1
|
Venkat Ramani MK, Yang W, Irani S, Zhang Y. Simplicity is the Ultimate Sophistication-Crosstalk of Post-translational Modifications on the RNA Polymerase II. J Mol Biol 2021; 433:166912. [PMID: 33676925 PMCID: PMC8184622 DOI: 10.1016/j.jmb.2021.166912] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Abstract
The highly conserved C-terminal domain (CTD) of the largest subunit of RNA polymerase II comprises a consensus heptad (Y1S2P3T4S5P6S7) repeated multiple times. Despite the simplicity of its sequence, the essential CTD domain orchestrates eukaryotic transcription and co-transcriptional processes, including transcription initiation, elongation, and termination, and mRNA processing. These distinct facets of the transcription cycle rely on specific post-translational modifications (PTM) of the CTD, in which five out of the seven residues in the heptad repeat are subject to phosphorylation. A hypothesis termed the "CTD code" has been proposed in which these PTMs and their combinations generate a sophisticated landscape for spatiotemporal recruitment of transcription regulators to Pol II. In this review, we summarize the recent experimental evidence understanding the biological role of the CTD, implicating a context-dependent theme that significantly enhances the ability of accurate transcription by RNA polymerase II. Furthermore, feedback communication between the CTD and histone modifications coordinates chromatin states with RNA polymerase II-mediated transcription, ensuring the effective and accurate conversion of information into cellular responses.
Collapse
Affiliation(s)
| | - Wanjie Yang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States
| | - Seema Irani
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States
| | - Yan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States; The Institute for Cellular and Molecular Biology. University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
2
|
Interplay of mRNA capping and transcription machineries. Biosci Rep 2021; 40:221784. [PMID: 31904821 PMCID: PMC6981093 DOI: 10.1042/bsr20192825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/31/2022] Open
Abstract
Early stages of transcription from eukaryotic promoters include two principal events: the capping of newly synthesized mRNA and the transition of RNA polymerase II from the preinitiation complex to the productive elongation state. The capping checkpoint model implies that these events are tightly coupled, which is necessary for ensuring the proper capping of newly synthesized mRNA. Recent findings also show that the capping machinery has a wider effect on transcription and the entire gene expression process. The molecular basis of these phenomena is discussed.
Collapse
|
3
|
Li Y, Yang J, Shang X, Lv W, Xia C, Wang C, Feng J, Cao Y, He H, Li L, Ma L. SKIP regulates environmental fitness and floral transition by forming two distinct complexes in Arabidopsis. THE NEW PHYTOLOGIST 2019; 224:321-335. [PMID: 31209881 DOI: 10.1111/nph.15990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/07/2019] [Indexed: 05/08/2023]
Abstract
Ski-interacting protein (SKIP) is a bifunctional regulator of gene expression that works as a splicing factor as part of the spliceosome and as a transcriptional activator by interacting with EARLY FLOWERING 7 (ELF7). MOS4-Associated Complex 3A (MAC3A) and MAC3B interact physically and genetically with SKIP, mediate the alternative splicing of c. 50% of the expressed genes in the Arabidopsis genome, and are required for the splicing of a similar set of genes to that of SKIP. SKIP interacts physically and genetically with splicing factors and Polymerase-Associated Factor 1 complex (Paf1c) components. However, these splicing factors do not interact either physically or genetically with Paf1c components. The SKIP-spliceosome complex mediates circadian clock function and abiotic stress responses by controlling the alternative splicing of pre-mRNAs encoded by clock- and stress tolerance-related genes. The SKIP-Paf1c complex regulates the floral transition by activating FLOWERING LOCUS C (FLC) transcription. Our data reveal that SKIP regulates floral transition and environmental fitness via its incorporation into two distinct complexes that regulate gene expression transcriptionally and post-transcriptionally, respectively. It will be interesting to discover in future studies whether SKIP is required for integration of environmental fitness and growth by control of the incorporation of SKIP into spliceosome or Paf1c in plants.
Collapse
Affiliation(s)
- Yan Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jing Yang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Xudong Shang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Wenzhu Lv
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Congcong Xia
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Chen Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jinlin Feng
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Ying Cao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Hang He
- College of Life Sciences, Peking University, Beijing, 100048, China
| | - Legong Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| |
Collapse
|
4
|
A novel role for Cet1p mRNA 5'-triphosphatase in promoter proximal accumulation of RNA polymerase II in Saccharomyces cerevisiase. Genetics 2013; 196:161-76. [PMID: 24172134 DOI: 10.1534/genetics.113.158535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yeast mRNA 5'-triphosphatase, Cet1p, recognizes phosphorylated-RNA polymerase II as a component of capping machinery via Ceg1p for cotranscriptional formation of mRNA cap structure that recruits cap-binding complex (CBC) and protects mRNA from exonucleases. Here, we show that the accumulation of RNA polymerase II at the promoter proximal site of ADH1 is significantly enhanced in the absence of Cet1p. Similar results are also found at other genes. Cet1p is recruited to the 5' end of the coding sequence, and its absence impairs mRNA capping, and hence CBC recruitment. However, such an impaired recruitment of CBC does not enhance promoter proximal accumulation of RNA polymerase II. Thus, Cet1p specifically lowers the accumulation of RNA polymerase II at the promoter proximal site independently of mRNA cap structure or CBC. Further, we show that Cet1p's N-terminal domain, which is not involved in mRNA capping, decreases promoter proximal accumulation of RNA polymerase II. An accumulation of RNA polymerase II at the promoter proximal site in the absence of Cet1p's N-terminal domain is correlated with reduced transcription. Collectively, our results demonstrate a novel role of Cet1p in regulation of promoter proximal accumulation of RNA polymerase II independently of mRNA capping activity, and hence transcription in vivo.
