1
|
Hou TY, Kraus WL. Analysis of estrogen-regulated enhancer RNAs identifies a functional motif required for enhancer assembly and gene expression. Cell Rep 2022; 39:110944. [PMID: 35705040 PMCID: PMC9246336 DOI: 10.1016/j.celrep.2022.110944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022] Open
Abstract
To better understand the functions of non-coding enhancer RNAs (eRNAs), we annotated the estrogen-regulated eRNA transcriptome in estrogen receptor α (ERα)-positive breast cancer cells using PRO-cap and RNA sequencing. We then cloned a subset of the eRNAs identified, fused them to single guide RNAs, and targeted them to their ERα enhancers of origin using CRISPR/dCas9. Some of the eRNAs tested modulated the expression of cognate, but not heterologous, target genes after estrogen treatment by increasing ERα recruitment and stimulating p300-catalyzed H3K27 acetylation at the enhancer. We identified a ∼40 nucleotide functional eRNA regulatory motif (FERM) present in many eRNAs that was necessary and sufficient to modulate gene expression, but not the specificity of activation, after estrogen treatment. The FERM interacted with BCAS2, an RNA-binding protein amplified in breast cancers. The ectopic expression of a targeted eRNA controlling the expression of an oncogene resulted in increased cell proliferation, demonstrating the regulatory potential of eRNAs in breast cancer.
Collapse
Affiliation(s)
- Tim Y Hou
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Belorusova AY, Bourguet M, Hessmann S, Chalhoub S, Kieffer B, Cianférani S, Rochel N. Molecular determinants of MED1 interaction with the DNA bound VDR-RXR heterodimer. Nucleic Acids Res 2020; 48:11199-11213. [PMID: 32990725 PMCID: PMC7641746 DOI: 10.1093/nar/gkaa775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022] Open
Abstract
The MED1 subunit of the Mediator complex is an essential coactivator of nuclear receptor-mediated transcriptional activation. While structural requirements for ligand-dependent binding of classical coactivator motifs of MED1 to numerous nuclear receptor ligand-binding domains have been fully elucidated, the recognition of the full-length or truncated coactivator by full nuclear receptor complexes remain unknown. Here we present structural details of the interaction between a large part of MED1 comprising its structured N-terminal and the flexible receptor-interacting domains and the mutual heterodimer of the vitamin D receptor (VDR) and the retinoid X receptor (RXR) bound to their cognate DNA response element. Using a combination of structural and biophysical methods we show that the ligand-dependent interaction between VDR and the second coactivator motif of MED1 is crucial for complex formation and we identify additional, previously unseen, interaction details. In particular, we identified RXR regions involved in the interaction with the structured N-terminal domain of MED1, as well as VDR regions outside the classical coactivator binding cleft affected by coactivator recruitment. These findings highlight important roles of each receptor within the heterodimer in selective recognition of MED1 and contribute to our understanding of the nuclear receptor-coregulator complexes.
Collapse
Affiliation(s)
- Anna Y Belorusova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Maxime Bourguet
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Steve Hessmann
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Sandra Chalhoub
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Bruno Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
3
|
Leonard M, Zhang X. Estrogen receptor coactivator Mediator Subunit 1 (MED1) as a tissue-specific therapeutic target in breast cancer. J Zhejiang Univ Sci B 2019; 20:381-390. [PMID: 31090264 DOI: 10.1631/jzus.b1900163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Breast cancer, one of the most frequent cancer types, is a leading cause of death in women worldwide. Estrogen receptor (ER) α is a nuclear hormone receptor that plays key roles in mammary gland development and breast cancer. About 75% of breast cancer cases are diagnosed as ER-positive; however, nearly half of these cancers are either intrinsically or inherently resistant to the current anti-estrogen therapies. Recent studies have identified an ER coactivator, Mediator Subunit 1 (MED1), as a unique, tissue-specific cofactor that mediates breast cancer metastasis and treatment resistance. MED1 is overexpressed in over 50% of human breast cancer cases and co-amplifies with another important breast cancer gene, receptor tyrosine kinase HER2. Clinically, MED1 expression highly correlates with poor disease-free survival of breast cancer patients, and recent studies have reported an increased frequency of MED1 mutations in the circulating tumor cells of patients after treatment. In this review, we discuss the biochemical characterization of MED1 and its associated MED1/Mediator complex, its crosstalk with HER2 in anti-estrogen resistance, breast cancer stem cell formation, and metastasis both in vitro and in vivo. Furthermore, we elaborate on the current advancements in targeting MED1 using state-of-the-art RNA nanotechnology and discuss the future perspectives as well.
