1
|
Roca Paixao JF, Déléris A. Epigenetic control of T-DNA during transgenesis and pathogenesis. PLANT PHYSIOLOGY 2024; 197:kiae583. [PMID: 39498848 DOI: 10.1093/plphys/kiae583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 11/07/2024]
Abstract
Mobile elements known as T-DNAs are transferred from pathogenic Agrobacterium to plants and reprogram the host cell to form hairy roots or tumors. Disarmed nononcogenic T-DNAs are extensively used to deliver transgenes in plant genetic engineering. Such T-DNAs were the first known targets of RNA silencing mechanisms, which detect foreign RNA in plant cells and produce small RNAs that induce transcript degradation. These T-DNAs can also be transcriptionally silenced by the deposition of epigenetic marks such as DNA methylation and the dimethylation of lysine 9 (H3K9me2) in plants. Here, we review the targeting and the roles of RNA silencing and DNA methylation on T-DNAs in transgenic plants as well as during pathogenesis. In addition, we discuss the crosstalk between T-DNAs and genome-wide changes in DNA methylation during pathogenesis. We also cover recently discovered regulatory phenomena, such as T-DNA suppression and RNA silencing-independent and epigenetic-independent mechanisms that can silence T-DNAs. Finally, we discuss the implications of findings on T-DNA silencing for the improvement of plant genetic engineering.
Collapse
Affiliation(s)
- Joaquin Felipe Roca Paixao
- Université Paris-Saclay, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Angélique Déléris
- Université Paris-Saclay, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Chernomas G, Griswold CK. Deleterious mutation/epimutation-selection balance with and without inbreeding: a population (epi)genetics model. Genetics 2024; 227:iyae080. [PMID: 38733620 PMCID: PMC11228854 DOI: 10.1093/genetics/iyae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Epigenetics in the form of DNA methylation and other processes is an established property of genotypes and a focus of empirical research. Yet, there remain fundamental gaps in the evolutionary theory of epigenetics. To support a comprehensive understanding of epigenetics, this paper investigates theoretically the combined effects of deleterious mutation and epimutation with and without inbreeding. Both spontaneous epimutation and paramutation are considered to cover a broader range of epigenetic phenomena. We find that inbreeding generally reduces the amount of segregating deleterious genetic and epigenetic variation at equilibrium, although interestingly inbreeding can also increase the amount of deleterious genetic or epigenetic variation. Furthermore, we also demonstrate that epimutation indirectly can cause increased or decreased deleterious genetic variation at equilibrium relative to classic expectations, which is particularly evident when paramutation is occurring. With the addition of deleterious epimutation, there may be significantly increased purging of deleterious variation in more inbred populations and a significantly increased amount of segregating deleterious variation in more outbred populations, with notable exceptions.
Collapse
Affiliation(s)
- Gregory Chernomas
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Cortland K Griswold
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
3
|
Liu J, Zhong X. Population epigenetics: DNA methylation in the plant omics era. PLANT PHYSIOLOGY 2024; 194:2039-2048. [PMID: 38366882 PMCID: PMC10980424 DOI: 10.1093/plphys/kiae089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
DNA methylation plays an important role in many biological processes. The mechanisms underlying the establishment and maintenance of DNA methylation are well understood thanks to decades of research using DNA methylation mutants, primarily in Arabidopsis (Arabidopsis thaliana) accession Col-0. Recent genome-wide association studies (GWASs) using the methylomes of natural accessions have uncovered a complex and distinct genetic basis of variation in DNA methylation at the population level. Sequencing following bisulfite treatment has served as an excellent method for quantifying DNA methylation. Unlike studies focusing on specific accessions with reference genomes, population-scale methylome research often requires an additional round of sequencing beyond obtaining genome assemblies or genetic variations from whole-genome sequencing data, which can be cost prohibitive. Here, we provide an overview of recently developed bisulfite-free methods for quantifying methylation and cost-effective approaches for the simultaneous detection of genetic and epigenetic information. We also discuss the plasticity of DNA methylation in a specific Arabidopsis accession, the contribution of DNA methylation to plant adaptation, and the genetic determinants of variation in DNA methylation in natural populations. The recently developed technology and knowledge will greatly benefit future studies in population epigenomes.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
4
|
Sidorenko LV, Chandler VL, Wang X, Peterson T. Transcribed enhancer sequences are required for maize p1 paramutation. Genetics 2024; 226:iyad178. [PMID: 38169343 PMCID: PMC10763531 DOI: 10.1093/genetics/iyad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 08/27/2023] [Indexed: 01/05/2024] Open
Abstract
Paramutation is a transfer of heritable silencing states between interacting endogenous alleles or between endogenous alleles and homologous transgenes. Prior results demonstrated that paramutation occurs at the P1-rr (red pericarp and red cob) allele of the maize p1 (pericarp color 1) gene when exposed to a transgene containing a 1.2-kb enhancer fragment (P1.2) of P1-rr. The paramutable P1-rr allele undergoes transcriptional silencing resulting in a paramutant light-pigmented P1-rr' state. To define more precisely the sequences required to elicit paramutation, the P1.2 fragment was further subdivided, and the fragments transformed into maize plants and crossed with P1-rr. Analysis of the progeny plants showed that the sequences required for paramutation are located within a ∼600-bp segment of P1.2 and that this segment overlaps with a previously identified enhancer that is present in 4 direct repeats in P1-rr. The paramutagenic segment is transcribed in both the expressed P1-rr and the silenced P1-rr'. Transcription is sensitive to α-amanitin, indicating that RNA polymerase II mediates most of the transcription of this sequence. Although transcription within the paramutagenic sequence was similar in all tested genotypes, small RNAs were more abundant in the silenced P1-rr' epiallele relative to the expressed P1-rr allele. In agreement with prior results indicating the association of RNA-mediated DNA methylation in p1 paramutation, DNA blot analyses detected increased cytosine methylation of the paramutant P1-rr' sequences homologous to the transgenic P1.2 subfragments. Together these results demonstrate that the P1-rr enhancer repeats mediate p1 paramutation.
Collapse
Affiliation(s)
- Lyudmila V Sidorenko
- Department of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA 50131, USA
| | - Vicki L Chandler
- Department of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
- Minerva University, 14 Mint Plaza, Suite 300, San Francisco, CA 94103, USA
| | - Xiujuan Wang
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA 50131, USA
- Department of Genetics, Development, and Cellular Biology, Department of Agronomy, Iowa State University, Ames, IA 50010, USA
| | - Thomas Peterson
- Department of Genetics, Development, and Cellular Biology, Department of Agronomy, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
5
|
Arce AL, Mencia R, Cambiagno DA, Lang PL, Liu C, Burbano HA, Weigel D, Manavella PA. Polymorphic inverted repeats near coding genes impact chromatin topology and phenotypic traits in Arabidopsis thaliana. Cell Rep 2023; 42:112029. [PMID: 36689329 DOI: 10.1016/j.celrep.2023.112029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 01/23/2023] Open
Abstract
Transposons are mobile elements that are commonly silenced to protect eukaryotic genome integrity. In plants, transposable element (TE)-derived inverted repeats (IRs) are commonly found near genes, where they affect host gene expression. However, the molecular mechanisms of such regulation are unclear in most cases. Expression of these IRs is associated with production of 24-nt small RNAs, methylation of the IRs, and drastic changes in local 3D chromatin organization. Notably, many of these IRs differ between Arabidopsis thaliana accessions, causing variation in short-range chromatin interactions and gene expression. CRISPR-Cas9-mediated disruption of two IRs leads to a switch in genome topology and gene expression with phenotypic consequences. Our data show that insertion of an IR near a gene provides an anchor point for chromatin interactions that profoundly impact the activity of neighboring loci. This turns IRs into powerful evolutionary agents that can contribute to rapid adaptation.
Collapse
Affiliation(s)
- Agustín L Arce
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Regina Mencia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Damian A Cambiagno
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Patricia L Lang
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Chang Liu
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Hernán A Burbano
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany; Centre for Life's Origins and Evolution, University College London, London, UK
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| |
Collapse
|
6
|
Nucleotide mismatches prevent intrinsic self-silencing of hpRNA transgenes to enhance RNAi stability in plants. Nat Commun 2022; 13:3926. [PMID: 35798725 PMCID: PMC9263138 DOI: 10.1038/s41467-022-31641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
Hairpin RNA (hpRNA) transgenes are the most successful RNA interference (RNAi) method in plants. Here, we show that hpRNA transgenes are invariably methylated in the inverted-repeat (IR) DNA and the adjacent promoter, causing transcriptional self-silencing. Nucleotide substitutions in the sense sequence, disrupting the IR structure, prevent the intrinsic DNA methylation resulting in more uniform and persistent RNAi. Substituting all cytosine with thymine nucleotides, in a G:U hpRNA design, prevents self-silencing but still allows for the formation of hpRNA due to G:U wobble base-pairing. The G:U design induces effective RNAi in 90–96% of transgenic lines, compared to 57–65% for the traditional hpRNA design. While a traditional hpRNA transgene shows increasing self-silencing from cotyledons to true leaves, its G:U counterpart avoids this and induce RNAi throughout plant growth. Furthermore, siRNAs from G:U and traditional hpRNA show different characteristics and appear to function via different pathways to induce target DNA methylation. Long hairpin RNA (hpRNA) transgenes are the most widely used RNAi technology in plants, but are potentially subject to self-induced transcriptional silencing. Here, the authors show nucleotide mismatches prevent intrinsic self-silencing of hpRNA transgenes in Arabidopsis and tobacco.
