1
|
Hoggard T, Chacin E, Hollatz AJ, Kurat CF, Fox CA. The budding yeast Fkh1 Forkhead associated (FHA) domain promotes a G1-chromatin state and the activity of chromosomal DNA replication origins. PLoS Genet 2024; 20:e1011366. [PMID: 39102423 PMCID: PMC11326605 DOI: 10.1371/journal.pgen.1011366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/15/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
In Saccharomyces cerevisiae, the forkhead (Fkh) transcription factor Fkh1 (forkhead homolog) enhances the activity of many DNA replication origins that act in early S-phase (early origins). Current models posit that Fkh1 acts directly to promote these origins' activity by binding to origin-adjacent Fkh1 binding sites (FKH sites). However, the post-DNA binding functions that Fkh1 uses to promote early origin activity are poorly understood. Fkh1 contains a conserved FHA (forkhead associated) domain, a protein-binding module with specificity for phosphothreonine (pT)-containing partner proteins. At a small subset of yeast origins, the Fkh1-FHA domain enhances the ORC (origin recognition complex)-origin binding step, the G1-phase event that initiates the origin cycle. However, the importance of the Fkh1-FHA domain to either chromosomal replication or ORC-origin interactions at genome scale is unclear. Here, S-phase SortSeq experiments were used to compare genome replication in proliferating FKH1 and fkh1-R80A mutant cells. The Fkh1-FHA domain promoted the activity of ≈ 100 origins that act in early to mid- S-phase, including the majority of centromere-associated origins, while simultaneously inhibiting ≈ 100 late origins. Thus, in the absence of a functional Fkh1-FHA domain, the temporal landscape of the yeast genome was flattened. Origins are associated with a positioned nucleosome array that frames a nucleosome depleted region (NDR) over the origin, and ORC-origin binding is necessary but not sufficient for this chromatin organization. To ask whether the Fkh1-FHA domain had an impact on this chromatin architecture at origins, ORC ChIPSeq data generated from proliferating cells and MNaseSeq data generated from G1-arrested and proliferating cell populations were assessed. Origin groups that were differentially regulated by the Fkh1-FHA domain were characterized by distinct effects of this domain on ORC-origin binding and G1-phase chromatin. Thus, the Fkh1-FHA domain controlled the distinct chromatin architecture at early origins in G1-phase and regulated origin activity in S-phase.
Collapse
Affiliation(s)
- Timothy Hoggard
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Erika Chacin
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Allison J Hollatz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- Integrated Program in Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Christoph F Kurat
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Catherine A Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- Integrated Program in Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Foss EJ, Lichauco C, Gatbonton-Schwager T, Gonske SJ, Lofts B, Lao U, Bedalov A. Identification of 1600 replication origins in S. cerevisiae. eLife 2024; 12:RP88087. [PMID: 38315095 PMCID: PMC10945306 DOI: 10.7554/elife.88087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
There are approximately 500 known origins of replication in the yeast genome, and the process by which DNA replication initiates at these locations is well understood. In particular, these sites are made competent to initiate replication by loading of the Mcm replicative helicase prior to the start of S phase; thus, 'a site that binds Mcm in G1' might be considered to provide an operational definition of a replication origin. By fusing a subunit of Mcm to micrococcal nuclease, we previously showed that known origins are typically bound by a single Mcm double hexamer, loaded adjacent to the ARS consensus sequence (ACS). Here, we extend this analysis from known origins to the entire genome, identifying candidate Mcm binding sites whose signal intensity varies over at least three orders of magnitude. Published data quantifying single-stranded DNA (ssDNA) during S phase revealed replication initiation among the most abundant 1600 of these sites, with replication activity decreasing with Mcm abundance and disappearing at the limit of detection of ssDNA. Three other hallmarks of replication origins were apparent among the most abundant 5500 sites. Specifically, these sites: (1) appeared in intergenic nucleosome-free regions flanked on one or both sides by well-positioned nucleosomes; (2) were flanked by ACSs; and (3) exhibited a pattern of GC skew characteristic of replication initiation. We conclude that, if sites at which Mcm double hexamers are loaded can function as replication origins, then DNA replication origins are at least threefold more abundant than previously assumed, and we suggest that replication may occasionally initiate in essentially every intergenic region. These results shed light on recent reports that as many as 15% of replication events initiate outside of known origins, and this broader distribution of replication origins suggest that S phase in yeast may be less distinct from that in humans than widely assumed.
Collapse
Affiliation(s)
- Eric J Foss
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | - Carmina Lichauco
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | | | - Sara J Gonske
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | - Brandon Lofts
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | - Uyen Lao
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| |
Collapse
|
3
|
Tye BK, Zhai Y. The Origin Recognition Complex: From Origin Selection to Replication Licensing in Yeast and Humans. BIOLOGY 2023; 13:13. [PMID: 38248444 PMCID: PMC10813338 DOI: 10.3390/biology13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Understanding human DNA replication through the study of yeast has been an extremely fruitful journey. The minichromosome maintenance (MCM) 2-7 genes that encode the catalytic core of the eukaryotic replisome were initially identified through forward yeast genetics. The origin recognition complexes (ORC) that load the MCM hexamers at replication origins were purified from yeast extracts. We have reached an age where high-resolution cryoEM structures of yeast and human replication complexes can be compared side-by-side. Their similarities and differences are converging as alternative strategies that may deviate in detail but are shared by both species.
Collapse
Affiliation(s)
- Bik-Kwoon Tye
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yuanliang Zhai
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
4
|
Chanou A, Weiβ M, Holler K, Sajid A, Straub T, Krietsch J, Sanchi A, Ummethum H, Lee CSK, Kruse E, Trauner M, Werner M, Lalonde M, Lopes M, Scialdone A, Hamperl S. Single molecule MATAC-seq reveals key determinants of DNA replication origin efficiency. Nucleic Acids Res 2023; 51:12303-12324. [PMID: 37956271 PMCID: PMC10711542 DOI: 10.1093/nar/gkad1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Stochastic origin activation gives rise to significant cell-to-cell variability in the pattern of genome replication. The molecular basis for heterogeneity in efficiency and timing of individual origins is a long-standing question. Here, we developed Methylation Accessibility of TArgeted Chromatin domain Sequencing (MATAC-Seq) to determine single-molecule chromatin accessibility of four specific genomic loci. MATAC-Seq relies on preferential modification of accessible DNA by methyltransferases combined with Nanopore-Sequencing for direct readout of methylated DNA-bases. Applying MATAC-Seq to selected early-efficient and late-inefficient yeast replication origins revealed large heterogeneity of chromatin states. Disruption of INO80 or ISW2 chromatin remodeling complexes leads to changes at individual nucleosomal positions that correlate with changes in their replication efficiency. We found a chromatin state with an accessible nucleosome-free region in combination with well-positioned +1 and +2 nucleosomes as a strong predictor for efficient origin activation. Thus, MATAC-Seq identifies the large spectrum of alternative chromatin states that co-exist on a given locus previously masked in population-based experiments and provides a mechanistic basis for origin activation heterogeneity during eukaryotic DNA replication. Consequently, our single-molecule chromatin accessibility assay will be ideal to define single-molecule heterogeneity across many fundamental biological processes such as transcription, replication, or DNA repair in vitro and ex vivo.
Collapse
Affiliation(s)
- Anna Chanou
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Weiβ
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Karoline Holler
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Atiqa Sajid
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Tobias Straub
- Core Facility Bioinformatics, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jana Krietsch
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Andrea Sanchi
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Henning Ummethum
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Clare S K Lee
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Elisabeth Kruse
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Manuel Trauner
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Marcel Werner
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Maxime Lalonde
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephan Hamperl
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
5
|
Lee CSK, Weiβ M, Hamperl S. Where and when to start: Regulating DNA replication origin activity in eukaryotic genomes. Nucleus 2023; 14:2229642. [PMID: 37469113 PMCID: PMC10361152 DOI: 10.1080/19491034.2023.2229642] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
In eukaryotic genomes, hundreds to thousands of potential start sites of DNA replication named origins are dispersed across each of the linear chromosomes. During S-phase, only a subset of origins is selected in a stochastic manner to assemble bidirectional replication forks and initiate DNA synthesis. Despite substantial progress in our understanding of this complex process, a comprehensive 'identity code' that defines origins based on specific nucleotide sequences, DNA structural features, the local chromatin environment, or 3D genome architecture is still missing. In this article, we review the genetic and epigenetic features of replication origins in yeast and metazoan chromosomes and highlight recent insights into how this flexibility in origin usage contributes to nuclear organization, cell growth, differentiation, and genome stability.
