1
|
Zeng D, Lv J, Li X, Liu H. The Arabidopsis blue-light photoreceptor CRY2 is active in darkness to inhibit root growth. Cell 2025; 188:60-76.e20. [PMID: 39549699 DOI: 10.1016/j.cell.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024]
Abstract
Cryptochromes (CRYs) are blue-light receptors that regulate diverse aspects of plant growth. However, whether and how non-photoexcited CRYs function in darkness or non-blue-light conditions is unknown. Here, we show that CRY2 affects the Arabidopsis transcriptome even in darkness, revealing a non-canonical function. CRY2 suppresses cell division in the root apical meristem to downregulate root elongation in darkness. Blue-light oligomerizes CRY2 to de-repress root elongation. CRY2 physically interacts with FORKED-LIKE 1 (FL1) and FL3, and these interactions are inhibited by blue light, with only monomeric but not dimeric CRY2 able to interact. FL1 and FL3 associate with the chromatin of cell division genes to facilitate their transcription. This pro-growth activity is inhibited by CRY2's physical interaction with FLs in darkness. Plants have evolved to perceive both blue-light and dark cues to coordinate activation and repression of competing developmental processes in above- and below-ground organs through economical and dichotomous use of ancient light receptors.
Collapse
Affiliation(s)
- Desheng Zeng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; University of Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Junqing Lv
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; University of Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xu Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Hongtao Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| |
Collapse
|
2
|
Shomali A, Aliniaeifard S, Kamrani YY, Lotfi M, Aghdam MS, Rastogi A, Brestič M. Interplay among photoreceptors determines the strategy of coping with excess light in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1423-1438. [PMID: 38402588 DOI: 10.1111/tpj.16685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024]
Abstract
This study investigates photoreceptor's role in the adaption of photosynthetic apparatus to high light (HL) intensity by examining the response of tomato wild type (WT) (Solanum lycopersicum L. cv. Moneymaker) and tomato mutants (phyA, phyB1, phyB2, cry1) plants to HL. Our results showed a photoreceptor-dependent effect of HL on the maximum quantum yield of photosystem II (Fv/Fm) with phyB1 exhibiting a decrease, while phyB2 exhibiting an increase in Fv/Fm. HL resulted in an increase in the efficient quantum yield of photosystem II (ΦPSII) and a decrease in the non-photochemical quantum yields (ΦNPQ and ΦN0) solely in phyA. Under HL, phyA showed a significant decrease in the energy-dependent quenching component of NPQ (qE), while phyB2 mutants showed an increase in the state transition (qT) component. Furthermore, ΔΔFv/Fm revealed that PHYB1 compensates for the deficit of PHYA in phyA mutants. PHYA signaling likely emerges as the dominant effector of PHYB1 and PHYB2 signaling within the HL-induced signaling network. In addition, PHYB1 compensates for the role of CRY1 in regulating Fv/Fm in cry1 mutants. Overall, the results of this research provide valuable insights into the unique role of each photoreceptor and their interplay in balancing photon energy and photoprotection under HL condition.
Collapse
Affiliation(s)
- Aida Shomali
- Photosynthesis Laboratory, Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
- Controlled Environment Agriculture Center (CEAC), College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Yousef Yari Kamrani
- Experimental Biophysics, Institute for Biology, Humboldt-University of Berlin, Invaliden Str. 42, 10115, Berlin, Germany
| | - Mahmoud Lotfi
- Photosynthesis Laboratory, Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | | | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznań, Poland
| | - Marian Brestič
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, A. Hlinku 2, Nitra, 949 76, Slovak Republic
| |
Collapse
|
3
|
Feng Z, Wang M, Liu Y, Li C, Zhang S, Duan J, Chen J, Qi L, Liu Y, Li H, Wu J, Liu Y, Terzaghi W, Tian F, Zhong B, Fang X, Qian W, Guo Y, Deng XW, Li J. Liquid-liquid phase separation of TZP promotes PPK-mediated phosphorylation of the phytochrome A photoreceptor. NATURE PLANTS 2024; 10:798-814. [PMID: 38714768 DOI: 10.1038/s41477-024-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/28/2024] [Indexed: 05/10/2024]
Abstract
Phytochrome A (phyA) is the plant far-red (FR) light photoreceptor and plays an essential role in regulating photomorphogenic development in FR-rich conditions, such as canopy shade. It has long been observed that phyA is a phosphoprotein in vivo; however, the protein kinases that could phosphorylate phyA remain largely unknown. Here we show that a small protein kinase family, consisting of four members named PHOTOREGULATORY PROTEIN KINASES (PPKs) (also known as MUT9-LIKE KINASES), directly phosphorylate phyA in vitro and in vivo. In addition, TANDEM ZINC-FINGER/PLUS3 (TZP), a recently characterized phyA-interacting protein required for in vivo phosphorylation of phyA, is also directly phosphorylated by PPKs. We reveal that TZP contains two intrinsically disordered regions in its amino-terminal domain that undergo liquid-liquid phase separation (LLPS) upon light exposure. The LLPS of TZP promotes colocalization and interaction between PPKs and phyA, thus facilitating PPK-mediated phosphorylation of phyA in FR light. Our study identifies PPKs as a class of protein kinases mediating the phosphorylation of phyA and demonstrates that the LLPS of TZP contributes significantly to more production of the phosphorylated phyA form in FR light.
Collapse
Affiliation(s)
- Ziyi Feng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Meijiao Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Yan Liu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Cong Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Shaoman Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Jie Duan
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Jiaqi Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Lijuan Qi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yanru Liu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Hong Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Jie Wu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yannan Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | | | - Feng Tian
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China.
| |
Collapse
|
4
|
Qu GP, Jiang B, Lin C. The dual-action mechanism of Arabidopsis cryptochromes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:883-896. [PMID: 37902426 DOI: 10.1111/jipb.13578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Photoreceptor cryptochromes (CRYs) mediate blue-light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, including transcription factors or co-factors, chromatin regulators, splicing factors, messenger RNA methyltransferases, DNA repair proteins, E3 ubiquitin ligases, protein kinases and so on. Of these 84 proteins, 47 have been reported to exhibit altered binding affinity to CRYs in response to blue light, and 41 have been shown to exhibit condensation to CRY photobodies. The blue light-regulated composition or condensation of CRY complexes results in changes of gene expression and developmental programs. In this mini-review, we analyzed recent studies of the photoregulatory mechanisms of Arabidopsis CRY complexes and proposed the dual mechanisms of action, including the "Lock-and-Key" and the "Liquid-Liquid Phase Separation (LLPS)" mechanisms. The dual CRY action mechanisms explain, at least partially, the structural diversity of CRY-interacting proteins and the functional diversity of the CRY photoreceptors.
Collapse
Affiliation(s)
- Gao-Ping Qu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bochen Jiang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
5
|
Huq E, Lin C, Quail PH. Light signaling in plants-a selective history. PLANT PHYSIOLOGY 2024; 195:213-231. [PMID: 38431282 PMCID: PMC11060691 DOI: 10.1093/plphys/kiae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
In addition to providing the radiant energy that drives photosynthesis, sunlight carries signals that enable plants to grow, develop and adapt optimally to the prevailing environment. Here we trace the path of research that has led to our current understanding of the cellular and molecular mechanisms underlying the plant's capacity to perceive and transduce these signals into appropriate growth and developmental responses. Because a fully comprehensive review was not possible, we have restricted our coverage to the phytochrome and cryptochrome classes of photosensory receptors, while recognizing that the phototropin and UV classes also contribute importantly to the full scope of light-signal monitoring by the plant.
Collapse
Affiliation(s)
- Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peter H Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Plant Gene Expression Center, Agricultural Research Service, US Department of Agriculture, Albany, CA 94710, USA
| |
Collapse
|
6
|
Chen S, Fan X, Song M, Yao S, Liu T, Ding W, Liu L, Zhang M, Zhan W, Yan L, Sun G, Li H, Wang L, Zhang K, Jia X, Yang Q, Yang J. Cryptochrome 1b represses gibberellin signaling to enhance lodging resistance in maize. PLANT PHYSIOLOGY 2024; 194:902-917. [PMID: 37934825 DOI: 10.1093/plphys/kiad546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/16/2023] [Indexed: 11/09/2023]
Abstract
Maize (Zea mays L.) is one of the most important crops worldwide. Photoperiod, light quality, and light intensity in the environment can affect the growth, development, yield, and quality of maize. In Arabidopsis (Arabidopsis thaliana), cryptochromes are blue-light receptors that mediate the photocontrol of stem elongation, leaf expansion, shade tolerance, and photoperiodic flowering. However, the function of maize cryptochrome ZmCRY in maize architecture and photomorphogenic development remains largely elusive. The ZmCRY1b transgene product can activate the light signaling pathway in Arabidopsis and complement the etiolation phenotype of the cry1-304 mutant. Our findings show that the loss-of-function mutant of ZmCRY1b in maize exhibits more etiolation phenotypes under low blue light and appears slender in the field compared with wild-type plants. Under blue and white light, overexpression of ZmCRY1b in maize substantially inhibits seedling etiolation and shade response by enhancing protein accumulation of the bZIP transcription factors ELONGATED HYPOCOTYL 5 (ZmHY5) and ELONGATED HYPOCOTYL 5-LIKE (ZmHY5L), which directly upregulate the expression of genes encoding gibberellin (GA) 2-oxidase to deactivate GA and repress plant height. More interestingly, ZmCRY1b enhances lodging resistance by reducing plant and ear heights and promoting root growth in both inbred lines and hybrids. In conclusion, ZmCRY1b contributes blue-light signaling upon seedling de-etiolation and integrates light signals with the GA metabolic pathway in maize, resulting in lodging resistance and providing information for improving maize varieties.