Collapse
|
7
|
Hou Q, Wan X. Epigenome and Epitranscriptome: Potential Resources for Crop Improvement. Int J Mol Sci 2021; 22:12912. [PMID: 34884725 PMCID: PMC8658206 DOI: 10.3390/ijms222312912] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/26/2022] Open
Abstract
Crop breeding faces the challenge of increasing food demand, especially under climatic changes. Conventional breeding has relied on genetic diversity by combining alleles to obtain desired traits. In recent years, research on epigenetics and epitranscriptomics has shown that epigenetic and epitranscriptomic diversity provides additional sources for crop breeding and harnessing epigenetic and epitranscriptomic regulation through biotechnologies has great potential for crop improvement. Here, we review epigenome and epitranscriptome variations during plant development and in response to environmental stress as well as the available sources for epiallele formation. We also discuss the possible strategies for applying epialleles and epitranscriptome engineering in crop breeding.
Collapse
Affiliation(s)
- Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| |
Collapse
|
8
|
Abstract
Plant intra-individual and inter-individual variation can be determined by the epigenome, a set of covalent modifications of DNA and chromatin that can alter genome structure and activity without changes to the genome sequence. The epigenome of plant cells is plastic, that is, it can change in response to internal or external cues, such as during development or due to environmental changes, to create a memory of such events. Ongoing advances in technologies to read and write epigenomic patterns with increasing resolution, scale and precision are enabling the extent of plant epigenome variation to be more extensively characterized and functionally interrogated. In this Review, we discuss epigenome dynamics and variation within plants during development and in response to environmental changes, including stress, as well as between plants. We review known or potential functions of such plasticity and emphasize the importance of investigating the causality of epigenomic changes. Finally, we discuss emerging technologies that may underpin future research into plant epigenome plasticity.
Collapse
Affiliation(s)
- James P B Lloyd
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
9
|
The Underlying Nature of Epigenetic Variation: Origin, Establishment, and Regulatory Function of Plant Epialleles. Int J Mol Sci 2021; 22:ijms22168618. [PMID: 34445323 PMCID: PMC8395315 DOI: 10.3390/ijms22168618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 11/17/2022] Open
Abstract
In plants, the gene expression and associated phenotypes can be modulated by dynamic changes in DNA methylation, occasionally being fixed in certain genomic loci and inherited stably as epialleles. Epiallelic variations in a population can occur as methylation changes at an individual cytosine position, methylation changes within a stretch of genomic regions, and chromatin changes in certain loci. Here, we focus on methylated regions, since it is unclear whether variations at individual methylated cytosines can serve any regulatory function, and the evidence for heritable chromatin changes independent of genetic changes is limited. While DNA methylation is known to affect and regulate wide arrays of plant phenotypes, most epialleles in the form of methylated regions have not been assigned any biological function. Here, we review how epialleles can be established in plants, serve a regulatory function, and are involved in adaptive processes. Recent studies suggest that most epialleles occur as byproducts of genetic variations, mainly from structural variants and Transposable Element (TE) activation. Nevertheless, epialleles that occur spontaneously independent of any genetic variations have also been described across different plant species. Here, we discuss how epialleles that are dependent and independent of genetic architecture are stabilized in the plant genome and how methylation can regulate a transcription relative to its genomic location.
Collapse
|
10
|
Natural variation in DNA methylation homeostasis and the emergence of epialleles. Proc Natl Acad Sci U S A 2020; 117:4874-4884. [PMID: 32071208 DOI: 10.1073/pnas.1918172117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In plants and mammals, DNA methylation plays a critical role in transcriptional silencing by delineating heterochromatin from transcriptionally active euchromatin. A homeostatic balance between heterochromatin and euchromatin is essential to genomic stability. This is evident in many diseases and mutants for heterochromatin maintenance, which are characterized by global losses of DNA methylation coupled with localized ectopic gains of DNA methylation that alter transcription. Furthermore, we have shown that genome-wide methylation patterns in Arabidopsis thaliana are highly stable over generations, with the exception of rare epialleles. However, the extent to which natural variation in the robustness of targeting DNA methylation to heterochromatin exists, and the phenotypic consequences of such variation, remain to be fully explored. Here we describe the finding that heterochromatin and genic DNA methylation are highly variable among 725 A. thaliana accessions. We found that genic DNA methylation is inversely correlated with that in heterochromatin, suggesting that certain methylation pathway(s) may be redirected to genes upon the loss of heterochromatin. This redistribution likely involves a feedback loop involving the DNA methyltransferase, CHROMOMETHYLASE 3 (CMT3), H3K9me2, and histone turnover, as highly expressed, long genes with a high density of CMT3-preferred CWG sites are more likely to be methylated. Importantly, although the presence of CG methylation in genes alone may not affect transcription, genes containing CG methylation are more likely to become methylated at non-CG sites and silenced. These findings are consistent with the hypothesis that natural variation in DNA methylation homeostasis may underlie the evolution of epialleles that alter phenotypes.
Collapse
|
11
|
Xu J, Chen G, Hermanson PJ, Xu Q, Sun C, Chen W, Kan Q, Li M, Crisp PA, Yan J, Li L, Springer NM, Li Q. Population-level analysis reveals the widespread occurrence and phenotypic consequence of DNA methylation variation not tagged by genetic variation in maize. Genome Biol 2019; 20:243. [PMID: 31744513 PMCID: PMC6862797 DOI: 10.1186/s13059-019-1859-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND DNA methylation can provide a source of heritable information that is sometimes entirely uncoupled from genetic variation. However, the extent of this uncoupling and the roles of DNA methylation in shaping diversity of both gene expression and phenotypes are hotly debated. Here, we investigate the genetic basis and biological functions of DNA methylation at a population scale in maize. RESULTS We perform targeted DNA methylation profiling for a diverse panel of 263 maize inbred genotypes. All genotypes show similar levels of DNA methylation globally, highlighting the importance of DNA methylation in maize development. Nevertheless, we identify more than 16,000 differentially methylated regions (DMRs) that are distributed across the 10 maize chromosomes. Genome-wide association analysis with high-density genetic markers reveals that over 60% of the DMRs are not tagged by SNPs, suggesting the presence of unique information in DMRs. Strong associations between DMRs and the expression of many genes are identified in both the leaf and kernel tissues, pointing to the biological significance of methylation variation. Association analysis with 986 metabolic traits suggests that DNA methylation is associated with phenotypic variation of 156 traits. There are some traits that only show significant associations with DMRs and not with SNPs. CONCLUSIONS These results suggest that DNA methylation can provide unique information to explain phenotypic variation in maize.
Collapse
Affiliation(s)
- Jing Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Guo Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091 China
| | - Peter J. Hermanson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108 USA
| | - Qiang Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Changshuo Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wenqing Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Qiuxin Kan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Minqi Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Peter A. Crisp
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108 USA
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Nathan M. Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108 USA
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
12
|
Čermák V, Fischer L. Pervasive read-through transcription of T-DNAs is frequent in tobacco BY-2 cells and can effectively induce silencing. BMC PLANT BIOLOGY 2018; 18:252. [PMID: 30348096 PMCID: PMC6196474 DOI: 10.1186/s12870-018-1482-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Plant transformation via Agrobacterium tumefaciens is characterized by integration of commonly low number of T-DNAs at random positions in the genome. When integrated into an active gene region, promoterless reporter genes placed near the T-DNA border sequence are frequently transcribed and even translated to reporter proteins, which is the principle of promoter- and gene-trap lines. RESULTS Here we show that even internal promotorless regions of T-DNAs are often transcribed. Such spontaneous transcription was observed in the majority of independently transformed tobacco BY-2 lines (over 65%) and it could effectively induce silencing if an inverted repeat was present within the T-DNA. We documented that the transcription often occurred in both directions. It was not directly connected with any regulatory elements present within the T-DNAs and at least some of the transcripts were initiated outside of the T-DNA. The likeliness of this read-through transcription seemed to increase in lines with higher T-DNA copy number. Splicing and presence of a polyA tail in the transcripts indicated involvement of Pol II, but surprisingly, the transcription was able to run across two transcription terminators present within the T-DNA. Such pervasive transcription was observed with three different T-DNAs in BY-2 cells and with lower frequency was also detected in Arabidopsis thaliana. CONCLUSIONS Our results demonstrate unexpected pervasive read-through transcription of T-DNAs. We hypothesize that it was connected with a specific chromatin state of newly integrated DNA, possibly affected by the adjacent genomic region. Although this phenomenon can be easily overlooked, it can have significant consequences when working with highly sensitive systems like RNAi induction using an inverted repeat construct, so it should be generally considered when interpreting results obtained with the transgenic technology.