Collapse
Affiliation(s)
- Clare S K Lee
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Weiβ
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Stephan Hamperl
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
6
|
Foss EJ, Lichauco C, Gatbonton-Schwager T, Gonske SJ, Lofts B, Lao U, Bedalov A. Identification of 1600 replication origins in S. cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536402. [PMID: 38014147 PMCID: PMC10680564 DOI: 10.1101/2023.04.11.536402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
There are approximately 500 known origins of replication in the yeast genome, and the process by which DNA replication initiates at these locations is well understood. In particular, these sites are made competent to initiate replication by loading of the Mcm replicative helicase prior to the start of S phase; thus, "a site to which MCM is bound in G1" might be considered to provide an operational definition of a replication origin. By fusing a subunit of Mcm to micrococcal nuclease, a technique referred to as "Chromatin Endogenous Cleavage", we previously showed that known origins are typically bound by a single Mcm double hexamer, loaded adjacent to the ARS consensus sequence (ACS). Here we extend this analysis from known origins to the entire genome, identifying candidate Mcm binding sites whose signal intensity varies over at least 3 orders of magnitude. Published data quantifying the production of ssDNA during S phase showed clear evidence of replication initiation among the most abundant 1600 of these sites, with replication activity decreasing in concert with Mcm abundance and disappearing at the limit of detection of ssDNA. Three other hallmarks of replication origins were apparent among the most abundant 5,500 sites. Specifically, these sites (1) appeared in intergenic nucleosome-free regions that were flanked on one or both sides by well-positioned nucleosomes; (2) were flanked by ACSs; and (3) exhibited a pattern of GC skew characteristic of replication initiation. Furthermore, the high resolution of this technique allowed us to demonstrate a strong bias for detecting Mcm double-hexamers downstream rather than upstream of the ACS, which is consistent with the directionality of Mcm loading by Orc that has been observed in vitro. We conclude that, if sites at which Mcm double-hexamers are loaded can function as replication origins, then DNA replication origins are at least 3-fold more abundant than previously assumed, and we suggest that replication may occasionally initiate in essentially every intergenic region. These results shed light on recent reports that as many as 15% of replication events initiate outside of known origins, and this broader distribution of replication origins suggest that S phase in yeast may be less distinct from that in humans than is widely assumed.
Collapse
Affiliation(s)
- Eric J Foss
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Carmina Lichauco
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | | | - Sara J Gonske
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Brandon Lofts
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Uyen Lao
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| |
Collapse
|
7
|
Sánchez H, Liu Z, van Veen E, van Laar T, Diffley JFX, Dekker NH. A chromatinized origin reduces the mobility of ORC and MCM through interactions and spatial constraint. Nat Commun 2023; 14:6735. [PMID: 37872142 PMCID: PMC10593741 DOI: 10.1038/s41467-023-42524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Chromatin replication involves the assembly and activity of the replisome within the nucleosomal landscape. At the core of the replisome is the Mcm2-7 complex (MCM), which is loaded onto DNA after binding to the Origin Recognition Complex (ORC). In yeast, ORC is a dynamic protein that diffuses rapidly along DNA, unless halted by origin recognition sequences. However, less is known about the dynamics of ORC proteins in the presence of nucleosomes and attendant consequences for MCM loading. To address this, we harnessed an in vitro single-molecule approach to interrogate a chromatinized origin of replication. We find that ORC binds the origin of replication with similar efficiency independently of whether the origin is chromatinized, despite ORC mobility being reduced by the presence of nucleosomes. Recruitment of MCM also proceeds efficiently on a chromatinized origin, but subsequent movement of MCM away from the origin is severely constrained. These findings suggest that chromatinized origins in yeast are essential for the local retention of MCM, which may facilitate subsequent assembly of the replisome.
Collapse
Affiliation(s)
- Humberto Sánchez
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Zhaowei Liu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Edo van Veen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Theo van Laar
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - John F X Diffley
- Chromosome Replication Laboratory, Francis Crick Institute, London, United Kingdom
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
8
|
Reinapae A, Ilves I, Jürgens H, Värv S, Kristjuhan K, Kristjuhan A. Interactions between Fkh1 monomers stabilize its binding to DNA replication origins. J Biol Chem 2023; 299:105026. [PMID: 37423303 PMCID: PMC10403728 DOI: 10.1016/j.jbc.2023.105026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023] Open
Abstract
Eukaryotic DNA replication is initiated from multiple genomic origins, which can be broadly categorized as firing early or late in the S phase. Several factors can influence the temporal usage of origins to determine the timing of their firing. In budding yeast, the Forkhead family proteins Fkh1 and Fkh2 bind to a subset of replication origins and activate them at the beginning of the S phase. In these origins, the Fkh1/2 binding sites are arranged in a strict configuration, suggesting that Forkhead factors must bind the origins in a specific manner. To explore these binding mechanisms in more detail, we mapped the domains of Fkh1 that were required for its role in DNA replication regulation. We found that a short region of Fkh1 near its DNA binding domain was essential for the protein to bind and activate replication origins. Analysis of purified Fkh1 proteins revealed that this region mediates dimerization of Fkh1, suggesting that intramolecular contacts of Fkh1 are required for efficient binding and regulation of DNA replication origins. We also show that the Sld3-Sld7-Cdc45 complex is recruited to Forkhead-regulated origins already in the G1 phase and that Fkh1 is constantly required to keep these factors bound on origins before the onset of the S phase. Together, our results suggest that dimerization-mediated stabilization of DNA binding by Fkh1 is crucial for its ability to activate DNA replication origins.
Collapse
Affiliation(s)
- Allan Reinapae
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Ivar Ilves
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Henel Jürgens
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Signe Värv
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kersti Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Arnold Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
9
|
Liu D, Sonalkar J, Prasanth SG. ORChestra coordinates the replication and repair music. Bioessays 2023; 45:e2200229. [PMID: 36811379 PMCID: PMC10023367 DOI: 10.1002/bies.202200229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Error-free genome duplication and accurate cell division are critical for cell survival. In all three domains of life, bacteria, archaea, and eukaryotes, initiator proteins bind replication origins in an ATP-dependent manner, play critical roles in replisome assembly, and coordinate cell-cycle regulation. We discuss how the eukaryotic initiator, Origin recognition complex (ORC), coordinates different events during the cell cycle. We propose that ORC is the maestro driving the orchestra to coordinately perform the musical pieces of replication, chromatin organization, and repair.
Collapse
Affiliation(s)
- Dazhen Liu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801 USA
| | - Jay Sonalkar
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801 USA
| | - Supriya G. Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801 USA
- Cancer center at Illinois, UIUC
| |
Collapse
|
10
|
Chacin E, Reusswig KU, Furtmeier J, Bansal P, Karl LA, Pfander B, Straub T, Korber P, Kurat CF. Establishment and function of chromatin organization at replication origins. Nature 2023; 616:836-842. [PMID: 37020028 DOI: 10.1038/s41586-023-05926-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023]
Abstract
The origin recognition complex (ORC) is essential for initiation of eukaryotic chromosome replication as it loads the replicative helicase-the minichromosome maintenance (MCM) complex-at replication origins1. Replication origins display a stereotypic nucleosome organization with nucleosome depletion at ORC-binding sites and flanking arrays of regularly spaced nucleosomes2-4. However, how this nucleosome organization is established and whether this organization is required for replication remain unknown. Here, using genome-scale biochemical reconstitution with approximately 300 replication origins, we screened 17 purified chromatin factors from budding yeast and found that the ORC established nucleosome depletion over replication origins and flanking nucleosome arrays by orchestrating the chromatin remodellers INO80, ISW1a, ISW2 and Chd1. The functional importance of the nucleosome-organizing activity of the ORC was demonstrated by orc1 mutations that maintained classical MCM-loader activity but abrogated the array-generation activity of ORC. These mutations impaired replication through chromatin in vitro and were lethal in vivo. Our results establish that ORC, in addition to its canonical role as the MCM loader, has a second crucial function as a master regulator of nucleosome organization at the replication origin, a crucial prerequisite for efficient chromosome replication.
Collapse
Affiliation(s)
- Erika Chacin
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Karl-Uwe Reusswig
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jessica Furtmeier
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Priyanka Bansal
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Leonhard A Karl
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| | - Boris Pfander
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute of Genome Stability in Aging and Disease, CECAD, University of Cologne, Medical Faculty, Cologne, Germany
| | - Tobias Straub
- Core Facility Bioinformatics, BMC, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Philipp Korber
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Christoph F Kurat
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany.
| |
Collapse
|
11
|
Miller CLW, Winston F. The conserved histone chaperone Spt6 is strongly required for DNA replication and genome stability. Cell Rep 2023; 42:112264. [PMID: 36924499 PMCID: PMC10106089 DOI: 10.1016/j.celrep.2023.112264] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/31/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Histone chaperones are an important class of proteins that regulate chromatin accessibility for DNA-templated processes. Spt6 is a conserved histone chaperone and key regulator of transcription and chromatin structure. However, its functions outside of these roles have been little explored. In this work, we demonstrate a requirement for S. cerevisiae Spt6 in DNA replication and, more broadly, as a regulator of genome stability. Depletion or mutation of Spt6 impairs DNA replication in vivo. Additionally, spt6 mutants are sensitive to DNA replication stress-inducing agents. Interestingly, this sensitivity is independent of the association of Spt6 with RNA polymerase II (RNAPII), suggesting that spt6 mutants have a transcription-independent impairment of DNA replication. Specifically, genomic studies reveal that spt6 mutants have decreased loading of the MCM replicative helicase at replication origins, suggesting that Spt6 promotes origin licensing. Our results identify Spt6 as a regulator of genome stability, at least in part through a role in DNA replication.