Collapse
Affiliation(s)
- Shizhan Chen
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaocong Fan
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Meifang Song
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuaitao Yao
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Tong Liu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Wusi Ding
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Liu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Menglan Zhang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Weimin Zhan
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Yan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghua Sun
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongdan Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lijian Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Kang Zhang
- Department of Precision Plant Gene Delivery, Genovo Biotechnology Co. Ltd, Tianjin 301700, China
| | - Xiaolin Jia
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Qinghua Yang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianping Yang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Viczián A, Nagy F. Phytochrome B phosphorylation expanded: site-specific kinases are identified. THE NEW PHYTOLOGIST 2024; 241:65-72. [PMID: 37814506 DOI: 10.1111/nph.19314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
The phytochrome B (phyB) photoreceptor is a key participant in red and far-red light sensing, playing a dominant role in many developmental and growth responses throughout the whole life of plants. Accordingly, phyB governs diverse signaling pathways, and although our knowledge about these pathways is constantly expanding, our view about their fine-tuning is still rudimentary. Phosphorylation of phyB is one of the relevant regulatory mechanisms, and - despite the expansion of the available methodology - it is still not easy to examine. Phosphorylated phytochromes have been detected using various techniques for decades, but the first phosphorylated phyB residues were only identified in 2013. Since then, concentrated attention has been turned toward the functional role of post-translational modifications in phyB signaling. Very recently in 2023, the first kinases that phosphorylate phyB were identified. These discoveries opened up new research avenues, especially by connecting diverse environmental impacts to light signaling and helping to explain some long-term unsolved problems such as the co-action of Ca2+ and phyB signaling. This review summarizes our recent views about the roles of the identified phosphorylated phyB residues, what we know about the enzymes that modulate the phospho-state of phyB, and how these recent discoveries impact future investigations.
Collapse
Affiliation(s)
- András Viczián
- Laboratory of Photo- and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, H-6726, Hungary
| | - Ferenc Nagy
- Laboratory of Photo- and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, H-6726, Hungary
| |
Collapse
|
8
|
Kong Y, Zheng Y. Magic Blue Light: A Versatile Mediator of Plant Elongation. PLANTS (BASEL, SWITZERLAND) 2023; 13:115. [PMID: 38202422 PMCID: PMC10780743 DOI: 10.3390/plants13010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Blue light plays an important role in regulating plant elongation. However, due to the limitations of older lighting technologies, the responses of plants to pure blue light have not been fully studied, and some of our understandings of the functions of blue light in the literature need to be revisited. This review consolidates and analyzes the diverse findings from previous studies on blue-light-mediated plant elongation. By synthesizing the contrasting results, we uncover the underlying mechanisms and explanations proposed in recent research. Moreover, we delve into the exploration of blue light-emitting diodes (LEDs) as a tool for manipulating plant elongation in controlled-environment plant production, highlighting the latest advancements in this area. Finally, we acknowledge the challenges faced and outline future directions for research in this promising field. This review provides valuable insights into the pivotal role of blue light in plant growth and offers a foundation for further investigations to optimize plant elongation using blue light technology.
Collapse
Affiliation(s)
| | - Youbin Zheng
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
9
|
Kaeser G, Krauß N, Roughan C, Sauthof L, Scheerer P, Lamparter T. Phytochrome-Interacting Proteins. Biomolecules 2023; 14:9. [PMID: 38275750 PMCID: PMC10813442 DOI: 10.3390/biom14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Phytochromes are photoreceptors of plants, fungi, slime molds bacteria and heterokonts. These biliproteins sense red and far-red light and undergo light-induced changes between the two spectral forms, Pr and Pfr. Photoconversion triggered by light induces conformational changes in the bilin chromophore around the ring C-D-connecting methine bridge and is followed by conformational changes in the protein. For plant phytochromes, multiple phytochrome interacting proteins that mediate signal transduction, nuclear translocation or protein degradation have been identified. Few interacting proteins are known as bacterial or fungal phytochromes. Here, we describe how the interacting partners were identified, what is known about the different interactions and in which context of signal transduction these interactions are to be seen. The three-dimensional arrangement of these interacting partners is not known. Using an artificial intelligence system-based modeling software, a few predicted and modulated examples of interactions of bacterial phytochromes with their interaction partners are interpreted.
Collapse
Affiliation(s)
- Gero Kaeser
- Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institut für Pflanzenwissenschaften (JKIP), Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany; (G.K.); (N.K.); (C.R.)
| | - Norbert Krauß
- Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institut für Pflanzenwissenschaften (JKIP), Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany; (G.K.); (N.K.); (C.R.)
| | - Clare Roughan
- Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institut für Pflanzenwissenschaften (JKIP), Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany; (G.K.); (N.K.); (C.R.)
| | - Luisa Sauthof
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany; (L.S.); (P.S.)
| | - Patrick Scheerer
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany; (L.S.); (P.S.)
| | - Tilman Lamparter
- Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institut für Pflanzenwissenschaften (JKIP), Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany; (G.K.); (N.K.); (C.R.)
| |
Collapse
|
10
|
Zhang Y, Chen G, Deng L, Gao B, Yang J, Ding C, Zhang Q, Ouyang W, Guo M, Wang W, Liu B, Zhang Q, Sung WK, Yan J, Li G, Li X. Integrated 3D genome, epigenome and transcriptome analyses reveal transcriptional coordination of circadian rhythm in rice. Nucleic Acids Res 2023; 51:9001-9018. [PMID: 37572350 PMCID: PMC10516653 DOI: 10.1093/nar/gkad658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023] Open
Abstract
Photoperiods integrate with the circadian clock to coordinate gene expression rhythms and thus ensure plant fitness to the environment. Genome-wide characterization and comparison of rhythmic genes under different light conditions revealed delayed phase under constant darkness (DD) and reduced amplitude under constant light (LL) in rice. Interestingly, ChIP-seq and RNA-seq profiling of rhythmic genes exhibit synchronous circadian oscillation in H3K9ac modifications at their loci and long non-coding RNAs (lncRNAs) expression at proximal loci. To investigate how gene expression rhythm is regulated in rice, we profiled the open chromatin regions and transcription factor (TF) footprints by time-series ATAC-seq. Although open chromatin regions did not show circadian change, a significant number of TFs were identified to rhythmically associate with chromatin and drive gene expression in a time-dependent manner. Further transcriptional regulatory networks mapping uncovered significant correlation between core clock genes and transcription factors involved in light/temperature signaling. In situ Hi-C of ZT8-specific expressed genes displayed highly connected chromatin association at the same time, whereas this ZT8 chromatin connection network dissociates at ZT20, suggesting the circadian control of gene expression by dynamic spatial chromatin conformation. These findings together implicate the existence of a synchronization mechanism between circadian H3K9ac modifications, chromatin association of TF and gene expression, and provides insights into circadian dynamics of spatial chromatin conformation that associate with gene expression rhythms.
Collapse
Affiliation(s)
- Ying Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guoting Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Li Deng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Baibai Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jing Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Cheng Ding
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qing Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Minrong Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wenxia Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Beibei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wing-Kin Sung
- Department of Chemical Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Jiapei Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
11
|
Zeng H, Zheng T, Peng X, Tang Q, Xu H, Chen M. Transcriptomic and Targeted Metabolomics Analysis of Detached Lycium ruthenicum Leaves Reveals Mechanisms of Anthocyanin Biosynthesis Induction through Light Quality and Sucrose Treatments. Metabolites 2023; 13:1004. [PMID: 37755284 PMCID: PMC10535117 DOI: 10.3390/metabo13091004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Light quality and sucrose-induced osmotic stress are known to cause anthocyanin synthesis in detached Lycium ruthenicum leaves. To identify the mechanisms by which the kind of light quality and sucrose concentration are induced, here, we conducted transcriptome sequencing in detached L. ruthenicum leaves treated with different qualities of light and sucrose concentrations. Leaves treated with blue light or sucrose showed a significantly increased total anthocyanins content compared to those treated with white light. Delphinidin-3-O-rutinoside and delphinidin-3-O-glucoside production were differentially regulated by the BL(-S), BL(+S), and WL(+S) treatments. The structural genes CHS, CHI, F3'H, F3'5'H, ANS, and UFGT were significantly up-regulated in leaves treated with blue light or sucrose. Leaves treated with blue light additionally showed up-regulation of the light photoreceptors CRY1, PIF3, COP1, and HY5. The anthocyanin-related genes NCED1, PYR/PYL, PP2C, SnRK2, and ABI5 were significantly up-regulated in leaves treated with sucrose, promoting adaptability to sucrose osmotic stress. Co-expression and cis-regulatory analyses suggested that HY5 and ABI5 could regulate LrMYB44 and LrMYB48 through binding to the G-box element and ABRE element, respectively, inducing anthocyanin synthesis in response to blue light or sucrose treatment. Candidate genes responsive to blue light or sucrose osmotic stress in the anthocyanin biosynthesis pathway were validated through quantitative reverse transcription PCR. These findings deepen our understanding of the mechanisms by which blue light and sucrose-induced osmotic stress regulate anthocyanin synthesis, providing valuable target genes for the future improvement in anthocyanin production in L. ruthenicum.
Collapse
Affiliation(s)
- Haitao Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (H.Z.); (X.P.); (Q.T.); (H.X.); (M.C.)
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, China
| | - Tao Zheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (H.Z.); (X.P.); (Q.T.); (H.X.); (M.C.)
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, China
| | - Xue Peng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (H.Z.); (X.P.); (Q.T.); (H.X.); (M.C.)
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, China
| | - Qi Tang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (H.Z.); (X.P.); (Q.T.); (H.X.); (M.C.)
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, China
| | - Hao Xu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (H.Z.); (X.P.); (Q.T.); (H.X.); (M.C.)
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, China
| | - Mengjiao Chen
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (H.Z.); (X.P.); (Q.T.); (H.X.); (M.C.)