Collapse
Affiliation(s)
- Marissa Leonard
- Department of Cancer Biology, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267, USA
| | - Xiaoting Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267, USA
| |
Collapse
|
4
|
Zhu C, Li L, Zhang Z, Bi M, Wang H, Su W, Hernandez K, Liu P, Chen J, Chen M, Huang THM, Chen L, Liu Z. A Non-canonical Role of YAP/TEAD Is Required for Activation of Estrogen-Regulated Enhancers in Breast Cancer. Mol Cell 2019; 75:791-806.e8. [PMID: 31303470 DOI: 10.1016/j.molcel.2019.06.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/06/2019] [Accepted: 06/05/2019] [Indexed: 12/26/2022]
Abstract
YAP/TEAD are nuclear effectors of the Hippo pathway, regulating organ size and tumorigenesis largely through promoter-associated function. However, their function as enhancer regulators remains poorly understood. Through an in vivo proximity-dependent labeling (BioID) technique, we identified YAP1 and TEAD4 protein as co-regulators of ERα on enhancers. The binding of YAP1/TEAD4 to ERα-bound enhancers is augmented upon E2 stimulation and is required for the induction of E2/ERα target genes and E2-induced oncogenic cell growth. Furthermore, their enhancer binding is a prerequisite for enhancer activation marked by eRNA transcription and for the recruitment of the enhancer activation machinery component MED1. The binding of TEAD4 on active ERE-containing enhancers is independent of its DNA-binding behavior, and instead, occurs through protein-tethering trans-binding. Our data reveal a non-canonical function of YAP1 and TEAD4 as ERα cofactors in regulating cancer growth, highlighting the potential of YAP/TEAD as possible actionable drug targets for ERα+ breast cancer.
Collapse
Affiliation(s)
- Chi Zhu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Li Li
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Oncology, The Second People's Hospital of Jiaozuo, Jiaozuo City, Henan 454001, China
| | - Zhao Zhang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Mingjun Bi
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Hu Wang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Wenyue Su
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Karen Hernandez
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Pingping Liu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Junqiang Chen
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Mingqiu Chen
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Tim Hui-Ming Huang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Zhijie Liu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
5
|
Panigrahi AK, Foulds CE, Lanz RB, Hamilton RA, Yi P, Lonard DM, Tsai MJ, Tsai SY, O'Malley BW. SRC-3 Coactivator Governs Dynamic Estrogen-Induced Chromatin Looping Interactions during Transcription. Mol Cell 2019; 70:679-694.e7. [PMID: 29775582 DOI: 10.1016/j.molcel.2018.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/15/2018] [Accepted: 04/18/2018] [Indexed: 01/09/2023]
Abstract
Enhancers are thought to activate transcription by physically contacting promoters via looping. However, direct assays demonstrating these contacts are required to mechanistically verify such cellular determinants of enhancer function. Here, we present versatile cell-free assays to further determine the role of enhancer-promoter contacts (EPCs). We demonstrate that EPC is linked to mutually stimulatory transcription at the enhancer and promoter in vitro. SRC-3 was identified as a critical looping determinant for the estradiol-(E2)-regulated GREB1 locus. Surprisingly, the GREB1 enhancer and promoter contact two internal gene body SRC-3 binding sites, GBS1 and GBS2, which stimulate their transcription. Utilizing time-course 3C assays, we uncovered SRC-3-dependent dynamic chromatin interactions involving the enhancer, promoter, GBS1, and GBS2. Collectively, these data suggest that the enhancer and promoter remain "poised" for transcription via their contacts with GBS1 and GBS2. Upon E2 induction, GBS1 and GBS2 disengage from the enhancer, allowing direct EPC for active transcription.