Collapse
Affiliation(s)
- Catherine L W Miller
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Amin A, Wu R, Khan MA, Cheung MH, Liang Y, Liu C, Zhu G, Yu ZL, Liang C. An essential Noc3p dimerization cycle mediates ORC double-hexamer formation in replication licensing. Life Sci Alliance 2023; 6:e202201594. [PMID: 36599624 PMCID: PMC9813392 DOI: 10.26508/lsa.202201594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Replication licensing, a prerequisite of DNA replication, helps to ensure once-per-cell-cycle genome duplication. Some DNA replication-initiation proteins are sequentially loaded onto replication origins to form pre-replicative complexes (pre-RCs). ORC and Noc3p bind replication origins throughout the cell cycle, providing a platform for pre-RC assembly. We previously reported that cell cycle-dependent ORC dimerization is essential for the chromatin loading of the symmetric MCM double-hexamers. Here, we used Saccharomyces cerevisiae separation-of-function NOC3 mutants to confirm the separable roles of Noc3p in DNA replication and ribosome biogenesis. We also show that an essential and cell cycle-dependent Noc3p dimerization cycle regulates the ORC dimerization cycle. Noc3p dimerizes at the M-to-G1 transition and de-dimerizes in S-phase. The Noc3p dimerization cycle coupled with the ORC dimerization cycle enables replication licensing, protects nascent sister replication origins after replication initiation, and prevents re-replication. This study has revealed a new mechanism of replication licensing and elucidated the molecular mechanism of Noc3p as a mediator of ORC dimerization in pre-RC formation.
Collapse
Affiliation(s)
- Aftab Amin
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Rentian Wu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Muhammad Ajmal Khan
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Man Hei Cheung
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanting Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Changdong Liu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang Zhu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chun Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- EnKang Pharmaceuticals (Guangzhou), Ltd., Guangzhou, China
| |
Collapse
|
13
|
Weiβ M, Chanou A, Schauer T, Tvardovskiy A, Meiser S, König AC, Schmidt T, Kruse E, Ummethum H, Trauner M, Werner M, Lalonde M, Hauck SM, Scialdone A, Hamperl S. Single-copy locus proteomics of early- and late-firing DNA replication origins identifies a role of Ask1/DASH complex in replication timing control. Cell Rep 2023; 42:112045. [PMID: 36701236 PMCID: PMC9989823 DOI: 10.1016/j.celrep.2023.112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/28/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
The chromatin environment at origins of replication is thought to influence DNA replication initiation in eukaryotic genomes. However, it remains unclear how and which chromatin features control the firing of early-efficient (EE) or late-inefficient (LI) origins. Here, we use site-specific recombination and single-locus chromatin isolation to purify EE and LI replication origins in Saccharomyces cerevisiae. Using mass spectrometry, we define the protein composition of native chromatin regions surrounding the EE and LI replication start sites. In addition to known origin interactors, we find the microtubule-binding Ask1/DASH complex as an origin-regulating factor. Strikingly, tethering of Ask1 to individual origin sites advances replication timing (RT) of the targeted chromosomal domain. Targeted degradation of Ask1 globally changes RT of a subset of origins, which can be reproduced by inhibiting microtubule dynamics. Thus, our findings mechanistically connect RT and chromosomal organization via Ask1/DASH with the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Matthias Weiβ
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Anna Chanou
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Tamas Schauer
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Andrey Tvardovskiy
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Stefan Meiser
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Ann-Christine König
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Center for Environmental Health, Heidemannstrasse 1, 80939 München, Germany
| | - Tobias Schmidt
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Elisabeth Kruse
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Henning Ummethum
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Manuel Trauner
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Marcel Werner
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Maxime Lalonde
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Center for Environmental Health, Heidemannstrasse 1, 80939 München, Germany
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Stephan Hamperl
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany.
| |
Collapse
|
14
|
Hu Y, Stillman B. Origins of DNA replication in eukaryotes. Mol Cell 2023; 83:352-372. [PMID: 36640769 PMCID: PMC9898300 DOI: 10.1016/j.molcel.2022.12.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.
Collapse
Affiliation(s)
- Yixin Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
15
|
Origin recognition complex harbors an intrinsic nucleosome remodeling activity. Proc Natl Acad Sci U S A 2022; 119:e2211568119. [PMID: 36215487 PMCID: PMC9586268 DOI: 10.1073/pnas.2211568119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleosomes package the entire eukaryotic genome, yet enzymes need access to the DNA for numerous metabolic activities, such as replication and transcription. Eukaryotic origins of replication in Saccharomyces cerevisiae are AT rich and are generally nucleosome free for the binding of ORC (origin recognition complex). However, the nucleosome-free region often undergoes expansion during G1/S phase, presumably to make room for MCM double-hexamer formation that nucleates the 11-subunit helicase, CMG (Cdc45, Mcm2–7, Cdc45). While nucleosome remodelers could perform this function, in vitro studies indicate that nucleosome remodeling may be intrinsic to the replication machinery. Indeed, we find here that ORC contains an intrinsic nucleosome remodeling activity that is capable of ATP-stimulated removal of H2A-H2B from nucleosomes. Eukaryotic DNA replication is initiated at multiple chromosomal sites known as origins of replication that are specifically recognized by the origin recognition complex (ORC) containing multiple ATPase sites. In budding yeast, ORC binds to specific DNA sequences known as autonomously replicating sequences (ARSs) that are mostly nucleosome depleted. However, nucleosomes may still inhibit the licensing of some origins by occluding ORC binding and subsequent MCM helicase loading. Using purified proteins and single-molecule visualization, we find here that the ORC can eject histones from a nucleosome in an ATP-dependent manner. The ORC selectively evicts H2A-H2B dimers but leaves the (H3-H4)2 tetramer on DNA. It also discriminates canonical H2A from the H2A.Z variant, evicting the former while retaining the latter. Finally, the bromo-adjacent homology (BAH) domain of the Orc1 subunit is essential for ORC-mediated histone eviction. These findings suggest that the ORC is a bona fide nucleosome remodeler that functions to create a local chromatin environment optimal for origin activity.
Collapse
|
16
|
Symbiosis with Dinoflagellates Alters Cnidarian Cell-Cycle Gene Expression. Cell Microbiol 2022. [DOI: 10.1155/2022/3330160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the cnidarian-dinoflagellate symbiosis, hosts show altered expression of genes involved in growth and proliferation when in the symbiotic state, but little is known about the molecular mechanisms that underlie the host’s altered growth rate. Using tissue-specific transcriptomics, we determined how symbiosis affects expression of cell cycle-associated genes, in the model symbiotic cnidarian Exaiptasia diaphana (Aiptasia). The presence of symbionts within the gastrodermis elicited cell-cycle arrest in the G1 phase in a larger proportion of host cells compared with the aposymbiotic gastrodermis. The symbiotic gastrodermis also showed a reduction in the amount of cells synthesizing their DNA and progressing through mitosis when compared with the aposymbiotic gastrodermis. Host apoptotic inhibitors (Mdm2) were elevated, while host apoptotic sensitizers (c-Myc) were depressed, in the symbiotic gastrodermis when compared with the aposymbiotic gastrodermis and epidermis of symbiotic anemones, respectively. This indicates that the presence of symbionts negatively regulates host apoptosis, possibly contributing to their persistence within the host. Transcripts (ATM/ATR) associated with DNA damage were also downregulated in symbiotic gastrodermal tissues. In epidermal cells, a single gene (Mob1) required for mitotic completion was upregulated in symbiotic compared with aposymbiotic anemones, suggesting that the presence of symbionts in the gastrodermis stimulates host cell division in the epidermis. To further corroborate this hypothesis, we performed microscopic analysis using an S-phase indicator (EdU), allowing us to evaluate cell cycling in host cells. Our results confirmed that there were significantly more proliferating host cells in both the gastrodermis and epidermis in the symbiotic state compared with the aposymbiotic state. Furthermore, when comparing between tissue layers in the presence of symbionts, the epidermis had significantly more proliferating host cells than the symbiont-containing gastrodermis. These results contribute to our understanding of the influence of symbionts on the mechanisms of cnidarian cell proliferation and mechanisms associated with symbiont maintenance.
Collapse
|
17
|
Ranjan R, Snedeker J, Wooten M, Chu C, Bracero S, Mouton T, Chen X. Differential condensation of sister chromatids acts with Cdc6 to ensure asynchronous S-phase entry in Drosophila male germline stem cell lineage. Dev Cell 2022; 57:1102-1118.e7. [PMID: 35483360 PMCID: PMC9134767 DOI: 10.1016/j.devcel.2022.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/16/2022] [Accepted: 04/05/2022] [Indexed: 01/06/2023]
Abstract
During Drosophila melanogaster male germline stem cell (GSC) asymmetric division, preexisting old versus newly synthesized histones H3 and H4 are asymmetrically inherited. However, the biological outcomes of this phenomenon have remained unclear. Here, we tracked old and new histones throughout the GSC cell cycle through the use of high spatial and temporal resolution microscopy. We found unique features that differ between old and new histone-enriched sister chromatids, including differences in nucleosome density, chromosomal condensation, and H3 Ser10 phosphorylation. These distinct chromosomal features lead to their differential association with Cdc6, a pre-replication complex component, and subsequent asynchronous DNA replication initiation in the resulting daughter cells. Disruption of asymmetric histone inheritance abolishes differential Cdc6 association and asynchronous S-phase entry, demonstrating that histone asymmetry acts upstream of these critical cell-cycle progression events. Furthermore, disruption of these GSC-specific chromatin features leads to GSC defects, indicating a connection between histone inheritance, cell-cycle progression, and cell fate determination.
