1
|
Drewell RA, Klonaros D, Dresch JM. Transcription factor expression landscape in Drosophila embryonic cell lines. BMC Genomics 2024; 25:307. [PMID: 38521929 PMCID: PMC10960990 DOI: 10.1186/s12864-024-10241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Transcription factor (TF) proteins are a key component of the gene regulatory networks that control cellular fates and function. TFs bind DNA regulatory elements in a sequence-specific manner and modulate target gene expression through combinatorial interactions with each other, cofactors, and chromatin-modifying proteins. Large-scale studies over the last two decades have helped shed light on the complex network of TFs that regulate development in Drosophila melanogaster. RESULTS Here, we present a detailed characterization of expression of all known and predicted Drosophila TFs in two well-established embryonic cell lines, Kc167 and S2 cells. Using deep coverage RNA sequencing approaches we investigate the transcriptional profile of all 707 TF coding genes in both cell types. Only 103 TFs have no detectable expression in either cell line and 493 TFs have a read count of 5 or greater in at least one of the cell lines. The 493 TFs belong to 54 different DNA-binding domain families, with significant enrichment of those in the zf-C2H2 family. We identified 123 differentially expressed genes, with 57 expressed at significantly higher levels in Kc167 cells than S2 cells, and 66 expressed at significantly lower levels in Kc167 cells than S2 cells. Network mapping reveals that many of these TFs are crucial components of regulatory networks involved in cell proliferation, cell-cell signaling pathways, and eye development. CONCLUSIONS We produced a reference TF coding gene expression dataset in the extensively studied Drosophila Kc167 and S2 embryonic cell lines, and gained insight into the TF regulatory networks that control the activity of these cells.
Collapse
Affiliation(s)
- Robert A Drewell
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA.
| | - Daniel Klonaros
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA
| | - Jacqueline M Dresch
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA
| |
Collapse
|
2
|
Morrow H, Mirth CK. Timing Drosophila development through steroid hormone action. Curr Opin Genet Dev 2024; 84:102148. [PMID: 38271845 DOI: 10.1016/j.gde.2023.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Specifically timed pulses of the moulting hormone ecdysone are necessary for developmental progression in insects, guiding development through important milestones such as larval moults, pupation and metamorphosis. It also coordinates the acquisition of cell identities, known as cell patterning, and growth in a tissue-specific manner. In the absence of ecdysone, the ecdysone receptor heterodimer Ecdysone Receptor and Ultraspiracle represses expression of target primary response genes, which become de-repressed as the ecdysone titre rises. However, ecdysone signalling elicits both repressive and activating responses in a temporal and tissue-specific manner. To understand how ecdysone achieves such specificity, this review explores the layers of gene regulation involved in stage-appropriate ecdysone responses in Drosophila fruit flies.
Collapse
Affiliation(s)
- Hannah Morrow
- School of Biological Sciences, Monash University, Clayton, Victoria 3000, Australia.
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Clayton, Victoria 3000, Australia
| |
Collapse
|
3
|
Perez-Mockus G, Cocconi L, Alexandre C, Aerne B, Salbreux G, Vincent JP. The Drosophila ecdysone receptor promotes or suppresses proliferation according to ligand level. Dev Cell 2023; 58:2128-2139.e4. [PMID: 37769663 PMCID: PMC7615657 DOI: 10.1016/j.devcel.2023.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/20/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
The steroid hormone 20-hydroxy-ecdysone (20E) promotes proliferation in Drosophila wing precursors at low titer but triggers proliferation arrest at high doses. Remarkably, wing precursors proliferate normally in the complete absence of the 20E receptor, suggesting that low-level 20E promotes proliferation by overriding the default anti-proliferative activity of the receptor. By contrast, 20E needs its receptor to arrest proliferation. Dose-response RNA sequencing (RNA-seq) analysis of ex vivo cultured wing precursors identifies genes that are quantitatively activated by 20E across the physiological range, likely comprising positive modulators of proliferation and other genes that are only activated at high doses. We suggest that some of these "high-threshold" genes dominantly suppress the activity of the pro-proliferation genes. We then show mathematically and with synthetic reporters that combinations of basic regulatory elements can recapitulate the behavior of both types of target genes. Thus, a relatively simple genetic circuit can account for the bimodal activity of this hormone.
Collapse
Affiliation(s)
| | - Luca Cocconi
- The Francis Crick Institute, London NW1 1AT, UK.
| | | | | | - Guillaume Salbreux
- The Francis Crick Institute, London NW1 1AT, UK; Department of Genetics and Evolution, University of Geneva, Quai Ernest-Ansermet 30, 1205 Geneva, Switzerland.
| | | |
Collapse
|
4
|
Smykal V, Chodakova L, Hejnikova M, Briedikova K, Wu BCH, Vaneckova H, Chen P, Janovska A, Kyjakova P, Vacha M, Dolezel D. Steroid receptor coactivator TAIMAN is a new modulator of insect circadian clock. PLoS Genet 2023; 19:e1010924. [PMID: 37683015 PMCID: PMC10511111 DOI: 10.1371/journal.pgen.1010924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/20/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
TAIMAN (TAI), the only insect ortholog of mammalian Steroid Receptor Coactivators (SRCs), is a critical modulator of ecdysone and juvenile hormone (JH) signaling pathways, which govern insect development and reproduction. The modulatory effect is mediated by JH-dependent TAI's heterodimerization with JH receptor Methoprene-tolerant and association with the Ecdysone Receptor complex. Insect hormones regulate insect physiology and development in concert with abiotic cues, such as photo- and thermoperiod. Here we tested the effects of JH and ecdysone signaling on the circadian clock by a combination of microsurgical operations, application of hormones and hormone mimics, and gene knockdowns in the linden bug Pyrrhocoris apterus males. Silencing taiman by each of three non-overlapping double-strand RNA fragments dramatically slowed the free-running period (FRP) to 27-29 hours, contrasting to 24 hours in controls. To further corroborate TAIMAN's clock modulatory function in the insect circadian clock, we performed taiman knockdown in the cockroach Blattella germanica. Although Blattella and Pyrrhocoris lineages separated ~380 mya, B. germanica taiman silencing slowed the FRP by more than 2 hours, suggesting a conserved TAI clock function in (at least) some insect groups. Interestingly, the pace of the linden bug circadian clock was neither changed by blocking JH and ecdysone synthesis, by application of the hormones or their mimics nor by the knockdown of corresponding hormone receptors. Our results promote TAI as a new circadian clock modulator, a role described for the first time in insects. We speculate that TAI participation in the clock is congruent with the mammalian SRC-2 role in orchestrating metabolism and circadian rhythms, and that TAI/SRCs might be conserved components of the circadian clock in animals.
Collapse
Affiliation(s)
- Vlastimil Smykal
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Lenka Chodakova
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Marketa Hejnikova
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
| | | | - Bulah Chia-Hsiang Wu
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Hana Vaneckova
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Ping Chen
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Anna Janovska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavlina Kyjakova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Vacha
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Dolezel
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
5
|
Abstract
Endocrine signaling networks control diverse biological processes and life history traits across metazoans. In both invertebrate and vertebrate taxa, steroid hormones regulate immune system function in response to intrinsic and environmental stimuli, such as microbial infection. The mechanisms of this endocrine-immune regulation are complex and constitute an ongoing research endeavor facilitated by genetically tractable animal models. The 20-hydroxyecdysone (20E) is the major steroid hormone in arthropods, primarily studied for its essential role in mediating developmental transitions and metamorphosis; 20E also modulates innate immunity in a variety of insect taxa. This review provides an overview of our current understanding of 20E-mediated innate immune responses. The prevalence of correlations between 20E-driven developmental transitions and innate immune activation are summarized across a range of holometabolous insects. Subsequent discussion focuses on studies conducted using the extensive genetic resources available in Drosophila that have begun to reveal the mechanisms underlying 20E regulation of immunity in the contexts of both development and bacterial infection. Lastly, I propose directions for future research into 20E regulation of immunity that will advance our knowledge of how interactive endocrine networks coordinate animals' physiological responses to environmental microbes.
Collapse
Affiliation(s)
- Scott A. Keith
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
6
|
Opportunistic binding of EcR to open chromatin drives tissue-specific developmental responses. Proc Natl Acad Sci U S A 2022; 119:e2208935119. [PMID: 36161884 DOI: 10.1073/pnas.2208935119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Steroid hormones perform diverse biological functions in developing and adult animals. However, the mechanistic basis for their tissue specificity remains unclear. In Drosophila, the ecdysone steroid hormone is essential for coordinating developmental timing across physically separated tissues. Ecdysone directly impacts genome function through its nuclear receptor, a heterodimer of the EcR and ultraspiracle proteins. Ligand binding to EcR triggers a transcriptional cascade, including activation of a set of primary response transcription factors. The hierarchical organization of this pathway has left the direct role of EcR in mediating ecdysone responses obscured. Here, we investigate the role of EcR in controlling tissue-specific ecdysone responses, focusing on two tissues that diverge in their response to rising ecdysone titers: the larval salivary gland, which undergoes programmed destruction, and the wing imaginal disc, which initiates morphogenesis. We find that EcR functions bimodally, with both gene repressive and activating functions, even at the same developmental stage. EcR DNA binding profiles are highly tissue-specific, and transgenic reporter analyses demonstrate that EcR plays a direct role in controlling enhancer activity. Finally, despite a strong correlation between tissue-specific EcR binding and tissue-specific open chromatin, we find that EcR does not control chromatin accessibility at genomic targets. We conclude that EcR contributes extensively to tissue-specific ecdysone responses. However, control over access to its binding sites is subordinated to other transcription factors.
Collapse
|
7
|
Transcriptional Activation of Ecdysone-Responsive Genes Requires H3K27 Acetylation at Enhancers. Int J Mol Sci 2022; 23:ijms231810791. [PMID: 36142704 PMCID: PMC9502983 DOI: 10.3390/ijms231810791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
The steroid hormone ecdysone regulates insect development via its nuclear receptor (the EcR protein), which functions as a ligand-dependent transcription factor. The EcR regulates target gene expression by binding to ecdysone response elements (EcREs) in their promoter or enhancer regions. Its role in epigenetic regulation and, particularly, in histone acetylation remains to be clarified. Here, we analyzed the dynamics of histone acetylation and demonstrated that the acetylation of histone H3 on lysine 27 (H3K27) at enhancers was required for the transcriptional activation of ecdysone-responsive genes. Western blotting and ChIP-qPCR revealed that ecdysone altered the acetylation of H3K27. For E75B and Hr4, ecdysone-responsive genes, enhancer activity, and transcription required the histone acetyltransferase activity of the CBP. EcR binding was critical in inducing enhancer activity and H3K27 acetylation. The CREB-binding protein (CBP) HAT domain catalyzed H3K27 acetylation and CBP coactivation with EcR, independent of the presence of ecdysone. Increased H3K27 acetylation promoted chromatin accessibility, with the EcR and CBP mediating a local chromatin opening in response to ecdysone. Hence, epigenetic mechanisms, including the modification of acetylation and chromatin accessibility, controlled ecdysone-dependent gene transcription.