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, China
| |
Collapse
|
12
|
Singh S, Vergish S, Jain N, Sharma AK, Khurana P, Khurana JP. OsCRY2 and OsFBO10 co-regulate photomorphogenesis and photoperiodic flowering in indica rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111631. [PMID: 36773757 DOI: 10.1016/j.plantsci.2023.111631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Cryptochromes (CRYs) are a class of photoreceptors that perceive blue/ultraviolet-A light of the visible spectrum to mediate a vast number of physiological responses in bacteria, fungi, animals and plants. In the present study, we have characterized OsCRY2 in a photoperiod sensitive indica variety, Basmati 370, by generating and analyzing overexpression (OE) and knock-down (KD) transgenic lines. The OsCRY2OE lines displayed dwarfism as shown in their reduced plant height and leaf length, attributed largely by an overall reduction in their cell size. The OsCRY2OE lines flowered significantly earlier and showed shorter and broader seeds with an overall reduced seed weight. The OsCRY2KD lines showed contrasting phenotypes, such as increased plant height and delayed flowering, however, decreased seed size and weight were also observed in the KD lines, along with reduced spikelet fertility and high seed shattering rate in mature panicles. Novel interactions were confirmed between OsCRY2 and members of ZEITLUPE family of blue/ultraviolet-A light photoreceptors, encoded by OsFBO8, OsFBO9 and OsFBO10 which are orthologous to ZEITLUPE (ZTL), LOV KELCH PROTEIN2 (LKP2) and FLAVIN BINDING, KELCH REPEAT F-BOX1 (FKF1), respectively, of Arabidopsis thaliana. Since FKF1 is known to play a role in regulating photoperiodic flowering, OsFBO10 was chosen for further studies. OsCRY2 and OsFBO10 interacted in the nucleus and cytoplasm of the cell and cross-regulated the expression of each other. They were also found to regulate the expression of several genes involved in photoperiodic flowering in rice. Both OsCRY2 and OsFBO10 played a positive role in photomorphogenic responses in different light conditions. The physical interaction of OsCRY2 with OsFBO10, their involvement in common physiological and developmental pathways and their cross-regulation of each other suggest that the two photoreceptors may regulate common developmental pathways in plants, either jointly or redundantly.
Collapse
Affiliation(s)
- Shipra Singh
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
| | - Satyam Vergish
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
| | - Nitin Jain
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
| | - Arun Kumar Sharma
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India.
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
| |
Collapse
|
13
|
Choi DM, Kim SH, Han YJ, Kim JI. Regulation of Plant Photoresponses by Protein Kinase Activity of Phytochrome A. Int J Mol Sci 2023; 24:ijms24032110. [PMID: 36768431 PMCID: PMC9916439 DOI: 10.3390/ijms24032110] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Extensive research has been conducted for decades to elucidate the molecular and regulatory mechanisms for phytochrome-mediated light signaling in plants. As a result, tens of downstream signaling components that physically interact with phytochromes are identified, among which negative transcription factors for photomorphogenesis, PHYTOCHROME-INTERACTING FACTORs (PIFs), are well known to be regulated by phytochromes. In addition, phytochromes are also shown to inactivate an important E3 ligase complex consisting of CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSORs OF phyA-105 (SPAs). This inactivation induces the accumulation of positive transcription factors for plant photomorphogenesis, such as ELONGATED HYPOCOTYL 5 (HY5). Although many downstream components of phytochrome signaling have been studied thus far, it is not fully elucidated which intrinsic activity of phytochromes is necessary for the regulation of these components. It should be noted that phytochromes are autophosphorylating protein kinases. Recently, the protein kinase activity of phytochrome A (phyA) has shown to be important for its function in plant light signaling using Avena sativa phyA mutants with reduced or increased kinase activity. In this review, we highlight the function of phyA as a protein kinase to explain the regulation of plant photoresponses by phyA.
Collapse
Affiliation(s)
- Da-Min Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong-Hyeon Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yun-Jeong Han
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
- Correspondence:
| |
Collapse
|
14
|
Patnaik A, Alavilli H, Rath J, Panigrahi KCS, Panigrahy M. Variations in Circadian Clock Organization & Function: A Journey from Ancient to Recent. PLANTA 2022; 256:91. [PMID: 36173529 DOI: 10.1007/s00425-022-04002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Circadian clock components exhibit structural variations in different plant systems, and functional variations during various abiotic stresses. These variations bear relevance for plant fitness and could be important evolutionarily. All organisms on earth have the innate ability to measure time as diurnal rhythms that occur due to the earth's rotations in a 24-h cycle. Circadian oscillations arising from the circadian clock abide by its fundamental properties of periodicity, entrainment, temperature compensation, and oscillator mechanism, which is central to its function. Despite the fact that a myriad of research in Arabidopsis thaliana illuminated many detailed aspects of the circadian clock, many more variations in clock components' organizations and functions remain to get deciphered. These variations are crucial for sustainability and adaptation in different plant systems in the varied environmental conditions in which they grow. Together with these variations, circadian clock functions differ drastically even during various abiotic and biotic stress conditions. The present review discusses variations in the organization of clock components and their role in different plant systems and abiotic stresses. We briefly introduce the clock components, entrainment, and rhythmicity, followed by the variants of the circadian clock in different plant types, starting from lower non-flowering plants, marine plants, dicots to the monocot crop plants. Furthermore, we discuss the interaction of the circadian clock with components of various abiotic stress pathways, such as temperature, light, water stress, salinity, and nutrient deficiency with implications for the reprogramming during these stresses. We also update on recent advances in clock regulations due to post-transcriptional, post-translation, non-coding, and micro-RNAs. Finally, we end this review by summarizing the points of applicability, a remark on the future perspectives, and the experiments that could clear major enigmas in this area of research.
Collapse
Affiliation(s)
- Alena Patnaik
- School of Biological Sciences, National Institute of Science Education and Research, Jatni, Odisha, 752050, India
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul, 05006, South Korea
| | - Jnanendra Rath
- Institute of Science, Visva-Bharati Central University, Santiniketan, West Bengal, 731235, India
| | - Kishore C S Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research, Jatni, Odisha, 752050, India
| | - Madhusmita Panigrahy
- School of Biological Sciences, National Institute of Science Education and Research, Jatni, Odisha, 752050, India.
| |
Collapse
|
15
|
Sharma P, Mishra S, Burman N, Chatterjee M, Singh S, Pradhan AK, Khurana P, Khurana JP. Characterization of Cry2 genes (CRY2a and CRY2b) of B. napus and comparative analysis of BnCRY1 and BnCRY2a in regulating seedling photomorphogenesis. PLANT MOLECULAR BIOLOGY 2022; 110:161-186. [PMID: 35831732 DOI: 10.1007/s11103-022-01293-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Cryptochrome 2 (CRY2) perceives blue/UV-A light and regulates photomorphogenesis in plants. However, besides Arabidopsis, CRY2 has been functionally characterized only in native species of japonica rice and tomato. In the present study, the BnCRY2a, generating a relatively longer cDNA and harboring an intron in its 5'UTR, has been characterized in detail. Western blot analysis revealed that BnCRY2a is light labile and degraded rapidly by 26S proteasome when seedlings are irradiated with blue light. For functional analysis, BnCRY2a was over-expressed in Brassica juncea, a related species more amenable to transformation. The BnCRY2a over-expression (BnCRY2aOE) transgenics developed short hypocotyl and expanded cotyledons, accumulated more anthocyanin in light-grown seedlings, and displayed early flowering on maturity. Early flowering in BnCRY2aOE transgenics was coupled with the up-regulation of many flowering-related genes such as FT. The present study also highlights the differential light sensitivity of cry1 and cry2 in controlling hypocotyl elongation growth in Brassica. BnCRY2aOE seedlings developed much shorter hypocotyl under the low-intensity of blue light, while BnCRY1OE seedling hypocotyls were shorter under the high-intensity blue light, compared to untransformed seedlings.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Plant Molecular Biology & Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi, 110021, India
- Proteus Genomics, 218 Summit Parkway, Birmingham, AL, 35209, USA
| | - Sushma Mishra
- Department of Plant Molecular Biology & Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi, 110021, India
| | - Naini Burman
- Department of Plant Molecular Biology & Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi, 110021, India
| | - Mithu Chatterjee
- Department of Plant Molecular Biology & Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi, 110021, India
- AeroFarms, Newark, NJ, 07105, USA
| | - Shipra Singh
- Department of Plant Molecular Biology & Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi, 110021, India
| | - Akshay K Pradhan
- Department of Genetics, University of Delhi South Campus, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology & Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi, 110021, India.
| | - Jitendra P Khurana
- Department of Plant Molecular Biology & Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi, 110021, India
| |
Collapse
|
16
|
Månsson LK, Pitenis AA, Wilson MZ. Extracellular Optogenetics at the Interface of Synthetic Biology and Materials Science. Front Bioeng Biotechnol 2022; 10:903982. [PMID: 35774061 PMCID: PMC9237228 DOI: 10.3389/fbioe.2022.903982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022] Open
Abstract
We review fundamental mechanisms and applications of OptoGels: hydrogels with light-programmable properties endowed by photoswitchable proteins (“optoproteins”) found in nature. Light, as the primary source of energy on earth, has driven evolution to develop highly-tuned functionalities, such as phototropism and circadian entrainment. These functions are mediated through a growing family of optoproteins that respond to the entire visible spectrum ranging from ultraviolet to infrared by changing their structure to transmit signals inside of cells. In a recent series of articles, engineers and biochemists have incorporated optoproteins into a variety of extracellular systems, endowing them with photocontrollability. While other routes exist for dynamically controlling material properties, light-sensitive proteins have several distinct advantages, including precise spatiotemporal control, reversibility, substrate selectivity, as well as biodegradability and biocompatibility. Available conjugation chemistries endow OptoGels with a combinatorially large design space determined by the set of optoproteins and polymer networks. These combinations result in a variety of tunable material properties. Despite their potential, relatively little of the OptoGel design space has been explored. Here, we aim to summarize innovations in this emerging field and highlight potential future applications of these next generation materials. OptoGels show great promise in applications ranging from mechanobiology, to 3D cell and organoid engineering, and programmable cell eluting materials.