Collapse
Affiliation(s)
- Anil K Panigrahi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Center for Precision Environmental Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ross A Hamilton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ping Yi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Murakami S, Nagari A, Kraus WL. Dynamic assembly and activation of estrogen receptor α enhancers through coregulator switching. Genes Dev 2017; 31:1535-1548. [PMID: 28887413 PMCID: PMC5630019 DOI: 10.1101/gad.302182.117] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
Abstract
Although many features of active transcriptional enhancers have been defined by genomic assays, we lack a clear understanding of the order of events leading to enhancer formation and activation as well as the dynamics of coregulator interactions within the enhancer complex. Here, we used selective loss- or gain-of-function mutants of estrogen receptor α (ERα) to define two distinct phases of ligand-dependent enhancer formation. In the first phase (0-20 min), p300 is recruited to ERα by Mediator as well as p300's acetylhistone-binding bromodomain to promote initial enhancer formation, which is not competent for sustained activation. In the second phase (20-45 min), p300 is recruited to ERα by steroid receptor coregulators (SRCs) for enhancer maturation and maintenance. Successful transition between these two phases ("coregulator switching") is required for proper enhancer function. Failure to recruit p300 during either phase leads to abortive enhancer formation and a lack of target gene expression. Our results reveal an ordered and cooperative assembly of ERα enhancers requiring functional interplay among p300, Mediator, and SRCs, which has implications for hormone-dependent gene regulation in breast cancers. More broadly, our results demonstrate the unexpectedly dynamic nature of coregulator interactions within enhancer complexes, which are likely to be a defining feature of all enhancers.
Collapse
Affiliation(s)
- Shino Murakami
- The Laboratory of Signaling and Gene Expression, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,The Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Anusha Nagari
- The Laboratory of Signaling and Gene Expression, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,The Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - W Lee Kraus
- The Laboratory of Signaling and Gene Expression, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,The Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| |
Collapse
|
7
|
Proteomic analysis of coregulators bound to ERα on DNA and nucleosomes reveals coregulator dynamics. Mol Cell 2013; 51:185-99. [PMID: 23850489 DOI: 10.1016/j.molcel.2013.06.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 04/02/2013] [Accepted: 06/04/2013] [Indexed: 11/21/2022]
Abstract
Chromatin immunoprecipitation studies have mapped protein occupancies at many genomic loci. However, a detailed picture of the complexity of coregulators (CoRs) bound to a defined enhancer along with a transcription factor is missing. To address this, we used biotin-DNA pull-down assays coupled with mass spectrometry-immunoblotting to identify at least 17 CoRs from nuclear extracts bound to 17β-estradiol (E2)-liganded estrogen receptor-α on estrogen response elements (EREs). Unexpectedly, these complexes initially are biochemically stable and contain certain atypical corepressors. Addition of ATP dynamically converts these complexes to an "activated" state by phosphorylation events, primarily mediated by DNA-dependent protein kinase. Importantly, a "natural" ERE-containing enhancer and nucleosomal EREs recruit similar complexes. We further discovered the mechanism whereby H3K4me3 stimulates ERα-mediated transcription as compared with unmodified nucleosomes. H3K4me3 templates promote specific CoR dynamics in the presence of ATP and AcCoA, as manifested by CBP/p300 and SRC-3 dismissal and SAGA and TFIID stabilization/recruitment.
Collapse
|
8
|
The HER2 amplicon in breast cancer: Topoisomerase IIA and beyond. Biochim Biophys Acta Rev Cancer 2013; 1836:146-57. [PMID: 23628726 DOI: 10.1016/j.bbcan.2013.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 12/20/2022]
Abstract
HER2 gene amplification is observed in about 15% of breast cancers. The subgroup of HER2-positive breast cancers appears to be heterogeneous and presents complex patterns of gene amplification at the locus on chromosome 17q12-21. The molecular variations within the chromosome 17q amplicon and their clinical implications remain largely unknown. Besides the well-known TOP2A gene encoding Topoisomerase IIA, other genes might also be amplified and could play functional roles in breast cancer development and progression. This review will focus on the current knowledge concerning the HER2 amplicon heterogeneity, its clinical and biological impact and the pitfalls associated with the evaluation of gene amplifications at this locus, with particular attention to TOP2A and the link between TOP2A and anthracycline benefit. In addition it will discuss the clinical and biological implications of the amplification of ten other genes at this locus (MED1, STARD3, GRB7, THRA, RARA, IGFPB4, CCR7, KRT20, KRT19 and GAST) in breast cancer.