Collapse
|
8
|
Juvenile hormone-induced histone deacetylase 3 suppresses apoptosis to maintain larval midgut in the yellow fever mosquito. Proc Natl Acad Sci U S A 2022; 119:e2118871119. [PMID: 35259020 PMCID: PMC8931318 DOI: 10.1073/pnas.2118871119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
SignificanceJuvenile hormone (JH), a sesquiterpenoid, regulates many aspects of insect development, including maintenance of the larval stage by preventing metamorphosis. In contrast, ecdysteroids promote metamorphosis by inducing the E93 transcription factor, which triggers apoptosis of larval cells and remodeling of the larval midgut. We discovered that JH suppresses precocious larval midgut-remodeling by inducing an epigenetic modifier, histone deacetylase 3 (HDAC3). JH-induced HDAC3 deacetylates the histone H4 localized at the promoters of proapoptotic genes, resulting in the suppression of these genes. This eventually prevents programmed cell death of midgut cells and midgut-remodeling during larval stages. These studies identified a previously unknown mechanism of JH action in blocking premature remodeling of the midgut during larval feeding stages.
Collapse
|
9
|
Direct and indirect gene repression by the ecdysone cascade during mosquito reproductive cycle. Proc Natl Acad Sci U S A 2022; 119:e2116787119. [PMID: 35254892 PMCID: PMC8931382 DOI: 10.1073/pnas.2116787119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hematophagous Aedes aegypti mosquitoes spread devastating viral diseases. Upon blood feeding, a steroid hormone, 20-hydroxyecdysone (20E), initiates a reproductive program during which thousands of genes are differentially expressed. While 20E-mediated gene activation is well known, repressive action by this hormone remains poorly understood. Using bioinformatics and molecular biological approaches, we have identified the mechanisms of 20E-dependent direct and indirect transcriptional repression by the ecdysone receptor (EcR). While indirect repression involves E74, EcR binds to an ecdysone response element different from those utilized in 20E-mediated gene activation to exert direct repressive action. Moreover, liganded EcR recruits a corepressor Mi2, initiating chromatin compaction. This study advances our understanding of the 20E-EcR repression mechanism and could lead to improved vector control approaches. Hematophagous mosquitoes transmit devastating human diseases. Reproduction of these mosquitoes is cyclical, with each egg maturation period supported by a blood meal. Previously, we have shown that in the female mosquito Aedes aegypti, nearly half of all genes are differentially expressed during the postblood meal reproductive period in the fat body, an insect analog of mammalian liver and adipose tissue. This work aims to decipher how transcription networks govern these genes. Bioinformatics tools found 89 putative transcription factor binding sites (TFBSs) on the cis-regulatory regions of more than 1,400 differentially expressed genes. Putative transcription factors that may bind to these TFBSs were identified and used for the construction of temporally coordinated regulatory networks. Further molecular biology analyses have uncovered mechanisms of direct and indirect negative transcriptional regulation by the steroid hormone 20-hydroxyecdysone (20E) through the ecdysone receptor (EcR). Genes within the two groups, early genes and late mid-genes, have distinctly different expression profiles. However, both groups of genes show lower expression at the high titers of 20E and are down-regulated by the 20E/EcR cascade by different molecular mechanisms. Transcriptional repression of early genes is indirect and involves the classic 20E pathway with ecdysone-induced protein E74 functioning as a repressor. Late mid-genes are repressed directly by EcR that recognizes and binds a previously unreported DNA element, different from those utilized in the 20E-mediated gene activation, within the regulatory regions of its target genes and recruits Mi2 that acts as a corepressor, initiating chromatin condensation.
Collapse
|
10
|
Hutfilz C. Endocrine Regulation of Lifespan in Insect Diapause. Front Physiol 2022; 13:825057. [PMID: 35242054 PMCID: PMC8886022 DOI: 10.3389/fphys.2022.825057] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Diapause is a physiological adaptation to conditions that are unfavorable for growth or reproduction. During diapause, animals become long-lived, stress-resistant, developmentally static, and non-reproductive, in the case of diapausing adults. Diapause has been observed at all developmental stages in both vertebrates and invertebrates. In adults, diapause traits weaken into adaptations such as hibernation, estivation, dormancy, or torpor, which represent evolutionarily diverse versions of the traditional diapause traits. These traits are regulated through modifications of the endocrine program guiding development. In insects, this typically includes changes in molting hormones, as well as metabolic signals that limit growth while skewing the organism's energetic demands toward conservation. While much work has been done to characterize these modifications, the interactions between hormones and their downstream consequences are incompletely understood. The current state of diapause endocrinology is reviewed here to highlight the relevance of diapause beyond its use as a model to study seasonality and development. Specifically, insect diapause is an emerging model to study mechanisms that determine lifespan. The induction of diapause represents a dramatic change in the normal progression of age. Hormones such as juvenile hormone, 20-hydroxyecdysone, and prothoracicotropic hormone are well-known to modulate this plasticity. The induction of diapause-and by extension, the cessation of normal aging-is coordinated by interactions between these pathways. However, research directly connecting diapause endocrinology to the biology of aging is lacking. This review explores connections between diapause and aging through the perspective of endocrine signaling. The current state of research in both fields suggests appreciable overlap that will greatly contribute to our understanding of diapause and lifespan determination.
Collapse
|
11
|
He YZ, Aksoy E, Ding Y, Raikhel AS. Hormone-dependent activation and repression of microRNAs by the ecdysone receptor in the dengue vector mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2021; 118:e2102417118. [PMID: 34155112 PMCID: PMC8256052 DOI: 10.1073/pnas.2102417118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Female mosquitoes transmit numerous devastating human diseases because they require vertebrate blood meal for egg development. MicroRNAs (miRNAs) play critical roles across multiple reproductive processes in female Aedes aegypti mosquitoes. However, how miRNAs are controlled to coordinate their activity with the demands of mosquito reproduction remains largely unknown. We report that the ecdysone receptor (EcR)-mediated 20-hydroxyecdysone (20E) signaling regulates miRNA expression in female mosquitoes. EcR RNA-interference silencing linked to small RNA-sequencing analysis reveals that EcR not only activates but also represses miRNA expression in the female mosquito fat body, a functional analog of the vertebrate liver. EcR directly represses the expression of clustered miR-275 and miR-305 before blood feeding when the 20E titer is low, whereas it activates their expression in response to the increased 20E titer after a blood meal. Furthermore, we find that SMRTER, an insect analog of the vertebrate nuclear receptor corepressors SMRT and N-CoR, interacts with EcR in a 20E-sensitive manner and is required for EcR-mediated repression of miRNA expression in Ae. aegypti mosquitoes. In addition, we demonstrate that miR-275 and miR-305 directly target glutamate semialdehyde dehydrogenase and AAEL009899, respectively, to facilitate egg development. This study reveals a mechanism for how miRNAs are controlled by the 20E signaling pathway to coordinate their activity with the demands of mosquito reproduction.
Collapse
Affiliation(s)
- Ya-Zhou He
- Department of Entomology, University of California, Riverside, CA 92521
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Emre Aksoy
- Department of Entomology, University of California, Riverside, CA 92521
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA 92521
| | - Yike Ding
- Department of Entomology, University of California, Riverside, CA 92521
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Alexander S Raikhel
- Department of Entomology, University of California, Riverside, CA 92521;
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| |
Collapse
|
12
|
Uyehara CM, McKay DJ. Direct and widespread role for the nuclear receptor EcR in mediating the response to ecdysone in Drosophila. Proc Natl Acad Sci U S A 2019; 116:9893-9902. [PMID: 31019084 PMCID: PMC6525475 DOI: 10.1073/pnas.1900343116] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ecdysone pathway was among the first experimental systems employed to study the impact of steroid hormones on the genome. In Drosophila and other insects, ecdysone coordinates developmental transitions, including wholesale transformation of the larva into the adult during metamorphosis. Like other hormones, ecdysone controls gene expression through a nuclear receptor, which functions as a ligand-dependent transcription factor. Although it is clear that ecdysone elicits distinct transcriptional responses within its different target tissues, the role of its receptor, EcR, in regulating target gene expression is incompletely understood. In particular, EcR initiates a cascade of transcription factor expression in response to ecdysone, making it unclear which ecdysone-responsive genes are direct EcR targets. Here, we use the larval-to-prepupal transition of developing wings to examine the role of EcR in gene regulation. Genome-wide DNA binding profiles reveal that EcR exhibits widespread binding across the genome, including at many canonical ecdysone response genes. However, the majority of its binding sites reside at genes with wing-specific functions. We also find that EcR binding is temporally dynamic, with thousands of binding sites changing over time. RNA-seq reveals that EcR acts as both a temporal gate to block precocious entry to the next developmental stage as well as a temporal trigger to promote the subsequent program. Finally, transgenic reporter analysis indicates that EcR regulates not only temporal changes in target enhancer activity but also spatial patterns. Together, these studies define EcR as a multipurpose, direct regulator of gene expression, greatly expanding its role in coordinating developmental transitions.
Collapse
Affiliation(s)
- Christopher M Uyehara
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Daniel J McKay
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
13
|
Elgendy AM, Tufail M, Mohamed AA, Takeda M. A putative direct repeat element plays a dual role in the induction and repression of insect vitellogenin-1 gene expression. Comp Biochem Physiol B Biochem Mol Biol 2019; 234:1-8. [PMID: 31022468 DOI: 10.1016/j.cbpb.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/06/2019] [Accepted: 04/15/2019] [Indexed: 11/15/2022]
Abstract
Juvenile hormones (JH) regulate wide-ranging physiological and developmental processes in insects. However, molecular mechanisms underlying JH signaling remain to be determined. Vitellogenin (Vg) is primarily an egg-yolk protein, but recently proposed to serve many functions in insects. In the female American cockroach (Periplaneta americana), vitellogenin (Vg) genes are activated by JH III and suppressed by 20-hydroxyecdysone (20E) via cis-regulatory elements in a dose-dependent manner. In the present study, the upstream promoter region (935 bp) of Vg1 was cloned to elucidate the action of these hormones. A luciferase reporter assay identified an 81 bp region in the promoter region of Vg1 (-120 to -39 bp) that we found to be critical for JH III activation and 20E suppression. This 81 bp region contains a direct repeat separated by a 2-nucleotide spacer-designated Vg1HRE- that is similar to the Drosophila ecdysone response element direct repeat 4. Moreover, nuclear proteins isolated from nymphs, males, females, and Sf9 cells successfully bound to Vg1HRE, while binding was outcompeted by a 100-fold excess of cold probe or dephosphorylated nuclear protein extracts. In addition, binding was outcompeted by other ecdysone and JH response elements with similar half-site sequences (direct repeats) but to varying extents. Ultimately, we postulate that JH III indirectly activates Vg expression by interfering with or inhibiting the phosphorylation of nuclear proteins bound to Vg1HRE. Involvement of JH III in both induction of Vg1 and control of nuclear proteins binding to Vg1HRE suggest the latter to play an important role in JH signaling.
