ensembl-annotated species, and to explore the evolutionary changes or relationship to alternative splicing and transcriptome diversity. Web-search or update features are also included.
Collapse
Affiliation(s)
- Hai Nguyen
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Urmi Das
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Benjamin Wang
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; University of Illinois Urbana-Champaign, IL, USA
| | - Jiuyong Xie
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
24
|
Liu C, Jia X, Zou Z, Wang X, Wang Y, Zhang Z. VIH from the mud crab is specifically expressed in the eyestalk and potentially regulated by transactivator of Sox9/Oct4/Oct1. Gen Comp Endocrinol 2018; 255:1-11. [PMID: 28935584 DOI: 10.1016/j.ygcen.2017.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/08/2017] [Accepted: 09/16/2017] [Indexed: 12/30/2022]
Abstract
Vitellogenesis-inhibiting hormone (VIH) is known to regulate ovarian maturation by suppressing the synthesis of vitellogenin (Vtg) in crustaceans, which belongs to a member of crustacean hyperglycemic hormone (CHH) family synthesized and secreted from the X-organ/sinus gland complex of eyestalks. In this study, the cDNA, genomic DNA (gDNA) and the 5'-upstream regulatory (promoter region) sequences of VIH gene were obtained by conventional PCR, genome walker and tail-PCR techniques according to our transcriptomic database of Scylla paramamosain. The full-length cDNA of SpVIH is 634bp including 105bp 5'UTR, 151bp 3'UTR and 378bp ORF that encodes a peptide of 125 amino acids. The full length gDNA of SpVIH is 790bp containing two exons and one intron. The 5'-flanking promoter regions of SpVIH we isolated are 3070bp from the translation initiation (ATG) and 2398bp from the predicted transcription initiation (A), which consists of putative core promoter region and multiple potential transcription factor binding sites. SpVIH was only expressed in eyestalk. The expression level of SpVIH in eyestalk of female crab decreased gradually along with the development of ovary. As there is not cell line of crabs available, we chose the mature transfection system HEK293FT cell lines to explore the mechanism of transcription regulation of SpVIH in crabs. Sequential deletion assays using luciferase reporter gene in HEK293FT cells revealed that the possible promoter activity regions (including positive and negative transcription factors binding sites simultaneously) presented between pSpVIH-4 and pSpVIH-6. In order to further identify the crucial transcription factors binding site in this region, the site-directed mutagenesis of Sox9/Oct4/Oct1 binding site of pSpVIH-4 was created. The results demonstrated that the transcriptional activity of pSpVIH-4△ decreased significantly (p<0.05). Thus, it is reasonable to deduce that the Sox9/Oct4/Oct1 may be the essential positive transcription factors which regulate the expression of SpVIH.
Collapse
Affiliation(s)
- Chunyun Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiwei Jia
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Zhihua Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiaowei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
25
|
Pucker B, Holtgräwe D, Weisshaar B. Consideration of non-canonical splice sites improves gene prediction on the Arabidopsis thaliana Niederzenz-1 genome sequence. BMC Res Notes 2017; 10:667. [PMID: 29202864 PMCID: PMC5716242 DOI: 10.1186/s13104-017-2985-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/23/2017] [Indexed: 12/26/2022] Open
Abstract
Objective The Arabidopsis thaliana Niederzenz-1 genome sequence was recently published with an ab initio gene prediction. In depth analysis of the predicted gene set revealed some errors involving genes with non-canonical splice sites in their introns. Since non-canonical splice sites are difficult to predict ab initio, we checked for options to improve the annotation by transferring annotation information from the recently released Columbia-0 reference genome sequence annotation Araport11. Results Incorporation of hints generated from Araport11 enabled the precise prediction of non-canonical splice sites. Manual inspection of RNA-Seq read mapping and RT-PCR were applied to validate the structural annotations of non-canonical splice sites. Predictions of untranslated regions were also updated by harnessing the potential of Araport11’s information, which was generated by using high coverage RNA-Seq data. The improved gene set of the Nd-1 genome assembly (GeneSet_Nd-1_v1.1) was evaluated via comparison to the initial gene prediction (GeneSet_Nd-1_v1.0) as well as against Araport11 for the Col-0 reference genome sequence. GeneSet_Nd-1_v1.1 contains previously missed non-canonical splice sites in 1256 genes. Reciprocal best hits for 24,527 (89.4%) of all nuclear Col-0 genes against the GeneSet_Nd-1_v1.1 indicate a high gene prediction quality. Electronic supplementary material The online version of this article (10.1186/s13104-017-2985-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Boas Pucker
- Faculty of Biology & Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Daniela Holtgräwe
- Faculty of Biology & Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Bernd Weisshaar
- Faculty of Biology & Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
26
|
Abstract
Recent improvements in experimental and computational techniques that are used to study the transcriptome have enabled an unprecedented view of RNA processing, revealing many previously unknown non-canonical splicing events. This includes cryptic events located far from the currently annotated exons and unconventional splicing mechanisms that have important roles in regulating gene expression. These non-canonical splicing events are a major source of newly emerging transcripts during evolution, especially when they involve sequences derived from transposable elements. They are therefore under precise regulation and quality control, which minimizes their potential to disrupt gene expression. We explain how non-canonical splicing can lead to aberrant transcripts that cause many diseases, and also how it can be exploited for new therapeutic strategies.