Collapse
Affiliation(s)
- Lisa K. Månsson
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Angela A. Pitenis
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, United States
- Center for BioEngineering, University of California, Santa Barbara, Santa Barbara, CA, United States
- *Correspondence: Angela A. Pitenis, ; Maxwell Z. Wilson,
| | - Maxwell Z. Wilson
- Center for BioEngineering, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- *Correspondence: Angela A. Pitenis, ; Maxwell Z. Wilson,
| |
Collapse
|
17
|
Shao D, Zhu QH, Liang Q, Wang X, Li Y, Sun Y, Zhang X, Liu F, Xue F, Sun J. Transcriptome Analysis Reveals Differences in Anthocyanin Accumulation in Cotton ( Gossypium hirsutum L.) Induced by Red and Blue Light. FRONTIERS IN PLANT SCIENCE 2022; 13:788828. [PMID: 35432402 PMCID: PMC9009209 DOI: 10.3389/fpls.2022.788828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Many factors, including illumination, affect anthocyanin biosynthesis and accumulation in plants. light quality is the key factor affecting the process of photoinduced anthocyanin biosynthesis and accumulation. We observed that the red color of the Upland cotton accession Huiyuan with the R1 mutation turned to normal green color under light-emitting diodes (LEDs), which inspired us to investigate the effect of red and blue lights on the biosynthesis and accumulation of anthocyanins. We found that both red and blue lights elevated accumulation of anthocyanins. Comparative transcriptomic analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and GSEA, revealed that genes differentially expressed under different light conditions were enriched with the pathways of circadian rhythm, phenylpropanoid biosynthesis, anthocyanin biosynthesis, and flavone and flavonol biosynthesis. Not surprisingly, all the major structural genes related to biosynthesis of anthocyanins, including the key regulatory MYB transcription factor (GhPAP1D) and anthocyanin transporter (GhGSTF12), were induced by red or blue light treatment. However, LARs and MATEs related to biosynthesis of proanthocyanidins were more significantly up-regulated by red light radiation than by blue light radiation. Vice versa, the accumulation of anthocyanins under red light was not as high as that under blue light. In addition, we demonstrated a potential role of GhHY5, a key regulator in plant circadian rhythms, in regulation of anthocyanin accumulation, which could be achieved via interaction with GhPAP1D. Together, these results indicate different effect of red and blue lights on biosynthesis and accumulation of anthocyanins and a potential module including GhHY5 and GhPAP1D in regulation of anthocyanin accumulation in cotton. These results also suggest that the substrates responsible the synthesis of anthocyanins under blue light is diverted to biosynthesis of proanthocyanidin under red light.
Collapse
Affiliation(s)
- Dongnan Shao
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Qian-hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Qian Liang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Xuefeng Wang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Yanjun Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| |
Collapse
|
18
|
Nagano S, Mori N, Tomari Y, Mitsugi N, Deguchi A, Kashima M, Tezuka A, Nagano AJ, Usami H, Tanabata T, Watanabe H. Effect of differences in light source environment on transcriptome of leaf lettuce (Lactuca sativa L.) to optimize cultivation conditions. PLoS One 2022; 17:e0265994. [PMID: 35349601 PMCID: PMC8963549 DOI: 10.1371/journal.pone.0265994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
When used in closed-type plant factories, light-emitting diode (LED) illumination systems have the particular advantages of low heat emission and high luminous efficiency. The effects of illumination quality and intensity on the growth and morphogenesis of many plant species have been examined, but improvements are needed to optimize the illumination systems for better plant products with lower resource investments. In particular, new strategies are needed to reduce the wastage of plant products related to leaf senescence, and to better control the ingredients and appearance of leafy vegetables. Although the quality of light is often altered to change the characteristics of plant products, the transcriptional status underlying the physiological responses of plants to light has not been established. Herein, we performed a comprehensive gene expression analysis using RNA-sequencing to determine how red, blue, and red/blue LEDs and fluorescent light sources affect transcriptome involved in the leaf aging of leaf lettuce. The RNA-sequencing profiling revealed clear differences in the transcriptome between young and old leaves. Red LED light caused large variation between the two age classes, while a pure or mixed blue LED light spectrum induced fewer transcriptome differences between young and old leaves. Collectively, the expression levels of genes that showed homology with those of other model organisms provide a detailed physiological overview, incorporating such characteristics as the senescence, nutrient deficiency, and anthocyanin synthesis of the leaf lettuce plants. Our findings suggest that transcriptome profiles of leaf lettuce grown under different light sources provide helpful information to achieve better growth conditions for marketable and efficient green-vegetable production, with improved wastage control and efficient nutrient inputs.
Collapse
Affiliation(s)
- Soichiro Nagano
- Department of Advanced Food Sciences, Faculty of Agriculture, Tamagawa University, Machida, Tokyo, Japan
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Naoya Mori
- Tamagawa University Research Institute, Machida, Tokyo, Japan
| | - Yukiko Tomari
- Tamagawa University Research Institute, Machida, Tokyo, Japan
| | - Noriko Mitsugi
- Department of Advanced Food Sciences, Faculty of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | - Ayumi Deguchi
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Shiga, Japan
| | - Makoto Kashima
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Shiga, Japan
| | - Ayumi Tezuka
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Shiga, Japan
| | - Atsushi J. Nagano
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Shiga, Japan
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Hitohide Usami
- Tamagawa University Research Institute, Machida, Tokyo, Japan
| | - Takanari Tanabata
- Department of Advanced Food Sciences, Faculty of Agriculture, Tamagawa University, Machida, Tokyo, Japan
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Hiroyuki Watanabe
- Department of Advanced Food Sciences, Faculty of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| |
Collapse
|
19
|
Paradiso R, Proietti S. Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. JOURNAL OF PLANT GROWTH REGULATION 2022; 41:742-780. [PMID: 0 DOI: 10.1007/s00344-021-10337-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/01/2021] [Indexed: 05/27/2023]
Abstract
AbstractLight quantity (intensity and photoperiod) and quality (spectral composition) affect plant growth and physiology and interact with other environmental parameters and cultivation factors in determining the plant behaviour. More than providing the energy for photosynthesis, light also dictates specific signals which regulate plant development, shaping and metabolism, in the complex phenomenon of photomorphogenesis, driven by light colours. These are perceived even at very low intensity by five classes of specific photoreceptors, which have been characterized in their biochemical features and physiological roles. Knowledge about plant photomorphogenesis increased dramatically during the last years, also thanks the diffusion of light-emitting diodes (LEDs), which offer several advantages compared to the conventional light sources, such as the possibility to tailor the light spectrum and to regulate the light intensity, depending on the specific requirements of the different crops and development stages. This knowledge could be profitably applied in greenhouse horticulture to improve production schedules and crop yield and quality. This article presents a brief overview on the effects of light spectrum of artificial lighting on plant growth and photomorphogenesis in vegetable and ornamental crops, and on the state of the art of the research on LEDs in greenhouse horticulture. Particularly, we analysed these effects by approaching, when possible, each single-light waveband, as most of the review works available in the literature considers the influence of combined spectra.
Collapse
|
20
|
Pham KD, Hakozaki Y, Takamizawa T, Yamazaki A, Yamazaki H, Mori K, Aburatani S, Tashiro K, Kuhara S, Takaku H, Shida Y, Ogasawara W. Analysis of the light regulatory mechanism in carotenoid production in Rhodosporidium toruloides NBRC 10032. Biosci Biotechnol Biochem 2021; 85:1899-1909. [PMID: 34124766 DOI: 10.1093/bbb/zbab109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/06/2021] [Indexed: 11/14/2022]
Abstract
Light stimulates carotenoid production in an oleaginous yeast Rhodosporidium toruloides NBRC 10032 by promoting carotenoid biosynthesis genes. These genes undergo two-step transcriptional activation. The potential light regulator, Cryptochrome DASH (CRY1), has been suggested to contribute to this mechanism. In this study, based on KU70 (a component of nonhomologous end joining (NHEJ)) disrupting background, CRY1 disruptant was constructed to clarify CRY1 function. From analysis of CRY1 disruptant, it was suggested that CRY1 has the activation role of the carotenogenic gene expression. To obtain further insights into the light response, mutants varying carotenoid production were generated. Through analysis of mutants, the existence of the control two-step gene activation was proposed. In addition, our data analysis showed the strong possibility that R. toruloides NBRC 10032 is a homo-diploid strain.
Collapse
Affiliation(s)
- Khanh Dung Pham
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | - Yuuki Hakozaki
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | - Takeru Takamizawa
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | - Atsushi Yamazaki
- Biological Resource Center, National Institute of Technology and Evaluation (NITE), Chiba, Japan
| | - Harutake Yamazaki
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | | | - Sachiyo Aburatani
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kosuke Tashiro
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Satoru Kuhara
- Graduate School of Genetic Resource Technology, Kyushu University, Fukuoka, Japan
| | - Hiroaki Takaku
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| |
Collapse
|
21
|
Nie G, Liu X, Zhou X, Song Q, Fu M, Xu F, Wang X. Functional analysis of a novel cryptochrome gene ( GbCRY1) from Ginkgo biloba. PLANT SIGNALING & BEHAVIOR 2021; 16:1850627. [PMID: 33258712 PMCID: PMC7849775 DOI: 10.1080/15592324.2020.1850627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Cryptochrome (CRY) is a blue light receptor that is widely distributed in animals, plants, and microorganisms. CRY as a coding gene of cryptochrome that regulates the organism gene expression and plays an important role in organism growth and development. In this study, we identified four photolyase/cryptochrome (PHR/CRY) members from the genome of Ginkgo biloba. Phylogenetic tree analysis showed that the Ginkgo PHR/CRY family members were closely related to Arabidopsis thaliana and Solanum lycopersicum. We isolated a cryptochrome gene, GbCRY1, from G. biloba and analyzed its structure and function. GbCRY1 shared high similarity with AtCRY1 from A. thaliana. GbCRY1 expression level was higher in stems and leaves and lower in roots, male strobili, female strobili. GbCRY1 expression level fluctuated periodically within 24 h, gradually increased in the dark, and decreased under blue light. The newly germinated ginkgo seedlings were cultured under dark, white light, and blue light conditions. The blue light normally induced photomorphogenesis of ginkgo seedlings, which included hypocotyl elongation inhibition, leaf expansion inhibition, and chlorophyll formation. Treating dark-adapted ginkgo leaves with blue light could induce stomatal opening. At the same time, blue light reduced the expression level of GbCRY1 in the process of inducing photomorphogenesis and stoma opening. Our results provide evidence that GbCRY1 expression is affected by space, circadian cycle and light, and also proves that GbCRY1 is related to ginkgo circadian clock, photomorphogenesis and stoma opening process.
Collapse
Affiliation(s)
- Gongping Nie
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Xian Zhou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Qiling Song
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Mingyue Fu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Xuefeng Wang
- College of Art, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
22
|
Hao X, Li L. Detecting Blue Light-Dependent Protein-Protein Interactions by LexA-Based Yeast Two-Hybrid Assay. Methods Mol Biol 2021; 2297:147-154. [PMID: 33656678 DOI: 10.1007/978-1-0716-1370-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The LexA-based yeast two-hybrid system is one of the most powerful techniques used to detect blue light-dependent protein-protein interactions. In Arabidopsis, many protein-protein interactions in blue light signaling pathway were identified using this system. Here we present an easy and efficient method of the LexA-based yeast two-hybrid assay for testing protein-protein interactions in a blue light-dependent manner.