Collapse
Affiliation(s)
- Azza M Elgendy
- Department of Entomology, Faculty of Science, Cairo University, PO Box 12613, Giza, Egypt.
| | - Muhammad Tufail
- Economic Entomology Research Unit, Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan.
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, PO Box 12613, Giza, Egypt.
| | - Makio Takeda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Hyogo, Japan.
| |
Collapse
|
14
|
Mazina MY, Vorobyeva NE. Mechanisms of transcriptional regulation of ecdysone response. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mechanisms of ecdysone-dependent expression have been studied for many decades. Initially, the activation of individual genes under the influence of ecdysone was studied on the model of polythene chromosomes from salivary glands of Drosophila melanogaster. These works helped to investigate the many aspects of the Drosophila development. They also revealed plenty of valuable information regarding the fundamental mechanisms controlling the genes’ work. Many years ago, a model describing the process of gene activation by ecdysone, named after the author – Ashburner model – was proposed. This model is still considered an excellent description of the ecdysone cascade, which is implemented in the salivary glands during the formation of the Drosophila pupa. However, these days there is an opinion that the response of cells to the hormone ecdysone can develop with significant differences, depending on the type of cells. The same genes can be activated or repressed under the influence of ecdysone in different tissues. Likely, certain DNA-binding transcription factors that are involved in the ecdysonedependent response together with the EcR/Usp heterodimer are responsible for cell-type specificity. A number of transcriptional regulators involved in the ecdysone response have been described. Among them are several complexes responsible for chromatin remodeling and modification. It has been shown by various methods that ecdysone-dependent activation/repression of gene transcription develops with significant structural changes of chromatin on regulatory elements. The description of the molecular mechanism of this process, in particular, the role of individual proteins in it, as well as structural interactions between various regulatory elements is a matter of the future. This review is aimed to discuss the available information regarding the main regulators that interact with the ecdysone receptor. We provide a brief description of the regulator’s participation in the ecdysone response and links to the corresponding study. We also discuss general aspects of the mechanism of ecdysone-dependent regulation and highlight the most promising points for further research.
Collapse
Affiliation(s)
- M. Yu. Mazina
- Institute of Gene Biology, RAS, Group of transcriptional complexes dynamics
| | - N. E. Vorobyeva
- Institute of Gene Biology, RAS, Group of transcriptional complexes dynamics
| |
Collapse
|
15
|
Zhang X, Miao C, Nan Z, Lyu J, Xi Y, Yang X, Ge W. A positive role of Sin3A in regulating Notch signaling during Drosophila wing development. Cell Signal 2018; 53:184-189. [PMID: 30316814 DOI: 10.1016/j.cellsig.2018.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/21/2018] [Accepted: 10/11/2018] [Indexed: 01/03/2023]
Abstract
Notch is a transmembrane receptor that mediates intercellular signaling through a conserved signaling cascade in all animal species. Transcriptional and posttranscriptional regulation of Notch receptor are important for maintaining Notch signaling activity. Here, we show that depletion of Drosophila Sin3A leads to loss of the adult wing margin and downregulation of Notch target gene expression in the developing wing disc. Sin3A regulates the Notch pathway downstream of Delta and upstream of Notch activation. The role of Sin3A in the Notch pathway is partly mediated by its ability to modulate Notch receptor transcription. Furthermore, the transcriptional activation of Notch receptor is autoregulated by Notch itself. We also provide evidence that Sin3A is required for Notch activation mediated Notch transcription. Together, our data demonstrate that Sin3A activates Notch signaling by promoting Notch transcription and reveal a previously unknown autoregulatory mechanism for Notch signaling activation during Drosophila wing development.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chen Miao
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zi Nan
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jialan Lyu
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
16
|
Marxreiter S, Thummel CS. Adult functions for the Drosophila DHR78 nuclear receptor. Dev Dyn 2017; 247:315-322. [PMID: 29171103 DOI: 10.1002/dvdy.24608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The Testicular Receptors 2 and 4 (TR2, TR4) comprise a small subfamily of orphan nuclear receptors. Genetic studies in mouse models have identified roles for TR4 in developmental progression, fertility, brain development, and metabolism, as well as genetic redundancy with TR2. Here we study the adult functions of the single Drosophila member of this subfamily, DHR78, with the goal of defining its ancestral functions in the absence of genetic redundancy. RESULTS We show that DHR78 mutants have a shortened lifespan, reduced motility, and mated DHR78 mutant females display a reduced feeding rate. Transcriptional profiling reveals a major role for DHR78 in promoting the expression of genes that are expressed in the midgut, suggesting that it contributes to nutrient uptake. We also identify roles for DHR78 in maintaining the expression of genes in the ecdysone and Notch signaling pathways. CONCLUSIONS This study provides a new context for linking the molecular activity of the TR orphan nuclear receptors with their complex roles in adult physiology and lifespan. Developmental Dynamics 247:315-322, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefanie Marxreiter
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
17
|
Chan SKK, Cerda-Moya G, Stojnic R, Millen K, Fischer B, Fexova S, Skalska L, Gomez-Lamarca M, Pillidge Z, Russell S, Bray SJ. Role of co-repressor genomic landscapes in shaping the Notch response. PLoS Genet 2017; 13:e1007096. [PMID: 29155828 PMCID: PMC5714389 DOI: 10.1371/journal.pgen.1007096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 12/04/2017] [Accepted: 11/01/2017] [Indexed: 11/18/2022] Open
Abstract
Repressors are frequently deployed to limit the transcriptional response to signalling pathways. For example, several co-repressors interact directly with the DNA-binding protein CSL and are proposed to keep target genes silenced in the absence of Notch activity. However, the scope of their contributions remains unclear. To investigate co-repressor activity in the context of this well defined signalling pathway, we have analysed the genome-wide binding profile of the best-characterized CSL co-repressor in Drosophila, Hairless, and of a second CSL interacting repressor, SMRTER. As predicted there was significant overlap between Hairless and its CSL DNA-binding partner, both in Kc cells and in wing discs, where they were predominantly found in chromatin with active enhancer marks. However, while the Hairless complex was widely present at some Notch regulated enhancers in the wing disc, no binding was detected at others, indicating that it is not essential for silencing per se. Further analysis of target enhancers confirmed differential requirements for Hairless. SMRTER binding significantly overlapped with Hairless, rather than complementing it, and many enhancers were apparently co-bound by both factors. Our analysis indicates that the actions of Hairless and SMRTER gate enhancers to Notch activity and to Ecdysone signalling respectively, to ensure that the appropriate levels and timing of target gene expression are achieved. The communication between cells that occurs during development, as well as in disease contexts, involves a small number of signalling pathways of which the Notch pathway is one. One outstanding question is how these pathways can bring about different gene responses in different contexts. As gene expression is co-ordinated by a mixture of activators and repressors, we set out to investigate whether the distribution of repressors across the genome is important in shaping whether genes are able to respond to Notch activity. Our results from analyzing the binding profile of two repressors, Hairless and SMRTER, show that, in many cases, they are not essential for preventing a gene from responding. Instead they are deployed at a limited number of genetic loci where they gate the response, helping to set a threshold for gene activation. Perturbations to their function lead to enhanced gene expression in limited territories rather than to new programmes of gene expression. Their main role therefore is to restrict the time or levels of signal that a gene needs to receive before it will respond.
Collapse
Affiliation(s)
- Stephen K. K. Chan
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Gustavo Cerda-Moya
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Robert Stojnic
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Kat Millen
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Bettina Fischer
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Silvie Fexova
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Lenka Skalska
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Maria Gomez-Lamarca
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Zoe Pillidge
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Steven Russell
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Sarah J. Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Kreher J, Kovač K, Bouazoune K, Mačinković I, Ernst AL, Engelen E, Pahl R, Finkernagel F, Murawska M, Ullah I, Brehm A. EcR recruits dMi-2 and increases efficiency of dMi-2-mediated remodelling to constrain transcription of hormone-regulated genes. Nat Commun 2017; 8:14806. [PMID: 28378812 PMCID: PMC5382322 DOI: 10.1038/ncomms14806] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/30/2017] [Indexed: 12/27/2022] Open
Abstract
Gene regulation by steroid hormones plays important roles in health and disease. In Drosophila, the hormone ecdysone governs transitions between key developmental stages. Ecdysone-regulated genes are bound by a heterodimer of ecdysone receptor (EcR) and Ultraspiracle. According to the bimodal switch model, steroid hormone receptors recruit corepressors in the absence of hormone and coactivators in its presence. Here we show that the nucleosome remodeller dMi-2 is recruited to ecdysone-regulated genes to limit transcription. Contrary to the prevalent model, recruitment of the dMi-2 corepressor increases upon hormone addition to constrain gene activation through chromatin remodelling. Furthermore, EcR and dMi-2 form a complex that is devoid of Ultraspiracle. Unexpectedly, EcR contacts the dMi-2 ATPase domain and increases the efficiency of dMi-2-mediated nucleosome remodelling. This study identifies a non-canonical EcR-corepressor complex with the potential for a direct regulation of ATP-dependent nucleosome remodelling by a nuclear hormone receptor.