Collapse
Affiliation(s)
- Vojtěch Čermák
- Department of Experimental Plant Biology, Charles University, Faculty of Science, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Lukáš Fischer
- Department of Experimental Plant Biology, Charles University, Faculty of Science, Viničná 5, 128 44 Prague 2, Czech Republic
| |
Collapse
|
13
|
A naturally occurring epiallele associates with leaf senescence and local climate adaptation in Arabidopsis accessions. Nat Commun 2018; 9:460. [PMID: 29386641 PMCID: PMC5792623 DOI: 10.1038/s41467-018-02839-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/03/2018] [Indexed: 11/09/2022] Open
Abstract
Epigenetic variation has been proposed to facilitate adaptation to changing environments, but evidence that natural epialleles contribute to adaptive evolution has been lacking. Here we identify a retrotransposon, named “NMR19” (naturally occurring DNA methylation variation region 19), whose methylation and genomic location vary among Arabidopsis thaliana accessions. We classify NMR19 as NMR19-4 and NMR19-16 based on its location, and uncover NMR19-4 as an epiallele that controls leaf senescence by regulating the expression of PHEOPHYTIN PHEOPHORBIDE HYDROLASE (PPH). We find that the DNA methylation status of NMR19-4 is stably inherited and independent of genetic variation. In addition, further analysis indicates that DNA methylation of NMR19-4 correlates with local climates, implying that NMR19-4 is an environmentally associated epiallele. In summary, we discover a novel epiallele, and provide mechanistic insights into its origin and potential function in local climate adaptation. Epigenetic variation underlies various aspects of phenotypic diversity of plants. Here, He et al show a naturally occurring epiallele controls Arabidopsis leaf senescence by regulating the expression of PHEOPHYTIN PHEOPHORBIDE HYDROLASE (PPH), and is associated with local climate adaptation.
Collapse
|
14
|
Guo C, Spinelli M, Ye C, Li QQ, Liang C. Genome-Wide Comparative Analysis of Miniature Inverted Repeat Transposable Elements in 19 Arabidopsis thaliana Ecotype Accessions. Sci Rep 2017; 7:2634. [PMID: 28572566 PMCID: PMC5454002 DOI: 10.1038/s41598-017-02855-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Miniature inverted repeat transposable elements (MITEs) are prevalent in eukaryotic genomes. They are known to critically influence the process of genome evolution and play a role in gene regulation. As the first study concentrated in the transposition activities of MITEs among different ecotype accessions within a species, we conducted a genome-wide comparative analysis by characterizing and comparing MITEs in 19 Arabidopsis thaliana accessions. A total of 343485 MITE putative sequences, including canonical, diverse and partial ones, were delineated from all 19 accessions. Within the entire population of MITEs sequences, 80.7% of them were previously unclassified MITEs, demonstrating a different genomic distribution and functionality compared to the classified MITEs. The interactions between MITEs and homologous genes across 19 accessions provided a fine source for analyzing MITE transposition activities and their impacts on genome evolution. Moreover, a significant proportion of MITEs were found located in the last exon of genes besides the ordinary intron locality, thus potentially modifying the end of genes. Finally, analysis of the impact of MITEs on gene expression suggests that migrations of MITEs have no detectable effect on the expression level for host genes across accessions.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | | | - Congting Ye
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China.
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA.
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
15
|
Lauria M, Echegoyen-Nava RA, Rodríguez-Ríos D, Zaina S, Lund G. Inter-individual variation in DNA methylation is largely restricted to tissue-specific differentially methylated regions in maize. BMC PLANT BIOLOGY 2017; 17:52. [PMID: 28231765 PMCID: PMC5324254 DOI: 10.1186/s12870-017-0997-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/08/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Variation in DNA methylation across distinct genetic populations, or in response to specific biotic or abiotic stimuli, has typically been studied in leaf DNA from pooled individuals using either reduced representation bisulfite sequencing, whole genome bisulfite sequencing (WGBS) or methylation sensitive amplified polymorphism (MSAP). The latter represents a useful alterative when sample size is large, or when analysing methylation changes in genomes that have yet to be sequenced. In this study we compared variation in methylation across ten individual leaf and endosperm samples from maize hybrid and inbred lines using MSAP. We also addressed the methodological implications of analysing methylation variation using pooled versus individual DNA samples, in addition to the validity of MSAP compared to WGBS. Finally, we analysed a subset of variable and non-variable fragments with respect to genomic location, vicinity to repetitive elements and expression patterns across leaf and endosperm tissues. RESULTS On average, 30% of individuals showed inter-individual methylation variation, mostly of leaf and endosperm-specific differentially methylated DNA regions. With the exception of low frequency demethylation events, the bulk of inter-individual methylation variation (84 and 80% in leaf and endosperm, respectively) was effectively captured in DNA from pooled individuals. Furthermore, available genome-wide methylation data largely confirmed MSAP leaf methylation profiles. Most variable methylation that mapped within genes was associated with CG methylation, and many of such genes showed tissue-specific expression profiles. Finally, we found that the hAT DNA transposon was the most common class II transposable element found in close proximity to variable DNA regions. CONCLUSIONS The relevance of our results with respect to future studies of methylation variation is the following: firstly, the finding that inter-individual methylation variation is largely restricted to tissue-specific differentially methylated DNA regions, underlines the importance of tissue-type when analysing the methylation response to a defined stimulus. Secondly, we show that pooled sample-based MSAP studies are methodologically appropriate to study methylation variation. Thirdly, we confirm that MSAP is a powerful tool when WGBS is not required or feasible, for example in plant species that have yet to be sequenced.
Collapse
Affiliation(s)
- Massimiliano Lauria
- Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologia Agraria, I-20133 Milan, Italy
| | - Rodrigo Antonio Echegoyen-Nava
- Gertrud Lund, Department of Genetic Engineering, CINVESTAV - Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-Leon, Apdo. Postal 629, C. P. 36500 Irapuato, GTO Mexico
| | - Dalia Rodríguez-Ríos
- Gertrud Lund, Department of Genetic Engineering, CINVESTAV - Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-Leon, Apdo. Postal 629, C. P. 36500 Irapuato, GTO Mexico
| | - Silvio Zaina
- Department of Medical Sciences, Division of Health Sciences, León Campus, University of Guanajuato, Guanajuato, Mexico
| | - Gertrud Lund
- Gertrud Lund, Department of Genetic Engineering, CINVESTAV - Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-Leon, Apdo. Postal 629, C. P. 36500 Irapuato, GTO Mexico
| |
Collapse
|
16
|
An Arabidopsis Natural Epiallele Maintained by a Feed-Forward Silencing Loop between Histone and DNA. PLoS Genet 2017; 13:e1006551. [PMID: 28060933 PMCID: PMC5257005 DOI: 10.1371/journal.pgen.1006551] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 01/23/2017] [Accepted: 12/24/2016] [Indexed: 12/26/2022] Open
Abstract
The extent of epigenetic variation is currently well documented, but the number of natural epialleles described so far remains very limited. Determining the relevance of epigenetic changes for natural variation is an important question of research that we investigate by isolating natural epialleles segregating in Arabidopsis recombinant populations. We previously described a genetic incompatibility among Arabidopsis strains based on the silencing of a gene involved in fitness. Here, we isolated a new epiallele resulting from the silencing of a transfer-RNA editing gene in an Arabidopsis accession from the Netherlands (Nok-1). Crosses with the reference accession Col-0 show a complete incompatibility between this epiallele and another locus localized on a different chromosome. We demonstrate that conversion of an unmethylated version of this allele occurs in hybrids, associated with modifications of small RNA populations. These epialleles can also spontaneously revert within the population. Furthermore, we bring evidence that neither METHYLTRANSFERASE 1, maintaining methylation at CGs, nor components of RNA-directed DNA methylation, are key factors for the transmission of the epiallele over generations. This depends only on the self-reinforcing loop between CHROMOMETHYLASE 3 and KRYPTONITE, involving DNA methylated in the CHG context and histone H3 lysine 9 methylation. Our findings reveal a predominant role of this loop in maintaining a natural epiallele. Epialleles are gene variants based on epigenetic marks stably transmitted between generations. Most of the known epialleles existing in the wild were described in plant populations but very few are associated with phenotypes or agronomical traits. In this study, we isolated a new natural epiallele resulting from the silencing of a RNA editing gene essential for plants. We demonstrated that an incompatibility between two Arabidopsis strains depending on this epiallele, is based on DNA methylation of cytosines, an epigenetic mark influencing gene function. In F1 hybrids, obtained by crossing the incompatible parental lines, unmethylated versions of the allele can be converted to methylated ones. The epiallele can also spontaneously revert in very rare cases, within the population. The methylation status of this epiallele can therefore potentially change within the population and is maintained in a metastable state. Indeed, two enzymes promoting histone or DNA methylation, respectively, and acting in loop, are involved in maintaining the epiallele in natural populations, over generations.