Collapse
|
9
|
Ha JH, Shin JS, Yoon MK, Lee MS, He F, Bae KH, Yoon HS, Lee CK, Park SG, Muto Y, Chi SW. Dual-site interactions of p53 protein transactivation domain with anti-apoptotic Bcl-2 family proteins reveal a highly convergent mechanism of divergent p53 pathways. J Biol Chem 2013; 288:7387-98. [PMID: 23316052 DOI: 10.1074/jbc.m112.400754] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Molecular interactions between the tumor suppressor p53 and the anti-apoptotic Bcl-2 family proteins play an important role in the transcription-independent apoptosis of p53. The p53 transactivation domain (p53TAD) contains two conserved ΦXXΦΦ motifs (Φ indicates a bulky hydrophobic residue and X is any other residue) referred to as p53TAD1 (residues 15-29) and p53TAD2 (residues 39-57). We previously showed that p53TAD1 can act as a binding motif for anti-apoptotic Bcl-2 family proteins. In this study, we have identified p53TAD2 as a binding motif for anti-apoptotic Bcl-2 family proteins by using NMR spectroscopy, and we calculated the structures of Bcl-X(L)/Bcl-2 in complex with the p53TAD2 peptide. NMR chemical shift perturbation data showed that p53TAD2 peptide binds to diverse members of the anti-apoptotic Bcl-2 family independently of p53TAD1, and the binding between p53TAD2 and p53TAD1 to Bcl-X(L) is competitive. Refined structural models of the Bcl-X(L)·p53TAD2 and Bcl-2·p53TAD2 complexes showed that the binding sites occupied by p53TAD2 in Bcl-X(L) and Bcl-2 overlap well with those occupied by pro-apoptotic BH3 peptides. Taken together with the mutagenesis, isothermal titration calorimetry, and paramagnetic relaxation enhancement data, our structural comparisons provided the structural basis of p53TAD2-mediated interaction with the anti-apoptotic proteins, revealing that Bcl-X(L)/Bcl-2, MDM2, and cAMP-response element-binding protein-binding protein/p300 share highly similar modes of binding to the dual p53TAD motifs, p53TAD1 and p53TAD2. In conclusion, our results suggest that the dual-site interaction of p53TAD is a highly conserved mechanism underlying target protein binding in the transcription-dependent and transcription-independent apoptotic pathways of p53.
Collapse
Affiliation(s)
- Ji-Hyang Ha
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The keratinocytes of the skin are unique in being not only the primary source of vitamin D for the body, but in possessing both the enzymatic machinery to metabolize the vitamin D produced to active metabolites (in particular 1,25(OH)(2)D) and the vitamin D receptor (VDR) that enables the keratinocytes to respond to the 1,25(OH)(2)D thus generated. Numerous functions of the skin are regulated by vitamin D and/or its receptor. These include inhibition of proliferation, stimulation of differentiation including formation of the permeability barrier, promotion of innate immunity, regulation of the hair follicle cycle, and suppression of tumor formation. Regulation of these actions is exerted by a number of different coregulator complexes including the coactivators vitamin D receptor interacting protein (DRIP) complex also known as Mediator and the steroid receptor coactivator (SRC) family (of which SRC 2 and 3 are found in keratincytes), the inhibitor hairless (Hr), and β-catenin whose impact on VDR function is complex. Different coregulators appear to be involved in different VDR regulated functions. This review will examine the various functions of vitamin D and its receptor in the skin, and explore the mechanisms by which these functions are regulated.