Collapse
|
27
|
Minor class splicing shapes the zebrafish transcriptome during development. Proc Natl Acad Sci U S A 2014; 111:3062-7. [PMID: 24516132 DOI: 10.1073/pnas.1305536111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Minor class or U12-type splicing is a highly conserved process required to remove a minute fraction of introns from human pre-mRNAs. Defects in this splicing pathway have recently been linked to human disease, including a severe developmental disorder encompassing brain and skeletal abnormalities known as Taybi-Linder syndrome or microcephalic osteodysplastic primordial dwarfism 1, and a hereditary intestinal polyposis condition, Peutz-Jeghers syndrome. Although a key mechanism for regulating gene expression, the impact of impaired U12-type splicing on the transcriptome is unknown. Here, we describe a unique zebrafish mutant, caliban (clbn), with arrested development of the digestive organs caused by an ethylnitrosourea-induced recessive lethal point mutation in the rnpc3 [RNA-binding region (RNP1, RRM) containing 3] gene. rnpc3 encodes the zebrafish ortholog of human RNPC3, also known as the U11/U12 di-snRNP 65-kDa protein, a unique component of the U12-type spliceosome. The biochemical impact of the mutation in clbn is the formation of aberrant U11- and U12-containing small nuclear ribonucleoproteins that impair the efficiency of U12-type splicing. Using RNA sequencing and microarrays, we show that multiple genes involved in various steps of mRNA processing, including transcription, splicing, and nuclear export are disrupted in clbn, either through intron retention or differential gene expression. Thus, clbn provides a useful and specific model of aberrant U12-type splicing in vivo. Analysis of its transcriptome reveals efficient mRNA processing as a critical process for the growth and proliferation of cells during vertebrate development.
Collapse
|
28
|
Szcześniak MW, Kabza M, Pokrzywa R, Gudyś A, Makałowska I. ERISdb: A Database of Plant Splice Sites and Splicing Signals. ACTA ACUST UNITED AC 2013; 54:e10. [DOI: 10.1093/pcp/pct001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Koonin EV, Csuros M, Rogozin IB. Whence genes in pieces: reconstruction of the exon-intron gene structures of the last eukaryotic common ancestor and other ancestral eukaryotes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:93-105. [PMID: 23139082 DOI: 10.1002/wrna.1143] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In eukaryotes, protein-coding sequences are interrupted by non-coding sequences known as introns. During mRNA maturation, introns are excised by the spliceosome and the coding regions, exons, are spliced to form the mature coding region. The intron densities widely differ between eukaryotic lineages, from 6 to 7 introns per kb of coding sequence in vertebrates, some invertebrates and green plants, to only a few introns across the entire genome in many unicellular eukaryotes. Evolutionary reconstructions using maximum likelihood methods suggest intron-rich ancestors for each major group of eukaryotes. For the last common ancestor of animals, the highest intron density of all extant and extinct eukaryotes was inferred, at 120-130% of the human intron density. Furthermore, an intron density within 53-74% of the human values was inferred for the last eukaryotic common ancestor. Accordingly, evolution of eukaryotic genes in all lines of descent involved primarily intron loss, with substantial gain only at the bases of several branches including plants and animals. These conclusions have substantial biological implications indicating that the common ancestor of all modern eukaryotes was a complex organism with a gene architecture resembling those in multicellular organisms. Alternative splicing most likely initially appeared as an inevitable result of splicing errors and only later was employed to generate structural and functional diversification of proteins.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information NLM/NIH, Bethesda, MD, USA.
| | | | | |
Collapse
|
30
|
Turunen JJ, Niemelä EH, Verma B, Frilander MJ. The significant other: splicing by the minor spliceosome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:61-76. [PMID: 23074130 PMCID: PMC3584512 DOI: 10.1002/wrna.1141] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The removal of non-coding sequences, introns, from the mRNA precursors is an essential step in eukaryotic gene expression. U12-type introns are a minor subgroup of introns, distinct from the major or U2-type introns. U12-type introns are present in most eukaryotes but only account for less than 0.5% of all introns in any given genome. They are processed by a specific U12-dependent spliceosome, which is similar to, but distinct from, the major spliceosome. U12-type introns are spliced somewhat less efficiently than the major introns, and it is believed that this limits the expression of the genes containing such introns. Recent findings on the role of U12-dependent splicing in development and human disease have shown that it can also affect multiple cellular processes not directly related to the functions of the host genes of U12-type introns. At the same time, advances in understanding the regulation and phylogenetic distribution of the minor spliceosome are starting to shed light on how the U12-type introns and the minor spliceosome may have evolved. © 2012 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Janne J Turunen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
31
|
Rogozin IB, Carmel L, Csuros M, Koonin EV. Origin and evolution of spliceosomal introns. Biol Direct 2012; 7:11. [PMID: 22507701 PMCID: PMC3488318 DOI: 10.1186/1745-6150-7-11] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/15/2012] [Indexed: 12/31/2022] Open
Abstract
Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded ‘introns first’ held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers’ Reports section.