Collapse
Affiliation(s)
- Rajesh Ranjan
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Carolina Chu
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sabrina Bracero
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Taylar Mouton
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Chen
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
18
|
Abstract
DNA replication in eukaryotic cells initiates from large numbers of sites called replication origins. Initiation of replication from these origins must be tightly controlled to ensure the entire genome is precisely duplicated in each cell cycle. This is accomplished through the regulation of the first two steps in replication: loading and activation of the replicative DNA helicase. Here we describe what is known about the mechanism and regulation of these two reactions from a genetic, biochemical, and structural perspective, focusing on recent progress using proteins from budding yeast. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK;
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London, UK;
| |
Collapse
|
19
|
ReconSil: An electron microscopy toolbox to study helicase function at an origin of replication. Methods Enzymol 2022; 672:203-231. [DOI: 10.1016/bs.mie.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Li Y, Hartemink AJ, MacAlpine DM. Cell-Cycle-Dependent Chromatin Dynamics at Replication Origins. Genes (Basel) 2021; 12:genes12121998. [PMID: 34946946 PMCID: PMC8701747 DOI: 10.3390/genes12121998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 01/20/2023] Open
Abstract
Origins of DNA replication are specified by the ordered recruitment of replication factors in a cell-cycle–dependent manner. The assembly of the pre-replicative complex in G1 and the pre-initiation complex prior to activation in S phase are well characterized; however, the interplay between the assembly of these complexes and the local chromatin environment is less well understood. To investigate the dynamic changes in chromatin organization at and surrounding replication origins, we used micrococcal nuclease (MNase) to generate genome-wide chromatin occupancy profiles of nucleosomes, transcription factors, and replication proteins through consecutive cell cycles in Saccharomyces cerevisiae. During each G1 phase of two consecutive cell cycles, we observed the downstream repositioning of the origin-proximal +1 nucleosome and an increase in protected DNA fragments spanning the ARS consensus sequence (ACS) indicative of pre-RC assembly. We also found that the strongest correlation between chromatin occupancy at the ACS and origin efficiency occurred in early S phase, consistent with the rate-limiting formation of the Cdc45–Mcm2-7–GINS (CMG) complex being a determinant of origin activity. Finally, we observed nucleosome disruption and disorganization emanating from replication origins and traveling with the elongating replication forks across the genome in S phase, likely reflecting the disassembly and assembly of chromatin ahead of and behind the replication fork, respectively. These results provide insights into cell-cycle–regulated chromatin dynamics and how they relate to the regulation of origin activity.
Collapse
Affiliation(s)
- Yulong Li
- Department of Computer Science, Duke University, Durham, NC 27708, USA;
| | - Alexander J. Hartemink
- Department of Computer Science, Duke University, Durham, NC 27708, USA;
- Correspondence: (A.J.H.); (D.M.M.)
| | - David M. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Correspondence: (A.J.H.); (D.M.M.)
| |
Collapse
|
21
|
Santos-Rosa H, Millán-Zambrano G, Han N, Leonardi T, Klimontova M, Nasiscionyte S, Pandolfini L, Tzelepis K, Bartke T, Kouzarides T. Methylation of histone H3 at lysine 37 by Set1 and Set2 prevents spurious DNA replication. Mol Cell 2021; 81:2793-2807.e8. [PMID: 33979575 PMCID: PMC7612968 DOI: 10.1016/j.molcel.2021.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 02/09/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022]
Abstract
DNA replication initiates at genomic locations known as origins of replication, which, in S. cerevisiae, share a common DNA consensus motif. Despite being virtually nucleosome-free, origins of replication are greatly influenced by the surrounding chromatin state. Here, we show that histone H3 lysine 37 mono-methylation (H3K37me1) is catalyzed by Set1p and Set2p and that it regulates replication origin licensing. H3K37me1 is uniformly distributed throughout most of the genome, but it is scarce at replication origins, where it increases according to the timing of their firing. We find that H3K37me1 hinders Mcm2 interaction with chromatin, maintaining low levels of MCM outside of conventional replication origins. Lack of H3K37me1 results in defective DNA replication from canonical origins while promoting replication events at inefficient and non-canonical sites. Collectively, our results indicate that H3K37me1 ensures correct execution of the DNA replication program by protecting the genome from inappropriate origin licensing and spurious DNA replication.
Collapse
Affiliation(s)
- Helena Santos-Rosa
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | - Gonzalo Millán-Zambrano
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Namshik Han
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Milner Therapeutics Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Tommaso Leonardi
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Center for Genomic Science Istituto Italiano di Tecnologia (IIT), 20139 Milano, Italy
| | - Marie Klimontova
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Simona Nasiscionyte
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Luca Pandolfini
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Istituto Italiano di Tecnologia (IIT), Center for Human Technologies (CHT), 16152 Genova, Italy
| | - Kostantinos Tzelepis
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tony Kouzarides
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
22
|
Maria H, Kapoor S, Liu T, Rusche LN. Conservation of a DNA Replication Motif among Phylogenetically Distant Budding Yeast Species. Genome Biol Evol 2021; 13:6300524. [PMID: 34132803 PMCID: PMC8290112 DOI: 10.1093/gbe/evab137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 01/23/2023] Open
Abstract
Eukaryotic DNA replication begins at genomic loci termed origins, which are bound by the origin recognition complex (ORC). Although ORC is conserved across species, the sequence composition of origins is more varied. In the budding yeast Saccharomyces cerevisiae, the ORC-binding motif consists of an A/T-rich 17 bp “extended ACS” sequence adjacent to a B1 element composed of two 3-bp motifs. Similar sequences occur at origins in closely related species, but it is not clear when this type of replication origin arose and whether it predated a whole-genome duplication that occurred around 100 Ma in the budding yeast lineage. To address these questions, we identified the ORC-binding sequences in the nonduplicated species Torulaspora delbrueckii. We used chromatin immunoprecipitation followed by sequencing and identified 190 ORC-binding sites distributed across the eight T. delbrueckii chromosomes. Using these sites, we identified an ORC-binding motif that is nearly identical to the known motif in S. cerevisiae. We also found that the T. delbrueckii ORC-binding sites function as origins in T. delbrueckii when cloned onto a plasmid and that the motif is required for plasmid replication. Finally, we compared an S. cerevisiae origin with two T. delbrueckii ORC-binding sites and found that they conferred similar stabilities to a plasmid. These results reveal that the ORC-binding motif arose prior to the whole-genome duplication and has been maintained for over 100 Myr.
Collapse
Affiliation(s)
- Haniam Maria
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| | - Shivali Kapoor
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Laura N Rusche
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| |
Collapse
|
23
|
Kato H, Shimizu M, Urano T. Chemical map-based prediction of nucleosome positioning using the Bioconductor package nuCpos. BMC Bioinformatics 2021; 22:322. [PMID: 34120589 PMCID: PMC8201924 DOI: 10.1186/s12859-021-04240-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Assessing the nucleosome-forming potential of specific DNA sequences is important for understanding complex chromatin organization. Methods for predicting nucleosome positioning include bioinformatics and biophysical approaches. An advantage of bioinformatics methods, which are based on in vivo nucleosome maps, is the use of natural sequences that may contain previously unknown elements involved in nucleosome positioning in vivo. The accuracy of such prediction attempts reflects the genomic coordinate resolution of the nucleosome maps applied. Nucleosome maps are constructed using micrococcal nuclease digestion followed by high-throughput sequencing (MNase-seq). However, as MNase has a strong preference for A/T-rich sequences, MNase-seq may not be appropriate for this purpose. In addition to MNase-seq-based maps, base pair-resolution chemical maps of in vivo nucleosomes from three different species (budding and fission yeasts, and mice) are currently available. However, these chemical maps have yet to be integrated into publicly available computational methods. Results We developed a Bioconductor package (named nuCpos) to demonstrate the superiority of chemical maps in predicting nucleosome positioning. The accuracy of chemical map-based prediction in rotational settings was higher than that of the previously developed MNase-seq-based approach. With our method, predicted nucleosome occupancy reasonably matched in vivo observations and was not affected by A/T nucleotide frequency. Effects of genetic alterations on nucleosome positioning that had been observed in living yeast cells could also be predicted. nuCpos calculates individual histone binding affinity (HBA) scores for given 147-bp sequences to examine their suitability for nucleosome formation. We also established local HBA as a new parameter to predict nucleosome formation, which was calculated for 13 overlapping nucleosomal DNA subsequences. HBA and local HBA scores for various sequences agreed well with previous in vitro and in vivo studies. Furthermore, our results suggest that nucleosomal subsegments that are disfavored in different rotational settings contribute to the defined positioning of nucleosomes. Conclusions Our results demonstrate that chemical map-based statistical models are beneficial for studying nucleosomal DNA features. Studies employing nuCpos software can enhance understanding of chromatin regulation and the interpretation of genetic alterations and facilitate the design of artificial sequences. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04240-2.