Collapse
|
17
|
Twenty-four-nucleotide siRNAs produce heritable trans-chromosomal methylation in F1 Arabidopsis hybrids. Proc Natl Acad Sci U S A 2016; 113:E6895-E6902. [PMID: 27791153 DOI: 10.1073/pnas.1613623113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hybrid Arabidopsis plants undergo epigenetic reprogramming producing decreased levels of 24-nt siRNAs and altered patterns of DNA methylation that can affect gene expression. Driving the changes in methylation are the processes trans-chromosomal methylation (TCM) and trans-chromosomal demethylation (TCdM). In TCM/TCdM the methylation state of one allele is altered to resemble the other allele. We show that Pol IV-dependent sRNAs are required to establish TCM events. The changes in DNA methylation and the associated changes in sRNA levels in the F1 hybrid can be maintained in subsequent generations and affect hundreds of regions in the F2 epigenome. The inheritance of these altered epigenetic states varies in F2 individuals, resulting in individuals with genetically identical loci displaying different epigenetic states and gene expression profiles. The change in methylation at these regions is associated with the presence of sRNAs. Loci without any sRNA activity can have altered methylation states, suggesting that a sRNA-independent mechanism may also contribute to the altered methylation state of the F1 and F2 generations.
Collapse
|
18
|
Niederhuth CE, Schmitz RJ. Putting DNA methylation in context: from genomes to gene expression in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:149-156. [PMID: 27590871 DOI: 10.1016/j.bbagrm.2016.08.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 12/26/2022]
Abstract
Plant DNA methylation is its own language, interpreted by the cell to maintain silencing of transposons, facilitate chromatin structure, and to ensure proper expression of some genes. Just as in any language, context is important. Rather than being a simple "on-off switch", DNA methylation has a range of "meanings" dependent upon the underlying sequence and its location in the genome. Differences in the sequence context of individual sites are established, maintained, and interpreted by differing molecular pathways. Varying patterns of methylation within genes and surrounding sequences are associated with a continuous range of expression differences, from silencing to constitutive expression. These often-subtle differences have been pieced together from years of effort, but have taken off with the advent of methods for assessing methylation across entire genomes. Recognizing these patterns and identifying underlying causes is essential for understanding the function of DNA methylation and its systems-wide contribution to a range of processes in plant genomes. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Chad E Niederhuth
- Department of Genetics, The University of Georgia, Athens, GA, 30602, USA
| | - Robert J Schmitz
- Department of Genetics, The University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
19
|
Simultaneous Analysis of Multiple Promoters: An Application of the PC-GW Binary Vector Series. Methods Mol Biol 2016. [PMID: 27557769 DOI: 10.1007/978-1-4939-6396-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
With the advances in the field of synthetic biology, there is an increasing demand for multi-gene cloning technologies. Molecular cloning to generate multi-gene constructs can be performed by restriction digestion, or by recombination-based cloning strategies such as Gateway(®). This chapter details cloning, transformation, and selection procedures involved in generation of multi-gene expressing transgenic plants. Methods are described for cloning five distinct promoter-reporter fusion constructs into the PC-GW-BAR vector (from the PC-GW vector series) using Gateway(®) technology and meganuclease sites. Further, transformation and selection methods are described for the biofuel crop Camelina sativa from the Brassicaceae family. These methods would be constructive toward generating multi-gene expressing plants for simultaneous expression analysis of five promoters in a short time period.
Collapse
|
20
|
Abstract
Plant genomes encode various small RNAs that function in distinct, yet overlapping, genetic and epigenetic silencing pathways. However, the abundance and diversity of small-RNA classes varies among plant species, suggesting coevolution between environmental adaptations and gene-silencing mechanisms. Biogenesis of small RNAs in plants is well understood, but we are just beginning to uncover their intricate regulation and activity. Here, we discuss the biogenesis of plant small RNAs, such as microRNAs, secondary siRNAs and heterochromatic siRNAs, and their diverse cellular and developmental functions, including in reproductive transitions, genomic imprinting and paramutation. We also discuss the diversification of small-RNA-directed silencing pathways through the expansion of RNA-dependent RNA polymerases, DICER proteins and ARGONAUTE proteins.
Collapse
|
21
|
Cis-acting determinants of paramutation. Semin Cell Dev Biol 2015; 44:22-32. [DOI: 10.1016/j.semcdb.2015.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/20/2015] [Indexed: 11/23/2022]
|
22
|
Williams BP, Pignatta D, Henikoff S, Gehring M. Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat. PLoS Genet 2015; 11:e1005142. [PMID: 25826366 PMCID: PMC4380477 DOI: 10.1371/journal.pgen.1005142] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Abstract
Genomes must balance active suppression of transposable elements (TEs) with the need to maintain gene expression. In Arabidopsis, euchromatic TEs are targeted by RNA-directed DNA methylation (RdDM). Conversely, active DNA demethylation prevents accumulation of methylation at genes proximal to these TEs. It is unknown how a cellular balance between methylation and demethylation activities is achieved. Here we show that both RdDM and DNA demethylation are highly active at a TE proximal to the major DNA demethylase gene ROS1. Unexpectedly, and in contrast to most other genomic targets, expression of ROS1 is promoted by DNA methylation and antagonized by DNA demethylation. We demonstrate that inducing methylation in the ROS1 proximal region is sufficient to restore ROS1 expression in an RdDM mutant. Additionally, methylation-sensitive expression of ROS1 is conserved in other species, suggesting it is adaptive. We propose that the ROS1 locus functions as an epigenetic rheostat, tuning the level of demethylase activity in response to methylation alterations, thus ensuring epigenomic stability. Organisms must adapt to dynamic and variable internal and external environments. Maintaining homeostasis in core biological processes is crucial to minimizing the deleterious consequences of environmental fluctuations. Genomes are also dynamic and variable, and must be robust against stresses, including the invasion of genomic parasites, such as transposable elements (TEs). In this work we present the discovery of an epigenetic rheostat in plants that maintains homeostasis in levels of DNA methylation. DNA methylation typically silences transcription of TEs. Because there is positive feedback between existing and de novo DNA methylation, it is critical that methylation is not allowed to spread and potentially silence transcription of genes. To maintain homeostasis, methylation promotes the production of a demethylase enzyme that removes methylation from gene-proximal regions. The demethylation of genes is therefore always maintained in concert with the levels of methylation suppressing TEs. In addition, this DNA demethylating enzyme also represses its own production in a negative feedback loop. Together, these feedback mechanisms shed new light on how the conflict between gene expression and genome defense is maintained in homeostasis. The presence of this rheostat in multiple species suggests it is an evolutionary conserved adaptation.
Collapse
Affiliation(s)
- Ben P. Williams
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Daniela Pignatta
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Roles, and establishment, maintenance and erasing of the epigenetic cytosine methylation marks in plants. J Genet 2014; 92:629-66. [PMID: 24371187 DOI: 10.1007/s12041-013-0273-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heritable information in plants consists of genomic information in DNA sequence and epigenetic information superimposed on DNA sequence. The latter is in the form of cytosine methylation at CG, CHG and CHH elements (where H = A, T orC) and a variety of histone modifications in nucleosomes. The epialleles arising from cytosine methylation marks on the nuclear genomic loci have better heritability than the epiallelic variation due to chromatin marks. Phenotypic variation is increased manifold by epiallele comprised methylomes. Plants (angiosperms) have highly conserved genetic mechanisms to establish, maintain or erase cytosine methylation from epialleles. The methylation marks in plants fluctuate according to the cell/tissue/organ in the vegetative and reproductive phases of plant life cycle. They also change according to environment. Epialleles arise by gain or loss of cytosine methylation marks on genes. The changes occur due to the imperfection of the processes that establish and maintain the marks and on account of spontaneous and stress imposed removal of marks. Cytosine methylation pattern acquired in response to abiotic or biotic stress is often inherited over one to several subsequent generations.Cytosine methylation marks affect physiological functions of plants via their effect(s) on gene expression levels. They also repress transposable elements that are abundantly present in plant genomes. The density of their distribution along chromosome lengths affects meiotic recombination rate, while their removal increases mutation rate. Transposon activation due to loss of methylation causes rearrangements such that new gene regulatory networks arise and genes for microRNAs may originate. Cytosine methylation dynamics contribute to evolutionary changes. This review presents and discusses the available evidence on origin, removal and roles of cytosine methylation and on related processes, such as RNA directed DNA methylation, imprinting, paramutation and transgenerational memory in plants.
Collapse
|
24
|
Niederhuth CE, Schmitz RJ. Covering your bases: inheritance of DNA methylation in plant genomes. MOLECULAR PLANT 2014; 7:472-80. [PMID: 24270503 PMCID: PMC3941479 DOI: 10.1093/mp/sst165] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/11/2013] [Indexed: 05/24/2023]
Abstract
Cytosine methylation is an important base modification that is inherited across mitotic and meiotic cell divisions in plant genomes. Heritable methylation variants can contribute to within-species phenotypic variation. Few methylation variants were known until recently, making it possible to begin to address major unanswered questions: the extent of natural methylation variation within plant genomes, its effects on phenotypic variation, its degree of dependence on genotype, and how it fits into an evolutionary context. Techniques like whole-genome bisulfite sequencing (WGBS) make it possible to determine cytosine methylation states at single-base resolution across entire genomes and populations. Application of this method to natural and novel experimental populations is revealing answers to these long-standing questions about the role of DNA methylation in plant genomes.