Collapse
Affiliation(s)
- Igor B Rogozin
- National Center for Biotechnology Information NLM/NIH, 8600 Rockville Pike, Bldg, 38A, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
32
|
Kubota T, Roca X, Kimura T, Kokunai Y, Nishino I, Sakoda S, Krainer AR, Takahashi MP. A mutation in a rare type of intron in a sodium-channel gene results in aberrant splicing and causes myotonia. Hum Mutat 2011; 32:773-82. [PMID: 21412952 DOI: 10.1002/humu.21501] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/25/2011] [Indexed: 11/09/2022]
Abstract
Many mutations in the skeletal-muscle sodium-channel gene SCN4A have been associated with myotonia and/or periodic paralysis, but so far all of these mutations are located in exons. We found a patient with myotonia caused by a deletion/insertion located in intron 21 of SCN4A, which is an AT-AC type II intron. This is a rare class of introns that, despite having AT-AC boundaries, are spliced by the major or U2-type spliceosome. The patient's skeletal muscle expressed aberrantly spliced SCN4A mRNA isoforms generated by activation of cryptic splice sites. In addition, genetic suppression experiments using an SCN4A minigene showed that the mutant 5' splice site has impaired binding to the U1 and U6 snRNPs, which are the cognate factors for recognition of U2-type 5' splice sites. One of the aberrantly spliced isoforms encodes a channel with a 35-amino acid insertion in the cytoplasmic loop between domains III and IV of Nav1.4. The mutant channel exhibited a marked disruption of fast inactivation, and a simulation in silico showed that the channel defect is consistent with the patient's myotonic symptoms. This is the first report of a disease-associated mutation in an AT-AC type II intron, and also the first intronic mutation in a voltage-gated ion channel gene showing a gain-of-function defect.
Collapse
Affiliation(s)
- Tomoya Kubota
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoaka, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Coady TH, Lorson CL. SMN in spinal muscular atrophy and snRNP biogenesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:546-64. [PMID: 21957043 DOI: 10.1002/wrna.76] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribonucleoprotein (RNP) complexes function in nearly every facet of cellular activity. The spliceosome is an essential RNP that accurately identifies introns and catalytically removes the intervening sequences, providing exquisite control of spatial, temporal, and developmental gene expressions. U-snRNPs are the building blocks for the spliceosome. A significant amount of insight into the molecular assembly of these essential particles has recently come from a seemingly unexpected area of research: neurodegeneration. Survival motor neuron (SMN) performs an essential role in the maturation of snRNPs, while the homozygous loss of SMN1 results in the development of spinal muscular atrophy (SMA), a devastating neurodegenerative disease. In this review, the function of SMN is examined within the context of snRNP biogenesis and evidence is examined which suggests that the SMN functional defects in snRNP biogenesis may account for the motor neuron pathology observed in SMA.
Collapse
Affiliation(s)
- Tristan H Coady
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
34
|
Lazarescu E, Friedt W, Steinmetz A. Organ-specific alternatively spliced transcript isoforms of the sunflower SF21C gene. PLANT CELL REPORTS 2010; 29:673-83. [PMID: 20396891 DOI: 10.1007/s00299-010-0853-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 03/08/2010] [Accepted: 03/30/2010] [Indexed: 05/09/2023]
Abstract
The sunflower sf21C gene is a member of a small plant gene family related to the human N-myc downstream-regulated gene family (NDRG) involved in stress and hormone responses, cell growth and differentiation. We have shown earlier that this sunflower gene is interrupted by nine introns and generates multiple mRNAs by alternative splicing of its primary transcript (Lazarescu et al. in Gene 374:77-86, 2006). In the present study, we have characterized 20 splice isoforms of this gene encoding 14 different protein variants. We show that these isoforms occur in distinct combinations in the various plant organs. Five identified variants were generated by splicing at novel sites, different from those classically recognized by U2- or U12-type spliceosomes. Twelve transcript variants contain premature termination codons (PTCs), which make them potential candidates for nonsense-mediated RNA degradation (NMD). Interestingly, all 12 transcripts are relatively abundant in at least one organ, suggesting that NMD is not a "default" mechanism for PTC-containing RNA transcripts generated by alternative splicing. These data indicate that alternative splicing of the sunflower sf21C primary transcript as well as the mRNA quality control mechanism by NMD are complex and regulated spatially and developmentally.