Collapse
Affiliation(s)
- Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Mitsuhiro Shimizu
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo, 191-8506, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
24
|
INO80C Remodeler Maintains Genomic Stability by Preventing Promiscuous Transcription at Replication Origins. Cell Rep 2021; 32:108106. [PMID: 32905765 PMCID: PMC7540730 DOI: 10.1016/j.celrep.2020.108106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/26/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
The proper coordination of transcription with DNA replication and repair is central for genomic stability. We investigate how the INO80C chromatin remodeling enzyme might coordinate these genomic processes. We find that INO80C co-localizes with the origin recognition complex (ORC) at yeast replication origins and is bound to replication initiation sites in mouse embryonic stem cells (mESCs). In yeast· INO80C recruitment requires origin sequences but does not require ORC· suggesting that recruitment is independent of pre-replication complex assembly. In both yeast and ESCs· INO80C co-localizes at origins with Mot1 and NC2 transcription factors· and genetic studies suggest that they function together to promote genome stability. Interestingly· nascent transcript sequencing demonstrates that INO80C and Mot1 prevent pervasive transcription through origin sequences· and absence of these factors leads to formation of new DNA double-strand breaks. We propose that INO80C and Mot1/NC2 function through distinct pathways to limit origin transcription· maintaining genomic stability. The INO80C chromatin remodeler is known to regulate transcription and genomic stability. Topal et al. find that INO80C functions with Mot1 repressor to prevent pervasive transcription at replication origins in yeast and mESCs. Increased ncRNAs lead to new DNA double-strand breaks at origins, linking transcriptional regulation to genomic stability.
Collapse
|
25
|
Sreekumar L, Kumari K, Guin K, Bakshi A, Varshney N, Thimmappa BC, Narlikar L, Padinhateeri R, Siddharthan R, Sanyal K. Orc4 spatiotemporally stabilizes centromeric chromatin. Genome Res 2021; 31:607-621. [PMID: 33514624 PMCID: PMC8015856 DOI: 10.1101/gr.265900.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/27/2021] [Indexed: 11/24/2022]
Abstract
The establishment of centromeric chromatin and its propagation by the centromere-specific histone CENPA is mediated by epigenetic mechanisms in most eukaryotes. DNA replication origins, origin binding proteins, and replication timing of centromere DNA are important determinants of centromere function. The epigenetically regulated regional centromeres in the budding yeast Candida albicans have unique DNA sequences that replicate earliest in every chromosome and are clustered throughout the cell cycle. In this study, the genome-wide occupancy of the replication initiation protein Orc4 reveals its abundance at all centromeres in C. albicans Orc4 is associated with four different DNA sequence motifs, one of which coincides with tRNA genes (tDNA) that replicate early and cluster together in space. Hi-C combined with genome-wide replication timing analyses identify that early replicating Orc4-bound regions interact with themselves stronger than with late replicating Orc4-bound regions. We simulate a polymer model of chromosomes of C. albicans and propose that the early replicating and highly enriched Orc4-bound sites preferentially localize around the clustered kinetochores. We also observe that Orc4 is constitutively localized to centromeres, and both Orc4 and the helicase Mcm2 are essential for cell viability and CENPA stability in C. albicans Finally, we show that new molecules of CENPA are recruited to centromeres during late anaphase/telophase, which coincides with the stage at which the CENPA-specific chaperone Scm3 localizes to the kinetochore. We propose that the spatiotemporal localization of Orc4 within the nucleus, in collaboration with Mcm2 and Scm3, maintains centromeric chromatin stability and CENPA recruitment in C. albicans.
Collapse
Affiliation(s)
- Lakshmi Sreekumar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Kiran Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- IITB-Monash Research Academy, Mumbai 400076, India
- Department of Chemical Engineering, Monash University, Melbourne 3800, Australia
| | - Krishnendu Guin
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Asif Bakshi
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Neha Varshney
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Bhagya C Thimmappa
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Leelavati Narlikar
- Department of Chemical Engineering, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rahul Siddharthan
- The Institute of Mathematical Sciences/HBNI, Taramani, Chennai 600113, India
| | - Kaustuv Sanyal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Amin A, Wu R, Cheung MH, Scott JF, Wang Z, Zhou Z, Liu C, Zhu G, Wong CKC, Yu Z, Liang C. An Essential and Cell-Cycle-Dependent ORC Dimerization Cycle Regulates Eukaryotic Chromosomal DNA Replication. Cell Rep 2021; 30:3323-3338.e6. [PMID: 32160540 DOI: 10.1016/j.celrep.2020.02.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 10/04/2019] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic DNA replication licensing is a prerequisite for, and plays a role in, regulating genome duplication that occurs exactly once per cell cycle. ORC (origin recognition complex) binds to and marks replication origins throughout the cell cycle and loads other replication-initiation proteins onto replication origins to form pre-replicative complexes (pre-RCs), completing replication licensing. However, how an asymmetric single-heterohexameric ORC structure loads the symmetric MCM (minichromosome maintenance) double hexamers is controversial, and importantly, it remains unknown when and how ORC proteins associate with the newly replicated origins to protect them from invasion by histones. Here, we report an essential and cell-cycle-dependent ORC "dimerization cycle" that plays three fundamental roles in the regulation of DNA replication: providing a symmetric platform to load the symmetric pre-RCs, marking and protecting the nascent sister replication origins for the next licensing, and playing a crucial role to prevent origin re-licensing within the same cell cycle.
Collapse
Affiliation(s)
- Aftab Amin
- School of Chinese Medicine and Department of Biology, Hong Kong Baptist University, Hong Kong, China; Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Rentian Wu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Man Hei Cheung
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - John F Scott
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ziyi Wang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zijing Zhou
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Changdong Liu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang Zhu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Chris Kong-Chu Wong
- School of Chinese Medicine and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zhiling Yu
- School of Chinese Medicine and Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| | - Chun Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China; The First Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, China; EnKang Pharmaceuticals Limited, Guangzhou, China.
| |
Collapse
|
27
|
Nucleosome Positioning and Spacing: From Mechanism to Function. J Mol Biol 2021; 433:166847. [PMID: 33539878 DOI: 10.1016/j.jmb.2021.166847] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
Abstract
Eukaryotes associate their genomes with histone proteins, forming nucleosome particles. Nucleosomes regulate and protect the genetic information. They often assemble into evenly spaced arrays of nucleosomes. These regular nucleosome arrays cover significant portions of the genome, in particular over genes. The presence of these evenly spaced nucleosome arrays is highly conserved throughout the entire eukaryotic domain. Here, we review the mechanisms behind the establishment of this primary structure of chromatin with special emphasis on the biogenesis of evenly spaced nucleosome arrays. We highlight the roles that transcription, nucleosome remodelers, DNA sequence, and histone density play towards the formation of evenly spaced nucleosome arrays and summarize our current understanding of their cellular functions. We end with key unanswered questions that remain to be explored to obtain an in-depth understanding of the biogenesis and function of the nucleosome landscape.
Collapse
|
28
|
Lee PH, Osley M. Chromatin structure restricts origin utilization when quiescent cells re-enter the cell cycle. Nucleic Acids Res 2021; 49:864-878. [PMID: 33367871 PMCID: PMC7826286 DOI: 10.1093/nar/gkaa1148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Quiescent cells reside in G0 phase, which is characterized by the absence of cell growth and proliferation. These cells remain viable and re-enter the cell cycle when prompted by appropriate signals. Using a budding yeast model of cellular quiescence, we investigated the program that initiated DNA replication when these G0 cells resumed growth. Quiescent cells contained very low levels of replication initiation factors, and their entry into S phase was delayed until these factors were re-synthesized. A longer S phase in these cells correlated with the activation of fewer origins of replication compared to G1 cells. The chromatin structure around inactive origins in G0 cells showed increased H3 occupancy and decreased nucleosome positioning compared to the same origins in G1 cells, inhibiting the origin binding of the Mcm4 subunit of the MCM licensing factor. Thus, quiescent yeast cells are under-licensed during their re-entry into S phase.
Collapse
Affiliation(s)
- Po-Hsuen Lee
- Department of Molecular Genetics and Microbiology University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Mary Ann Osley
- Department of Molecular Genetics and Microbiology University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
29
|
Abstract
The Origin Recognition Complex (ORC) is an evolutionarily conserved six-subunit protein complex that binds specific sites at many locations to coordinately replicate the entire eukaryote genome. Though highly conserved in structure, ORC’s selectivity for replication origins has diverged tremendously between yeasts and humans to adapt to vastly different life cycles. In this work, we demonstrate that the selectivity determinant of ORC for DNA binding lies in a 19-amino acid insertion helix in the Orc4 subunit, which is present in yeast but absent in human. Removal of this motif from Orc4 transforms the yeast ORC, which selects origins based on base-specific binding at defined locations, into one whose selectivity is dictated by chromatin landscape and afforded with plasticity, as reported for human. Notably, the altered yeast ORC has acquired an affinity for regions near transcriptional start sites (TSSs), which the human ORC also favors. In most model yeast species the Origin Recognition Complex (ORC) binds defined and species-specific base sequences while in humans what determines the binding appears to be more complex. Here the authors reveal that the yeast’s ORC complex binding specificity is dependent on a 19-amino acid insertion helix in the Orc4 subunit which is lost in human.