Collapse
|
5
|
Jeronimo C, Bataille AR, Robert F. The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chem Rev 2013; 113:8491-522. [DOI: 10.1021/cr4001397] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - Alain R. Bataille
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
- Département
de Médecine,
Faculté de Médecine, Université de Montréal, Montréal, Québec,
Canada H3T 1J4
| |
Collapse
|
6
|
Lenasi T, Barboric M. Mutual relationships between transcription and pre-mRNA processing in the synthesis of mRNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012. [PMID: 23184646 DOI: 10.1002/wrna.1148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The generation of messenger RNA (mRNA) in eukaryotes is achieved by transcription from the DNA template and pre-mRNA processing reactions of capping, splicing, and polyadenylation. Although RNA polymerase II (RNAPII) catalyzes the synthesis of pre-mRNA, it also serves as a principal coordinator of the processing reactions in the course of transcription. In this review, we focus on the interplay between transcription and cotranscriptional pre-mRNA maturation events, mediated by the recruitment of RNA processing factors to differentially phosphorylated C-terminal domain of Rbp1, the largest subunit of RNAPII. Furthermore, we highlight the bidirectional nature of the interplay by discussing the impact of RNAPII kinetics on pre-mRNA processing as well as how the processing events reach back to different phases of gene transcription.
Collapse
Affiliation(s)
- Tina Lenasi
- Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
7
|
Gurskiy D, Orlova A, Vorobyeva N, Nabirochkina E, Krasnov A, Shidlovskii Y, Georgieva S, Kopytova D. The DUBm subunit Sgf11 is required for mRNA export and interacts with Cbp80 in Drosophila. Nucleic Acids Res 2012; 40:10689-700. [PMID: 22989713 PMCID: PMC3510517 DOI: 10.1093/nar/gks857] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
SAGA/TFTC is a histone acetyltransferase complex that has a second enzymatic activity because of the presence of a deubiquitination module (DUBm). Drosophila DUBm consists of Sgf11, ENY2 and Nonstop proteins. We show that Sgf11 has other DUBm-independent functions. It associates with Cbp80 component of the cap-binding complex and is thereby recruited onto growing messenger ribonucleic acid (mRNA); it also interacts with the AMEX mRNA export complex and is essential for hsp70 mRNA export, as well as for general mRNA export from the nucleus. Thus, Sgf11 functions as a component of both SAGA DUBm and the mRNA biogenesis machinery.
Collapse
Affiliation(s)
- Dmitriy Gurskiy
- Department of Regulation of Gene Expression, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Estruch F, Hodge C, Gómez-Navarro N, Peiró-Chova L, Heath CV, Cole CN. Insights into mRNP biogenesis provided by new genetic interactions among export and transcription factors. BMC Genet 2012; 13:80. [PMID: 22963203 PMCID: PMC3506551 DOI: 10.1186/1471-2156-13-80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/31/2012] [Indexed: 12/27/2022] Open
Abstract
Background The various steps of mRNP biogenesis (transcription, processing and export) are interconnected. It has been shown that the transcription machinery plays a pivotal role in mRNP assembly, since several mRNA export factors are recruited during transcription and physically interact with components of the transcription machinery. Although the shuttling DEAD-box protein Dbp5p is concentrated on the cytoplasmic fibrils of the NPC, previous studies demonstrated that it interacts physically and genetically with factors involved in transcription initiation. Results We investigated the effect of mutations affecting various components of the transcription initiation apparatus on the phenotypes of mRNA export mutant strains. Our results show that growth and mRNA export defects of dbp5 and mex67 mutant strains can be suppressed by mutation of specific transcription initiation components, but suppression was not observed for mutants acting in the very first steps of the pre-initiation complex (PIC) formation. Conclusions Our results indicate that mere reduction in the amount of mRNP produced is not sufficient to suppress the defects caused by a defective mRNA export factor. Suppression occurs only with mutants affecting events within a narrow window of the mRNP biogenesis process. We propose that reducing the speed with which transcription converts from initiation and promoter clearance to elongation may have a positive effect on mRNP formation by permitting more effective recruitment of partially-functional mRNP proteins to the nascent mRNP.
Collapse
Affiliation(s)
- Francisco Estruch
- Departamento de Bioquímica y Biología Molecular, Universitat de Valencia, Burjassot, Spain.
| | | | | | | | | | | |
Collapse
|
9
|
Egloff S. Role of Ser7 phosphorylation of the CTD during transcription of snRNA genes. RNA Biol 2012; 9:1033-8. [PMID: 22858677 DOI: 10.4161/rna.21166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The largest subunit of RNA polymerase (pol) II, Rpb1, contains an unusual carboxyl-terminal domain (CTD) composed of consecutive repeats of the sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser (Y 1S 2P 3T 4S 5P 6S 7). During transcription, Ser2, Ser5 and Ser7 are subjected to dynamic phosphorylation and dephosphorylation by CTD kinases and phosphatases, creating a characteristic CTD phosphorylation pattern along genes. This CTD "code" allows the coupling of transcription with co-transcriptional RNA processing, through the timely recruitment of the appropriate factors at the right point of the transcription cycle. In mammals, phosphorylation of Ser7 (Ser7P) is detected on all pol II-transcribed genes, but is only essential for expression of a sub-class of genes encoding small nuclear (sn)RNAs. The molecular mechanisms by which Ser7P influences expression of these particular genes are becoming clearer. Here, I discuss our recent findings clarifying how Ser7P facilitates transcription of these genes and 3'end processing of the transcripts, through recruitment of the RPAP2 phosphatase and the snRNA gene-specific Integrator complex.