Collapse
Affiliation(s)
- Eduard Lazarescu
- Department of Plant Breeding, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | |
Collapse
|
35
|
Su ZJ, Zhang QX, Liu GF, Song XH, Li Q, Wang RJ, Chen HB, Xu XY, Sui XX, Huang DY. Bioinformatic analysis of the human DHRS4 gene cluster and a proposed mechanism for its transcriptional regulation. BMC Mol Biol 2010; 11:43. [PMID: 20525226 PMCID: PMC2892492 DOI: 10.1186/1471-2199-11-43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 06/03/2010] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The human DHRS4 gene cluster consists of three genes, DHRS4, DHRS4L2 and DHRS4L1. Among them, DHRS4 encodes NADP(H)-dependent retinol dehydrogenase/reductase. In a previous study, we investigated the alternative splicing of DHRS4 and DHRS4L2. DHRS4L1 was added to the gene cluster recently, but little is known about its structure and expression. To reveal the regulatory mechanism of the DHRS4 gene cluster expression, we studied the structure and transcription of DHRS4L1 in the context of the transcriptional behaviors of the human DHRS4 gene cluster. Based on the results of bioinformatics analysis, we propose a possible mechanism for the transcriptional regulation of the human DHRS4 gene cluster. RESULTS The homologous comparison analysis suggests that DHRS4, DHRS4L2 and DHRS4L1 are three homologous genes in human. DHRS4L1 and DHRS4L2 are paralogues of DHRS4, and DHRS4L2 is the most recent member of the DHRS4 gene cluster. In the minus strand of the human DHRS4 gene cluster, a gene transcribed in an antisense direction was found containing a 5' sequence overlapping the region of exon 1 and promoter of DHRS4. By cloning the full length of RNA variants through 5'RACE and 3'RACE, we identified two transcription start sites, within exon a2 and exon 1, of this newly named gene DHRS4L1 using neuroblastoma cell line BE(2)-M17. Analysis of exon composition in the transcripts of DHRS4 gene cluster revealed that exon 1 was absent in all the transcripts initiated from exon a1 of DHRS4L2 and exon a2 of DHRS4L1. CONCLUSIONS Alternatively spliced RNA variants are prevalent in the human DHRS4 gene cluster. Based on the analysis of gene transcripts and bioinformatic prediction, we propose here that antisense transcription may be involved in the transcriptional initiation regulation of DHRS4 and in the posttranscriptional splicing of DHRS4L2 and DRHS4L1 for the homologous identity of DHRS4 gene cluster. Beside the alternative transcriptional start sites, the antisense RNA is novel possible factor serving to remove exon 1 from the transcripts initiated from exon a1 and exon a2.
Collapse
Affiliation(s)
- Zhong-Jing Su
- Department of Cell Biology, 22 Xinling Road, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Qiao-Xia Zhang
- Department of Cell Biology, 22 Xinling Road, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Ge-Fei Liu
- Department of Cell Biology, 22 Xinling Road, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xu-Hong Song
- Department of Cell Biology, 22 Xinling Road, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Qi Li
- Department of Cell Biology, 22 Xinling Road, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Rui-Jian Wang
- Department of Cell Biology, 22 Xinling Road, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Hai-Bin Chen
- Department of Histology and Embryology, 22 Xinling Road, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xiao-Yuan Xu
- Department of Cell Biology, 22 Xinling Road, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xu-Xia Sui
- Department of Cell Biology, 22 Xinling Road, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Dong-Yang Huang
- Department of Cell Biology, 22 Xinling Road, Shantou University Medical College, Shantou, Guangdong, 515041, China
| |
Collapse
|
36
|
Abstract
Spliceosomal snRNAs are extensively 2'-O-methylated and pseudouridylated. The modified nucleotides are relatively highly conserved across species, and are often clustered in regions of functional importance in pre-mRNA splicing. Over the past decade, the study of the mechanisms and functions of spliceosomal snRNA modifications has intensified. Two independent mechanisms behind these modifications, RNA-independent (protein-only) and RNA-dependent (RNA-guided), have been discovered. The role of spliceosomal snRNA modifications in snRNP biogenesis and spliceosome assembly has also been verified.