Collapse
|
30
|
Waldrip ZJ, Jenjaroenpun P, DeYoung O, Nookaew I, Taverna SD, Raney KD, Tackett AJ. Genome-wide Cas9 binding specificity in Saccharomyces cerevisiae. PeerJ 2020; 8:e9442. [PMID: 32821531 PMCID: PMC7395602 DOI: 10.7717/peerj.9442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
The CRISPR system has become heavily utilized in biomedical research as a tool for genomic editing as well as for site-specific chromosomal localization of specific proteins. For example, we developed a CRISPR-based methodology for enriching a specific genomic locus of interest for proteomic analysis in Saccharomyces cerevisiae, which utilized a guide RNA-targeted, catalytically dead Cas9 (dCas9) as an affinity reagent. To more comprehensively evaluate the genomic specificity of using dCas9 as a site-specific tool for chromosomal studies, we performed dCas9-mediated locus enrichment followed by next-generation sequencing on a genome-wide scale. As a test locus, we used the ARS305 origin of replication on chromosome III in S. cerevisiae. We found that enrichment of this site is highly specific, with virtually no off-target enrichment of unique genomic sequences. The high specificity of genomic localization and enrichment suggests that dCas9-mediated technologies have promising potential for site-specific chromosomal studies in organisms with relatively small genomes such as yeasts.
Collapse
Affiliation(s)
- Zachary J Waldrip
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Oktawia DeYoung
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Sean D Taverna
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| |
Collapse
|
31
|
Abstract
In all kingdoms of life, DNA is used to encode hereditary information. Propagation of the genetic material between generations requires timely and accurate duplication of DNA by semiconservative replication prior to cell division to ensure each daughter cell receives the full complement of chromosomes. DNA synthesis of daughter strands starts at discrete sites, termed replication origins, and proceeds in a bidirectional manner until all genomic DNA is replicated. Despite the fundamental nature of these events, organisms have evolved surprisingly divergent strategies that control replication onset. Here, we discuss commonalities and differences in replication origin organization and recognition in the three domains of life.
Collapse
Affiliation(s)
- Babatunde Ekundayo
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Franziska Bleichert
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- * E-mail:
| |
Collapse
|
32
|
Prorok P, Artufel M, Aze A, Coulombe P, Peiffer I, Lacroix L, Guédin A, Mergny JL, Damaschke J, Schepers A, Cayrou C, Teulade-Fichou MP, Ballester B, Méchali M. Involvement of G-quadruplex regions in mammalian replication origin activity. Nat Commun 2019; 10:3274. [PMID: 31332171 PMCID: PMC6646384 DOI: 10.1038/s41467-019-11104-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Genome-wide studies of DNA replication origins revealed that origins preferentially associate with an Origin G-rich Repeated Element (OGRE), potentially forming G-quadruplexes (G4). Here, we functionally address their requirements for DNA replication initiation in a series of independent approaches. Deletion of the OGRE/G4 sequence strongly decreased the corresponding origin activity. Conversely, the insertion of an OGRE/G4 element created a new replication origin. This element also promoted replication of episomal EBV vectors lacking the viral origin, but not if the OGRE/G4 sequence was deleted. A potent G4 ligand, PhenDC3, stabilized G4s but did not alter the global origin activity. However, a set of new, G4-associated origins was created, whereas suppressed origins were largely G4-free. In vitro Xenopus laevis replication systems showed that OGRE/G4 sequences are involved in the activation of DNA replication, but not in the pre-replication complex formation. Altogether, these results converge to the functional importance of OGRE/G4 elements in DNA replication initiation.
Collapse
Affiliation(s)
- Paulina Prorok
- Institute of Human Genetics, CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | | | - Antoine Aze
- Institute of Human Genetics, CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Philippe Coulombe
- Institute of Human Genetics, CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Isabelle Peiffer
- Institute of Human Genetics, CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Laurent Lacroix
- Balasubramanian group, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Aurore Guédin
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, Institut Européen de Chimie Biologie (IECB), Pessac, 33607, France
| | - Jean-Louis Mergny
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, Institut Européen de Chimie Biologie (IECB), Pessac, 33607, France.,Institut Curie, CNRS UMR9187, Inserm U1196, Universite Paris Saclay, Orsay, France
| | - Julia Damaschke
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Marchioninistraße 25, 81377, Munich, Germany
| | - Aloys Schepers
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Marchioninistraße 25, 81377, Munich, Germany.,Monoclonal Antibody Core Facility & Research Group, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Ingolstädter Landstrasse, 85764, Neuherberg, Germany
| | - Christelle Cayrou
- Institute of Human Genetics, CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France.,Centre de Recherche en Cancérologie de Marseille 27 Boulevard Lei Roure, 13273, Marseille, France
| | | | | | - Marcel Méchali
- Institute of Human Genetics, CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France.
| |
Collapse
|
33
|
Wang Y, Wang A, Liu Z, Thurman AL, Powers LS, Zou M, Zhao Y, Hefel A, Li Y, Zabner J, Au KF. Single-molecule long-read sequencing reveals the chromatin basis of gene expression. Genome Res 2019; 29:1329-1342. [PMID: 31201211 PMCID: PMC6673713 DOI: 10.1101/gr.251116.119] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/10/2019] [Indexed: 11/25/2022]
Abstract
Genome-wide chromatin accessibility and nucleosome occupancy profiles have been widely investigated, while the long-range dynamics remain poorly studied at the single-cell level. Here, we present a new experimental approach, methyltransferase treatment followed by single-molecule long-read sequencing (MeSMLR-seq), for long-range mapping of nucleosomes and chromatin accessibility at single DNA molecules and thus achieve comprehensive-coverage characterization of the corresponding heterogeneity. MeSMLR-seq offers direct measurements of both nucleosome-occupied and nucleosome-evicted regions on a single DNA molecule, which is challenging for many existing methods. We applied MeSMLR-seq to haploid yeast, where single DNA molecules represent single cells, and thus we could investigate the combinatorics of many (up to 356) nucleosomes at long range in single cells. We illustrated the differential organization principles of nucleosomes surrounding the transcription start site for silent and actively transcribed genes, at the single-cell level and in the long-range scale. The heterogeneous patterns of chromatin status spanning multiple genes were phased. Together with single-cell RNA-seq data, we quantitatively revealed how chromatin accessibility correlated with gene transcription positively in a highly heterogeneous scenario. Moreover, we quantified the openness of promoters and investigated the coupled chromatin changes of adjacent genes at single DNA molecules during transcription reprogramming. In addition, we revealed the coupled changes of chromatin accessibility for two neighboring glucose transporter genes in response to changes in glucose concentration.
Collapse
Affiliation(s)
- Yunhao Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Anqi Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Zujun Liu
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Andrew L Thurman
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Linda S Powers
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Meng Zou
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Adam Hefel
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Yunyi Li
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Joseph Zabner
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Kin Fai Au
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA.,Department of Biostatistics, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
34
|
Candelli T, Gros J, Libri D. Pervasive transcription fine-tunes replication origin activity. eLife 2018; 7:40802. [PMID: 30556807 PMCID: PMC6314782 DOI: 10.7554/elife.40802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
RNA polymerase (RNAPII) transcription occurs pervasively, raising the important question of its functional impact on other DNA-associated processes, including replication. In budding yeast, replication originates from Autonomously Replicating Sequences (ARSs), generally located in intergenic regions. The influence of transcription on ARSs function has been studied for decades, but these earlier studies have neglected the role of non-annotated transcription. We studied the relationships between pervasive transcription and replication origin activity using high-resolution transcription maps. We show that ARSs alter the pervasive transcription landscape by pausing and terminating neighboring RNAPII transcription, thus limiting the occurrence of pervasive transcription within origins. We propose that quasi-symmetrical binding of the ORC complex to ARS borders and/or pre-RC formation are responsible for pausing and termination. We show that low, physiological levels of pervasive transcription impact the function of replication origins. Overall, our results have important implications for understanding the impact of genomic location on origin function.
Collapse
Affiliation(s)
- Tito Candelli
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julien Gros
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Domenico Libri
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
35
|
Chromatin Remodeling Factors Isw2 and Ino80 Regulate Chromatin, Replication, and Copy Number of the Saccharomyces cerevisiae Ribosomal DNA Locus. Genetics 2018; 210:1543-1556. [PMID: 30355728 DOI: 10.1534/genetics.118.301579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, ribosomal RNA genes are encoded in a highly repetitive tandem array referred to as the ribosomal DNA (rDNA) locus. The yeast rDNA is the site of a diverse set of DNA-dependent processes, including transcription of ribosomal RNAs by RNA polymerases I and III, transcription of noncoding RNAs by RNA polymerase II, DNA replication initiation, replication fork blocking, and recombination-mediated regulation of rDNA repeat copy number. All of this takes place in the context of chromatin, but little is known about the roles played by ATP-dependent chromatin remodeling factors at the yeast rDNA. In this work, we report that the Isw2 and Ino80 chromatin remodeling factors are targeted to this highly repetitive locus. We characterize for the first time their function in modifying local chromatin structure, finding that loss of these factors decreases the fraction of actively transcribed 35S ribosomal RNA genes and the positioning of nucleosomes flanking the ribosomal origin of replication. In addition, we report that Isw2 and Ino80 promote efficient firing of the ribosomal origin of replication and facilitate the regulated increase of rDNA repeat copy number. This work significantly expands our understanding of the importance of ATP-dependent chromatin remodeling for rDNA biology.