Collapse
Affiliation(s)
- Sylvain Egloff
- Université de Toulouse, UPS, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France.
| |
Collapse
|
10
|
Egloff S, Zaborowska J, Laitem C, Kiss T, Murphy S. Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes. Mol Cell 2011; 45:111-22. [PMID: 22137580 PMCID: PMC3262128 DOI: 10.1016/j.molcel.2011.11.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 07/07/2011] [Accepted: 09/30/2011] [Indexed: 11/30/2022]
Abstract
The carboxy-terminal domain (CTD) of the large subunit of RNA polymerase II (Pol II) comprises multiple heptapeptide repeats of the consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Reversible phosphorylation of Ser2, Ser5, and Ser7 during the transcription cycle mediates the sequential recruitment of transcription/RNA processing factors. Phosphorylation of Ser7 is required for recruitment of the gene type-specific Integrator complex to the Pol II-transcribed small nuclear (sn)RNA genes. Here, we show that RNA Pol II-associated protein 2 (RPAP2) specifically recognizes the phospho-Ser7 mark on the Pol II CTD and also interacts with Integrator subunits. siRNA-mediated knockdown of RPAP2 and mutation of Ser7 to alanine cause similar defects in snRNA gene expression. In addition, we show that RPAP2 is a CTD Ser5 phosphatase. Taken together, our results indicate that during transcription of snRNA genes, Ser7 phosphorylation facilitates recruitment of RPAP2, which in turn both recruits Integrator and dephosphorylates Ser5.
Collapse
Affiliation(s)
- Sylvain Egloff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | | | | |
Collapse
|
11
|
Lahudkar S, Shukla A, Bajwa P, Durairaj G, Stanojevic N, Bhaumik SR. The mRNA cap-binding complex stimulates the formation of pre-initiation complex at the promoter via its interaction with Mot1p in vivo. Nucleic Acids Res 2010; 39:2188-209. [PMID: 21075799 PMCID: PMC3064766 DOI: 10.1093/nar/gkq1029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The cap-binding complex (CBC) binds to the cap structure of mRNA to protect it from exonucleases as well as to regulate downstream post-transcriptional events, translational initiation and nonsense-mediated mRNA decay. However, its role in regulation of the upstream transcriptional events such as initiation or elongation remains unknown. Here, using a formaldehyde-based in vivo cross-linking and chromatin immunoprecipitation assay in conjunction with transcriptional, mutational and co-immunoprecipitational analyses, we show that CBC is recruited to the body of yeast gene, and then stimulates the formation of pre-initiation complex (PIC) at several yeast promoters through its interaction with Mot1p (modifier of transcription). Mot1p is recruited to these promoters, and enhances the PIC formation. We find that CBC promotes the recruitment of Mot1p which subsequently stimulates PIC formation at these promoters. Furthermore, the formation of PIC is essential for recruitment of CBC. Thus, our study presents an interesting observation that an mRNA binding factor exhibits a reciprocal synergistic effect on formation of PIC (and hence transcriptional initiation) at the promoter, revealing a new pathway of eukaryotic gene regulation in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Sukesh R. Bhaumik
- *To whom correspondence should be addressed. Tel: +1 618 453 6479; Fax: +1 618 453 6440;
| |
Collapse
|
12
|
Abstract
Messenger RNAs undergo 5' capping, splicing, 3'-end processing, and export before translation in the cytoplasm. It has become clear that these mRNA processing events are tightly coupled and have a profound effect on the fate of the resulting transcript. This processing is represented by modifications of the pre-mRNA and loading of various protein factors. The sum of protein factors that stay with the mRNA as a result of processing is modified over the life of the transcript, conferring significant regulation to its expression.
Collapse
Affiliation(s)
- Sami Hocine
- Department for Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
13
|
Suh MH, Meyer PA, Gu M, Ye P, Zhang M, Kaplan CD, Lima CD, Fu J. A dual interface determines the recognition of RNA polymerase II by RNA capping enzyme. J Biol Chem 2010; 285:34027-38. [PMID: 20720002 DOI: 10.1074/jbc.m110.145110] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA capping enzyme (CE) is recruited specifically to RNA polymerase II (Pol II) transcription sites to facilitate cotranscriptional 5'-capping of pre-mRNA and other Pol II transcripts. The current model to explain this specific recruitment of CE to Pol II as opposed to Pol I and Pol III rests on the interaction between CE and the phosphorylated C-terminal domain (CTD) of Pol II largest subunit Rpb1 and more specifically between the CE nucleotidyltransferase domain and the phosphorylated CTD. Through biochemical and diffraction analyses, we demonstrate the existence of a distinctive stoichiometric complex between CE and the phosphorylated Pol II (Pol IIO). Analysis of the complex revealed an additional and unexpected polymerase-CE interface (PCI) located on the multihelical Foot domain of Rpb1. We name this interface PCI1 and the previously known nucleotidyltransferase/phosphorylated CTD interface PCI2. Although PCI1 and PCI2 individually contribute to only weak interactions with CE, a dramatically stabilized and stoichiometric complex is formed when PCI1 and PCI2 are combined in cis as they occur in an intact phosphorylated Pol II molecule. Disrupting either PCI1 or PCI2 by alanine substitution or deletion diminishes CE association with Pol II and causes severe growth defects in vivo. Evidence from manipulating PCI1 indicates that the Foot domain contributes to the specificity in CE interaction with Pol II as opposed to Pol I and Pol III. Our results indicate that the dual interface based on combining PCI1 and PCI2 is required for directing CE to Pol II elongation complexes.
Collapse
Affiliation(s)
- Man-Hee Suh
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Perales R, Bentley D. "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions. Mol Cell 2009; 36:178-91. [PMID: 19854129 DOI: 10.1016/j.molcel.2009.09.018] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/07/2009] [Accepted: 08/06/2009] [Indexed: 12/27/2022]
Abstract
Much of the complex process of RNP biogenesis takes place at the gene cotranscriptionally. The target for RNA binding and processing factors is, therefore, not a solitary RNA molecule but, rather, a transcription elongation complex (TEC) comprising the growing nascent RNA and RNA polymerase traversing a chromatin template with associated passenger proteins. RNA maturation factors are not the only nuclear machines whose work is organized cotranscriptionally around the TEC scaffold. Additionally, DNA repair, covalent chromatin modification, "gene gating" at the nuclear pore, Ig gene hypermutation, and sister chromosome cohesion have all been demonstrated or suggested to involve a cotranscriptional component. From this perspective, TECs can be viewed as potent "community organizers" within the nucleus.