Collapse
Affiliation(s)
- John Karijolich
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
37
|
Lin CF, Mount SM, Jarmołowski A, Makałowski W. Evolutionary dynamics of U12-type spliceosomal introns. BMC Evol Biol 2010; 10:47. [PMID: 20163699 PMCID: PMC2831892 DOI: 10.1186/1471-2148-10-47] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 02/17/2010] [Indexed: 02/05/2023] Open
Abstract
Background Many multicellular eukaryotes have two types of spliceosomes for the removal of introns from messenger RNA precursors. The major (U2) spliceosome processes the vast majority of introns, referred to as U2-type introns, while the minor (U12) spliceosome removes a small fraction (less than 0.5%) of introns, referred to as U12-type introns. U12-type introns have distinct sequence elements and usually occur together in genes with U2-type introns. A phylogenetic distribution of U12-type introns shows that the minor splicing pathway appeared very early in eukaryotic evolution and has been lost repeatedly. Results We have investigated the evolution of U12-type introns among eighteen metazoan genomes by analyzing orthologous U12-type intron clusters. Examination of gain, loss, and type switching shows that intron type is remarkably conserved among vertebrates. Among 180 intron clusters, only eight show intron loss in any vertebrate species and only five show conversion between the U12 and the U2-type. Although there are only nineteen U12-type introns in Drosophila melanogaster, we found one case of U2 to U12-type conversion, apparently mediated by the activation of cryptic U12 splice sites early in the dipteran lineage. Overall, loss of U12-type introns is more common than conversion to U2-type and the U12 to U2 conversion occurs more frequently among introns of the GT-AG subtype than among introns of the AT-AC subtype. We also found support for natural U12-type introns with non-canonical terminal dinucleotides (CT-AC, GG-AG, and GA-AG) that have not been previously reported. Conclusions Although complete loss of the U12-type spliceosome has occurred repeatedly, U12 introns are extremely stable in some taxa, including eutheria. Loss of U12 introns or the genes containing them is more common than conversion to the U2-type. The degeneracy of U12-type terminal dinucleotides among natural U12-type introns is higher than previously thought.
Collapse
Affiliation(s)
- Chiao-Feng Lin
- Institute of Bioinformatics, University of Muenster, Muenster, Germany
| | | | | | | |
Collapse
|
38
|
Dietrich RC, Padgett RA, Shukla GC. The conserved 3' end domain of U6atac snRNA can direct U6 snRNA to the minor spliceosome. RNA (NEW YORK, N.Y.) 2009; 15:1198-207. [PMID: 19372536 PMCID: PMC2685526 DOI: 10.1261/rna.1505709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
U6 and U6atac snRNAs play analogous critical roles in the major U2-dependent and minor U12-dependent spliceosomes, respectively. Previous results have shown that most of the functional cores of these two snRNAs are either highly similar in sequence or functionally interchangeable. Thus, a mechanism must exist to restrict each snRNA to its own spliceosome. Here we show that a chimeric U6 snRNA containing the unique and highly conserved 3' end domain of U6atac snRNA is able to function in vivo in U12-dependent spliceosomal splicing. Function of this chimera required the coexpression of a modified U4atac snRNA; U4 snRNA could not substitute. Partial deletions of this element in vivo, as well as in vitro antisense experiments, showed that the 3' end domain of U6atac snRNA is necessary to direct the U4atac/U6atac.U5 tri-snRNP to the forming U12-dependent spliceosome. In vitro experiments also uncovered a role for U4atac snRNA in this targeting.
Collapse
Affiliation(s)
- Rosemary C Dietrich
- 1Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
39
|
Brock JE, Dietrich RC, Padgett RA. Mutational analysis of the U12-dependent branch site consensus sequence. RNA (NEW YORK, N.Y.) 2008; 14:2430-2439. [PMID: 18824513 PMCID: PMC2578861 DOI: 10.1261/rna.1189008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 08/01/2008] [Indexed: 05/26/2023]
Abstract
Highly conserved sequences at the 5' splice site and branch site of U12-dependent introns are important determinants for splicing by U12-dependent spliceosomes. This study investigates the in vivo splicing phenotypes of mutations in the branch site consensus sequence of the U12-dependent intron F from a human NOL1 (P120) minigene. Intron F contains a fully consensus branch site sequence (UUCCUUAAC). Mutations at each position were analyzed for their effects on U12-dependent splicing in vivo. Mutations at most positions resulted in a significant reduction of correct U12-dependent splicing. Defects observed included increased unspliced RNA levels, the activation of cryptic U2-dependent 5' and 3' splice sites, and the activation of cryptic U12-dependent branch/3' splice sites. A strong correlation was observed between the predicted thermodynamic stability of the branch site: U12 snRNA interaction and correct U12-dependent splicing. The lack of a polypyrimidine tract between the branch site and 3' splice site of U12-dependent introns and the observed reliance on base-pairing interactions for correct U12-dependent splicing emphasize the importance of RNA/RNA interactions during U12-dependent intron recognition and proper splice site selection.
Collapse
Affiliation(s)
- Jay E Brock
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
40
|
Pertea M, Salzberg SL. Using GlimmerM to find genes in eukaryotic genomes. CURRENT PROTOCOLS IN BIOINFORMATICS 2008; Chapter 4:Unit 4.4. [PMID: 18792941 DOI: 10.1002/0471250953.bi0404s00] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
GlimmerM is a eukaryotic gene finder that has been used in the annotation of the genomes of Plasmodium falciparum (the malaria parasite), the model plant Arabidopsis thaliana, Oryza sativa (rice), the parasite Theileria parva, and the fungus Aspergillus fumigatus. A unique feature of the system compared to other eukaryotic gene finders is a module that allows users to provide their own data and train GlimmerM for any organism.