Collapse
Affiliation(s)
- Xiaolong Hao
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ling Li
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
23
|
Ponnu J. Molecular mechanisms suppressing COP1/SPA E3 ubiquitin ligase activity in blue light. PHYSIOLOGIA PLANTARUM 2020; 169:418-429. [PMID: 32248530 DOI: 10.1111/ppl.13103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 05/23/2023]
Abstract
Arabidopsis CONSTITUTIVE PHOTOMORPHOGENIC1/SUPPRESSOR OF PHYA-105 (COP1/SPA) is an E3 ubiquitin ligase complex that prevents photomorphogenesis in darkness by ubiquitinating and subsequently degrading light-responsive transcription factors. Upon light perception, photoreceptors directly interact with the COP1/SPA complex to suppress its activity. In blue light (450-500 nm of visible spectrum), COP1/SPA activity is inhibited by the cryptochrome photoreceptors (CRY1 and CRY2), FKF1 from the ZEITLUPE family as well as phytochrome A. Together, these photoreceptors regulate vital aspects of plant growth and development from seedling stage to the induction of flowering. This review presents and discusses the recent advances in blue light-mediated suppression of COP1/SPA activity.
Collapse
Affiliation(s)
- Jathish Ponnu
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
24
|
Abstract
Cryptochromes are blue-light receptors that mediate photoresponses in plants. The genomes of most land plants encode two clades of cryptochromes, CRY1 and CRY2, which mediate distinct and overlapping photoresponses within the same species and between different plant species. Photoresponsive protein-protein interaction is the primary mode of signal transduction of cryptochromes. Cryptochromes exist as physiologically inactive monomers in the dark; the absorption of photons leads to conformational change and cryptochrome homooligomerization, which alters the affinity of cryptochromes interacting with cryptochrome-interacting proteins to form various cryptochrome complexes. These cryptochrome complexes, collectively referred to as the cryptochrome complexome, regulate transcription or stability of photoresponsive proteins to modulate plant growth and development. The activity of cryptochromes is regulated by photooligomerization; dark monomerization; cryptochrome regulatory proteins; and cryptochrome phosphorylation, ubiquitination, and degradation. Most of the more than 30 presently known cryptochrome-interacting proteins are either regulated by other photoreceptors or physically interactingwith the protein complexes of other photoreceptors. Some cryptochrome-interacting proteins are also hormonal signaling or regulatory proteins. These two mechanisms enable cryptochromes to integrate blue-light signals with other internal and external signals to optimize plant growth and development.
Collapse
Affiliation(s)
- Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA;
| |
Collapse
|
25
|
Cloning, expression, and characterization of a novel plant type cryptochrome gene from the green alga Haematococcus pluvialis. Protein Expr Purif 2020; 172:105633. [PMID: 32259580 DOI: 10.1016/j.pep.2020.105633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/30/2020] [Indexed: 11/20/2022]
Abstract
A full-length cDNA sequence of plant type CRY (designated Hae-P-CRY) was cloned from the green alga Haematococcus pluvialis. The cDNA sequence was 3608 base pairs (bp) in length, which contained a 2988-bp open reading frame encoding 995 amino acids with molecular mass of 107.7 kDa and isoelectric point of 6.19. Multiple alignment analysis revealed that the deduced amino acid sequence of Hae-P-CRY shared high identity of 47-66% with corresponding plant type CRYs from other eukaryotes. The catalytic motifs of plant type CRYs were detected in the amino acid sequence of Hae-P-CRY including the typical PHR and CTE domains. Phylogenetic analysis showed that the Hae-P-CRY was grouped together with other plant type CRYs from green algae and higher plants, which distinguished from other distinct groups. The transcriptional level of Hae-P-CRY was strongly decreased after 0-4 h under HL stress. In addition, the Hae-P-CRY gene was heterologously expressed in Escherichia coli BL21 (DE3) and successfully purified. The typical spectroscopic characteristics of plant type CRYs were present in Hae-P-CRY indicated that it may be an active enzyme, which provided valuable clue for further functional investigation in the green alga H. pluvialis. These results lay the foundation for further function and interaction protein identification involved in CRYs mediated signal pathway under HL stress in H. pluvialis.
Collapse
|
26
|
Sanchez SE, Rugnone ML, Kay SA. Light Perception: A Matter of Time. MOLECULAR PLANT 2020; 13:363-385. [PMID: 32068156 PMCID: PMC7056494 DOI: 10.1016/j.molp.2020.02.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 05/02/2023]
Abstract
Optimizing the perception of external cues and regulating physiology accordingly help plants to cope with the constantly changing environmental conditions to which they are exposed. An array of photoreceptors and intricate signaling pathways allow plants to convey the surrounding light information and synchronize an endogenous timekeeping system known as the circadian clock. This biological clock integrates multiple cues to modulate a myriad of downstream responses, timing them to occur at the best moment of the day and the year. Notably, the mechanism underlying entrainment of the light-mediated clock is not clear. This review addresses known interactions between the light-signaling and circadian-clock networks, focusing on the role of light in clock entrainment and known molecular players in this process.
Collapse
Affiliation(s)
- Sabrina E Sanchez
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matias L Rugnone
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Falcioni R, Moriwaki T, Perez-Llorca M, Munné-Bosch S, Gibin MS, Sato F, Pelozo A, Pattaro MC, Giacomelli ME, Rüggeberg M, Antunes WC. Cell wall structure and composition is affected by light quality in tomato seedlings. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111745. [PMID: 31931381 DOI: 10.1016/j.jphotobiol.2019.111745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/22/2019] [Accepted: 12/13/2019] [Indexed: 12/27/2022]
Abstract
Light affects many aspects of cell development. Tomato seedlings growing at different light qualities (white, blue, green, red, far-red) and in the dark displayed alterations in cell wall structure and composition. A strong and negative correlation was found between cell wall thickness and hypocotyl growth. Cell walls was thicker under blue and white lights and thinner under far-red light and in the dark, while intermediate values was observed for red or green lights. Additionally, the inside layer surface of cell wall presented random deposited microfibrillae angles under far-red light and in the dark. However, longitudinal transmission electron microscopy indicates a high frequency of microfibrils close to parallels related to the elongation axis in the outer layer. This was confirmed by ultra-high resolution small angle X-ray scattering. These data suggest that cellulose microfibrils would be passively reoriented in the longitudinal direction. As the cell expands, the most recently deposited layers (inside) behave differentially oriented compared to older (outer) layers in the dark or under FR lights, agreeing with the multinet growth hypothesis. High Ca and pectin levels were found in the cell wall of seedlings growing under blue and white light, also contributing to the low extensibility of the cell wall. Low Ca and pectin contents were found in the dark and under far-red light. Auxins marginally stimulated growth in thin cell wall circumstances. Hypocotyl growth was stimulated by gibberellins under blue light.
Collapse
Affiliation(s)
- Renan Falcioni
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil; Plant Biochemistry Laboratory, Department of Biochemistry, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Thaise Moriwaki
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Marina Perez-Llorca
- Antiox Research Group, Department of Evolutionary Biology, Ecology and Environmental Sciences, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 645, 08028 Barcelona, Spain
| | - Sergi Munné-Bosch
- Antiox Research Group, Department of Evolutionary Biology, Ecology and Environmental Sciences, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 645, 08028 Barcelona, Spain
| | - Mariana Sversut Gibin
- Optical Spectroscopy and Thermophysical Properties Research Group, Department of Physics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Francielle Sato
- Optical Spectroscopy and Thermophysical Properties Research Group, Department of Physics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Andressa Pelozo
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil; Plant Anatomy Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Mariana Carmona Pattaro
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Marina Ellen Giacomelli
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Markus Rüggeberg
- Wood Material Science, Institute for Building Materials, Swiss Federal Institute of Technology Zurich (ETH Zurich), Schafmattstrasse 6, CH-8093 Zurich, Switzerland
| | - Werner Camargos Antunes
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
28
|
Hoang QTN, Han YJ, Kim JI. Plant Phytochromes and their Phosphorylation. Int J Mol Sci 2019; 20:ijms20143450. [PMID: 31337079 PMCID: PMC6678601 DOI: 10.3390/ijms20143450] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Extensive research over several decades in plant light signaling mediated by photoreceptors has identified the molecular mechanisms for how phytochromes regulate photomorphogenic development, which includes degradation of phytochrome-interacting factors (PIFs) and inactivation of COP1-SPA complexes with the accumulation of master transcription factors for photomorphogenesis, such as HY5. However, the initial biochemical mechanism for the function of phytochromes has not been fully elucidated. Plant phytochromes have long been known as phosphoproteins, and a few protein phosphatases that directly interact with and dephosphorylate phytochromes have been identified. However, there is no report thus far of a protein kinase that acts on phytochromes. On the other hand, plant phytochromes have been suggested as autophosphorylating serine/threonine protein kinases, proposing that the kinase activity might be important for their functions. Indeed, the autophosphorylation of phytochromes has been reported to play an important role in the regulation of plant light signaling. More recently, evidence that phytochromes function as protein kinases in plant light signaling has been provided using phytochrome mutants displaying reduced kinase activities. In this review, we highlight recent advances in the reversible phosphorylation of phytochromes and their functions as protein kinases in plant light signaling.
Collapse
Affiliation(s)
- Quyen T N Hoang
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| | - Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
29
|
Alakärppä E, Taulavuori E, Valledor L, Marttila T, Jokipii-Lukkari S, Karppinen K, Nguyen N, Taulavuori K, Häggman H. Early growth of Scots pine seedlings is affected by seed origin and light quality. JOURNAL OF PLANT PHYSIOLOGY 2019; 237:120-128. [PMID: 31078909 DOI: 10.1016/j.jplph.2019.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Plants have evolved a suite of photoreceptors to perceive information from the surrounding light conditions. The aim of this study was to examine photomorphogenic effects of light quality on the growth of Scots pine (Pinus sylvestris L.) seedlings representing southern (60 °N) and northern (68 °N) origins in Finland. We measured the growth characteristics and the expression of light-responsive genes from seedlings grown under two LED light spectra: (1) Retarder (blue and red wavelengths in ratio 0.7) inducing compact growth, and (2) Booster (moderate in blue, green and far-red wavelengths, and high intensity of red light) promoting shoot elongation. The results show that root elongation, biomass, and branching were reduced under Retarder spectrum in the seedlings representing both origins, while inhibition in seed germination and shoot elongation was mainly detected in the seedlings of northern origin. The expression of ZTL and HY5 was related to Scots pine growth under both light spectra. Moreover, the expression of PHYN correlated with growth when exposed to Retarder, whereas CRY2 expression was associated with growth under Booster. Our data indicates that blue light and the deficiency of far-red light limit the growth of Scots pine seedlings and that northern populations are more sensitive to blue light than southern populations. Furthermore, the data analyses suggest that ZTL and HY5 broadly participate in the light-mediated growth regulation of Scots pine, whereas PHYN responses to direct sunlight and the role of CRY2 is in shade avoidance. Altogether, our study extends the knowledge of light quality and differential gene expression affecting the early growth of Scots pines representing different latitudinal origins.