Collapse
Affiliation(s)
- Roberto Perales
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, UCHSC, MS8101, P.O. Box 6511, Aurora CO, 80045, USA
| | | |
Collapse
|
15
|
Mosley AL, Pattenden SG, Carey M, Venkatesh S, Gilmore JM, Florens L, Workman JL, Washburn MP. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. Mol Cell 2009; 34:168-78. [PMID: 19394294 DOI: 10.1016/j.molcel.2009.02.025] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 02/03/2009] [Accepted: 02/23/2009] [Indexed: 11/16/2022]
Abstract
Messenger RNA processing is coupled to RNA polymerase II (RNAPII) transcription through coordinated recruitment of accessory proteins to the Rpb1 C-terminal domain (CTD). Dynamic changes in CTD phosphorylation during transcription elongation are responsible for their recruitment, with serine 5 phosphorylation (S5-P) occurring toward the 5' end of genes and serine 2 phosphorylation (S2-P) occurring toward the 3' end. The proteins responsible for regulation of the transition state between S5-P and S2-P CTD remain elusive. We show that a conserved protein of unknown function, Rtr1, localizes within coding regions, with maximum levels of enrichment occurring between the peaks of S5-P and S2-P RNAPII. Upon deletion of Rtr1, the S5-P form of RNAPII accumulates in both whole-cell extracts and throughout coding regions; additionally, RNAPII transcription is decreased, and termination defects are observed. Functional characterization of Rtr1 reveals its role as a CTD phosphatase essential for the S5-to-S2-P transition.
Collapse
Affiliation(s)
- Amber L Mosley
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wu X, Jiang YW. Overproduction of non-translatable mRNA silences. The transcription of Ty1 retrotransposons in S. cerevisiae via functional inactivation of the nuclear cap-binding complex and subsequent hyperstimulation of the TORC1 pathway. Yeast 2008; 25:327-47. [PMID: 18435413 DOI: 10.1002/yea.1591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Co-suppression is high gene copy number-triggered homology-dependent gene silencing, and co-suppression may have evolved in eukaryotes to counter invasive molecular parasites, such as viruses and transposons. We previously reported 'Ty1 transcriptional co-suppression'-high Ty1 copy number-triggered transient transcriptional silencing of Ty1 retrotransposons in S. cerevisiae. We report here that this phenomenon is unlikely to be homology-dependent, despite the copy number dependence. The Ty1 mRNA is an extremely poor template for translation, and overproduction of non-translatable mRNA without Ty1 homology is sufficient to initiate the transient Ty1 transcriptional silencing. We present genetic evidence that overproduction of non-translatable mRNA may functionally inactivate the nuclear cap-binding complex (CBC), and inactivation of CBC may then hyperstimulate the TORC1 pathway to mediate Ty1 transcriptional silencing. Our results point to a potent regulatory function of non-translatable mRNA in vivo (via CBC and TORC1) to potentially modulate a variety of intracellular activities, such as Ty1 transcription. Although overproduction of non-translatable mRNA causes transient Ty1 transcriptional silencing, it does not play a detectable role in controlling Ty1 retrotransposition.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Department of Cell Biology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | |
Collapse
|
17
|
Pandit S, Wang D, Fu XD. Functional integration of transcriptional and RNA processing machineries. Curr Opin Cell Biol 2008; 20:260-5. [PMID: 18436438 PMCID: PMC2701685 DOI: 10.1016/j.ceb.2008.03.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 03/10/2008] [Indexed: 12/23/2022]
Abstract
Cotranscriptional RNA processing not only permits temporal RNA processing before the completion of transcription but also allows sequential recognition of RNA processing signals on nascent transcripts threading out from the elongating RNA polymerase II (RNAPII) complex. Rapid progress in recent years has established multiple contacts that physically connect the transcription and RNA processing machineries, which centers on the C-terminal domain (CTD) of the largest subunit of RNAPII. Although cotranscriptional RNA processing has been substantiated, the evidence for 'reciprocal' coupling starts to emerge, which emphasizes functional integration of transcription and RNA processing machineries in a mutually beneficial manner for efficient and regulated gene expression.
Collapse
Affiliation(s)
- Shatakshi Pandit
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, United States
| | | | | |
Collapse
|
18
|
Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma 2008; 117:319-31. [PMID: 18427828 DOI: 10.1007/s00412-008-0158-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 12/13/2022]
Abstract
Transcription is a central function occurring in the nucleus of eukaryotic cells in coordination with other nuclear processes. During transcription, the nascent pre-mRNA associates with mRNA-binding proteins and undergoes a series of processing steps, resulting in export-competent mRNA ribonucleoprotein complexes (mRNPs) that are transported into the cytoplasm. Experimental evidence increasingly indicates that the different processing steps (5'-end capping, splicing, 3'-end cleavage) and mRNP export are connected to each other as well as to transcription, both functionally and physically. Here, we review the overall process of mRNP biogenesis with particular emphasis on the functional coupling of transcription with mRNP biogenesis and export and its relationship to nuclear organization.