Collapse
Affiliation(s)
| | - Robert J. Schmitz
- To whom correspondence should be addressed. E-mail , fax 706 542 3910, tel. 706-5421882
| |
Collapse
|
25
|
Fadloun A, Eid A, Torres-Padilla ME. Mechanisms and dynamics of heterochromatin formation during mammalian development: closed paths and open questions. Curr Top Dev Biol 2013; 104:1-45. [PMID: 23587237 DOI: 10.1016/b978-0-12-416027-9.00001-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Early embryonic development in mammals is characterized by major changes in the components of the chromatin and its remodeling. The embryonic chromatin and the nuclear organization in the mouse preimplantation embryo display particular features that are dramatically different from somatic cells. These include the highly specific organization of the pericentromeric heterochromatin within the nucleus and the suggested lack of conventional heterochromatin. We postulate that the plasticity of the cells in the early embryo relies on the distinctive heterochromatin features that prevail during early embryogenesis. Here, we review some of these features and discuss recent findings on the mechanisms driving heterochromatin formation after fertilization, in particular, the emerging role of RNA as a regulator of heterochromatic loci also in mammals. Finally, we believe that there are at least three major avenues that should be addressed in the coming years: (i) Is heterochromatin a driving force in development? (ii) Does it have a role in lineage allocation? (iii) How can heterochromatin "regulate" epigenetic reprogramming?
Collapse
Affiliation(s)
- Anas Fadloun
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, Université de Strasbourg, Illkirch, France
| | | | | |
Collapse
|
26
|
Becker C, Weigel D. Epigenetic variation: origin and transgenerational inheritance. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:562-7. [PMID: 22939250 DOI: 10.1016/j.pbi.2012.08.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/16/2012] [Indexed: 05/22/2023]
Abstract
Recent studies have revealed that epigenetic variation in plant populations exceeds genetic diversity and that it is influenced by the environment. Nevertheless, epigenetic differences are not entirely independent of shared ancestry. Epigenetic modifications have gained increasing attention, because one can now study their patterns across the entire genome and in many different individuals. Not only do epigenetic phenomena modulate the activity of the genome in response to environmental stimuli, but they also constitute a potential source of natural variation. Understanding the emergence and heritability of epigenetic variants is critical for understanding how they might become subject to natural selection and thus affect genetic diversity. Here we review progress in characterizing natural epigenetic variants in model and nonmodel plant species and how this work is helping to delineate the role of epigenetic changes in evolution.
Collapse
Affiliation(s)
- Claude Becker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
27
|
Abstract
Heritable phenotypic differences caused by epigenetic modifications, rather than DNA sequence mutations, pose a challenge to our understanding of natural variation. Here, we review what is known about plant epialleles and the role of epigenetics in evolution.
Collapse
|
28
|
Fujimoto R, Sasaki T, Ishikawa R, Osabe K, Kawanabe T, Dennis ES. Molecular mechanisms of epigenetic variation in plants. Int J Mol Sci 2012; 13:9900-9922. [PMID: 22949838 PMCID: PMC3431836 DOI: 10.3390/ijms13089900] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 12/11/2022] Open
Abstract
Natural variation is defined as the phenotypic variation caused by spontaneous mutations. In general, mutations are associated with changes of nucleotide sequence, and many mutations in genes that can cause changes in plant development have been identified. Epigenetic change, which does not involve alteration to the nucleotide sequence, can also cause changes in gene activity by changing the structure of chromatin through DNA methylation or histone modifications. Now there is evidence based on induced or spontaneous mutants that epigenetic changes can cause altering plant phenotypes. Epigenetic changes have occurred frequently in plants, and some are heritable or metastable causing variation in epigenetic status within or between species. Therefore, heritable epigenetic variation as well as genetic variation has the potential to drive natural variation.
Collapse
Affiliation(s)
- Ryo Fujimoto
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata 950-2181, Japan
| | - Taku Sasaki
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohrgasse 3, Vienna 1030, Austria; E-Mail:
| | - Ryo Ishikawa
- Laboratory of Plant Breeding, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8510, Japan; E-Mail:
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Kenji Osabe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra ACT 2601, Australia; E-Mails: (K.O.); (E.S.D.)
| | - Takahiro Kawanabe
- Watanabe Seed Co., Ltd, Machiyashiki, Misato-cho, Miyagi 987-8607, Japan; E-Mail:
| | - Elizabeth S. Dennis
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra ACT 2601, Australia; E-Mails: (K.O.); (E.S.D.)
| |
Collapse
|
29
|
Abstract
The epigenome plays a vital role in helping to maintain and regulate cell functions in all organisms. Alleles with differing epigenetic marks in the same nucleus do not function in isolation but can interact in trans to modify the epigenetic state of one or both alleles. This is particularly evident when two divergent epigenomes come together in a hybrid resulting in thousands of alterations to the methylome. These changes mainly involve the methylation patterns at one allele being changed to resemble the methylation patterns of the other allele, in processes we have termed trans-chromosomal methylation (TCM) and trans-chromosomal demethylation (TCdM). These processes are primarily modulated by siRNAs and the RNA directed DNA methylation pathway. Drawing from other examples of trans-allelic interactions, we describe the process of TCM and TCdM and the effect such changes can have on genome activity. Trans-allelic epigenetic interactions may be a common occurrence in many biological systems.
Collapse
Affiliation(s)
- Ian Greaves
- Commonwealth Scientific and Industrial Research Organization, Plant Industry, Canberra, Australia
| | | | | | | |
Collapse
|
30
|
Abstract
The heterotic hybrid offspring of Arabidopsis accessions C24 and Landsberg erecta have altered methylomes. Changes occur most frequently at loci where parental methylation levels are different. There are context-specific biases in the nonadditive methylation patterns with (m)CG generally increased and (m)CHH decreased relative to the parents. These changes are a result of two main mechanisms, Trans Chromosomal Methylation and Trans Chromosomal deMethylation, where the methylation level of one parental allele alters to resemble that of the other parent. Regions of altered methylation are enriched around genic regions and are often correlated with changes in siRNA levels. We identified examples of genes with altered expression likely to be due to methylation changes and suggest that in crosses between the C24 and Ler accessions, epigenetic controls can be important in the generation of altered transcription levels that may contribute to the increased biomass of the hybrids.
Collapse
|
31
|
Kasai M, Koseki M, Goto K, Masuta C, Ishii S, Hellens RP, Taneda A, Kanazawa A. Coincident sequence-specific RNA degradation of linked transgenes in the plant genome. PLANT MOLECULAR BIOLOGY 2012; 78:259-73. [PMID: 22146813 DOI: 10.1007/s11103-011-9863-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/18/2011] [Indexed: 05/23/2023]
Abstract
The expression of transgenes in plant genomes can be inhibited by either transcriptional gene silencing or posttranscriptional gene silencing (PTGS). Overexpression of the chalcone synthase-A (CHS-A) transgene triggers PTGS of CHS-A and thus results in loss of flower pigmentation in petunia. We previously demonstrated that epigenetic inactivation of CHS-A transgene transcription leads to a reversion of the PTGS phenotype. Although neomycin phosphotransferase II (nptII), a marker gene co-introduced into the genome with the CHS-A transgene, is not normally silenced in petunia, even when CHS-A is silenced, here we found that nptII was silenced in a petunia line in which CHS-A PTGS was induced, but not in the revertant plants that had no PTGS of CHS-A. Transcriptional activity, accumulation of short interfering RNAs, and restoration of mRNA level after infection with viruses that had suppressor proteins of gene silencing indicated that the mechanism for nptII silencing was posttranscriptional. Read-through transcripts of the CHS-A gene toward the nptII gene were detected. Deep-sequencing analysis revealed a striking difference between the predominant size class of small RNAs produced from the read-through transcripts (22 nt) and that from the CHS-A RNAs (21 nt). These results implicate the involvement of read-through transcription and distinct phases of RNA degradation in the coincident PTGS of linked transgenes and provide new insights into the destabilization of transgene expression.
Collapse
Affiliation(s)
- Megumi Kasai
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Durand S, Bouché N, Perez Strand E, Loudet O, Camilleri C. Rapid establishment of genetic incompatibility through natural epigenetic variation. Curr Biol 2012; 22:326-31. [PMID: 22285031 DOI: 10.1016/j.cub.2011.12.054] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/07/2011] [Accepted: 12/22/2011] [Indexed: 11/15/2022]
Abstract
Epigenetic variation is currently being investigated with the aim of deciphering its importance in both adaptation and evolution [1]. In plants, epimutations can underlie heritable phenotypic diversity [2-4], and epigenetic mechanisms might contribute to reproductive barriers between [5] or within species [6]. The extent of epigenetic variation begins to be appreciated in Arabidopsis [7], but the origin of natural epialleles and their impact in the wild remain largely unknown. Here we show that a genetic incompatibility among Arabidopsis thaliana strains is related to the epigenetic control of a pair of duplicate genes involved in fitness: a transposition event results in a rearranged paralogous structure that causes DNA methylation and transcriptional silencing of the other copy. We further show that this natural, strain-specific epiallele is stable over numerous generations even after removal of the duplicated, rearranged gene copy through crosses. Finally, we provide evidence that the rearranged gene copy triggers de novo DNA methylation and silencing of the unlinked native gene by RNA-directed DNA methylation. Our findings suggest an important role of naturally occurring epialleles originating from structural variation in rapidly establishing genetic incompatibilities following gene duplication events.