Collapse
Affiliation(s)
- Judith Kreher
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Kristina Kovač
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Karim Bouazoune
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Igor Mačinković
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Anna Luise Ernst
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Erik Engelen
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Roman Pahl
- Institute of Medical Biometry and Epidemiology, Philipps University Marburg, Marburg 35037, Germany
| | - Florian Finkernagel
- Center for Tumour Biology and Immunology, Philipps University Marburg, Marburg 35043, Germany
| | - Magdalena Murawska
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Ikram Ullah
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Alexander Brehm
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| |
Collapse
|
19
|
Privalsky ML, Snyder CA, Goodson ML. Corepressor diversification by alternative mRNA splicing is species specific. BMC Evol Biol 2016; 16:221. [PMID: 27756201 PMCID: PMC5069798 DOI: 10.1186/s12862-016-0781-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SMRT and NCoR are corepressor paralogs that help mediate transcriptional repression by a variety of transcription factors, including the nuclear hormone receptors. The functions of both corepressors are extensively diversified in mice by alternative mRNA splicing, generating a series of protein variants that differ in different tissues and that exert different, even diametrically opposite, biochemical and biological effects from one another. RESULTS We report here that the alternative splicing previously reported for SMRT appears to be a relatively recent evolutionary phenomenon, with only one of these previously identified sites utilized in a teleost fish and a limited additional number of the additional known sites utilized in a bird, reptile, and marsupial. In contrast, extensive SMRT alternative splicing at these sites was detected among the placental mammals. The alternative splicing of NCoR previously identified in mice (and shown to regulate lipid and carbohydrate metabolism) is likely to have arisen separately and after that of SMRT, and includes an example of convergent evolution. CONCLUSIONS We propose that the functions of both SMRT and NCoR have been diversified by alternative splicing during evolution to allow customization for different purposes in different tissues and different species.
Collapse
Affiliation(s)
- Martin L Privalsky
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Chelsea A Snyder
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Michael L Goodson
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
20
|
Gajan A, Barnes VL, Liu M, Saha N, Pile LA. The histone demethylase dKDM5/LID interacts with the SIN3 histone deacetylase complex and shares functional similarities with SIN3. Epigenetics Chromatin 2016; 9:4. [PMID: 26848313 PMCID: PMC4740996 DOI: 10.1186/s13072-016-0053-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/14/2016] [Indexed: 01/01/2023] Open
Abstract
Background Regulation of gene expression by histone-modifying enzymes is essential to control cell fate decisions and developmental processes. Two histone-modifying enzymes, RPD3, a deacetylase, and dKDM5/LID, a demethylase, are present in a single complex, coordinated through the SIN3 scaffold protein. While the SIN3 complex has been demonstrated to have functional histone deacetylase activity, the role of the demethylase dKDM5/LID as part of the complex has not been investigated. Results Here, we analyzed the developmental and transcriptional activities of dKDM5/LID in relation to SIN3. Knockdown of either Sin3A or lid resulted in decreased cell proliferation in S2 cells and wing imaginal discs. Conditional knockdown of either Sin3A or lid resulted in flies that displayed wing developmental defects. Interestingly, overexpression of dKDM5/LID rescued the wing developmental defect due to reduced levels of SIN3 in female flies, indicating a major role for dKDM5/LID in cooperation with SIN3 during development. Together, these observed phenotypes strongly suggest that dKDM5/LID as part of the SIN3 complex can impact previously uncharacterized transcriptional networks. Transcriptome analysis revealed that SIN3 and dKDM5/LID regulate many common genes. While several genes implicated in cell cycle and wing developmental pathways were affected upon altering the level of these chromatin factors, a significant affect was also observed on genes required to mount an effective stress response. Further, under conditions of induced oxidative stress, reduction of SIN3 and/or dKDM5/LID altered the expression of a greater number of genes involved in cell cycle-related processes relative to normal conditions. This highlights an important role for SIN3 and dKDM5/LID proteins to maintain proper progression through the cell cycle in environments of cellular stress. Further, we find that target genes are bound by both SIN3 and dKDM5/LID, however, histone acetylation, not methylation, plays a predominant role in gene regulation by the SIN3 complex. Conclusions We have provided genetic evidence to demonstrate functional cooperation between the histone demethylase dKDM5/LID and SIN3. Biochemical and transcriptome data further support functional links between these proteins. Together, the data provide a solid framework for analyzing the gene regulatory pathways through which SIN3 and dKDM5/LID control diverse biological processes in the organism. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0053-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ambikai Gajan
- Department of Biological Sciences, Wayne State University, Detroit, MI USA
| | - Valerie L Barnes
- Department of Biological Sciences, Wayne State University, Detroit, MI USA
| | - Mengying Liu
- Department of Biological Sciences, Wayne State University, Detroit, MI USA
| | - Nirmalya Saha
- Department of Biological Sciences, Wayne State University, Detroit, MI USA
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, MI USA
| |
Collapse
|
21
|
Abstract
Steroid hormones induce cascades of gene activation and repression with transformative effects on cell fate . Steroid transduction plays a major role in the development and physiology of nearly all metazoan species, and in the progression of the most common forms of cancer. Despite the paramount importance of steroids in developmental and translational biology, a complete map of transcriptional response has not been developed for any hormone . In the case of 20-hydroxyecdysone (ecdysone) in Drosophila melanogaster, these trajectories range from apoptosis to immortalization. We mapped the ecdysone transduction network in a cohort of 41 cell lines, the largest such atlas yet assembled. We found that the early transcriptional response mirrors the distinctiveness of physiological origins: genes respond in restricted patterns, conditional on the expression levels of dozens of transcription factors. Only a small cohort of genes is constitutively modulated independent of initial cell state. Ecdysone-responsive genes tend to organize into directional same-stranded units, with consecutive genes induced from the same strand. Here, we identify half of the ecdysone receptor heterodimer as the primary rate-limiting step in the response, and find that initial receptor isoform levels modulate the activated cohort of target transcription factors. This atlas of steroid response reveals organizing principles of gene regulation by a model type II nuclear receptor and lays the foundation for comprehensive and predictive understanding of the ecdysone transduction network in the fruit fly.
Collapse
|
22
|
Xie XJ, Hsu FN, Gao X, Xu W, Ni JQ, Xing Y, Huang L, Hsiao HC, Zheng H, Wang C, Zheng Y, Xiaoli AM, Yang F, Bondos SE, Ji JY. CDK8-Cyclin C Mediates Nutritional Regulation of Developmental Transitions through the Ecdysone Receptor in Drosophila. PLoS Biol 2015. [PMID: 26222308 PMCID: PMC4519132 DOI: 10.1371/journal.pbio.1002207] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The steroid hormone ecdysone and its receptor (EcR) play critical roles in orchestrating developmental transitions in arthropods. However, the mechanism by which EcR integrates nutritional and developmental cues to correctly activate transcription remains poorly understood. Here, we show that EcR-dependent transcription, and thus, developmental timing in Drosophila, is regulated by CDK8 and its regulatory partner Cyclin C (CycC), and the level of CDK8 is affected by nutrient availability. We observed that cdk8 and cycC mutants resemble EcR mutants and EcR-target genes are systematically down-regulated in both mutants. Indeed, the ability of the EcR-Ultraspiracle (USP) heterodimer to bind to polytene chromosomes and the promoters of EcR target genes is also diminished. Mass spectrometry analysis of proteins that co-immunoprecipitate with EcR and USP identified multiple Mediator subunits, including CDK8 and CycC. Consistently, CDK8-CycC interacts with EcR-USP in vivo; in particular, CDK8 and Med14 can directly interact with the AF1 domain of EcR. These results suggest that CDK8-CycC may serve as transcriptional cofactors for EcR-dependent transcription. During the larval–pupal transition, the levels of CDK8 protein positively correlate with EcR and USP levels, but inversely correlate with the activity of sterol regulatory element binding protein (SREBP), the master regulator of intracellular lipid homeostasis. Likewise, starvation of early third instar larvae precociously increases the levels of CDK8, EcR and USP, yet down-regulates SREBP activity. Conversely, refeeding the starved larvae strongly reduces CDK8 levels but increases SREBP activity. Importantly, these changes correlate with the timing for the larval–pupal transition. Taken together, these results suggest that CDK8-CycC links nutrient intake to developmental transitions (EcR activity) and fat metabolism (SREBP activity) during the larval–pupal transition. During the larval-pupal transition in Drosophila, CDK8-CycC helps to link nutrient intake to development by activating ecdysone receptor-dependent transcription and to fat metabolism by inhibiting SREBP-activated gene expression. Arthropods are estimated to account for over 80% of animal species on earth. Characterized by their rigid exoskeletons, juvenile arthropods must periodically shed their thick outer cuticles by molting in order to grow. The steroid hormone ecdysone plays an essential role in regulating the timing of developmental transitions, but exactly how ecdysone and its receptor EcR activates transcription correctly after integrating nutritional and developmental cues remains unknown. Our developmental genetic analyses of two Drosophila mutants, cdk8 and cycC, show that they are lethal during the prepupal stage, with aberrant accumulation of fat and a severely delayed larval–pupal transition. As we have reported previously, CDK8-CycC inhibits fat accumulation by directly inactivating SREBP, a master transcription factor that controls the expression of lipogenic genes, which explains the abnormal fat accumulation in the cdk8 and cycC mutants. We find that CDK8 and CycC are required for EcR to bind to its target genes, serving as transcriptional cofactors for EcR-dependent gene expression. The expression of EcR target genes is compromised in cdk8 and cycC mutants and underpins the retarded pupariation phenotype. Starvation of feeding larvae precociously up-regulates CDK8 and EcR, prematurely down-regulates SREBP activity, and leads to early pupariation, whereas re-feeding starved larvae has opposite effects. Taken together, these results suggest that CDK8 and CycC play important roles in coordinating nutrition intake with fat metabolism by directly inhibiting SREBP-dependent gene expression and regulating developmental timing by activating EcR-dependent transcription in Drosophila.
Collapse
Affiliation(s)
- Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Fu-Ning Hsu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Xinsheng Gao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Los Angeles, United States of America
| | - Jian-Quan Ni
- Gene Regulatory Laboratory, School of Medicine, Tsinghua University, Beijing, China
| | - Yue Xing
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Liying Huang
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Los Angeles, United States of America
| | - Hao-Ching Hsiao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Frelinghuysen Road, Piscataway, New Jersey, United States of America
| | - Chenguang Wang
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine; Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Yani Zheng
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Alus M. Xiaoli
- Department of Medicine, Division of Endocrinology, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Fajun Yang
- Department of Medicine, Division of Endocrinology, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sarah E. Bondos
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Zhang C, Robinson BS, Xu W, Yang L, Yao B, Zhao H, Byun PK, Jin P, Veraksa A, Moberg KH. The ecdysone receptor coactivator Taiman links Yorkie to transcriptional control of germline stem cell factors in somatic tissue. Dev Cell 2015; 34:168-80. [PMID: 26143992 DOI: 10.1016/j.devcel.2015.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 04/25/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022]
Abstract
The Hippo pathway is a conserved signaling cascade that modulates tissue growth. Although its core elements are well defined, factors modulating Hippo transcriptional outputs remain elusive. Here we show that components of the steroid-responsive ecdysone (Ec) pathway modulate Hippo transcriptional effects in imaginal disc cells. The Ec receptor coactivator Taiman (Tai) interacts with the Hippo transcriptional coactivator Yorkie (Yki) and promotes expression of canonical Yki-responsive genes. Tai enhances Yki-driven growth, while Tai loss, or a form of Tai unable to bind Yki, suppresses Yki-driven tissue growth. This growth suppression is not correlated with impaired induction of canonical Hippo-responsive genes but with suppression of a distinct pro-growth program of Yki-induced/Tai-dependent genes, including the germline stem cell factors nanos and piwi. These data reveal Hippo/Ec pathway crosstalk in the form a Yki-Tai complex that collaboratively induces germline genes as part of a transcriptional program that is normally repressed in developing somatic epithelia.