Collapse
Affiliation(s)
- Mihaela Pertea
- The Institute For Genomic Research, Rockville, Maryland, USA
| | | |
Collapse
|
41
|
Abstract
U12-dependent (U12) introns have persisted in the genomes of plants since the ancestral divergence between plants and metazoans. These introns, which are rare, are found in a range of genes that include essential functions in DNA replication and RNA metabolism and are implicated in regulating the expression of their host genes. U12 introns are removed from pre-mRNAs by a U12 intron-specific spliceosome. Although this spliceosome shares many properties with the more abundant U2-dependent (U2) intron spliceosome, four of the five small nuclear RNAs (snRNAs) required for splicing are different and specific for the unique splicing of U12 introns. Evidence in plants so far indicates that splicing signals of plant U12 introns and their splicing machinery are similar to U12 intron splicing in other eukaryotes. In addition to the high conservation of splicing signals, plant U12 introns also retain unique characteristic features of plant U2 introns, such as UA-richness, which suggests a requirement for plant-specific components for both the U2 and U12 splicing reaction. This chapter compares U12 and U2 splicing and reviews what is known about plant U12 introns and their possible role in gene expression.
Collapse
|
42
|
Szafranski K, Schindler S, Taudien S, Hiller M, Huse K, Jahn N, Schreiber S, Backofen R, Platzer M. Violating the splicing rules: TG dinucleotides function as alternative 3' splice sites in U2-dependent introns. Genome Biol 2008; 8:R154. [PMID: 17672918 PMCID: PMC2374985 DOI: 10.1186/gb-2007-8-8-r154] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 06/14/2007] [Accepted: 08/01/2007] [Indexed: 01/25/2023] Open
Abstract
TG dinucleotides functioning as alternative 3' splice sites were identified and experimentally verified in 36 human genes. Background Despite some degeneracy of sequence signals that govern splicing of eukaryotic pre-mRNAs, it is an accepted rule that U2-dependent introns exhibit the 3' terminal dinucleotide AG. Intrigued by anecdotal evidence for functional non-AG 3' splice sites, we carried out a human genome-wide screen. Results We identified TG dinucleotides functioning as alternative 3' splice sites in 36 human genes. The TG-derived splice variants were experimentally validated with a success rate of 92%. Interestingly, ratios of alternative splice variants are tissue-specific for several introns. TG splice sites and their flanking intron sequences are substantially conserved between orthologous vertebrate genes, even between human and frog, indicating functional relevance. Remarkably, TG splice sites are exclusively found as alternative 3' splice sites, never as the sole 3' splice site for an intron, and we observed a distance constraint for TG-AG splice site tandems. Conclusion Since TGs splice sites are exclusively found as alternative 3' splice sites, the U2 spliceosome apparently accomplishes perfect specificity for 3' AGs at an early splicing step, but may choose 3' TGs during later steps. Given the tiny fraction of TG 3' splice sites compared to the vast amount of non-viable TGs, cis-acting sequence signals must significantly contribute to splice site definition. Thus, we consider TG-AG 3' splice site tandems as promising subjects for studies on the mechanisms of 3' splice site selection.
Collapse
Affiliation(s)
- Karol Szafranski
- Genome Analysis, Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr., 07745 Jena, Germany
| | - Stefanie Schindler
- Genome Analysis, Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr., 07745 Jena, Germany
| | - Stefan Taudien
- Genome Analysis, Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr., 07745 Jena, Germany
| | - Michael Hiller
- Institute of Computer Science, Bioinformatics Group, Albert-Ludwigs-University Freiburg, Georges-Koehler-Allee, 79110 Freiburg, Germany
| | - Klaus Huse
- Genome Analysis, Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr., 07745 Jena, Germany
| | - Niels Jahn
- Genome Analysis, Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr., 07745 Jena, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian Albrechts University Kiel, Schittenhelmstr., 24105 Kiel, Germany
| | - Rolf Backofen
- Institute of Computer Science, Bioinformatics Group, Albert-Ludwigs-University Freiburg, Georges-Koehler-Allee, 79110 Freiburg, Germany
| | - Matthias Platzer
- Genome Analysis, Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr., 07745 Jena, Germany
| |
Collapse
|
43
|
Mount SM, Gotea V, Lin CF, Hernandez K, Makalowski W. Spliceosomal small nuclear RNA genes in 11 insect genomes. RNA (NEW YORK, N.Y.) 2007; 13:5-14. [PMID: 17095541 PMCID: PMC1705759 DOI: 10.1261/rna.259207] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The removal of introns from the primary transcripts of protein-coding genes is accomplished by the spliceosome, a large macromolecular complex of which small nuclear RNAs (snRNAs) are crucial components. Following the recent sequencing of the honeybee (Apis mellifera) genome, we used various computational methods, ranging from sequence similarity search to RNA secondary structure prediction, to search for putative snRNA genes (including their promoters) and to examine their pattern of conservation among 11 available insect genomes (A. mellifera, Tribolium castaneum, Bombyx mori, Anopheles gambiae, Aedes aegypti, and six Drosophila species). We identified candidates for all nine spliceosomal snRNA genes in all the analyzed genomes. All the species contain a similar number of snRNA genes, with the exception of A. aegypti, whose genome contains more U1, U2, and U5 genes, and A. mellifera, whose genome contains fewer U2 and U5 genes. We found that snRNA genes are generally more closely related to homologs within the same genus than to those in other genera. Promoter regions for all spliceosomal snRNA genes within each insect species share similar sequence motifs that are likely to correspond to the PSEA (proximal sequence element A), the binding site for snRNA activating protein complex, but these promoter elements vary in sequence among the five insect families surveyed here. In contrast to the other insect species investigated, Dipteran genomes are characterized by a rapid evolution (or loss) of components of the U12 spliceosome and a striking loss of U12-type introns.