Collapse
|
36
|
Structure of the origin recognition complex bound to DNA replication origin. Nature 2018; 559:217-222. [DOI: 10.1038/s41586-018-0293-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/08/2018] [Indexed: 11/09/2022]
|
37
|
Kang S, Kang MS, Ryu E, Myung K. Eukaryotic DNA replication: Orchestrated action of multi-subunit protein complexes. Mutat Res 2018; 809:58-69. [PMID: 28501329 DOI: 10.1016/j.mrfmmm.2017.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/13/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
Genome duplication is an essential process to preserve genetic information between generations. The eukaryotic cell cycle is composed of functionally distinct phases: G1, S, G2, and M. One of the key replicative proteins that participate at every stage of DNA replication is the Mcm2-7 complex, a replicative helicase. In the G1 phase, inactive Mcm2-7 complexes are loaded on the replication origins by replication-initiator proteins, ORC and Cdc6. Two kinases, S-CDK and DDK, convert the inactive origin-loaded Mcm2-7 complex to an active helicase, the CMG complex in the S phase. The activated CMG complex begins DNA unwinding and recruits enzymes essential for DNA synthesis to assemble a replisome at the replication fork. After completion of DNA synthesis, the inactive CMG complex on the replicated DNA is removed from chromatin to terminate DNA replication. In this review, we will discuss the structure, function, and regulation of the molecular machines involved in each step of DNA replication.
Collapse
Affiliation(s)
- Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea.
| | - Mi-Sun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Eunjin Ryu
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea; School of Life Sciences, Ulsan National Institute for Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea; School of Life Sciences, Ulsan National Institute for Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
38
|
Viral proteins as a potential driver of histone depletion in dinoflagellates. Nat Commun 2018; 9:1535. [PMID: 29670105 PMCID: PMC5906630 DOI: 10.1038/s41467-018-03993-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/26/2018] [Indexed: 12/22/2022] Open
Abstract
Within canonical eukaryotic nuclei, DNA is packaged with highly conserved histone proteins into nucleosomes, which facilitate DNA condensation and contribute to genomic regulation. Yet the dinoflagellates, a group of unicellular algae, are a striking exception to this otherwise universal feature as they have largely abandoned histones and acquired apparently viral-derived substitutes termed DVNPs (dinoflagellate-viral-nucleoproteins). Despite the magnitude of this transition, its evolutionary drivers remain unknown. Here, using Saccharomyces cerevisiae as a model, we show that DVNP impairs growth and antagonizes chromatin by localizing to histone binding sites, displacing nucleosomes, and impairing transcription. Furthermore, DVNP toxicity can be relieved through histone depletion and cells diminish their histones in response to DVNP expression suggesting that histone reduction could have been an adaptive response to these viral proteins. These findings provide insights into eukaryotic chromatin evolution and highlight the potential for horizontal gene transfer to drive the divergence of cellular systems.
Collapse
|
39
|
Bellush JM, Whitehouse I. DNA replication through a chromatin environment. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0287. [PMID: 28847824 DOI: 10.1098/rstb.2016.0287] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2017] [Indexed: 01/03/2023] Open
Abstract
Compaction of the genome into the nuclear space is achieved by wrapping DNA around octameric assemblies of histone proteins to form nucleosomes, the fundamental repeating unit of chromatin. Aside from providing a means by which to fit larger genomes into the cell, chromatinization of DNA is a crucial means by which the cell regulates access to the genome. While the complex role that chromatin plays in gene transcription has been appreciated for a long time, it is now also apparent that crucial aspects of DNA replication are linked to the biology of chromatin. This review will focus on recent advances in our understanding of how the chromatin environment influences key aspects of DNA replication.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- James M Bellush
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.,BCMB Graduate Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA
| | - Iestyn Whitehouse
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
40
|
Warner MD, Azmi IF, Kang S, Zhao Y, Bell SP. Replication origin-flanking roadblocks reveal origin-licensing dynamics and altered sequence dependence. J Biol Chem 2017; 292:21417-21430. [PMID: 29074622 PMCID: PMC5766963 DOI: 10.1074/jbc.m117.815639] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/13/2017] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, DNA replication initiates from multiple origins of replication for timely genome duplication. These sites are selected by origin licensing, during which the core enzyme of the eukaryotic DNA replicative helicase, the Mcm2-7 (minichromosome maintenance) complex, is loaded at each origin. This origin licensing requires loading two Mcm2-7 helicases around origin DNA in a head-to-head orientation. Current models suggest that the origin-recognition complex (ORC) and cell-division cycle 6 (Cdc6) proteins recognize and encircle origin DNA and assemble an Mcm2-7 double-hexamer around adjacent double-stranded DNA. To test this model and assess the location of Mcm2-7 initial loading, we placed DNA-protein roadblocks at defined positions adjacent to the essential ORC-binding site within Saccharomyces cerevisiae origin DNA. Roadblocks were made either by covalent cross-linking of the HpaII methyltransferase to DNA or through binding of a transcription activator-like effector (TALE) protein. Contrary to the sites of Mcm2-7 recruitment being precisely defined, only single roadblocks that inhibited ORC-DNA binding showed helicase loading defects. We observed inhibition of helicase loading without inhibition of ORC-DNA binding only when roadblocks were placed on both sides of the origin to restrict sliding of a helicase-loading intermediate. Consistent with a sliding helicase-loading intermediate, when either one of the flanking roadblocks was eliminated, the remaining roadblock had no effect on helicase loading. Interestingly, either origin-flanking nucleosomes or roadblocks resulted in helicase loading being dependent on an additional origin sequence known to be a weaker ORC-DNA-binding site. Together, our findings support a model in which sliding helicase-loading intermediates increase the flexibility of the DNA sequence requirements for origin licensing.
Collapse
Affiliation(s)
- Megan D Warner
- From the Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - Ishara F Azmi
- From the Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - Sukhyun Kang
- From the Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - Yanding Zhao
- the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454
| | - Stephen P Bell
- From the Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| |
Collapse
|
41
|
Gardner NJ, Gillespie PJ, Carrington JT, Shanks EJ, McElroy SP, Haagensen EJ, Frearson JA, Woodland A, Blow JJ. The High-Affinity Interaction between ORC and DNA that Is Required for Replication Licensing Is Inhibited by 2-Arylquinolin-4-Amines. Cell Chem Biol 2017; 24:981-992.e4. [PMID: 28781123 PMCID: PMC5563080 DOI: 10.1016/j.chembiol.2017.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/13/2017] [Accepted: 06/30/2017] [Indexed: 01/10/2023]
Abstract
In late mitosis and G1, origins of DNA replication must be "licensed" for use in the upcoming S phase by being encircled by double hexamers of the minichromosome maintenance proteins MCM2-7. A "licensing checkpoint" delays cells in G1 until sufficient origins have been licensed, but this checkpoint is lost in cancer cells. Inhibition of licensing can therefore kill cancer cells while only delaying normal cells in G1. In a high-throughput cell-based screen for licensing inhibitors we identified a family of 2-arylquinolin-4-amines, the most potent of which we call RL5a. The binding of the origin recognition complex (ORC) to origin DNA is the first step of the licensing reaction. We show that RL5a prevents ORC forming a tight complex with DNA that is required for MCM2-7 loading. Formation of this ORC-DNA complex requires ATP, and we show that RL5a inhibits ORC allosterically to mimic a lack of ATP.
Collapse
Affiliation(s)
- Nicola J Gardner
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter J Gillespie
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jamie T Carrington
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Emma J Shanks
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Stuart P McElroy
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Emma J Haagensen
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Julie A Frearson
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Andrew Woodland
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - J Julian Blow
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
42
|
Tan H, Liu T, Zhang J, Zhou T. Random positioning of nucleosomes enhances heritable bistability. MOLECULAR BIOSYSTEMS 2017; 13:132-141. [PMID: 27833942 DOI: 10.1039/c6mb00729e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromosomal regions are often dynamically modified by histones, leading to the uncertainty of nucleosome positions. Experiments have provided evidence for this randomness, but it is unclear how it impacts epigenetic heritability. Here, by analyzing a mechanic model at the molecular level, which considers three representative types of nucleosomes (unmodified, methylated, and acetylated) and dynamic nucleosome modifications, we find that in contrast to the equidistance partition of nucleosomes, random partition can significantly enhance heritable bistability. Moreover, the more "chaotic" the nucleosome positions are, the better the heritable bistability is, in contrast to the previous view. In both cases of nucleosome positioning, heritable bistability occurs only when the total nucleosome number is beyond a threshold, and it depends strongly on the allocation rate that enzymes regulate transitions between different nucleosome types. Thus, we conclude that random positioning of nucleosomes is an unneglectable factor impacting heritable bistability. A point worth mentioning is that our model established on a master equation can easily be extended to include other more complex processes underlying dynamic nucleosome modifications.