Collapse
Affiliation(s)
- Stéphanie Durand
- Institut Jean-Pierre Bourgin, UMR1318, INRA-AgroParisTech, 78000 Versailles, France
| | | | | | | | | |
Collapse
|
33
|
Enke RA, Dong Z, Bender J. Small RNAs prevent transcription-coupled loss of histone H3 lysine 9 methylation in Arabidopsis thaliana. PLoS Genet 2011; 7:e1002350. [PMID: 22046144 PMCID: PMC3203196 DOI: 10.1371/journal.pgen.1002350] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 08/30/2011] [Indexed: 11/24/2022] Open
Abstract
In eukaryotes, histone H3 lysine 9 methylation (H3K9me) mediates silencing of invasive sequences to prevent deleterious consequences including the expression of aberrant gene products and mobilization of transposons. In Arabidopsis thaliana, H3K9me maintained by SUVH histone methyltransferases (MTases) is associated with cytosine methylation (5meC) maintained by the CMT3 cytosine MTase. The SUVHs contain a 5meC binding domain and CMT3 contains an H3K9me binding domain, suggesting that the SUVH/CMT3 pathway involves an amplification loop between H3K9me and 5meC. However, at loci subject to read-through transcription, the stability of the H3K9me/5meC loop requires a mechanism to counteract transcription-coupled loss of H3K9me. Here we use the duplicated PAI genes, which stably maintain SUVH-dependent H3K9me and CMT3-dependent 5meC despite read-through transcription, to show that when PAI sRNAs are depleted by dicer ribonuclease mutations, PAI H3K9me and 5meC levels are reduced and remaining PAI 5meC is destabilized upon inbreeding. The dicer mutations confer weaker reductions in PAI 5meC levels but similar or stronger reductions in PAI H3K9me levels compared to a cmt3 mutation. This comparison indicates a connection between sRNAs and maintenance of H3K9me independent of CMT3 function. The dicer mutations reduce PAI H3K9me and 5meC levels through a distinct mechanism from the known role of dicer-dependent sRNAs in guiding the DRM2 cytosine MTase because the PAI genes maintain H3K9me and 5meC at levels similar to wild type in a drm2 mutant. Our results support a new role for sRNAs in plants to prevent transcription-coupled loss of H3K9me. Methylation of histone H3 at the lysine 9 position (H3K9me) is a fundamental chromatin modification that suppresses expression from invasive and repetitive sequences such as transposons. In plant genomes, regions modified by H3K9me are maintained with precise boundaries. However, at junctions where H3K9me target regions are subject to read-through transcription from outside promoters, the stability of H3K9me patterns is jeopardized by transcription-coupled processes that remove this modification. We show that maintenance of H3K9me patterns at such vulnerable sites requires small RNAs corresponding to the H3K9me target region. We use a sensitive reporter system to show that, in the absence of small RNAs, target regions subject to read-through transcription undergo an immediate reduction in H3K9me levels, followed by further losses in progeny plants upon inbreeding. Our results support a new function for small RNAs in maintaining accurate H3K9me patterns in the plant genome.
Collapse
Affiliation(s)
- Raymond A. Enke
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zhicheng Dong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Judith Bender
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
34
|
Hauser MT, Aufsatz W, Jonak C, Luschnig C. Transgenerational epigenetic inheritance in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:459-68. [PMID: 21515434 DOI: 10.1016/j.bbagrm.2011.03.007] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/25/2011] [Accepted: 03/31/2011] [Indexed: 01/08/2023]
Abstract
Interest in transgenerational epigenetic inheritance has intensified with the boosting of knowledge on epigenetic mechanisms regulating gene expression during development and in response to internal and external signals such as biotic and abiotic stresses. Starting with an historical background of scantily documented anecdotes and their consequences, we recapitulate the information gathered during the last 60 years on naturally occurring and induced epialleles and paramutations in plants. We present the major players of epigenetic regulation and their importance in controlling stress responses. The effect of diverse stressors on the epigenetic status and its transgenerational inheritance is summarized from a mechanistic viewpoint. The consequences of transgenerational epigenetic inheritance are presented, focusing on the knowledge about its stability, and in relation to genetically fixed mutations, recombination, and genomic rearrangement. We conclude with an outlook on the importance of transgenerational inheritance for adaptation to changing environments and for practical applications. This article is part of a Special Issue entitled "Epigenetic control of cellular and developmental processes in plants".
Collapse
Affiliation(s)
- Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Austria
| | | | | | | |
Collapse
|
35
|
Wang Y, Yau YY, Perkins-Balding D, Thomson JG. Recombinase technology: applications and possibilities. PLANT CELL REPORTS 2011; 30:267-85. [PMID: 20972794 PMCID: PMC3036822 DOI: 10.1007/s00299-010-0938-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 05/02/2023]
Abstract
The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087-2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes.
Collapse
Affiliation(s)
- Yueju Wang
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014 USA
| | - Yuan-Yeu Yau
- Department of Plant and Microbial Biology, Plant Gene Expression Center, USDA-ARS, University of California-Berkeley, 800 Buchanan St., Albany, CA 94710 USA
| | | | - James G. Thomson
- Crop Improvement and Utilization Unit, USDA-ARS WRRC, 800 Buchanan St., Albany, CA 94710 USA
| |
Collapse
|
36
|
Abstract
Sequence-specific transcription factors (TFs) play a central role in regulating transcription initiation by directing the recruitment and activity of the general transcription machinery and accessory factors. It is now well established that many of the effects exerted by TFs in eukaryotes are mediated through interactions with a host of coregulators that modify the chromatin state, resulting in a more open (in case of activation) or closed conformation (in case of repression). The relationship between TFs and chromatin is a two-way street, however, as chromatin can in turn influence the recognition and binding of target sequences by TFs. The aim of this chapter is to highlight how this dynamic interplay between TF-directed remodelling of chromatin and chromatin-adjusted targeting of TF binding determines where and how transcription is initiated, and to what degree it is productive.
Collapse
|
37
|
PONTVIANNE FRÉDÉRIC, BLEVINS TODD, PIKAARD CRAIGS. Arabidopsis Histone Lysine Methyltransferases. ADVANCES IN BOTANICAL RESEARCH 2010; 53:1-22. [PMID: 20703330 PMCID: PMC2918895 DOI: 10.1016/s0065-2296(10)53001-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In eukaryotes, changes in chromatin structure regulate the access of gene regulatory sequences to the transcriptional machinery and play important roles in the repression of transposable elements, thereby protecting genome integrity. Chromatin dynamics and gene expression states are highly correlated, with DNA methylation and histone post-translational modifications playing important roles in the establishment or maintenance of chromatin states in plants. Histones can be covalently modified in a variety of ways, thereby affecting nucleosome spacing and/or higher-order nucleosome interactions directly or via the recruitment of histone-binding proteins. An extremely important group of chromatin modifying enzymes are the histone lysine methyltransferases (HKMTs). These enzymes are involved in the establishment and/or maintenance of euchromatic or heterochromatic states of active or transcriptionally repressed sequences, respectively. The vast majority of HKMTs possess a SET domain named for the three Drosophila proteins that are the founding members of the family: Suppressor of variegation, Enhancer of zeste and Trithorax. It is the SET domain that is responsible for HKMT enzymatic activity. Mutation of Arabidopsis HKMT genes can result in phenotypic abnormalities due to the improper regulation of important developmental genes. Here, we review the different classes of HKMTs present in the model plant Arabidopsis thaliana and discuss what is known about their biochemical and biological functions.
Collapse
|
38
|
Schwach F, Moxon S, Moulton V, Dalmay T. Deciphering the diversity of small RNAs in plants: the long and short of it. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:472-81. [PMID: 19641088 DOI: 10.1093/bfgp/elp024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
RNA silencing is a complex and highly conserved regulatory mechanism that is now known to be involved in such diverse processes as development, pathogen control, genome maintenance and response to environmental changes. Since its recent discovery, RNA silencing has become a fast moving key area of research in plant and animal molecular biology. Research in this field has greatly profited from recent developments in novel sequencing technologies that allow massive parallel sequencing of small RNA (sRNA) molecules, the key players of all RNA silencing phenomena. As researchers are beginning to decipher the complexity of RNA silencing, novel methodologies have to be developed to make sense of the large amounts of data that are currently being generated. In this review we present an overview of RNA silencing pathways in plants and the current challenges in analysing sRNA data, with a special focus on computational approaches.