Collapse
|
19
|
Bjornsdottir G, Myers LC. Minimal components of the RNA polymerase II transcription apparatus determine the consensus TATA box. Nucleic Acids Res 2008; 36:2906-16. [PMID: 18385157 PMCID: PMC2396422 DOI: 10.1093/nar/gkn130] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In Saccharomyces cerevisiae, multiple approaches have arrived at a consensus TATA box sequence of TATA(T/A)A(A/T)(A/G). TATA-binding protein (TBP) affinity alone does not determine TATA box function. To discover how a minimal set of factors required for basal and activated transcription contributed to the sequence requirements for a functional TATA box, we performed transcription reactions using highly purified proteins and CYC1 promoter TATA box mutants. The TATA box consensus sequence is a good predictor of promoter activity. However, several nonconsensus sequences are almost fully functional, indicating that mechanistic requirements are not the only selective pressure on the TATA box. We also found that the effect of a mutation at a certain position is often dependent on other bases within a particular TATA box. Although activators and coactivators strongly influence TBP recruitment and stability at promoters, neither Mediator, the activator Gal4-V16, nor TFIID specifically compensate for the low transcription levels of the weak TATA boxes. The addition of Mediator to purified transcription reactions did, however, increase the functional selectivity for certain consensus TATA sequences. Transcription in whole-cell extracts or in vivo with these TATA box mutants indicated that factors, other than those in our purified system, may help initiate transcription from weak TATA boxes.
Collapse
Affiliation(s)
- Gudrun Bjornsdottir
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
20
|
Human capping enzyme promotes formation of transcriptional R loops in vitro. Proc Natl Acad Sci U S A 2007; 104:17620-5. [PMID: 17978174 DOI: 10.1073/pnas.0708866104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cap formation is the first step of pre-mRNA processing in eukaryotic cells. Immediately after transcription initiation, capping enzyme (CE) is recruited to RNA polymerase II (Pol II) by the phosphorylated carboxyl-terminal domain of the Pol II largest subunit (CTD), allowing cotranscriptional capping of the nascent pre-mRNA. Recent studies have indicated that CE affects transcription elongation and have suggested a checkpoint model in which cotranscriptional capping is a necessary step for the early phase of transcription. To investigate further the role of the CTD in linking transcription and processing, we generated a fusion protein of the mouse CTD with T7 RNA polymerase (CTD-T7 RNAP). Unexpectedly, in vitro transcription assays with CTD-T7 RNAP showed that CE promotes formation of DNA.RNA hybrids or R loops. Significantly, phosphorylation of the CTD was required for CE-dependent R-loop formation (RLF), consistent with a critical role for the CTD in CE recruitment to the transcription complex. The guanylyltransferase domain was necessary and sufficient for RLF, but catalytic activity was not required. In vitro assays with appropriate synthetic substrates indicate that CE can promote RLF independent of transcription. ASF/SF2, a splicing factor known to prevent RLF, and GTP, which affects CE conformation, antagonized CE-dependent RLF. Our findings suggest that CE can play a direct role in transcription by modulating displacement of nascent RNA during transcription.
Collapse
|
21
|
Wang B, Doench JG, Novina CD. Analysis of microRNA effector functions in vitro. Methods 2007; 43:91-104. [PMID: 17889795 DOI: 10.1016/j.ymeth.2007.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 04/10/2007] [Accepted: 04/13/2007] [Indexed: 12/11/2022] Open
Abstract
Analyses of gene functions in vitro provide the means to dissect biological phenomena. Development of cell-free assays for transcription, splicing, and translation has yielded great insights into macromolecular interactions and functions required for these processes. This article discusses development of cell-free assays to test macromolecular interactions and activities required for microRNA effector functions. This chapter also compares in vitro analyses to complementary studies in cells and the technical considerations that permit molecular analysis of microRNA function in cell-free conditions.
Collapse
Affiliation(s)
- Bingbing Wang
- Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
22
|
Reyes-Reyes M, Hampsey M. Role for the Ssu72 C-terminal domain phosphatase in RNA polymerase II transcription elongation. Mol Cell Biol 2007; 27:926-36. [PMID: 17101794 PMCID: PMC1800697 DOI: 10.1128/mcb.01361-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 08/18/2006] [Accepted: 11/01/2006] [Indexed: 12/31/2022] Open
Abstract
The RNA polymerase II (RNAP II) transcription cycle is accompanied by changes in the phosphorylation status of the C-terminal domain (CTD), a reiterated heptapeptide sequence (Y(1)S(2)P(3)T(4)S(5)P(6)S(7)) present at the C terminus of the largest RNAP II subunit. One of the enzymes involved in this process is Ssu72, a CTD phosphatase with specificity for serine-5-P. Here we report that the ssu72-2-encoded Ssu72-R129A protein is catalytically impaired in vitro and that the ssu72-2 mutant accumulates the serine-5-P form of RNAP II in vivo. An in vitro transcription system derived from the ssu72-2 mutant exhibits impaired elongation efficiency. Mutations in RPB1 and RPB2, the genes encoding the two largest subunits of RNAP II, were identified as suppressors of ssu72-2. The rpb1-1001 suppressor encodes an R1281A replacement, whereas rpb2-1001 encodes an R983G replacement. This information led us to identify the previously defined rpb2-4 and rpb2-10 alleles, which encode catalytically slow forms of RNAP II, as additional suppressors of ssu72-2. Furthermore, deletion of SPT4, which encodes a subunit of the Spt4-Spt5 early elongation complex, also suppresses ssu72-2, whereas the spt5-242 allele is suppressed by rpb2-1001. These results define Ssu72 as a transcription elongation factor. We propose a model in which Ssu72 catalyzes serine-5-P dephosphorylation subsequent to addition of the 7-methylguanosine cap on pre-mRNA in a manner that facilitates the RNAP II transition into the elongation stage of the transcription cycle.