Collapse
Affiliation(s)
- Emmi Alakärppä
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
| | - Erja Taulavuori
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
| | - Luis Valledor
- Plant Physiology, Faculty of Biology, University of Oviedo, Cat. Rodrígo Uría s/n, E-33071, Oviedo, Spain.
| | - Toni Marttila
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
| | - Soile Jokipii-Lukkari
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, FI-00014, Helsinki, Finland.
| | - Katja Karppinen
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
| | - Nga Nguyen
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
| | - Kari Taulavuori
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
| | - Hely Häggman
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
| |
Collapse
|
30
|
Pooam M, Arthaut LD, Burdick D, Link J, Martino CF, Ahmad M. Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark. PLANTA 2019; 249:319-332. [PMID: 30194534 DOI: 10.1007/s00425-018-3002-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/29/2018] [Indexed: 05/20/2023]
Abstract
Arabidopsis cryptochrome mediates responses to magnetic fields that have been applied in the absence of light, consistent with flavin reoxidation as the primary detection mechanism. Cryptochromes are highly conserved blue-light-absorbing flavoproteins which have been linked to the perception of electromagnetic stimuli in numerous organisms. These include sensing the direction of the earth's magnetic field in migratory birds and the intensity of magnetic fields in insects and plants. When exposed to light, cryptochromes undergo flavin reduction/reoxidation redox cycles leading to biological activation which generate radical pairs thought to be the basis for magnetic sensitivity. However, the nature of the magnetically sensitive radical pairs and the steps at which they act during the cryptochrome redox cycle are currently a matter of debate. Here, we investigate the response of Arabidopsis cryptochrome-1 in vivo to a static magnetic field of 500 μT (10 × earth's field) using both plant growth and light-dependent phosphorylation as an assay. Cryptochrome responses to light were enhanced by the magnetic field, as indicated by increased inhibition of hypocotyl elongation and increased cryptochrome phosphorylation. However, when light and dark intervals were given intermittently, a plant response to the magnetic field was observed even when the magnetic field was given exclusively during the dark intervals between light exposures. This indicates that the magnetically sensitive reaction step in the cryptochrome photocycle must occur during flavin reoxidation, and likely involves the formation of reactive oxygen species.
Collapse
Affiliation(s)
- Marootpong Pooam
- Sorbonne Universités, CNRS, UMR8256, IBPS, Photobiology Research Group, 7 Quai St. Bernard, 75005, Paris, France
| | - Louis-David Arthaut
- Sorbonne Universités, CNRS, UMR8256, IBPS, Photobiology Research Group, 7 Quai St. Bernard, 75005, Paris, France
| | - Derek Burdick
- Sorbonne Universités, CNRS, UMR8256, IBPS, Photobiology Research Group, 7 Quai St. Bernard, 75005, Paris, France
- Xavier University, 3800 Victory Parkway, Cincinnati, OH, 45207, USA
| | - Justin Link
- Xavier University, 3800 Victory Parkway, Cincinnati, OH, 45207, USA
| | - Carlos F Martino
- Department of Biomedical Engineering, Florida Institute of Technology, 150W University Blvd, Melbourne, FL, 32901, USA
| | - Margaret Ahmad
- Sorbonne Universités, CNRS, UMR8256, IBPS, Photobiology Research Group, 7 Quai St. Bernard, 75005, Paris, France.
- Xavier University, 3800 Victory Parkway, Cincinnati, OH, 45207, USA.
| |
Collapse
|
31
|
Hinge region of Arabidopsis phyA plays an important role in regulating phyA function. Proc Natl Acad Sci U S A 2018; 115:E11864-E11873. [PMID: 30478060 DOI: 10.1073/pnas.1813162115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phytochrome A (phyA) is the only plant photoreceptor that perceives far-red light and then mediates various responses to this signal. Phosphorylation and dephosphorylation of oat phyA have been extensively studied, and it was shown that phosphorylation of a serine residue in the hinge region of oat phyA could regulate the interaction of phyA with its signal transducers. However, little is known about the role of the hinge region of Arabidopsis phyA. Here, we report that three sites in the hinge region of Arabidopsis phyA (i.e., S590, T593, and S602) are essential in regulating phyA function. Mutating all three of these sites to either alanines or aspartic acids impaired phyA function, changed the interactions of mutant phyA with FHY1 and FHL, and delayed the degradation of mutant phyA upon light exposure. Moreover, the in vivo formation of a phosphorylated phyA form was greatly affected by these mutations, while our data indicated that the abundance of this phosphorylated phyA form correlated well with the extent of phyA function, thus suggesting a pivotal role of the phosphorylated phyA in inducing the far-red light response. Taking these data together, our study reveals the important role of the hinge region of Arabidopsis phyA in regulating phyA phosphorylation and function, thus linking specific residues in the hinge region to the regulatory mechanisms of phyA phosphorylation.
Collapse
|
32
|
Li X, Ma M, Shao W, Wang H, Fan R, Chen X, Wang X, Zhan Y, Zeng F. Molecular cloning and functional analysis of a UV-B photoreceptor gene, BpUVR8 (UV Resistance Locus 8), from birch and its role in ABA response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:294-308. [PMID: 30080616 DOI: 10.1016/j.plantsci.2018.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 06/02/2018] [Accepted: 06/12/2018] [Indexed: 05/21/2023]
Abstract
As a photoreceptor specifically for UV-B light, UVR8 gene plays an important role in the photomorphogenesis and developmental growth of plants. In this research, we isolated the UVR8 gene from birch, named BpUVR8 (AHY02156). BpUVR8 overexpression rescued the uvr8 mutant phenotype using functional complementation assay of BpUVR8 in Arabidopsis uvr8 mutants, which showed that the function of UVR8 is conserved between Arabidopsis and birch. The expression analysis of BpUVR8 indicated that this gene is expressed in various tissues, but its expression levels in leaves are higher than in other organs. Moreover, abiotic stress factors, such as UV-B, salinity, and abscisic acid (ABA) can induce the expression of BpUVR8 gene. Interestingly, the analysis of promoter activity indicated that BpUVR8 promoter not only has the promoting activity but can also respond to the induction of abiotic stress and ABA signal. So, we analyzed its function in ABA response via transgenic UVR8 overexpression in Arabidopsis. The BpUVR8 enhances the susceptibility to ABA, which indicates that BpUVR8 is regulated by ABA and can inhibit seed germination. The root length of 20-day-old 35S::BpUVR8/WT transgenic plants was 18% reduced as compared to the wild-type under the ABA treatment. The membrane of the BpUVR8-overexpressing in Arabidopsis thaliana was the most damaged after ABA treatment and 35S::BpUVR8/WT transgenic plant was more sensitive to ABA than the wild type. These results showed that BpUVR8 is a positive regulator in the ABA signal transduction pathway. In the presence of low dose of UV-B, the sensitivity of wild-type and 35S::BpUVR8/WT plants to ABA was reduced. Moreover, BpUVR8 regulates the expression of a subset of ABA-responsive genes, both in Arabidopsis and Betula platyphylla, under the ABA treatment. Our data provide evidence that BpUVR8 is a positive regulator in the UV-B-induced photomorphogenesis in plants. Moreover, we propose from this research that BpUVR8 might have an important role in integrating plant growth and ABA signaling pathway.
Collapse
Affiliation(s)
- Xiaoyi Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Minghao Ma
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wanxuan Shao
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hengtao Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ruixin Fan
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiaohui Chen
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xigang Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Yaguang Zhan
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Fansuo Zeng
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
33
|
Agliassa C, Narayana R, Christie JM, Maffei ME. Geomagnetic field impacts on cryptochrome and phytochrome signaling. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:32-40. [DOI: 10.1016/j.jphotobiol.2018.05.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 11/15/2022]
|
34
|
Pashkovskiy PP, Soshinkova TN, Korolkova DV, Kartashov AV, Zlobin IE, Lyubimov VY, Kreslavski VD, Kuznetsov VV. The effect of light quality on the pro-/antioxidant balance, activity of photosystem II, and expression of light-dependent genes in Eutrema salsugineum callus cells. PHOTOSYNTHESIS RESEARCH 2018; 136:199-214. [PMID: 29071562 DOI: 10.1007/s11120-017-0459-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
The antioxidant balance, photochemical activity of photosystem II (PSII), and photosynthetic pigment content, as well as the expression of genes involved in the light signalling of callus lines of Eutrema salsugineum plants (earlier Thellungiella salsuginea) under different spectral light compositions were studied. Growth of callus in red light (RL, maximum 660 nm), in contrast to blue light (BL, maximum 450 nm), resulted in a lower H2O2 content and thiobarbituric acid reactive substances (TBARS). The BL increased the activities of key antioxidant enzymes in comparison with the white light (WL) and RL and demonstrated the minimum level of PSII photochemical activity. The activities of catalase (CAT) and peroxidase (POD) had the highest values in BL, which, along with the increased H2O2 and TBARS content, indicate a higher level of oxidative stress in the cells. The expression levels of the main chloroplast protein genes of PSII (PSBA and PSBD), the NADPH-dependent oxidase gene of the plasma membrane (RbohD), the protochlorophyllide oxidoreductase genes (POR B, C) involved in the biosynthesis of chlorophyll, and the key photoreceptor signalling genes (CIB1, CRY2, PhyB, PhyA, and PIF3) were determined. Possible mechanisms of light quality effects on the physiological parameters of callus cells are discussed.