Collapse
Affiliation(s)
- Frank Schwach
- School of Computing Sciences, University of East Anglia, Norwich, UK.
| | | | | | | |
Collapse
|
39
|
Abstract
Transposable elements make up a substantial proportion of most plant genomes. Because they are potentially highly mutagenic, transposons are controlled by a set of mechanisms whose function is to recognize and epigenetically silence them. Under most circumstances this process is highly efficient, and the vast majority of transposons are inactive. Nevertheless, transposons are activated by a variety of conditions likely to be encountered by natural populations, and even closely related species can have dramatic differences in transposon copy number. Transposon silencing has proved to be closely related to other epigenetic phenomena, and transposons are known to contribute directly and indirectly to regulation of host genes. Together, these observations suggest that naturally occurring changes in transposon activity may have had an important impact on the causes and consequences of epigenetic silencing in plants.
Collapse
Affiliation(s)
- Damon Lisch
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
40
|
Keurentjes JJB, Sulpice R, Gibon Y, Steinhauser MC, Fu J, Koornneef M, Stitt M, Vreugdenhil D. Integrative analyses of genetic variation in enzyme activities of primary carbohydrate metabolism reveal distinct modes of regulation in Arabidopsis thaliana. Genome Biol 2008; 9:R129. [PMID: 18710526 PMCID: PMC2575519 DOI: 10.1186/gb-2008-9-8-r129] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/09/2008] [Accepted: 08/18/2008] [Indexed: 11/16/2022] Open
Abstract
Multiparallel QTL analysis of 15 Arabidopsis primary carbohydrate metabolism enzymes reveals that traits affecting primary metabolism are often correlated. Background Plant primary carbohydrate metabolism is complex and flexible, and is regulated at many levels. Changes of transcript levels do not always lead to changes in enzyme activities, and these do not always affect metabolite levels and fluxes. To analyze interactions between these three levels of function, we have performed parallel genetic analyses of 15 enzyme activities involved in primary carbohydrate metabolism, transcript levels for their encoding structural genes, and a set of relevant metabolites. Quantitative analyses of each trait were performed in the Arabidopsis thaliana Ler × Cvi recombinant inbred line (RIL) population and subjected to correlation and quantitative trait locus (QTL) analysis. Results Traits affecting primary metabolism were often correlated, possibly due to developmental control affecting multiple genes, enzymes, or metabolites. Moreover, the activity QTLs of several enzymes co-localized with the expression QTLs (eQTLs) of their structural genes, or with metabolite accumulation QTLs of their substrates or products. In addition, many trait-specific QTLs were identified, revealing that there is also specific regulation of individual metabolic traits. Regulation of enzyme activities often occurred through multiple loci, involving both cis- and trans-acting transcriptional or post-transcriptional control of structural genes, as well as independently of the structural genes. Conclusion Future studies of the regulatory processes in primary carbohydrate metabolism will benefit from an integrative genetic analysis of gene transcription, enzyme activity, and metabolite content. The multiparallel QTL analyses of the various interconnected transducers of biological information flow, described here for the first time, can assist in determining the causes and consequences of genetic regulation at different levels of complex biological systems.
Collapse
Affiliation(s)
- Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University, Arboretumlaan, NL-6703 BD Wageningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Chawla R, Nicholson SJ, Folta KM, Srivastava V. Transgene-induced silencing of Arabidopsis phytochrome A gene via exonic methylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:1105-1118. [PMID: 17931351 DOI: 10.1111/j.1365-313x.2007.03301.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Transgene-induced promoter or enhancer methylation clearly retards gene activity. While exonic methylation of genes is frequently observed in the RNAi process, only sporadic evidence has demonstrated its definitive role in gene suppression. Here, we report the isolation of a transcriptionally suppressed epi-allele of the Arabidopsis thaliana phytochrome A gene (PHYA) termed phyA' that shows methylation only in symmetric CG sites resident in exonic regions. These exonic modifications confer a strong phyA mutant phenotype, characterized by elongated hypocotyls in seedlings grown under continuous far-red light. De-methylation of phyA' in the DNA methyl transferase I (met1) mutant background increased PHYA expression and restored the wild-type phenotype, confirming the pivotal role of exonic CG methylation in maintaining the altered epigenetic state. PHYA epimutation was apparently induced by a transgene locus; however, it is stably maintained following segregation. Chromatin immunoprecipitation assays revealed association with dimethyl histone H3 lysine 9 (H3K9me2), a heterochromatic marker, within the phyA' coding region. Therefore, transgene-induced exonic methylation can lead to chromatin alteration that affects gene expression, most likely through reduction in the transcription rate.
Collapse
Affiliation(s)
- Rekha Chawla
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | |
Collapse
|
42
|
Lukens LN, Zhan S. The plant genome's methylation status and response to stress: implications for plant improvement. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:317-22. [PMID: 17468039 DOI: 10.1016/j.pbi.2007.04.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 04/16/2007] [Indexed: 05/15/2023]
Abstract
Plant improvement depends on generating phenotypic variation and selecting for characteristics that are heritable. Classical genetics and early molecular genetics studies on single genes showed that differences in chromatin structure, especially cytosine methylation, can contribute to heritable phenotypic variation. Recent molecular genetic and genomic studies have revealed a new importance of cytosine methylation for gene regulation and have identified RNA interference (RNAi)-related proteins that are necessary for methylation. Methylation differences among plants can be caused by cis- or trans-acting DNA polymorphisms or by epigenetic phenomena. Although regulatory proteins might be important in creating this variation, recent examples highlight the central role of transposable elements and DNA repeats in generating both genetic and epigenetic methylation polymorphisms. The plant genome's response to environmental and genetic stress generates both novel genetic and epigenetic methylation polymorphisms. Novel, stress-induced genotypes may contribute to phenotypic diversity and plant improvement.
Collapse
Affiliation(s)
- Lewis N Lukens
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada, N1G2W1.
| | | |
Collapse
|
43
|
Abstract
The formation of heterochromatin, which requires methylation of histone H3 at lysine 9 and the subsequent recruitment of chromodomain proteins such as heterochromatin protein HP1, serves as a model for the role of histone modifications and chromatin assembly in epigenetic control of the genome. Recent studies in Schizosaccharomyces pombe indicate that heterochromatin serves as a dynamic platform to recruit and spread a myriad of regulatory proteins across extended domains to control various chromosomal processes, including transcription, chromosome segregation and long-range chromatin interactions.
Collapse
Affiliation(s)
- Shiv I S Grewal
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
44
|
Soltani BM, Ehlting J, Douglas CJ. Genetic analysis and epigenetic silencing of At4CL1 and At4CL2 expression in transgenic Arabidopsis. Biotechnol J 2007; 1:1124-36. [PMID: 17004303 DOI: 10.1002/biot.200600140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
4-coumarate::CoA ligase (4CL) gene family members are involved in channeling carbon flow into branch pathways of phenylpropanoid metabolism. Transgenic Arabidopsis plants containing the At4CL1 or At4CL2 promoter fused to the beta-glucuronidase (GUS) reporter gene show developmentally regulated GUS expression in the xylem tissues of the root and shoot. To identify regulatory genes involved in the developmental regulation of At4CL and other phenylpropanoid-specific genes, we generated ethyl methyl sulfate mutagenized populations of At4CL1::GUS and At4CL2::GUS transgenic lines and screened approximately 16,000 progeny for reduced or altered GUS expression. Several lines with reproducible patterns of reduced GUS expression were identified. However, the GUS-expression phenotype segregated in a non-Mendelian manner in all of the identified lines. Also, GUS expression was restored by 5-azacytidine (aza) treatment, suggesting inhibitory DNA methylation of the transgene. Southern analysis confirmed DNA methylation of the proximal promoter sequences of the transgene only in the mutant lines. In addition, retransformation of At4CL::GUS lines with further At4CL promoter constructs enhanced the GUS-silencing phenotype. Taken together, these results suggest that the isolated mutants are epimutants. Apparently, two different modes of silencing were engaged in the At4CL1::GUS and At4CL2::GUS silenced lines. While silencing in the seedlings of the At4CL1::GUS lines was root specific in seedlings, it affected all organs in the At4CL2::GUS lines. Also, At4CL1::GUS transgene silencing was confined to the transgene but At4CL2::GUS silencing extended to the endogenous At4CL2 gene. Organ-specific silencing of the At4CL1::GUS transgene cannot be explained by current models in the literature.