Collapse
Affiliation(s)
- Can Zhang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brian S Robinson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wenjian Xu
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Liu Yang
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Heya Zhao
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Phil K Byun
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
24
|
Skalska L, Stojnic R, Li J, Fischer B, Cerda-Moya G, Sakai H, Tajbakhsh S, Russell S, Adryan B, Bray SJ. Chromatin signatures at Notch-regulated enhancers reveal large-scale changes in H3K56ac upon activation. EMBO J 2015; 34:1889-904. [PMID: 26069324 DOI: 10.15252/embj.201489923] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 05/13/2015] [Indexed: 12/23/2022] Open
Abstract
The conserved Notch pathway functions in diverse developmental and disease-related processes, requiring mechanisms to ensure appropriate target selection and gene activation in each context. To investigate the influence of chromatin organisation and dynamics on the response to Notch signalling, we partitioned Drosophila chromatin using histone modifications and established the preferred chromatin conditions for binding of Su(H), the Notch pathway transcription factor. By manipulating activity of a co-operating factor, Lozenge/Runx, we showed that it can help facilitate these conditions. While many histone modifications were unchanged by Su(H) binding or Notch activation, we detected rapid changes in acetylation of H3K56 at Notch-regulated enhancers. This modification extended over large regions, required the histone acetyl-transferase CBP and was independent of transcription. Such rapid changes in H3K56 acetylation appear to be a conserved indicator of enhancer activation as they also occurred at the mammalian Notch-regulated Hey1 gene and at Drosophila ecdysone-regulated genes. This intriguing example of a core histone modification increasing over short timescales may therefore underpin changes in chromatin accessibility needed to promote transcription following signalling activation.
Collapse
Affiliation(s)
- Lenka Skalska
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Robert Stojnic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Jinghua Li
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Bettina Fischer
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK Department of Genetics, University of Cambridge, Cambridge, UK
| | - Gustavo Cerda-Moya
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hiroshi Sakai
- Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
| | - Steven Russell
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK Department of Genetics, University of Cambridge, Cambridge, UK
| | - Boris Adryan
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK Department of Genetics, University of Cambridge, Cambridge, UK
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Barnes VL, Bhat A, Unnikrishnan A, Heydari AR, Arking R, Pile LA. SIN3 is critical for stress resistance and modulates adult lifespan. Aging (Albany NY) 2015; 6:645-60. [PMID: 25133314 PMCID: PMC4169859 DOI: 10.18632/aging.100684] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Coordinate control of gene activity is critical for fitness and longevity of an organism. The SIN3 histone deacetylase (HDAC) complex functions as a transcriptional repressor of many genes. SIN3-regulated genes include those that encode proteins affecting multiple aspects of mitochondrial function, such as energy production and stress responsiveness, important for health maintenance. Here we used Drosophila melanogaster as a model organism to examine the role of SIN3 in the regulation of fitness and longevity. Adult flies with RNA interference (RNAi) induced knockdown expression of Sin3A have reduced climbing ability; an activity that likely requires fully functional mitochondria. Additionally, compared to wild type, adult Sin3A knockdown flies were more sensitive to oxidative stress. Interestingly, media supplementation with the antioxidant glutathione largely restored fly tolerance to oxidative stress. Although Sin3A knockdown flies exhibited decreased longevity compared to wild type, no significant changes in expression of many well-categorized aging genes were observed. We found, however, that Sin3A knockdown corresponded to a significant reduction in expression of genes encoding proteins involved in the de novo synthesis of glutathione. Taken together, the data support a model whereby SIN3 regulates a gene expression program required for proper mitochondrial function and effective stress response during adulthood.
Collapse
Affiliation(s)
- Valerie L Barnes
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, 48202, USA
| | - Abhineeth Bhat
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, 48202, USA
| | - Archana Unnikrishnan
- Department of Nutrition and Food Science Wayne State University, Detroit, Michigan, 48202,USA
| | - Ahmad R Heydari
- Department of Nutrition and Food Science Wayne State University, Detroit, Michigan, 48202,USA
| | - Robert Arking
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, 48202, USA
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, 48202, USA
| |
Collapse
|
26
|
Jing YP, Liu W, Wang JX, Zhao XF. The steroid hormone 20-hydroxyecdysone via nongenomic pathway activates Ca2+/calmodulin-dependent protein kinase II to regulate gene expression. J Biol Chem 2015; 290:8469-81. [PMID: 25670853 DOI: 10.1074/jbc.m114.622696] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The steroid hormone 20-hydroxyecdysone (20E) triggers calcium signaling pathway to regulate 20E response gene expression, but the mechanism underlying this process remains unclear. We propose that the 20E-induced phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) serves an important function in 20E response gene transcription in the lepidopteran insect Helicoverpa armigera. CaMKII showed increased expression and phosphorylation during metamorphosis. 20E elevated CaMKII phosphorylation. However, the G protein-coupled receptor (GPCR) and ryanodine receptor inhibitor suramin, the phospholipase C inhibitor U73122, and the inositol 1,4,5-triphosphate receptor inhibitor xestospongin C suppressed 20E-induced CaMKII phosphorylation. Two ecdysone-responsible GPCRs and Gαq protein were involved in 20E-induced CaMKII phosphorylation by RNA interference analysis. 20E regulated CaMKII threonine phosphorylation at amino acid 290, thereby inducing CaMKII nuclear translocation. CaMKII knockdown by dsCaMKII injection into the larvae prevented the occurrence of larval-pupal transition and suppressed 20E response gene expression. CaMKII phosphorylation and nuclear translocation maintained USP1 lysine acetylation at amino acid 303 by inducing histone deacetylase 3 phosphorylation and nuclear export. The lysine acetylation of USP1 was necessary for the interaction of USP1 with EcRB1 and their binding to the ecdysone response element. Results suggest that 20E (via GPCR activation and calcium signaling) activates CaMKII phosphorylation and nuclear translocation, which regulate USP1 lysine acetylation to form an EcRB1-USP1 complex for 20E response gene transcription.
Collapse
Affiliation(s)
- Yu-Pu Jing
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Wen Liu
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Jin-Xing Wang
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xiao-Fan Zhao
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| |
Collapse
|
27
|
Huang YC, Lu YN, Wu JT, Chien CT, Pi H. The COP9 signalosome converts temporal hormone signaling to spatial restriction on neural competence. PLoS Genet 2014; 10:e1004760. [PMID: 25393278 PMCID: PMC4230841 DOI: 10.1371/journal.pgen.1004760] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022] Open
Abstract
During development, neural competence is conferred and maintained by integrating spatial and temporal regulations. The Drosophila sensory bristles that detect mechanical and chemical stimulations are arranged in stereotypical positions. The anterior wing margin (AWM) is arrayed with neuron-innervated sensory bristles, while posterior wing margin (PWM) bristles are non-innervated. We found that the COP9 signalosome (CSN) suppresses the neural competence of non-innervated bristles at the PWM. In CSN mutants, PWM bristles are transformed into neuron-innervated, which is attributed to sustained expression of the neural-determining factor Senseless (Sens). The CSN suppresses Sens through repression of the ecdysone signaling target gene broad (br) that encodes the BR-Z1 transcription factor to activate sens expression. Strikingly, CSN suppression of BR-Z1 is initiated at the prepupa-to-pupa transition, leading to Sens downregulation, and termination of the neural competence of PWM bristles. The role of ecdysone signaling to repress br after the prepupa-to-pupa transition is distinct from its conventional role in activation, and requires CSN deneddylating activity and multiple cullins, the major substrates of deneddylation. Several CSN subunits physically associate with ecdysone receptors to represses br at the transcriptional level. We propose a model in which nuclear hormone receptors cooperate with the deneddylation machinery to temporally shutdown downstream target gene expression, conferring a spatial restriction on neural competence at the PWM. A critical step in building a functional nervous system is to generate neurons at the appropriate locations. Neural competence is acquired at the precursor stage with the expression of specific transcription factors. One such critical factor is Senseless (Sens), as precursors lacking Sens fail to develop to neurons. Here we describe the critical role of protein complex COP9 signalosome (CSN) that regulates Sens expression by integrating temporal and spatial information. This was studied in developing Drosophila wing tissues, in which the anterior wing margin develops neuron-innervated bristles, while the posterior wing margin develops non-innervated bristles. The CSN complex is required for the anterior-posterior difference in spatial patterning of neuron formation, and posterior cells lacking CSN develop innervated bristles like anterior cells. CSN accomplishes this by transforming the temporal hormonal ecdysone signaling from activation to repression of downstream target BR-Z1. As BR-Z1 itself is a transcription activator, repression of BR-Z1 in turn leads to repression of Sens in posterior wing margin, eventually terminating the neural competence. Repression of BR-Z1 expression requires the interaction between the CSN complex and the ecdysone receptors. Our results suggest a novel CSN-mediated regulation that converts temporal hormone signaling to the patterning of neurons at the right place.
Collapse
Affiliation(s)
- Yi-Chun Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Insitute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Nung Lu
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - June-Tai Wu
- Institute of Molecular Biology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Ting Chien
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Insitute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (CTC); (HP)
| | - Haiwei Pi
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- * E-mail: (CTC); (HP)
| |
Collapse
|
28
|
Bernardo TJ, Dubrovskaya VA, Xie X, Dubrovsky EB. A view through a chromatin loop: insights into the ecdysone activation of early genes in Drosophila. Nucleic Acids Res 2014; 42:10409-24. [PMID: 25143532 PMCID: PMC4176353 DOI: 10.1093/nar/gku754] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The early genes are a key group of ecdysone targets that function at the top of the signaling hierarchy. In the presence of ecdysone, early genes exhibit a highly characteristic rapid and powerful induction that represents a primary response. Multiple isoforms encoded by early genes then coordinate the activation of a larger group of late genes. While the general mechanism of ecdysone-dependent transcription is well characterized, it is not known whether a distinct mechanism governs the hormonal response of early genes. We previously found that one of the Drosophila early genes, E75, harbors multiple functional ecdysone response elements (EcREs). In this study we extended the analysis to Broad and E74 and found that EcRE multiplicity is a general feature of the early genes. Since most of the EcREs within early gene loci are situated distantly from promoters, we employed the chromosome conformation capture method to determine whether higher order chromatin structure facilitates hormonal activation. For each early gene we detected chromatin loops that juxtapose their promoters and multiple distant EcREs prior to ecdysone activation. Our findings suggest that higher order chromatin structure may serve as an important mechanism underlying the distinct response of early genes to ecdysone.