Collapse
Affiliation(s)
- P P Pashkovskiy
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia.
| | - T N Soshinkova
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| | - D V Korolkova
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| | - A V Kartashov
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| | - I E Zlobin
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| | - V Yu Lyubimov
- Institute of Basic Biological Problems Russian Academy of Sciences, Pushchino, Russia
| | - V D Kreslavski
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
- Institute of Basic Biological Problems Russian Academy of Sciences, Pushchino, Russia
| | - Vl V Kuznetsov
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
35
|
Zhang Y, Jiang L, Li Y, Chen Q, Ye Y, Zhang Y, Luo Y, Sun B, Wang X, Tang H. Effect of Red and Blue Light on Anthocyanin Accumulation and Differential Gene Expression in Strawberry (Fragaria × ananassa). Molecules 2018; 23:E820. [PMID: 29614032 PMCID: PMC6017741 DOI: 10.3390/molecules23040820] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 01/12/2023] Open
Abstract
Light conditions can cause quantitative and qualitative changes in anthocyanin. However, little is known about the underlying mechanism of light quality-regulated anthocyanin accumulation in fruits. In this study, light-emitting diodes (LEDs) were applied to explore the effect of red and blue light on strawberry coloration. The results showed contents of total anthocyanins (TA), pelargonidin 3-glucoside (Pg3G) and pelargonidin 3-malonylglucoside (Pg3MG) significantly increased after blue and red light treatment. Pg3G was the major anthocyanin component in strawberry fruits, accounting for more than 80% of TA, whereas Pg3MG accounted for a smaller proportion. Comparative transcriptome analysis was conducted using libraries from the treated strawberries. A total of 1402, 5034, and 3764 differentially-expressed genes (DEGs) were identified in three pairwise comparisons (red light versus white light, RL-VS-WL; blue light versus white light, BL-VS-WL; blue light versus red light, BL-VS-RL), respectively. Photoreceptors and light transduction components remained dynamic to up-regulate the expression of regulatory factors and structural genes related to anthocyanin biosynthesis under red and white light, whereas most genes had low expression levels that were not consistent with the highest total anthocyanin content under blue light. Therefore, the results indicated that light was an essential environmental factor for anthocyanin biosynthesis before the anthocyanin concentration reached saturation in strawberry fruits, and blue light could quickly stimulate the accumulation of anthocyanin in the fruit. In addition, red light might contribute to the synthesis of proanthocyanidins by inducing LAR and ANR.
Collapse
Affiliation(s)
- Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Leiyu Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yali Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yuntian Ye
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
36
|
Yang C, Xie F, Jiang Y, Li Z, Huang X, Li L. Phytochrome A Negatively Regulates the Shade Avoidance Response by Increasing Auxin/Indole Acidic Acid Protein Stability. Dev Cell 2018; 44:29-41.e4. [DOI: 10.1016/j.devcel.2017.11.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/15/2017] [Accepted: 11/20/2017] [Indexed: 11/16/2022]
|
37
|
Wang Q, Liu Q, Wang X, Zuo Z, Oka Y, Lin C. New insights into the mechanisms of phytochrome-cryptochrome coaction. THE NEW PHYTOLOGIST 2018; 217:547-551. [PMID: 29139123 PMCID: PMC6677561 DOI: 10.1111/nph.14886] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/02/2017] [Indexed: 05/18/2023]
Abstract
Contents Summary 547 I. Introduction 547 II. Phytochromes mediate light-induced transcription of BICs to inactivate cryptochromes 548 III. PPKs phosphorylate light-signaling proteins and histones to affect plant development 548 IV. Prospect 550 Acknowledgements 550 References 550 SUMMARY: Plants perceive and respond to light signals by multiple sensory photoreceptors, including phytochromes and cryptochromes, which absorb different wavelengths of light to regulate genome expression and plant development. Photophysiological analyses have long revealed the coordinated actions of different photoreceptors, a phenomenon referred to as the photoreceptor coaction. The mechanistic explanations of photoreceptor coactions are not fully understood. The function of direct protein-protein interaction of phytochromes and cryptochromes and common signaling molecules of these photoreceptors, such as SPA1/COP1 E3 ubiquitin ligase complex and bHLH transcription factors PIFs, would partially explain phytochrome-cryptochrome coactions. In addition, newly discovered proteins that block cryptochrome photodimerization or catalyze cryptochrome phosphorylation may also participate in the phytochrome and cryptochrome coaction. This Tansley insight, which is not intended to make a comprehensive review of the studies of photoreceptor coactions, attempts to highlight those recent findings and their possible roles in the photoreceptor coaction.
Collapse
Affiliation(s)
- Qin Wang
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Qing Liu
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Wang
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Zecheng Zuo
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Oakenfull RJ, Davis SJ. Shining a light on the Arabidopsis circadian clock. PLANT, CELL & ENVIRONMENT 2017; 40:2571-2585. [PMID: 28732105 DOI: 10.1111/pce.13033] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 05/23/2023]
Abstract
The circadian clock provides essential timing information to ensure optimal growth to prevailing external environmental conditions. A major time-setting mechanism (zeitgeber) in clock synchronization is light. Differing light wavelengths, intensities, and photoperiodic duration are processed for the clock-setting mechanism. Many studies on light-input pathways to the clock have focused on Arabidopsis thaliana. Photoreceptors are specific chromic proteins that detect light signals and transmit this information to the central circadian oscillator through a number of different signalling mechanisms. The most well-characterized clock-mediating photoreceptors are cryptochromes and phytochromes, detecting blue, red, and far-red wavelengths of light. Ultraviolet and shaded light are also processed signals to the oscillator. Notably, the clock reciprocally generates rhythms of photoreceptor action leading to so-called gating of light responses. Intermediate proteins, such as Phytochrome interacting factors (PIFs), constitutive photomorphogenic 1 (COP1) and EARLY FLOWERING 3 (ELF3), have been established in signalling pathways downstream of photoreceptor activation. However, the precise details for these signalling mechanisms are not fully established. This review highlights both historical and recent efforts made to understand overall light input to the oscillator, first looking at how each wavelength of light is detected, this is then related to known input mechanisms and their interactions.
Collapse
Affiliation(s)
| | - Seth J Davis
- Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
39
|
Matsoukas IG. Crosstalk between Photoreceptor and Sugar Signaling Modulates Floral Signal Transduction. Front Physiol 2017; 8:382. [PMID: 28659814 PMCID: PMC5466967 DOI: 10.3389/fphys.2017.00382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
Over the past decade, integrated genetic, cellular, proteomic and genomic approaches have begun to unravel the surprisingly crosstalk between photoreceptors and sugar signaling in regulation of floral signal transduction. Although a number of physiological factors in the pathway have been identified, the molecular genetic interactions of some components are less well understood. The further elucidation of the crosstalk mechanisms between photoreceptors and sugar signaling will certainly contribute to our better understanding of the developmental circuitry that controls floral signal transduction. This article summarizes our current knowledge of this crosstalk, which has not received much attention, and suggests possible directions for future research.
Collapse
Affiliation(s)
- Ianis G Matsoukas
- School of Life Sciences, University of WarwickCoventry, United Kingdom
| |
Collapse
|
40
|
Coordination of Cryptochrome and Phytochrome Signals in the Regulation of Plant Light Responses. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7010025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Maslova SP, Golovko TK. [Tropisms in underground shoots — stolons and rhizomes]. ZHURNAL OBSHCHEI BIOLOGII 2017; 78:47-60. [PMID: 30024677 DOI: 10.1134/s207908641803009x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Indexed: 05/24/2023]
Abstract
In the review, the problem of plant movements (photo- and gravitropism) is discussed. The contemporary data on physiological and molecular mechanisms of tropisms in underground shoots and roots are presented. Special attention is paid to diagravitropism phenomenon in underground shoots (stolons and rhizomes) that grow in perpendicular direction to the Earth's gravitational axis. The role of phytochrome control in maintaining the horizontal growth of stolons and rhizomes is demonstrated, and physiological mechanisms of photo- and diagravitropism are discussed. It is shown that switching of an underground shoot tip from diatropic to ortotropic (vertical) growth is dependent on the carbohydrate and phytohor-mone balance. The perspectives are outlined for further exploratory studies on mechanisms of growth orientation and morphogenesis of underground diagravitropic shoots.
Collapse
|
42
|
Yang Z, Liu B, Su J, Liao J, Lin C, Oka Y. Cryptochromes Orchestrate Transcription Regulation of Diverse Blue Light Responses in Plants. Photochem Photobiol 2017; 93:112-127. [PMID: 27861972 DOI: 10.1111/php.12663] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/02/2016] [Indexed: 11/30/2022]
Abstract
Blue light affects many aspects of plant growth and development throughout the plant lifecycle. Plant cryptochromes (CRYs) are UV-A/blue light photoreceptors that play pivotal roles in regulating blue light-mediated physiological responses via the regulated expression of more than one thousand genes. Photoactivated CRYs regulate transcription via two distinct mechanisms: indirect promotion of the activity of transcription factors by inactivation of the COP1/SPA E3 ligase complex or direct activation or inactivation of at least two sets of basic helix-loop-helix transcription factor families by physical interaction. Hence, CRYs govern intricate mechanisms that modulate activities of transcription factors to regulate multiple aspects of blue light-responsive photomorphogenesis. Here, we review recent progress in dissecting the pathways of CRY signaling and discuss accumulating evidence that shows how CRYs regulate broad physiological responses to blue light.
Collapse
Affiliation(s)
- Zhaohe Yang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bobin Liu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiakai Liao
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
43
|
Hetmann A, Wujak M, Kowalczyk S. Protein Transphosphorylation During the Mutual Interaction between Phytochrome A and a Nuclear Isoform of Nucleoside Diphosphate Kinase Is Regulated by Red Light. BIOCHEMISTRY (MOSCOW) 2017; 81:1153-1162. [PMID: 27908239 DOI: 10.1134/s0006297916100126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The nuclear isoform of nucleoside diphosphate kinase isoenzyme NDPK-In undergoes strong catalytic activation upon its interaction with the active form of phytochrome A (Pfr) in red light. The autophosphorylation or intermolecular transphosphorylation of NDPK-In leads to the formation of phosphoester bonds stable in acidic solution. The phosphate residue of the phosphamide bond in the active center of NDPK-In can also be transferred to serine and threonine residues localized in other proteins, including phytochrome A. Phytochrome A, similarly to NDPK-In, undergoes autophosphorylation on serine and threonine residues and can phosphorylate some potential substrate proteins. The physical interaction between phytochrome A in the Pfr form and NDPK-In results in a significant increase in the kinase activity of NDPK-In. The results presented in this work indicate that NDPK-In may function as a protein kinase regulated by light.