Collapse
Affiliation(s)
- Stephen M Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815, USA
| | | | | | | | | |
Collapse
|
44
|
Russell AG, Charette JM, Spencer DF, Gray MW. An early evolutionary origin for the minor spliceosome. Nature 2006; 443:863-6. [PMID: 17051219 DOI: 10.1038/nature05228] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 08/31/2006] [Indexed: 11/09/2022]
Abstract
The minor spliceosome is a ribonucleoprotein complex that catalyses the removal of an atypical class of spliceosomal introns (U12-type) from eukaryotic messenger RNAs. It was first identified and characterized in animals, where it was found to contain several unique RNA constituents that share structural similarity with and seem to be functionally analogous to the small nuclear RNAs (snRNAs) contained in the major spliceosome. Subsequently, minor spliceosomal components and U12-type introns have been found in plants but not in fungi. Unlike that of the major spliceosome, which arose early in the eukaryotic lineage, the evolutionary history of the minor spliceosome is unclear because there is evidence of it in so few organisms. Here we report the identification of homologues of minor-spliceosome-specific proteins and snRNAs, and U12-type introns, in distantly related eukaryotic microbes (protists) and in a fungus (Rhizopus oryzae). Cumulatively, our results indicate that the minor spliceosome had an early origin: several of its characteristic constituents are present in representative organisms from all eukaryotic supergroups for which there is any substantial genome sequence information. In addition, our results reveal marked evolutionary conservation of functionally important sequence elements contained within U12-type introns and snRNAs.
Collapse
Affiliation(s)
- Anthony G Russell
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | |
Collapse
|
45
|
Abstract
U12-type introns are spliced by the U12-dependent spliceosome and are present in the genomes of many higher eukaryotic lineages including plants, chordates and some invertebrates. However, due to their relatively recent discovery and a systematic bias against recognition of non-canonical splice sites in general, the introns defined by U12-type splice sites are under-represented in genome annotations. Such under-representation compounds the already difficult problem of determining gene structures. It also impedes attempts to study these introns genome-wide or phylum-wide. The resource described here, the U12 Intron Database (U12DB), aims to catalog the U12-type introns of completely sequenced eukaryotic genomes in a framework that groups orthologous introns with each other. This will aid further investigations into the evolution and mechanism of U12-dependent splicing as well as assist ongoing genome annotation efforts. Public access to the U12DB is available at .
Collapse
Affiliation(s)
- Tyler S Alioto
- Genome Bioinformatics Laboratory, Center for Genomic Regulation, Doctor Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
46
|
Sheth N, Roca X, Hastings ML, Roeder T, Krainer AR, Sachidanandam R. Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Res 2006; 34:3955-67. [PMID: 16914448 PMCID: PMC1557818 DOI: 10.1093/nar/gkl556] [Citation(s) in RCA: 270] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 07/13/2006] [Accepted: 07/17/2006] [Indexed: 11/12/2022] Open
Abstract
We have collected over half a million splice sites from five species-Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans and Arabidopsis thaliana-and classified them into four subtypes: U2-type GT-AG and GC-AG and U12-type GT-AG and AT-AC. We have also found new examples of rare splice-site categories, such as U12-type introns without canonical borders, and U2-dependent AT-AC introns. The splice-site sequences and several tools to explore them are available on a public website (SpliceRack). For the U12-type introns, we find several features conserved across species, as well as a clustering of these introns on genes. Using the information content of the splice-site motifs, and the phylogenetic distance between them, we identify: (i) a higher degree of conservation in the exonic portion of the U2-type splice sites in more complex organisms; (ii) conservation of exonic nucleotides for U12-type splice sites; (iii) divergent evolution of C.elegans 3' splice sites (3'ss) and (iv) distinct evolutionary histories of 5' and 3'ss. Our study proves that the identification of broad patterns in naturally-occurring splice sites, through the analysis of genomic datasets, provides mechanistic and evolutionary insights into pre-mRNA splicing.