Collapse
Affiliation(s)
- Mariela Reyes-Reyes
- Department of Biochemistry, Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | | |
Collapse
|
23
|
Sjölinder M, Björk P, Söderberg E, Sabri N, Farrants AKO, Visa N. The growing pre-mRNA recruits actin and chromatin-modifying factors to transcriptionally active genes. Genes Dev 2005; 19:1871-84. [PMID: 16103215 PMCID: PMC1186187 DOI: 10.1101/gad.339405] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the dipteran Chironomus tentans, actin binds to hrp65, a nuclear protein associated with mRNP complexes. Disruption of the actin-hrp65 interaction in vivo by the competing peptide 65-2CTS reduces transcription drastically, which suggests that the actin-hrp65 interaction is required for transcription. We show that the inhibitory effect of the 65-2CTS peptide on transcription is counteracted by trichostatin A, a drug that inhibits histone deacetylation. We also show that actin and hrp65 are associated in vivo with p2D10, an evolutionarily conserved protein with histone acetyltransferase activity that acts on histone H3. p2D10 is recruited to class II genes in a transcription-dependent manner. We show, using the Balbiani ring genes of C. tentans as a model system, that p2D10 is cotranscriptionally associated with the growing pre-mRNA. We also show that experimental disruption of the actin-hrp65 interaction by the 65-2CTS peptide in vivo results in the release of p2D10 from the transcribed genes, reduced histone H3 acetylation, and a lower level of transcription activity. Furthermore, antibodies against p2D10 inhibit run-on elongation. Our results suggest that actin, hrp65, and p2D10 are parts of a positive feedback mechanism that contributes to maintaining the active transcription state of a gene by recruiting HATs at the RNA level.
Collapse
Affiliation(s)
- Mikael Sjölinder
- Department of Molecular Biology and Functional Genomics, The Wenner-Gren Institute, Stockholm University, Sweden
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Transcription is coupled with the concomitant assembly of RNA-binding proteins to the nascent mRNA to generate a stable and export-competent mRNP particle. RNA-binding factors recruited at active transcription sites specify the processing, nuclear export, subcellular localization, translation and stability of the mRNA. The assembly of the mRNP particle starts with the association of the cap-binding protein complex followed by the splicing-dependent assembly of the exon-junction complex in intron-containing genes and by the binding of RNA-export adaptor proteins. New findings suggest that mRNP assembly is a genetically controlled process that plays a key role in gene expression and other cellular processes, including the maintenance of genome integrity.
Collapse
Affiliation(s)
- Andrés Aguilera
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes 6, 41012 Sevilla, Spain.
| |
Collapse
|
25
|
Abstract
The universal pre-mRNA processing events of 5' end capping, splicing, and 3' end formation by cleavage/polyadenylation occur co-transcriptionally. As a result, the substrate for mRNA processing factors is a nascent RNA chain that is being extruded from the RNA polymerase II exit channel at 10-30 bases per second. How do processing factors find their substrate RNAs and complete most mRNA maturation before transcription is finished? Recent studies suggest that this task is facilitated by a combination of protein-RNA and protein-protein interactions within a 'mRNA factory' that comprises the elongating RNA polymerase and associated processing factors. This 'factory' undergoes dynamic changes in composition as it traverses a gene and provides the setting for regulatory interactions that couple processing to transcriptional elongation and termination.
Collapse
Affiliation(s)
- David L Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, UCHSC at Fitzsimons, Aurora, Colorado 80045, USA.
| |
Collapse
|
26
|
Nair D, Kim Y, Myers LC. Mediator and TFIIH govern carboxyl-terminal domain-dependent transcription in yeast extracts. J Biol Chem 2005; 280:33739-48. [PMID: 16076843 DOI: 10.1074/jbc.m506067200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, the RNA polymerase II (RNA Pol II) carboxyl-terminal domain (CTD) is required for viability, and truncation of the CTD results in promoter dependent transcriptional defects. A CTD-less RNA Pol II is unable to support transcription in yeast extracts, but basal transcription reactions reconstituted from highly purified general transcription factors are CTD-independent. To reconcile these two findings, we have taken a biochemical approach using yeast extracts and asked whether there is a factor in the cell that confers CTD-dependence upon transcription. By placing a cleavage site for the tobacco etch virus protease prior to the CTD, we have created a highly specific method for removing the CTD from RNA Pol II in yeast whole cell extracts. Using derivatives of this strain, we have analyzed the role of the Srb8-11 complex, Mediator, and TFIIH, in CTD-dependent basal transcription by either mutation or immunodepletion of their function. We have found that Mediator is a direct intermediary of CTD-dependent basal transcription in extracts and that the requirement for Mediator and the CTD in basal transcription originates from their ability to compensate for a limiting amount of TFIIH activity in extracts.
Collapse
Affiliation(s)
- Dhanalakshmi Nair
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
27
|
Morris DP, Michelotti GA, Schwinn DA. Evidence that phosphorylation of the RNA polymerase II carboxyl-terminal repeats is similar in yeast and humans. J Biol Chem 2005; 280:31368-77. [PMID: 16012166 PMCID: PMC2277102 DOI: 10.1074/jbc.m501546200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using an improved chromatin immunoprecipitation assay designed to increase immunoprecipitation efficiency, we investigated changes in RNA polymerase II (Pol II) density and carboxyl-terminal domain (CTD) phosphorylation during transcription of the cyclophilin A (PPIA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and several androgen-responsive genes in LNCaP cells. As generally observed in higher eukaryotes, promoter proximal pausing of Pol II appeared to occur on the PPIA and GAPDH genes, but apparently not on the androgen-responsive genes PSA and NKX3-1. Unlike some mammalian studies, we found that the CTD of Pol II in promoter regions contains little phosphorylation at Ser-2 of the heptad repeat, suggesting that Ser-2 phosphorylation is not involved in polymerase exit from the promoter region. In contrast, Pol II near the promoter displayed high levels of Ser-5 phosphorylation, which decreased as polymerase transcribed beyond the promoter region of the PPIA and GAPDH genes. However, total Pol II levels appear to decrease as much or more, suggesting that Ser-5 phosphorylation is maintained. In support of this conclusion, a phosphoserine 5-specific antibody quantitatively immunoprecipitates native hyperphosphorylated Pol II, suggesting that all polymerase with phosphoserine 2 also contains phosphoserine 5. Given reports indicating that phosphoserine 5 is present during elongation in yeast, our data suggest that gross changes in CTD phosphorylation patterns during transcription may be more conserved in yeast and humans than recognized previously.