Collapse
Affiliation(s)
- Travis J Bernardo
- Department of Biology, Fordham University, Bronx, NY 10458, USA Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Xie Xie
- Department of Biology, Fordham University, Bronx, NY 10458, USA
| | - Edward B Dubrovsky
- Department of Biology, Fordham University, Bronx, NY 10458, USA Center for Cancer, Genetic Diseases, and Gene Regulation, Fordham University, Bronx, NY 10461, USA
| |
Collapse
|
29
|
Li F, Gu Z, Wang B, Xie Y, Ma L, Xu K, Ni M, Zhang H, Shen W, Li B. Effects of the Biosynthesis and Signaling Pathway of Ecdysterone on Silkworm (Bombyx mori) Following Exposure to Titanium Dioxide Nanoparticles. J Chem Ecol 2014; 40:913-22. [DOI: 10.1007/s10886-014-0487-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/16/2014] [Accepted: 06/23/2014] [Indexed: 10/24/2022]
|
30
|
Steroid signaling promotes stem cell maintenance in the Drosophila testis. Dev Biol 2014; 394:129-41. [PMID: 25093968 DOI: 10.1016/j.ydbio.2014.07.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/22/2022]
Abstract
Stem cell regulation by local signals is intensely studied, but less is known about the effects of hormonal signals on stem cells. In Drosophila, the primary steroid twenty-hydroxyecdysone (20E) regulates ovarian germline stem cells (GSCs) but was considered dispensable for testis GSC maintenance. Male GSCs reside in a microenvironment (niche) generated by somatic hub cells and adjacent cyst stem cells (CySCs). Here, we show that depletion of 20E from adult males by overexpressing a dominant negative form of the Ecdysone receptor (EcR) or its heterodimeric partner ultraspiracle (usp) causes GSC and CySC loss that is rescued by 20E feeding, uncovering a requirement for 20E in stem cell maintenance. EcR and USP are expressed, activated and autonomously required in the CySC lineage to promote CySC maintenance, as are downstream genes ftz-f1 and E75. In contrast, GSCs non-autonomously require ecdysone signaling. Global inactivation of EcR increases cell death in the testis that is rescued by expression of EcR-B2 in the CySC lineage, indicating that ecdysone signaling supports stem cell viability primarily through a specific receptor isoform. Finally, EcR genetically interacts with the NURF chromatin-remodeling complex, which we previously showed maintains CySCs. Thus, although 20E levels are lower in males than females, ecdysone signaling acts through distinct cell types and effectors to ensure both ovarian and testis stem cell maintenance.
Collapse
|
31
|
Hormone-responsive enhancer-activity maps reveal predictive motifs, indirect repression, and targeting of closed chromatin. Mol Cell 2014; 54:180-192. [PMID: 24685159 DOI: 10.1016/j.molcel.2014.02.026] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/11/2013] [Accepted: 02/14/2014] [Indexed: 12/19/2022]
Abstract
Steroid hormones act as important developmental switches, and their nuclear receptors regulate many genes. However, few hormone-dependent enhancers have been characterized, and important aspects of their sequence architecture, cell-type-specific activating and repressing functions, or the regulatory roles of their chromatin structure have remained unclear. We used STARR-seq, a recently developed enhancer-screening assay, and ecdysone signaling in two different Drosophila cell types to derive genome-wide hormone-dependent enhancer-activity maps. We demonstrate that enhancer activation depends on cis-regulatory motif combinations that differ between cell types and can predict cell-type-specific ecdysone targeting. Activated enhancers are often not accessible prior to induction. Enhancer repression following hormone treatment seems independent of receptor motifs and receptor binding to the enhancer, as we show using ChIP-seq, but appears to rely on motifs for other factors, including Eip74. Our strategy is applicable to study signal-dependent enhancers for different pathways and across organisms.
Collapse
|
32
|
Kadamb R, Mittal S, Bansal N, Batra H, Saluja D. Sin3: insight into its transcription regulatory functions. Eur J Cell Biol 2013; 92:237-46. [PMID: 24189169 DOI: 10.1016/j.ejcb.2013.09.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/27/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022] Open
Abstract
Sin3, a large acidic protein, shares structural similarity with the helix-loop-helix dimerization domain of proteins of the Myc family of transcription factors. Sin3/HDAC corepressor complex functions in transcriptional regulation of several genes and is therefore implicated in the regulation of key biological processes. Knockdown studies have confirmed the role of Sin3 in cellular proliferation, differentiation, apoptosis and cell cycle regulation, emphasizing Sin3 as an essential regulator of critical cellular events in normal and pathological processes. The present review covers the diverse functions of this master transcriptional regulator as well as illustrates the redundant and distinct functions of its two mammalian isoforms.
Collapse
Affiliation(s)
- Rama Kadamb
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| | | | | | | | | |
Collapse
|
33
|
Song S, Yuan Y, Lu J, Li Q, Zhu Z, Fan Q, Xue Y, Lai ZC, Zhang W. The Drosophila ortholog of breast cancer metastasis suppressor gene, dBrms1, is critical for developmental timing through regulating ecdysone signaling. Dev Biol 2013; 380:344-50. [DOI: 10.1016/j.ydbio.2013.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/10/2013] [Accepted: 05/12/2013] [Indexed: 01/24/2023]
|
34
|
Mottis A, Mouchiroud L, Auwerx J. Emerging roles of the corepressors NCoR1 and SMRT in homeostasis. Genes Dev 2013; 27:819-35. [PMID: 23630073 DOI: 10.1101/gad.214023.113] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epigenetic regulation of gene expression is strongly influenced by the accessibility of nucleosomal DNA or the state of chromatin compaction. In this context, coregulators, including both coactivators and corepressors, are pivotal intermediates that bridge chromatin-modifying enzymes and transcription factors. NCoR1 (nuclear receptor corepressor) and SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) are among the best-characterized corepressors from a molecular point of view. These coregulators have conserved orthologs in lower organisms, which underscores their functional importance. Here we summarize the results from recent in vivo studies that reveal the wide-ranging roles of NCoR1 and SMRT in developmental as well as homeostatic processes, including metabolism, inflammation, and circadian rhythms. We also discuss the potential implications of NCoR1 and SMRT regulation of pathways ranging from genomic stability and carcinogenesis to metabolic diseases such as type 2 diabetes.
Collapse
Affiliation(s)
- Adrienne Mottis
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | | | | |
Collapse
|
35
|
Abstract
Although intercellular bridges resulting from incomplete cytokinesis were discovered in somatic Drosophila tissues decades ago, the impact of these structures on intercellular communication and tissue biology is largely unknown. In this work, we demonstrate that the ~250-nanometer-diameter somatic ring canals permit diffusion of cytoplasmic contents between connected cells and across mitotic clone boundaries and enable the equilibration of protein between transcriptionally mosaic follicle cells in the Drosophila ovary. We obtained similar, although more restricted, results in the larval imaginal discs. Our work illustrates the lack of cytoplasmic autonomy in these tissues and suggests a role for somatic ring canals in promoting homogeneous protein expression within the tissue.
Collapse
Affiliation(s)
- Peter F McLean
- Department of Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | |
Collapse
|
36
|
GEI-8, a homologue of vertebrate nuclear receptor corepressor NCoR/SMRT, regulates gonad development and neuronal functions in Caenorhabditis elegans. PLoS One 2013; 8:e58462. [PMID: 23484030 PMCID: PMC3590189 DOI: 10.1371/journal.pone.0058462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 02/05/2013] [Indexed: 12/29/2022] Open
Abstract
NCoR and SMRT are two paralogous vertebrate proteins that function as corepressors with unliganded nuclear receptors. Although C. elegans has a large number of nuclear receptors, orthologues of the corepressors NCoR and SMRT have not unambiguously been identified in Drosophila or C. elegans. Here, we identify GEI-8 as the closest homologue of NCoR and SMRT in C. elegans and demonstrate that GEI-8 is expressed as at least two isoforms throughout development in multiple tissues, including neurons, muscle and intestinal cells. We demonstrate that a homozygous deletion within the gei-8 coding region, which is predicted to encode a truncated protein lacking the predicted NR domain, results in severe mutant phenotypes with developmental defects, slow movement and growth, arrested gonadogenesis and defects in cholinergic neurotransmission. Whole genome expression analysis by microarrays identified sets of de-regulated genes consistent with both the observed mutant phenotypes and a role of GEI-8 in regulating transcription. Interestingly, the upregulated transcripts included a predicted mitochondrial sulfide:quinine reductase encoded by Y9C9A.16. This locus also contains non-coding, 21-U RNAs of the piRNA class. Inhibition of the expression of the region coding for 21-U RNAs leads to irregular gonadogenesis in the homozygous gei-8 mutants, but not in an otherwise wild-type background, suggesting that GEI-8 may function in concert with the 21-U RNAs to regulate gonadogenesis. Our results confirm that GEI-8 is the orthologue of the vertebrate NCoR/SMRT corepressors and demonstrate important roles for this putative transcriptional corepressor in development and neuronal function.
Collapse
|
37
|
Foulk MS, Waggener JM, Johnson JM, Yamamoto Y, Liew GM, Urnov FD, Young Y, Lee G, Smith HS, Gerbi SA. Isolation and characterization of the ecdysone receptor and its heterodimeric partner ultraspiracle through development in Sciara coprophila. Chromosoma 2013; 122:103-19. [PMID: 23321980 DOI: 10.1007/s00412-012-0395-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/09/2012] [Accepted: 12/18/2012] [Indexed: 01/08/2023]
Abstract
Regulation of DNA replication is critical, and loss of control can lead to DNA amplification. Naturally occurring, developmentally regulated DNA amplification occurs in the DNA puffs of the late larval salivary gland giant polytene chromosomes in the fungus fly, Sciara coprophila. The steroid hormone ecdysone induces DNA amplification in Sciara, and the amplification origin of DNA puff II/9A contains a putative binding site for the ecdysone receptor (EcR). We report here the isolation, cloning, and characterizing of two ecdysone receptor isoforms in Sciara (ScEcR-A and ScEcR-B) and the heterodimeric partner, ultraspiracle (ScUSP). ScEcR-A is the predominant isoform in larval tissues and ScEcR-B in adult tissues, contrary to the pattern in Drosophila. Moreover, ScEcR-A is produced at amplification but is absent just prior. We discuss these results in relation to the model of ecdysone regulation of DNA amplification.