Collapse
Affiliation(s)
- Nihar Sheth
- Cold Spring Harbor Laboratory1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Xavier Roca
- Cold Spring Harbor Laboratory1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | - Ted Roeder
- Cold Spring Harbor Laboratory1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Adrian R. Krainer
- Cold Spring Harbor Laboratory1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Ravi Sachidanandam
- Cold Spring Harbor Laboratory1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
47
|
Li J, Li X, Guo L, Lu F, Feng X, He K, Wei L, Chen Z, Qu LJ, Gu H. A subgroup of MYB transcription factor genes undergoes highly conserved alternative splicing in Arabidopsis and rice. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:1263-73. [PMID: 16531467 DOI: 10.1093/jxb/erj094] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
MYB transcription factor genes play important roles in many developmental processes and in various defence responses of plants. Two Arabidopsis R2R3-type MYB genes, AtMYB59 and AtMYB48, were found to undergo similar alternative splicing. Both genes have four distinctively spliced transcripts that encode either MYB-related proteins or R2R3-MYB proteins. An extensive BLAST search of the GenBank database resulted in finding and cloning two rice homologues, both of which were also found to share a similar alternative splicing pattern. In a semi-quantitative study, the expression of one splice variant of AtMYB59 was found to be differentially regulated in treatments with different phytohormones and stresses. GFP fusion protein analysis revealed that both of the two predicted nuclear localization signals (NLSs) in the R3 domain are required for localizing to the nucleus. Promoter-GUS analysis in transgenic plants showed that 5'-UTR is sufficient for the translation initiation of type 3 transcripts (encoding R2R3-MYB proteins), but not for type 2 transcripts (encoding MYB-related proteins). Moreover, a new type of non-canonical intron, with the same nucleotide repeats at the 5' and 3' splice sites, was identified. Thirty-eight Arabidopsis and rice genes were found to have this type of non-canonical intron, most of which undergo alternative splicing. These data suggest that this subgroup of transcription factor genes may be involved in multiple biological processes and may be transcriptionally regulated by alternative splicing.
Collapse
Affiliation(s)
- Jigang Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Pre-mRNA splicing is catalyzed by two unique spliceosomes, designated U2- or U12-dependent. In contrast to the well-characterized U2-dependent spliceosome, much remains to be learned about the less abundant U12-type spliceosome. This review focuses on recent advances in elucidating the structure and function of the minor U12-dependent spliceosome. Interesting similarities and differences between the U12- and U2-dependent spliceosomes are also highlighted.
Collapse
Affiliation(s)
- Cindy L Will
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Am Fassberg 11, D-37077 Göttingen, Germany.
| | | |
Collapse
|
49
|
Dietrich RC, Fuller JD, Padgett RA. A mutational analysis of U12-dependent splice site dinucleotides. RNA (NEW YORK, N.Y.) 2005; 11:1430-40. [PMID: 16043500 PMCID: PMC1370826 DOI: 10.1261/rna.7206305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Introns spliced by the U12-dependent minor spliceosome are divided into two classes based on their splice site dinucleotides. The /AU-AC/ class accounts for about one-third of U12-dependent introns in humans, while the /GU-AG/ class accounts for the other two-thirds. We have investigated the in vivo and in vitro splicing phenotypes of mutations in these dinucleotide sequences. A 5' A residue can splice to any 3' residue, although C is preferred. A 5' G residue can splice to 3' G or U residues with a preference for G. Little or no splicing was observed to 3' A or C residues. A 5' U or C residue is highly deleterious for U12-dependent splicing, although some combinations, notably 5' U to 3' U produced detectable spliced products. The dependence of 3' splice site activity on the identity of the 5' residue provides evidence for communication between the first and last nucleotides of the intron. Most mutants in the second position of the 5' splice site and the next to last position of the 3' splice site were defective for splicing. Double mutants of these residues showed no evidence of communication between these nucleotides. Varying the distance between the branch site and the 3' splice site dinucleotide in the /GU-AG/ class showed that a somewhat larger range of distances was functional than for the /AU-AC/ class. The optimum branch site to 3' splice site distance of 11-12 nucleotides appears to be the same for both classes.
Collapse
Affiliation(s)
- Rosemary C Dietrich
- Department of Molecular Genetics, NE-20, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | | | | |
Collapse
|
50
|
Abstract
The existence of two sophisticated parallel splicing machineries in multicellular organisms has raised intriguing questions—ranging from their impact on proteome expansion to the evolution of splicing and of metazoan genomes. Exploring roles for the distinct splicing systems in vivo has, however, been restricted by the lack of techniques to selectively inhibit their function in cells. In this study, we show that morpholino oligomers complementary to the branch-site recognition elements of U2 or U12 small nuclear RNA specifically suppress the function of the two splicing systems in mammalian cells. The data provide the first evidence for a role of distinct spliceosomes in pre-mRNA splicing from endogenous mammalian genes and establish a tool to define roles for the different splicing machineries in vivo.
Collapse
Affiliation(s)
| | - Harald König
- To whom correspondence should be addressed. Tel: +49 7247 82 3293; Fax: +49 7247 82 3354;
| |
Collapse
|