Collapse
Affiliation(s)
- Daniel P Morris
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
28
|
Mandal SS, Chu C, Wada T, Handa H, Shatkin AJ, Reinberg D. Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II. Proc Natl Acad Sci U S A 2004; 101:7572-7. [PMID: 15136722 PMCID: PMC419647 DOI: 10.1073/pnas.0401493101] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Capping of the 5' ends of nascent RNA polymerase II transcripts is the first pre-mRNA processing event in all eukaryotic cells. Capping enzyme (CE) is recruited to transcription complexes soon after initiation by the phosphorylation of Ser-5 of the carboxyl-terminal domain of the largest subunit of RNA polymerase II. Here, we analyze the role of CE in promoter clearance and its functional interactions with different factors that are involved in promoter clearance. FCP1-mediated dephosphorylation of the carboxyl-terminal domain results in a drastic decrease in cotranscriptional capping efficiency but is reversed by the presence of DRB sensitivity-inducing factor (DSIF). These results suggest involvement of DSIF in CE recruitment. Importantly, CE relieves transcriptional repression by the negative elongation factor, indicating a critical role of CE in the elongation checkpoint control mechanism during promoter clearance. This functional interaction between CE and the negative elongation factor documents a dynamic role of CE in promoter clearance beyond its catalytic activities.
Collapse
Affiliation(s)
- Subhrangsu S Mandal
- Division of Nucleic Acids Enzymology, Department of Biochemistry, Robert Wood Johnson Medical School and Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
29
|
Schroeder SC, Zorio DAR, Schwer B, Shuman S, Bentley D. A function of yeast mRNA cap methyltransferase, Abd1, in transcription by RNA polymerase II. Mol Cell 2004; 13:377-87. [PMID: 14967145 DOI: 10.1016/s1097-2765(04)00007-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 12/18/2003] [Accepted: 12/19/2003] [Indexed: 12/19/2022]
Abstract
Capping enzymes bind the phosphorylated pol II CTD permitting cotranscriptional capping of nascent pre-mRNAs. We asked whether these interactions influence pol II function using ChIP in ts mutants of yeast capping enzymes. Pol II occupancy at the 5' ends of PGK1, ENO2, GAL1, and GAL10 was reduced by inactivation of the methyltransferase, Abd1, but not the guanylyltransferase, Ceg1, suggesting that Abd1 contributes to stable promoter binding. At other genes, Abd1 inactivation increased the 5':3' ratio of pol II density in the promoter-proximal region and caused Ser5 hyperphosphorylation of the pol II CTD. These results suggest an additional role for Abd1 in the promoter clearance and/or promoter-proximal elongation steps of transcription. The transcriptional functions of Abd1 are independent of methyltransferase activity. Manipulation of transcription by Abd1 may enhance cotranscriptional capping and also act as a checkpoint to ensure that a nascent transcript has a cap before it can be completed.
Collapse
Affiliation(s)
- Stephanie C Schroeder
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, B121, 4200 East 9th Avenue, Denver, CO 80262 USA
| | | | | | | | | |
Collapse
|
30
|
Hausmann S, Pei Y, Shuman S. Homodimeric quaternary structure is required for the in vivo function and thermal stability of Saccharomyces cerevisiae and Schizosaccharomyces pombe RNA triphosphatases. J Biol Chem 2003; 278:30487-96. [PMID: 12788946 DOI: 10.1074/jbc.m303060200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Saccharomyces cerevisiae Cet1 and Schizosaccharomyces pombe Pct1 are the essential RNA triphosphatase components of the mRNA capping apparatus of budding and fission yeast, respectively. Cet1 and Pct1 share a baroque active site architecture and a homodimeric quaternary structure. The active site is located within a topologically closed hydrophilic beta-barrel (the triphosphate tunnel) that rests on a globular core domain (the pedestal) composed of elements from both protomers of the homodimer. Earlier studies of the effects of alanine cluster mutations at the crystallographic dimer interface of Cet1 suggested that homodimerization is important for triphosphatase function in vivo, albeit not for catalysis. Here, we studied the effects of 14 single-alanine mutations on Cet1 activity and thereby pinpointed Asp280 as a critical side chain required for dimer formation. We find that disruption of the dimer interface is lethal in vivo and renders Cet1 activity thermolabile at physiological temperatures in vitro. In addition, we identify individual residues within the pedestal domain (Ile470, Leu519, Ile520, Phe523, Leu524, and Ile530) that stabilize Cet1 in vivo and in vitro. In the case of Pct1, we show that dimerization depends on the peptide segment 41VPKIEMNFLN50 located immediately prior to the start of the Pct1 catalytic domain. Deletion of this peptide converts Pct1 into a catalytically active monomer that is defective in vivo in S. pombe and hypersensitive to thermal inactivation in vitro. Our findings suggest an explanation for the conservation of quaternary structure in fungal RNA triphosphatases, whereby the delicate tunnel architecture of the active site is stabilized by the homodimeric pedestal domain.