Collapse
Affiliation(s)
- Michael S Foulk
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yamanaka N, Rewitz KF, O’Connor MB. Ecdysone control of developmental transitions: lessons from Drosophila research. ANNUAL REVIEW OF ENTOMOLOGY 2013; 58:497-516. [PMID: 23072462 PMCID: PMC4060523 DOI: 10.1146/annurev-ento-120811-153608] [Citation(s) in RCA: 414] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The steroid hormone ecdysone is the central regulator of insect developmental transitions. Recent new advances in our understanding of ecdysone action have relied heavily on the application of Drosophila melanogaster molecular genetic tools to study insect metamorphosis. In this review, we focus on three major aspects of Drosophila ecdysone biology: (a) factors that regulate the timing of ecdysone release, (b) molecular basis of stage- and tissue-specific responses to ecdysone, and (c) feedback regulation and coordination of ecdysone signaling.
Collapse
Affiliation(s)
- Naoki Yamanaka
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Kim F. Rewitz
- Department of Science, Systems and Models, Roskilde University, 4000 Roskilde, Denmark
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
39
|
MET is required for the maximal action of 20-hydroxyecdysone during Bombyx metamorphosis. PLoS One 2012; 7:e53256. [PMID: 23300902 PMCID: PMC3531340 DOI: 10.1371/journal.pone.0053256] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 11/27/2012] [Indexed: 01/09/2023] Open
Abstract
Little is known about how the putative juvenile hormone (JH) receptor, the bHLH-PAS transcription factor MET, is involved in 20-hydroxyecdysone (20E; the molting hormone) action. Here we report that two MET proteins found in the silkworm, Bombyx mori, participate in 20E signal transduction. Met is 20E responsive and its expression peaks during molting and pupation, when the 20E titer is high. As found with results from RNAi knockdown of EcR-USP (the ecdysone receptor genes), RNAi knockdown of Met at the early wandering stage disrupts the 20E-triggered transcriptional cascade, preventing tissue remodeling (including autophagy, apoptosis and destruction of larval tissues and generation of adult structures) and causing lethality during the larval-pupal transition. MET physically interacts with EcR-USP. Moreover, MET, EcR-USP and the 20E-response element (EcRE) form a protein-DNA complex, implying that MET might modulate 20E-induced gene transcription by interacting with EcR-USP. In conclusion, the 20E induction of MET is required for the maximal action of 20E during Bombyx metamorphosis.
Collapse
|
40
|
Carbonell A, Mazo A, Serras F, Corominas M. Ash2 acts as an ecdysone receptor coactivator by stabilizing the histone methyltransferase Trr. Mol Biol Cell 2012. [PMID: 23197473 PMCID: PMC3565548 DOI: 10.1091/mbc.e12-04-0267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The molting hormone ecdysone triggers chromatin changes via histone modifications that are important for gene regulation. On hormone activation, the ecdysone receptor (EcR) binds to the SET domain-containing histone H3 methyltransferase trithorax-related protein (Trr). Methylation of histone H3 at lysine 4 (H3K4me), which is associated with transcriptional activation, requires several cofactors, including Ash2. We find that ash2 mutants have severe defects in pupariation and metamorphosis due to a lack of activation of ecdysone-responsive genes. This transcriptional defect is caused by the absence of the H3K4me3 marks set by Trr in these genes. We present evidence that Ash2 interacts with Trr and is required for its stabilization. Thus we propose that Ash2 functions together with Trr as an ecdysone receptor coactivator.
Collapse
Affiliation(s)
- Albert Carbonell
- Departament de Genètica and Institut de Biomedicina, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
41
|
Swaminathan A, Barnes VL, Fox S, Gammouh S, Pile LA. Identification of genetic suppressors of the Sin3A knockdown wing phenotype. PLoS One 2012; 7:e49563. [PMID: 23166712 PMCID: PMC3499482 DOI: 10.1371/journal.pone.0049563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/11/2012] [Indexed: 11/19/2022] Open
Abstract
The role of the Sin3A transcriptional corepressor in regulating the cell cycle is established in various metazoans. Little is known, however, about the signaling pathways that trigger or are triggered by Sin3A function. To discover genes that work in similar or opposing pathways to Sin3A during development, we have performed an unbiased screen of deficiencies of the Drosophila third chromosome. Additionally, we have performed a targeted loss of function screen to identify cell cycle genes that genetically interact with Sin3A. We have identified genes that encode proteins involved in regulation of gene expression, signaling pathways and cell cycle that can suppress the curved wing phenotype caused by the knockdown of Sin3A. These data indicate that Sin3A function is quite diverse and impacts a wide variety of cellular processes.
Collapse
Affiliation(s)
- Aishwarya Swaminathan
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Valerie L. Barnes
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Stephanie Fox
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Sarah Gammouh
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Lori A. Pile
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
42
|
Lee JH, Skalnik DG. Rbm15-Mkl1 interacts with the Setd1b histone H3-Lys4 methyltransferase via a SPOC domain that is required for cytokine-independent proliferation. PLoS One 2012; 7:e42965. [PMID: 22927943 PMCID: PMC3424240 DOI: 10.1371/journal.pone.0042965] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022] Open
Abstract
The Rbm15-Mkl1 fusion protein is associated with acute megakaryoblastic leukemia (AMKL), although little is known regarding the molecular mechanism(s) whereby this fusion protein contributes to leukemogenesis. Here, we show that both Rbm15 and the leukemogenic Rbm15-Mkl1 fusion protein interact with the Setd1b histone H3-Lys4 methyltransferase (also known as KMT2G). This interaction is direct and requires the Rbm15 SPOC domain and the Setd1b LSD motif. Over-expression of Rbm15-Mkl1 in the 6133 megakaryoblastic leukemia cell line, previously established by expression of the Rbm15-Mkl1 fusion protein in mice (Mercher et al., [2009] J. Clin. Invest. 119, 852-864), leads to decreased levels of endogenous Rbm15 and increased levels of endogenous Mkl1. These cells exhibit enhanced proliferation and cytokine-independent cell growth, which requires an intact Rbm15 SPOC domain that mediates interaction between the Rbm15-Mkl1 fusion protein and the Setd1b methyltransferase. These results reveal altered Setd1b complex function and consequent altered epigenetic regulation as a possible molecular mechanism that mediates the leukemogenic activity of the Rbm15-Mkl1 fusion protein in AMKL.
Collapse
Affiliation(s)
- Jeong-Heon Lee
- Wells Center for Pediatric Research, Departments of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (DGS); (JHL)
| | - David G. Skalnik
- Wells Center for Pediatric Research, Departments of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Biology, Indiana University-Purdue University Indianapolis School of Science, Indianapolis, Indiana, United States of America
- * E-mail: (DGS); (JHL)
| |
Collapse
|
43
|
Cryptocephal, the Drosophila melanogaster ATF4, is a specific coactivator for ecdysone receptor isoform B2. PLoS Genet 2012; 8:e1002883. [PMID: 22912598 PMCID: PMC3415445 DOI: 10.1371/journal.pgen.1002883] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 06/22/2012] [Indexed: 01/02/2023] Open
Abstract
The ecdysone receptor is a heterodimer of two nuclear receptors, the Ecdysone receptor (EcR) and Ultraspiracle (USP). In Drosophila melanogaster, three EcR isoforms share common DNA and ligand-binding domains, but these proteins differ in their most N-terminal regions and, consequently, in the activation domains (AF1s) contained therein. The transcriptional coactivators for these domains, which impart unique transcriptional regulatory properties to the EcR isoforms, are unknown. Activating transcription factor 4 (ATF4) is a basic-leucine zipper transcription factor that plays a central role in the stress response of mammals. Here we show that Cryptocephal (CRC), the Drosophila homolog of ATF4, is an ecdysone receptor coactivator that is specific for isoform B2. CRC interacts with EcR-B2 to promote ecdysone-dependent expression of ecdysis-triggering hormone (ETH), an essential regulator of insect molting behavior. We propose that this interaction explains some of the differences in transcriptional properties that are displayed by the EcR isoforms, and similar interactions may underlie the differential activities of other nuclear receptors with distinct AF1-coactivators. Nuclear receptors are proteins that regulate gene expression in response to steroid and thyroid hormones and other small lipid-soluble signaling molecules. In many cases, nuclear receptor genes encode multiple variants (isoforms) that direct tissue- and stage-specific hormonal responses. The sequence differences among isoforms are often found at the protein N-terminus, which mediates hormone-independent interactions with unknown regulatory partners to control target gene expression. Here, we show that the fruit fly Cryptocephal (CRC) protein is a specific coactivator for one of three isoforms of the receptor for the insect molting steroid, ecdysone. Our findings reveal a mechanism for differential activation of gene expression in response to ecdysone during insect molting and metamorphosis, and contribute to our understanding of isoform-specific functions of nuclear hormone receptors.
Collapse
|
44
|
Lim YM, Hayashi S, Tsuda L. Ebi/AP-1 suppresses pro-apoptotic genes expression and permits long-term survival of Drosophila sensory neurons. PLoS One 2012; 7:e37028. [PMID: 22666340 PMCID: PMC3364243 DOI: 10.1371/journal.pone.0037028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/11/2012] [Indexed: 12/23/2022] Open
Abstract
Sensory organs are constantly exposed to physical and chemical stresses that collectively threaten the survival of sensory neurons. Failure to protect stressed neurons leads to age-related loss of neurons and sensory dysfunction in organs in which the supply of new sensory neurons is limited, such as the human auditory system. Transducin β-like protein 1 (TBL1) is a candidate gene for ocular albinism with late-onset sensorineural deafness, a form of X-linked age-related hearing loss. TBL1 encodes an evolutionarily conserved F-box–like and WD40 repeats–containing subunit of the nuclear receptor co-repressor/silencing mediator for retinoid and thyroid hormone receptor and other transcriptional co-repressor complexes. Here we report that a Drosophila homologue of TBL1, Ebi, is required for maintenance of photoreceptor neurons. Loss of ebi function caused late-onset neuronal apoptosis in the retina and increased sensitivity to oxidative stress. Ebi formed a complex with activator protein 1 (AP-1) and was required for repression of Drosophila pro-apoptotic and anti-apoptotic genes expression. These results suggest that Ebi/AP-1 suppresses basal transcription levels of apoptotic genes and thereby protects sensory neurons from degeneration.