Collapse
Affiliation(s)
- Bahram M Soltani
- Genetics Graduate Program, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
45
|
Mull L, Ebbs ML, Bender J. A histone methylation-dependent DNA methylation pathway is uniquely impaired by deficiency in Arabidopsis S-adenosylhomocysteine hydrolase. Genetics 2006; 174:1161-71. [PMID: 16951055 PMCID: PMC1667058 DOI: 10.1534/genetics.106.063974] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
S-adenosylhomocysteine hydrolase (SAH) is a key enzyme in the maintenance of methylation homeostasis in eukaryotes because it is needed to metabolize the by-product of transmethylation reactions, S-adenosylhomocysteine (AdoHcy), which causes by-product inhibition of methyltransferases (MTase's). Complete loss of SAH function is lethal. Partial loss of SAH function causes pleiotropic effects including developmental abnormalities and reduced cytosine methylation. Here we describe a novel partial-function missense allele of the Arabidopsis SAH1 gene that causes loss of cytosine methylation specifically in non-CG contexts controlled by the CMT3 DNA MTase and transcriptional reactivation of a silenced reporter gene, without conferring developmental abnormalities. The CMT3 pathway depends on histone H3 lysine 9 methylation (H3 mK9) to guide DNA methylation. Our results suggest that this pathway is uniquely sensitive to SAH impairment because of its requirement for two transmethylation reactions that can both be inhibited by AdoHcy. Our results further suggest that gene silencing pathways involving an interplay between histone and DNA methylation in other eukaryotes can be selectively impaired by controlled SAH downregulation.
Collapse
Affiliation(s)
- Lori Mull
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
46
|
Dong ZY, Wang YM, Zhang ZJ, Shen Y, Lin XY, Ou XF, Han FP, Liu B. Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:196-205. [PMID: 16791687 DOI: 10.1007/s00122-006-0286-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 03/31/2006] [Indexed: 05/04/2023]
Abstract
We have reported previously that introgression by Zizania latifolia resulted in extensive DNA methylation changes in the recipient rice genome, as detected by a set of pre-selected DNA segments. In this study, using the methylation-sensitive amplified polymorphism (MSAP) method, we globally assessed the extent and pattern of cytosine methylation alterations in three typical introgression lines relative to their rice parent at approximately 2,700 unbiased genomic loci each representing a recognition site cleaved by one or both of the isoschizomers, HpaII/MspI. Based on differential digestion by the isoschizomers, it is estimated that 15.9% of CCGG sites are either fully methylated at the internal Cs and/or hemi-methylated at the external Cs in the rice parental cultivar Matsumae. In comparison, a statistically significant increase in the overall level of both methylation types was detected in all three studied introgression lines (19.2, 18.6, 19.6%, respectively). Based on comparisons of MSAP profiles between the isoschizomers within the rice parent and between parent and the introgression lines, four major groups of MSAP banding patterns are recognized, which can be further divided into various subgroups as a result of inheritance of, or variation in, parental methylation patterns. The altered methylation patterns include hyper- and hypomethylation changes, as well as inter-conversion of hemi- to full-methylation, or vice versa, at the relevant CCGG site(s). Most alterations revealed by MSAP in low-copy loci can be validated by DNA gel blot analysis. The changed methylation patterns are uniform among randomly selected individuals for a given introgression line within or among selfed generations. Sequencing on 31 isolated fragments that showed different changing patterns in the introgression line(s) allowed their mapping onto variable regions on one or more of the 12 rice chromosomes. These segments include protein-coding genes, transposon/retrotransposons and sequences with no homology. Possible causes for the introgression-induced methylation changes and their implications for genome evolution and crop breeding are discussed.
Collapse
Affiliation(s)
- Z Y Dong
- Laboratory of Plant Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Mayer C, Schmitz KM, Li J, Grummt I, Santoro R. Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol Cell 2006; 22:351-61. [PMID: 16678107 DOI: 10.1016/j.molcel.2006.03.028] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 02/17/2006] [Accepted: 03/23/2006] [Indexed: 12/22/2022]
Abstract
Transcripts originating from the intergenic spacer (IGS) that separates rRNA genes (rDNA) have been known for two decades; their biological role, however, is largely unknown. Here we show that IGS transcripts are required for establishing and maintaining a specific heterochromatic configuration at the promoter of a subset of rDNA arrays. The mechanism of action appears to be mediated through the interaction of TIP5, the large subunit of the chromatin remodeling complex NoRC, with 150-300 nucleotide RNAs that are complementary in sequence to the rDNA promoter. Mutations that abrogate RNA binding of TIP5 impair the association of NoRC with rDNA and fail to promote H3K9&H4K20 methylation and HP1 recruitment. Knockdown of IGS transcripts abolishes the nucleolar localization of NoRC, decreases DNA methylation, and enhances rDNA transcription. The results reveal an important contribution of processed IGS transcripts in chromatin structure and epigenetic control of the rDNA locus.
Collapse
Affiliation(s)
- Christine Mayer
- German Cancer Research Center, Division of Molecular Biology of the Cell II, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
48
|
Fojtová M, Bleys A, Bedřichová J, Van Houdt H, Křížová K, Depicker A, Kovařík A. The trans-silencing capacity of invertedly repeated transgenes depends on their epigenetic state in tobacco. Nucleic Acids Res 2006; 34:2280-93. [PMID: 16670434 PMCID: PMC1456325 DOI: 10.1093/nar/gkl180] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 03/13/2006] [Accepted: 03/22/2006] [Indexed: 11/13/2022] Open
Abstract
We studied the in trans-silencing capacities of a transgene locus that carried the neomycin phosphotransferase II reporter gene linked to the 35S promoter in an inverted repeat (IR). This transgene locus was originally posttranscriptionally silenced but switched to a transcriptionally silenced epiallele after in vitro tissue culture. Here, we show that both epialleles were strongly methylated in the coding region and IR center. However, by genomic sequencing, we found that the 1.0 kb region around the transcription start site was heavily methylated in symmetrical and non-symmetrical contexts in transcriptionally but not in posttranscriptionally silenced epilallele. Also, the posttranscriptionally silenced epiallele could trans-silence and trans-methylate homologous transgene loci irrespective of their genomic organization. We demonstrate that this in trans-silencing was accompanied by the production of small RNA molecules. On the other hand, the transcriptionally silenced variant could neither trans-silence nor trans-methylate homologous sequences, even after being in the same genetic background for generations and meiotic cycles. Interestingly, 5-aza-2-deoxy-cytidine-induced hypomethylation could partially restore signaling from the transcriptionally silenced epiallele. These results are consistent with the hypothesis that non-transcribed highly methylated IRs are poor silencers of homologous loci at non-allelic positions even across two generations and that transcription of the inverted sequences is essential for their trans-silencing potential.
Collapse
Affiliation(s)
- Miloslava Fojtová
- Institute of Biophysics, Academy of Sciences of the Czech RepublicCZ-612 65 Brno, Czech Republic
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent UniversityB-9052 Ghent, Belgium
| | - Annick Bleys
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent UniversityB-9052 Ghent, Belgium
| | - Jana Bedřichová
- Institute of Biophysics, Academy of Sciences of the Czech RepublicCZ-612 65 Brno, Czech Republic
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent UniversityB-9052 Ghent, Belgium
| | - Helena Van Houdt
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent UniversityB-9052 Ghent, Belgium
| | - Kateřina Křížová
- Institute of Biophysics, Academy of Sciences of the Czech RepublicCZ-612 65 Brno, Czech Republic
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent UniversityB-9052 Ghent, Belgium
| | - Anna Depicker
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent UniversityB-9052 Ghent, Belgium
| | - Aleš Kovařík
- To whom correspondence should be addressed at Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ 612 65 Brno, Czech Republic. Tel: +420 541 517 178; Fax: +420 541 211 293;
| |
Collapse
|
49
|
Marenkova TV, Deineko EV. The effect of duplications in the T-DNA on the stability of manifestation of heterologous genes in transgenic tobacco plants. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406050097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Ebbs ML, Bender J. Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase. THE PLANT CELL 2006; 18:1166-76. [PMID: 16582009 PMCID: PMC1456864 DOI: 10.1105/tpc.106.041400] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In Arabidopsis thaliana, heterochromatin formation is guided by double-stranded RNA (dsRNA), which triggers methylation of histone H3 at Lys-9 (H3 mK9) and CG plus non-CG methylation on identical DNA sequences. At heterochromatin targets including transposons and centromere repeats, H3 mK9 mediated by the Su(var)3-9 homologue 4 (SUVH4)/KYP histone methyltransferase (MTase) is required for the maintenance of non-CG methylation by the CMT3 DNA MTase. Here, we show that although SUVH4 is the major H3 K9 MTase, the SUVH5 protein also has histone MTase activity in vitro and contributes to the maintenance of H3 mK9 and CMT3-mediated non-CG methylation in vivo. Strikingly, the relative contributions of SUVH4, SUVH5, and a third related histone MTase, SUVH6, to non-CG methylation are locus-specific. For example, SUVH4 and SUVH5 together control transposon sequences with only a minor contribution from SUVH6, whereas SUVH4 and SUVH6 together control a transcribed inverted repeat source of dsRNA with only a minor contribution from SUVH5. This locus-specific variation suggests different mechanisms for recruiting or activating SUVH enzymes at different heterochromatic sequences. The suvh4 suvh5 suvh6 triple mutant loses both monomethyl and dimethyl H3 K9 at target loci. The suvh4 suvh5 suvh6 mutant also displays a loss of non-CG methylation similar to a cmt3 mutant, indicating that SUVH4, SUVH5, and SUVH6 together control CMT3 activity.
Collapse
Affiliation(s)
- Michelle L Ebbs
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|