Collapse
Affiliation(s)
- Stéphane Hausmann
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
31
|
Affiliation(s)
- Olga Calvo
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
32
|
Mukai Y, Davie JK, Dent SYR. Physical and functional interaction of the yeast corepressor Tup1 with mRNA 5'-triphosphatase. J Biol Chem 2003; 278:18895-901. [PMID: 12637515 DOI: 10.1074/jbc.m302155200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tup1-Ssn6 complex is an important corepressor in Saccharomyces cerevisiae that inhibits transcription through interactions with the basal transcription machinery and by remodeling chromatin. In a two-hybrid screen for factors that interact with the Schizosaccharomyces pombe Tup1 ortholog, Tup11, we isolated the pct1+ cDNA. The pct1+ gene encodes an mRNA 5'-triphosphatase, which catalyzes the first step of mRNA capping reactions. Pct1 did not interact with the S. pombe Ssn6 ortholog. In vitro glutathione S-transferase pull-down experiments revealed that Pct1 binds to the WD repeat regions of Tup11 and the functionally redundant Tup12 protein. Similarly, the S. cerevisiae Tup1 protein associates with the mRNA 5'-triphosphatase encoded by the CET1 gene. The highly conserved C-terminal domain of Cet1 interacts with Tup1 in vitro, and Tup1-Ssn6 complexes co-purify with the Cet1 protein, indicating that in vivo interactions also occur between these proteins. Over-expression of CET1 compromised repression of an MFA2-lacZ reporter gene that is subject to Tup1-Ssn6 repression. These genetic and biochemical interactions between Tup1-Ssn6 and Cet1 indicate that the capping enzyme associated with RNA polymerase II is a target of the corepressor complex.
Collapse
Affiliation(s)
- Yukio Mukai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|
33
|
Abstract
Eukaryotic mRNA is processed by enzymes and packaged with proteins within nuclei to generate functional messenger ribonucleoprotein (mRNP) particles. Processing and packaging factors can interact with mRNA cotranscriptionally to form an early mRNP. Erroneous mRNP formation leads to nuclear retention and degradation of the mRNA. It therefore appears that one function of cotranscriptional mRNP assembly is to discard aberrant mRNPs early in their biogenesis. Cotranscriptional mRNP assembly may also enable the transcription machinery to respond to improper mRNP formation.
Collapse
Affiliation(s)
- Torben Heick Jensen
- Department of Molecular Biology, Aarhus University, C.F. Møllers Alle, Building 130, 8000 Aarhus C., Denmark.
| | | | | | | |
Collapse
|
34
|
He X, Khan AU, Cheng H, Pappas DL, Hampsey M, Moore CL. Functional interactions between the transcription and mRNA 3' end processing machineries mediated by Ssu72 and Sub1. Genes Dev 2003; 17:1030-42. [PMID: 12704082 PMCID: PMC196040 DOI: 10.1101/gad.1075203] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcription and processing of pre-mRNA are coupled events. By using a combination of biochemical, molecular, and genetic methods, we have found that the phylogenetically conserved transcription factor Ssu72 is a component of the cleavage/polyadenylation factor (CPF) of Saccharomyces cerevisiae. Our results demonstrate that Ssu72 is required for 3' end cleavage of pre-mRNA but is dispensable for poly(A) addition and RNAP II termination. The in vitro cleavage defect caused by depletion of Ssu72 from cells can be rescued by addition of recombinant Ssu72. Ssu72 interacts physically and genetically with the Pta1 subunit of CPF. Overexpression of PTA1 causes synthetic lethality in an ssu72-3 mutant. Moreover, Sub1, which has been implicated in transcription initiation and termination, also interacts with Pta1, and overexpression of SUB1 suppresses the growth and processing defect of a pta1 mutation. Physical interactions of Ssu72 and Sub1 with Pta1 are mutually exclusive. Based on the interactions of Ssu72 and Sub1 with both the Pta1 of CPF and the TFIIB component of the initiation complex, we present a model describing how these novel connections between the transcription and 3' end processing machineries might facilitate transitions in the RNAP II transcription cycle.
Collapse
Affiliation(s)
- Xiaoyuan He
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
35
|
Current awareness on yeast. Yeast 2003; 20:455-62. [PMID: 12728936 DOI: 10.1002/yea.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
36
|
Estruch F, Cole CN. An early function during transcription for the yeast mRNA export factor Dbp5p/Rat8p suggested by its genetic and physical interactions with transcription factor IIH components. Mol Biol Cell 2003; 14:1664-76. [PMID: 12686617 PMCID: PMC153130 DOI: 10.1091/mbc.e02-09-0602] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The yeast DEAD-box protein Dbp5p/Rat8p is an essential factor for mRNA export and shuttles between the nucleus and the cytoplasm. It is concentrated at the cytoplasmic fibrils of the nuclear pore complex where it interacts with several nucleoporins. On the basis of this localization, it has been suggested that it might participate in a terminal step of RNA export, the release from the mRNA of proteins that accompany the mRNA during translocation through nuclear pores. In this report, we present evidence linking Dbp5p to transcription. Two different screens identified genetic interactions between DBP5 and genes involved in early transcription events, initiation and promoter clearance. Mutations of transcription proteins expected to impair transcription act as suppressors of dbp5 mutants, whereas those that may act to increase transcription are synthetically lethal with dbp5 mutations. We also show that growth and mRNA export in dbp5 mutant strains are dependent on the carboxy-terminal domain of the RNA pol II largest subunit. Finally, we show that Dbp5p associates physically with components of transcription factor IIH. Because these interactions affect not only growth but also mRNA export, they are likely to reflect a functional relationship between Dbp5p and the transcription machinery. Together, our results suggest a nuclear role for Dbp5 during the early steps of transcription.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- DEAD-box RNA Helicases
- Genes, Fungal
- Genes, Suppressor
- Mutation
- Nucleocytoplasmic Transport Proteins/genetics
- Nucleocytoplasmic Transport Proteins/metabolism
- Protein Kinases/chemistry
- Protein Kinases/genetics
- Protein Kinases/metabolism
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Deletion
- TATA-Binding Protein Associated Factors
- Transcription Factor TFIID
- Transcription Factor TFIIH
- Transcription Factors, TFII/chemistry
- Transcription Factors, TFII/genetics
- Transcription Factors, TFII/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Francisco Estruch
- Departments of Biochemistry and Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
37
|
LeBrasseur N. Putting a cap on reinitiation. J Biophys Biochem Cytol 2002. [PMCID: PMC2246648 DOI: 10.1083/jcb1594rr3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|