Collapse
Affiliation(s)
- A Hetmann
- Nicolaus Copernicus University, Faculty of Biology and Environment Protection, Department of Biochemistry, Toruń 87-100, Poland.
| | | | | |
Collapse
|
44
|
Vanhaelewyn L, Schumacher P, Poelman D, Fankhauser C, Van Der Straeten D, Vandenbussche F. REPRESSOR OF ULTRAVIOLET-B PHOTOMORPHOGENESIS function allows efficient phototropin mediated ultraviolet-B phototropism in etiolated seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:215-221. [PMID: 27717456 DOI: 10.1016/j.plantsci.2016.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 05/04/2023]
Abstract
Ultraviolet B (UV-B) light is a part of the solar radiation which has significant effects on plant morphology, even at low doses. In Arabidopsis, many of these morphological changes have been attributed to a specific UV-B receptor, UV resistance locus 8 (UVR8). Recent findings showed that next to phototropin regulated phototropism, UVR8 mediated signaling is able of inducing directional bending towards UV-B light in etiolated seedlings of Arabidopsis, in a phototropin independent manner. In this study, kinetic analysis of phototropic bending was used to evaluate the relative contribution of each of these pathways in UV-B mediated phototropism. Diminishing UV-B light intensity favors the importance of phototropins. Molecular and genetic analyses suggest that UV-B is capable of inducing phototropin signaling relying on phototropin kinase activity and regulation of NPH3. Moreover, enhanced UVR8 responses in the UV-B hypersensitive rup1rup2 mutants interferes with the fast phototropin mediated phototropism. Together the data suggest that phototropins are the most important receptors for UV-B induced phototropism in etiolated seedlings, and a RUP mediated negative feedback pathway prevents UVR8 signaling to interfere with the phototropin dependent response.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Paolo Schumacher
- Center for Integrative Genomics, Faculty of Biology and Medicine, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Dirk Poelman
- Lumilab, Department of Solid State Sciences, Faculty of Sciences, Ghent University, Krijgslaan 181, B-9000 Gent, Belgium
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium.
| |
Collapse
|
45
|
Ahmad M. Photocycle and signaling mechanisms of plant cryptochromes. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:108-115. [PMID: 27423124 DOI: 10.1016/j.pbi.2016.06.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 05/20/2023]
Abstract
Cryptochromes are flavoprotein blue light receptors that control many aspects of plant growth and development including seedling de-etiolation, elongation growth, the initiation of flowering, and entrainment of the circadian clock. Photon absorption by Arabidopsis cryptochromes cry1 and cry2 initiates electron transfer to the oxidized flavin cofactor (FADox) and formation of the presumed biological signaling state FADH°. Current literature on the nature and formation of the signaling state is reviewed, and potential novel roles for cryptochromes in oxidative stress and as magnetosensors are discussed in light of the cryptochrome photocycle.
Collapse
Affiliation(s)
- Margaret Ahmad
- UMR 8256B B2A, IBPS, Casier 156, Université Pierre et Marie Curie, 7 Quai St. Bernard, 75005 Paris, France; Xavier University, 3800 Victory Parkway, Cincinnati, OH 45207, USA.
| |
Collapse
|
46
|
Evidence that phytochrome functions as a protein kinase in plant light signalling. Nat Commun 2016; 7:11545. [PMID: 27173885 PMCID: PMC4869175 DOI: 10.1038/ncomms11545] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/07/2016] [Indexed: 11/15/2022] Open
Abstract
It has been suggested that plant phytochromes are autophosphorylating serine/threonine kinases. However, the biochemical properties and functional roles of putative phytochrome kinase activity in plant light signalling are largely unknown. Here, we describe the biochemical and functional characterization of Avena sativa phytochrome A (AsphyA) as a potential protein kinase. We provide evidence that phytochrome-interacting factors (PIFs) are phosphorylated by phytochromes in vitro. Domain mapping of AsphyA shows that the photosensory core region consisting of PAS-GAF-PHY domains in the N-terminal is required for the observed kinase activity. Moreover, we demonstrate that transgenic plants expressing mutant versions of AsphyA, which display reduced activity in in vitro kinase assays, show hyposensitive responses to far-red light. Further analysis reveals that far-red light-induced phosphorylation and degradation of PIF3 are significantly reduced in these transgenic plants. Collectively, these results suggest a positive relationship between phytochrome kinase activity and photoresponses in plants. Phytochromes regulate plant responses to environmental light conditions but despite extensive research the initial events in phytochrome signaling remain uncertain. Here, Shin et al. provide evidence that phytochrome phosphorylates target proteins via kinase activity in the N-terminal core domain.
Collapse
|
47
|
Nagano S. From photon to signal in phytochromes: similarities and differences between prokaryotic and plant phytochromes. JOURNAL OF PLANT RESEARCH 2016; 129:123-135. [PMID: 26818948 DOI: 10.1007/s10265-016-0789-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/03/2016] [Indexed: 06/05/2023]
Abstract
Phytochromes represent a diverse family of red/far-red-light absorbing chromoproteins which are widespread across plants, cyanobacteria, non-photosynthetic bacteria, and more. Phytochromes play key roles in regulating physiological activities in response to light, a critical element in the acclimatization to the environment. The discovery of prokaryotic phytochromes facilitated structural studies which deepened our understanding on the general mechanisms of phytochrome action. An extrapolation of this information to plant phytochromes is justified for universally conserved functional aspects, but it is also true that there are many aspects which are unique to plant phytochromes. Here I summarize some structural studies carried out to date on both prokaryotic and plant phytochromes. I also attempt to identify aspects which are common or unique to plant and prokaryotic phytochromes. Phytochrome themselves, as well as the downstream signaling pathway in plants are more complex than in their prokaryotic counterparts. Thus many structural and functional aspects of plant phytochrome remain unresolved.
Collapse
Affiliation(s)
- Soshichiro Nagano
- Institute for Plant Physiology, Justus Liebig University Giessen, Senckenbergstrasse 3, 35390, Giessen, Germany.
| |
Collapse
|
48
|
Liu B, Yang Z, Gomez A, Liu B, Lin C, Oka Y. Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2016; 129:137-48. [PMID: 26810763 PMCID: PMC6138873 DOI: 10.1007/s10265-015-0782-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/08/2015] [Indexed: 05/18/2023]
Abstract
Cryptochromes (CRY) are flavoproteins that direct a diverse array of developmental processes in response to blue light in plants. Conformational changes in CRY are induced by the absorption of photons and result in the propagation of light signals to downstream components. In Arabidopsis, CRY1 and CRY2 serve both distinct and partially overlapping functions in regulating photomorphogenic responses and photoperiodic flowering. For example, both CRY1 and CRY2 regulate the abundance of transcription factors by directly reversing the activity of E3 ubiquitin ligase on CONSTITUTIVE PHOTOMORPHOGENIC 1 and SUPPRESSOR OF PHYA-105 1 complexes in a blue light-dependent manner. CRY2 also specifically governs a photoperiodic flowering mechanism by directly interacting with a transcription factor called CRYPTOCHROME-INTERACTING BASIC-HELIX-LOOP-HELIX. Recently, structure/function analysis of CRY1 revealed that the CONSTITUTIVE PHOTOMORPHOGENIC 1 independent pathway is also involved in CRY1-mediated inhibition of hypocotyl elongation. CRY1 and CRY2 thus not only share a common pathway but also relay light signals through distinct pathways, which may lead to altered developmental programs in plants.
Collapse
Affiliation(s)
- Bobin Liu
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhaohe Yang
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Adam Gomez
- Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100081, People's Republic of China
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Yoshito Oka
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
49
|
He Z, Zhao X, Kong F, Zuo Z, Liu X. TCP2 positively regulates HY5/HYH and photomorphogenesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:775-85. [PMID: 26596765 PMCID: PMC4737077 DOI: 10.1093/jxb/erv495] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Light regulates plant growth and development via multiple photoreceptors including phytochromes and cryptochromes. Although the functions of photoreceptors have been studied extensively, questions remain regarding the involvement of cryptochromes in photomorphogenesis. In this study, we identified a protein, TEOSINTE-LIKE1, CYCLOIDEA, and PROLIFERATING CELL FACTOR 2 (TCP2), which interacts with the cryptochrome 1 (CRY1) protein in yeast and plant cells via the N-terminal domains of both proteins. Transgenic plants overexpressing TCP2 displayed a light-dependent short hypocotyl phenotype, especially in response to blue light. Moreover, light affected TCP2 expression in a wavelength-dependent manner and TCP2 positively regulates mRNA expression of HYH and HY5. These results support the hypothesis that TCP2 is a transcription activator which acts downstream of multiple photoreceptors, including CRY1.
Collapse
Affiliation(s)
- Zhimin He
- College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoying Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Fanna Kong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zecheng Zuo
- College of Plant Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Xuanming Liu
- College of Biology, Hunan University, Changsha 410082, China State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
50
|
Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc Natl Acad Sci U S A 2015; 113:224-9. [PMID: 26699514 DOI: 10.1073/pnas.1511437113] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryptochrome 1 (CRY1) is a blue light receptor that mediates primarily blue-light inhibition of hypocotyl elongation. Very little is known of the mechanisms by which CRY1 affects growth. Blue light and temperature are two key environmental signals that profoundly affect plant growth and development, but how these two abiotic factors integrate remains largely unknown. Here, we show that blue light represses high temperature-mediated hypocotyl elongation via CRY1. Furthermore, CRY1 interacts directly with PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) in a blue light-dependent manner to repress the transcription activity of PIF4. CRY1 represses auxin biosynthesis in response to elevated temperature through PIF4. Our results indicate that CRY1 signal by modulating PIF4 activity, and that multiple plant photoreceptors [CRY1 and PHYTOCHROME B (PHYB)] and ambient temperature can mediate morphological responses through the same signaling component-PIF4.
Collapse
|