Collapse
Affiliation(s)
- Heli Tan
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China. and School of Mathematics and Computational Science, Xiangtan University, XiangTan 411105, P. R. China
| | - Tuoqi Liu
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Jiajun Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Tianshou Zhou
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
43
|
Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat Rev Mol Cell Biol 2017; 18:548-562. [PMID: 28537572 DOI: 10.1038/nrm.2017.47] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in genomics technology have provided the means to probe myriad chromatin interactions at unprecedented spatial and temporal resolution. This has led to a profound understanding of nucleosome organization within the genome, revealing that nucleosomes are highly dynamic. Nucleosome dynamics are governed by a complex interplay of histone composition, histone post-translational modifications, nucleosome occupancy and positioning within chromatin, which are influenced by numerous regulatory factors, including general regulatory factors, chromatin remodellers, chaperones and polymerases. It is now known that these dynamics regulate diverse cellular processes ranging from gene transcription to DNA replication and repair.
Collapse
|
44
|
Abstract
The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation.
Collapse
|
45
|
Abstract
In this review, Prioleau and MacAlpine summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages. For more than three decades, investigators have sought to identify the precise locations where DNA replication initiates in mammalian genomes. The development of molecular and biochemical approaches to identify start sites of DNA replication (origins) based on the presence of defining and characteristic replication intermediates at specific loci led to the identification of only a handful of mammalian replication origins. The limited number of identified origins prevented a comprehensive and exhaustive search for conserved genomic features that were capable of specifying origins of DNA replication. More recently, the adaptation of origin-mapping assays to genome-wide approaches has led to the identification of tens of thousands of replication origins throughout mammalian genomes, providing an unprecedented opportunity to identify both genetic and epigenetic features that define and regulate their distribution and utilization. Here we summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages.
Collapse
Affiliation(s)
- Marie-Noëlle Prioleau
- Institut Jacques Monod, UMR7592, Centre National de la Recherche Scientifique, Universite Paris Diderot, Equipe Labellisee Association pour la Recherche sur le Cancer, Paris 75013, France
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710. USA
| |
Collapse
|
46
|
Azmi IF, Watanabe S, Maloney MF, Kang S, Belsky JA, MacAlpine DM, Peterson CL, Bell SP. Nucleosomes influence multiple steps during replication initiation. eLife 2017; 6. [PMID: 28322723 PMCID: PMC5400510 DOI: 10.7554/elife.22512] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic replication origin licensing, activation and timing are influenced by chromatin but a mechanistic understanding is lacking. Using reconstituted nucleosomal DNA replication assays, we assessed the impact of nucleosomes on replication initiation. To generate distinct nucleosomal landscapes, different chromatin-remodeling enzymes (CREs) were used to remodel nucleosomes on origin-DNA templates. Nucleosomal organization influenced two steps of replication initiation: origin licensing and helicase activation. Origin licensing assays showed that local nucleosome positioning enhanced origin specificity and modulated helicase loading by influencing ORC DNA binding. Interestingly, SWI/SNF- and RSC-remodeled nucleosomes were permissive for origin licensing but showed reduced helicase activation. Specific CREs rescued replication of these templates if added prior to helicase activation, indicating a permissive chromatin state must be established during origin licensing to allow efficient origin activation. Our studies show nucleosomes directly modulate origin licensing and activation through distinct mechanisms and provide insights into the regulation of replication initiation by chromatin.
Collapse
Affiliation(s)
- Ishara F Azmi
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Shinya Watanabe
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Michael F Maloney
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Sukhyun Kang
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States.,Center for Genomic Integrity, Institute for Basic Science, Ulsan, South Korea
| | - Jason A Belsky
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, United States.,Program in Computational Biology and Bioinformatics, Duke University, Durham, United States
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, United States
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Stephen P Bell
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
47
|
Reinapae A, Jalakas K, Avvakumov N, Lõoke M, Kristjuhan K, Kristjuhan A. Recruitment of Fkh1 to replication origins requires precisely positioned Fkh1/2 binding sites and concurrent assembly of the pre-replicative complex. PLoS Genet 2017; 13:e1006588. [PMID: 28141805 PMCID: PMC5308776 DOI: 10.1371/journal.pgen.1006588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/14/2017] [Accepted: 01/18/2017] [Indexed: 12/28/2022] Open
Abstract
In budding yeast, activation of many DNA replication origins is regulated by their chromatin environment, whereas others fire in early S phase regardless of their chromosomal location. Several location-independent origins contain at least two divergently oriented binding sites for Forkhead (Fkh) transcription factors in close proximity to their ARS consensus sequence. To explore whether recruitment of Forkhead proteins to replication origins is dependent on the spatial arrangement of Fkh1/2 binding sites, we changed the spacing and orientation of the sites in early replication origins ARS305 and ARS607. We followed recruitment of the Fkh1 protein to origins by chromatin immunoprecipitation and tested the ability of these origins to fire in early S phase. Our results demonstrate that precise spatial and directional arrangement of Fkh1/2 sites is crucial for efficient binding of the Fkh1 protein and for early firing of the origins. We also show that recruitment of Fkh1 to the origins depends on formation of the pre-replicative complex (pre-RC) and loading of the Mcm2-7 helicase, indicating that the origins are regulated by cooperative action of Fkh1 and the pre-RC. These results reveal that DNA binding of Forkhead factors does not depend merely on the presence of its binding sites but on their precise arrangement and is strongly influenced by other protein complexes in the vicinity. In this study, we explore the mechanisms that determine activation of DNA replication origins in early S phase. It has been shown that a subset of replication origins is regulated by Forkhead family transcription factors that ensure their firing at the beginning of S phase. However, the recruitment of Forkhead factors to replication origins is not a straightforward process–there are thousands of Forkhead binding sites in the genome and their presence does not guarantee that Forkheads actually bind these sites. We show that recruitment of Fkh1 protein to DNA replication origins requires precise arrangement of Forkhead binding sites and depends on formation of pre-replicative complexes at the origins. These results clarify the mechanisms of Forkhead-dependent regulation of early DNA replication origins and also reveal that mere presence of consensus binding sites is not sufficient for recruitment of Forkhead proteins to their target loci.
Collapse
Affiliation(s)
- Allan Reinapae
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kristiina Jalakas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Nikita Avvakumov
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Marko Lõoke
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kersti Kristjuhan
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Arnold Kristjuhan
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
48
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
49
|
Sugimoto N, Fujita M. Molecular Mechanism for Chromatin Regulation During MCM Loading in Mammalian Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:61-78. [PMID: 29357053 DOI: 10.1007/978-981-10-6955-0_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA replication is a fundamental process required for the accurate and timely duplication of chromosomes. During late mitosis to G1 phase, the MCM2-7 complex is loaded onto chromatin in a manner dependent on ORC, CDC6, and Cdt1, and chromatin becomes licensed for replication. Although every eukaryotic organism shares common features in replication control, there are also some differences among species. For example, in higher eukaryotic cells including human cells, no strict sequence specificity has been observed for replication origins, unlike budding yeast or bacterial replication origins. Therefore, elements other than beyond DNA sequences are important for regulating replication. For example, the stability and precise positioning of nucleosomes affects replication control. However, little is known about how nucleosome structure is regulated when replication licensing occurs. During the last decade, histone acetylation enzyme HBO1, chromatin remodeler SNF2H, and histone chaperone GRWD1 have been identified as chromatin-handling factors involved in the promotion of replication licensing. In this review, we discuss how the rearrangement of nucleosome formation by these factors affects replication licensing.
Collapse
Affiliation(s)
- Nozomi Sugimoto
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
50
|
Rodriguez J, Lee L, Lynch B, Tsukiyama T. Nucleosome occupancy as a novel chromatin parameter for replication origin functions. Genome Res 2016; 27:269-277. [PMID: 27895110 PMCID: PMC5287232 DOI: 10.1101/gr.209940.116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/17/2016] [Indexed: 11/01/2022]
Abstract
Eukaryotic DNA replication initiates from multiple discrete sites in the genome, termed origins of replication (origins). Prior to S phase, multiple origins are poised to initiate replication by recruitment of the pre-replicative complex (pre-RC). For proper replication to occur, origin activation must be tightly regulated. At the population level, each origin has a distinct firing time and frequency of activation within S phase. Many studies have shown that chromatin can strongly influence initiation of DNA replication. However, the chromatin parameters that affect properties of origins have not been thoroughly established. We found that nucleosome occupancy in G1 varies greatly around origins across the S. cerevisiae genome, and nucleosome occupancy around origins significantly correlates with the activation time and efficiency of origins, as well as pre-RC formation. We further demonstrate that nucleosome occupancy around origins in G1 is established during transition from G2/M to G1 in a pre-RC-dependent manner. Importantly, the diminished cell-cycle changes in nucleosome occupancy around origins in the orc1-161 mutant are associated with an abnormal global origin usage profile, suggesting that proper establishment of nucleosome occupancy around origins is a critical step for regulation of global origin activities. Our work thus establishes nucleosome occupancy as a novel and key chromatin parameter for proper origin regulation.
Collapse
Affiliation(s)
- Jairo Rodriguez
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Laura Lee
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | - Bryony Lynch
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|