Collapse
Affiliation(s)
- Young-Mi Lim
- Animal Models of Aging, National Center for Geriatrics and Gerontology, Gengo, Obu, Aichi, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Department of Biology, Kobe University Graduate School of Science, Kobe, Hyogo, Japan
| | - Leo Tsuda
- Animal Models of Aging, National Center for Geriatrics and Gerontology, Gengo, Obu, Aichi, Japan
- * E-mail:
| |
Collapse
|
45
|
Heck BW, Zhang B, Tong X, Pan Z, Deng WM, Tsai CC. The transcriptional corepressor SMRTER influences both Notch and ecdysone signaling during Drosophila development. Biol Open 2011; 1:182-96. [PMID: 23213409 PMCID: PMC3507286 DOI: 10.1242/bio.2012047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
SMRTER (SMRT-related and ecdysone receptor interacting factor) is the Drosophila homologue of the vertebrate proteins SMRT and N-CoR, and forms with them a well-conserved family of transcriptional corepressors. Molecular characterization of SMRT-family proteins in cultured cells has implicated them in a wide range of transcriptional regulatory pathways. However, little is currently known about how this conserved class of transcriptional corepressors regulates the development of particular tissues via specific pathways. In this study, through our characterization of multiple Smrter (Smr) mutant lines, mosaic analysis of a loss-of-function Smr allele, and studies of two independent Smr RNAi fly lines, we report that SMRTER is required for the development of both ovarian follicle cells and the wing. In these two tissues, SMRTER inhibits not only the ecdysone pathway, but also the Notch pathway. We differentiate SMRTER's influence on these two signaling pathways by showing that SMRTER inhibits the Notch pathway, but not the ecdysone pathway, in a spatiotemporally restricted manner. We further confirm the likely involvement of SMRTER in the Notch pathway by demonstrating a direct interaction between SMRTER and Suppressor of Hairless [Su(H)], a DNA-binding transcription factor pivotal in the Notch pathway, and the colocalization of both proteins at many chromosomal regions in salivary glands. Based on our results, we propose that SMRTER regulates the Notch pathway through its association with Su(H), and that overcoming a SMRTER-mediated transcriptional repression barrier may represent a key mechanism used by the Notch pathway to control the precise timing of events and the formation of sharp boundaries between cells in multiple tissues during development.
Collapse
Affiliation(s)
- Bryan W Heck
- UMDNJ-Robert Wood Johnson Medical School, Department of Physiology and Biophysics , 683 Hoes Lane, Piscataway, NJ 08854 , USA
| | | | | | | | | | | |
Collapse
|
46
|
Johnston DM, Sedkov Y, Petruk S, Riley KM, Fujioka M, Jaynes JB, Mazo A. Ecdysone- and NO-mediated gene regulation by competing EcR/Usp and E75A nuclear receptors during Drosophila development. Mol Cell 2011; 44:51-61. [PMID: 21981918 DOI: 10.1016/j.molcel.2011.07.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/26/2011] [Accepted: 07/07/2011] [Indexed: 11/19/2022]
Abstract
The Drosophila ecdysone receptor (EcR/Usp) is thought to activate or repress gene transcription depending on the presence or absence, respectively, of the hormone ecdysone. Unexpectedly, we found an alternative mechanism at work in salivary glands during the ecdysone-dependent transition from larvae to pupae. In the absense of ecdysone, both ecdysone receptor subunits localize to the cytoplasm, and the heme-binding nuclear receptor E75A replaces EcR/Usp at common target sequences in several genes. During the larval-pupal transition, a switch from gene activation by EcR/Usp to gene repression by E75A is triggered by a decrease in ecdysone concentration and by direct repression of the EcR gene by E75A. Additional control is provided by developmentally timed modulation of E75A activity by NO, which inhibits recruitment of the corepressor SMRTER. These results suggest a mechanism for sequential modulation of gene expression during development by competing nuclear receptors and their effector molecules, ecdysone and NO.
Collapse
Affiliation(s)
- Danika M Johnston
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Davis MB, SanGil I, Berry G, Olayokun R, Neves LH. Identification of common and cell type specific LXXLL motif EcR cofactors using a bioinformatics refined candidate RNAi screen in Drosophila melanogaster cell lines. BMC DEVELOPMENTAL BIOLOGY 2011; 11:66. [PMID: 22050674 PMCID: PMC3227616 DOI: 10.1186/1471-213x-11-66] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 11/03/2011] [Indexed: 12/31/2022]
Abstract
Background During Drosophila development, titers of the steroid ecdysone trigger and maintain temporal and tissue specific biological transitions. Decades of evidence reveal that the ecdysone response is both unique to specific tissues and distinct among developmental timepoints. To achieve this diversity in response, the several isoforms of the Ecdysone Receptor, which transduce the hormone signal to the genome level, are believed to interact with tissue specific cofactors. To date, little is known about the identity of these cofactor interactions; therefore, we conducted a bioinformatics informed, RNAi luciferase reporter screen against a subset of putative candidate cofactors identified through an in silico proteome screen. Candidates were chosen based on criteria obtained from bioinformatic consensus of known nuclear receptor cofactors and homologs, including amino acid sequence motif content and context. Results The bioinformatics pre-screen of the Drosophila melanogaster proteome was successful in identifying an enriched putative candidate gene cohort. Over 80% of the genes tested yielded a positive hit in our reporter screen. We have identified both cell type specific and common cofactors which appear to be necessary for proper ecdysone induced gene regulation. We have determined that certain cofactors act as co-repressors to reduce target gene expression, while others act as co-activators to increase target gene expression. Interestingly, we find that a few of the cofactors shared among cell types have a reversible roles to function as co-repressors in certain cell types while in other cell types they serve as co-activators. Lastly, these proteins are highly conserved, with higher order organism homologs also harboring the LXXLL steroid receptor interaction domains, suggesting a highly conserved mode of steroid cell target specificity. Conclusions In conclusion, we submit these cofactors as novel components of the ecdysone signaling pathway in order to further elucidate the dynamics of steroid specificity.
Collapse
Affiliation(s)
- Melissa B Davis
- Department of Genetics, University of Georgia, Athens, GA 30502, USA.
| | | | | | | | | |
Collapse
|
48
|
Marygold SJ, Walker C, Orme M, Leevers S. Genetic characterization of ebi reveals its critical role in Drosophila wing growth. Fly (Austin) 2011; 5:291-303. [PMID: 22041576 DOI: 10.4161/fly.5.4.18276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ebi gene of Drosophila melanogaster has been implicated in diverse signalling pathways, cellular functions and developmental processes. However, a thorough genetic analysis of this gene has been lacking and the true extent of its biological roles is unclear. Here, we characterize eleven ebi mutations and find that ebi has a novel role in promoting growth of the wing imaginal disc: viable combinations of mutant alleles give rise to adults with small wings. Wing discs with reduced EBI levels are correspondingly small and exhibit down-regulation of Notch target genes. Furthermore, we show that EBI colocalizes on polytene chromosomes with Smrter (SMR), a transcriptional corepressor, and Suppressor of Hairless (SU(H)), the primary transcription factor involved in Notch signalling. Interestingly, the mammalian orthologs of ebi, transducin β-like 1 (TBL1) and TBL-related 1 (TBLR1), function as corepressor/coactivator exchange factors and are required for transcriptional activation of Notch target genes. We hypothesize that EBI acts to activate (de-repress) transcription of Notch target genes important for Drosophila wing growth by functioning as a corepressor/coactivator exchange factor for SU(H).
Collapse
|
49
|
Isoform-specific regulation of a steroid hormone nuclear receptor by an E3 ubiquitin ligase in Drosophila melanogaster. Genetics 2011; 189:871-83. [PMID: 21900267 DOI: 10.1534/genetics.111.132191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The steroid hormone 20-hydroxyecdysone (20E) regulates gene transcription through the heterodimeric nuclear receptor composed of ecdysone receptor (EcR) and Ultraspiracle (USP). The EcR gene encodes three protein isoforms--A, B1, and B2--with variant N-terminal domains that mediate tissue and developmental stage-specific responses to 20E. Ariadne-1a is a conserved member of the RING finger family of ubiquitin ligases first identified in Drosophila melanogaster. Loss-of-function mutations at key cysteines in either of the two RING finger motifs, as well as general overexpression of this enzyme, cause lethality in pupae, which suggests a requirement in metamorphosis. Here, we show that Ariadne-1a binds specifically the isoform A of EcR and ubiquitylates it. Co-immunoprecipitation experiments indicate that the full sequence of EcRA is required for this binding. Protein levels of EcRA and USP change in opposite directions when those of ARI-1a are genetically altered. This is an isoform-specific, E3-dependent regulatory mechanism for a steroid nuclear receptor. Further, qRT-PCR experiments show that the ARI-1a levels lead to the transcriptional regulation of Eip78C, Eip74EF, Eip75B, and Br-C, as well as that of EcR and usp genes. Thus, the activity of this enzyme results in the regulation of dimerizing receptors at the protein and gene transcription levels. This fine-tuned orchestration by a conserved ubiquitin ligase is required during insect metamorphosis and, likely, in other steroid hormone-controlled processes across species.
Collapse
|
50
|
Schwedes C, Tulsiani S, Carney GE. Ecdysone receptor expression and activity in adult Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:899-907. [PMID: 21507325 DOI: 10.1016/j.jinsphys.2011.03.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 05/30/2023]
Abstract
Disrupting components of the ecdysone/EcR/USP signaling pathway in insects leads to morphological defects and developmental arrest. In adult Drosophila melanogaster decreased EcR function affects fertility, lifespan, behavior, learning, and memory; however we lack a clear understanding of how EcR/USP expression and activity impacts these phenotypes. To shed light on this issue, we characterized the wild-type expression patterns and activity of EcR/USP in individual tissues during early adult life. EcR and usp were expressed in numerous adult tissues, but receptor activity varied depending on tissue type and adult age. Receptor activity did not detectably change in response to mating status, environmental stress, ecdysone treatment or gender but is reduced when a constitutively inactive ecdysone receptor is present. Since only a subset of adult tissues expressing EcR and usp contain active receptors, it appears that an important adult function of EcR/USP in some tissues may be repression of genes containing EcRE's.
Collapse
Affiliation(s)
- Christoph Schwedes
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, USA.
| | | | | |
Collapse
|