Collapse
Affiliation(s)
- Daniel D Bikle
- Veterans Affairs Medical Center/University of California, San Francisco, San Francisco, CA 94121, USA.
| |
Collapse
|
11
|
Caboni L, Kinsella GK, Blanco F, Fayne D, Jagoe WN, Carr M, Williams DC, Meegan MJ, Lloyd DG. "True" antiandrogens-selective non-ligand-binding pocket disruptors of androgen receptor-coactivator interactions: novel tools for prostate cancer. J Med Chem 2012; 55:1635-44. [PMID: 22280402 PMCID: PMC3295204 DOI: 10.1021/jm201438f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Prostate cancer (PCa) therapy typically involves administration
of “classical” antiandrogens, competitive inhibitors
of androgen receptor (AR) ligands, dihydrotestosterone (DHT) and testosterone
(tes), for the ligand-binding pocket (LBP) in the ligand-binding domain
(LBD) of AR. Prolonged LBP-targeting leads to resistance, and alternative
therapies are urgently required. We report the identification and
characterization of a novel series of diarylhydrazides as selective
disruptors of AR interaction with coactivators through application
of structure and ligand-based virtual screening. Compounds demonstrate
full (“true”) antagonism in AR with low micromolar potency,
selectivity over estrogen receptors α and β and glucocorticoid
receptor, and partial antagonism of the progesterone receptor. MDG506
(5) demonstrates low cellular toxicity in PCa models
and dose responsive reduction of classical antiandrogen-induced prostate
specific antigen expression. These data provide compelling evidence
for such non-LBP intervention as an alternative approach or in combination
with classical PCa therapy.
Collapse
Affiliation(s)
- Laura Caboni
- Molecular Design Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The keratinocytes of the skin are unique in being not only the primary source of vitamin D for the body, but in possessing the enzymatic machinery to metabolize vitamin D to its active metabolite 1,25(OH)(2)D. Furthermore, these cells also express the vitamin D receptor (VDR) that enables them to respond to the 1,25(OH)(2)D they produce. Numerous functions of the skin are regulated by 1,25(OH)(2)D and/or its receptor. These include inhibition of proliferation, stimulation of differentiation including formation of the permeability barrier, promotion of innate immunity, and promotion of the hair follicle cycle. Regulation of these actions is exerted by a number of different coregulators including the coactivators DRIP and SRC, the cosuppressor hairless (Hr), and β-catenin. This review will examine the regulation of vitamin D production and metabolism in the skin, and explore the various functions regulated by 1,25(OH)(2)D and its receptor.
Collapse
Affiliation(s)
- Daniel D Bikle
- Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA.
| |
Collapse
|
13
|
Regulation of estrogen receptor α N-terminus conformation and function by peptidyl prolyl isomerase Pin1. Mol Cell Biol 2011; 32:445-57. [PMID: 22064478 DOI: 10.1128/mcb.06073-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Estrogen receptor alpha (ERα), a key driver of growth in the majority of breast cancers, contains an unstructured transactivation domain (AF1) in its N terminus that is a convergence point for growth factor and hormonal activation. This domain is controlled by phosphorylation, but how phosphorylation impacts AF1 structure and function is unclear. We found that serine 118 (S118) phosphorylation of the ERα AF1 region in response to estrogen (agonist), tamoxifen (antagonist), and growth factors results in recruitment of the peptidyl prolyl cis/trans isomerase Pin1. Phosphorylation of S118 is critical for Pin1 binding, and mutation of S118 to alanine prevents this association. Importantly, Pin1 isomerizes the serine118-proline119 bond from a cis to trans isomer, with a concomitant increase in AF1 transcriptional activity. Pin1 overexpression promotes ligand-independent and tamoxifen-inducible activity of ERα and growth of tamoxifen-resistant breast cancer cells. Pin1 expression correlates with proliferation in ERα-positive rat mammary tumors. These results establish phosphorylation-coupled proline isomerization as a mechanism modulating AF1 functional activity and provide insight into the role of a conformational switch in the functional regulation of the intrinsically disordered transactivation domain of ERα.
Collapse
|
14
|
Chen W, Roeder RG. Mediator-dependent nuclear receptor function. Semin Cell Dev Biol 2011; 22:749-58. [PMID: 21854863 DOI: 10.1016/j.semcdb.2011.07.026] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 12/24/2022]
Abstract
As gene-specific transcription factors, nuclear receptors are broadly involved in many important biological processes. Their function on target genes requires the stepwise assembly of different coactivator complexes that facilitate chromatin remodeling and subsequent preinitiation complex (PIC) formation and function. Mediator has proved to be a crucial, and general, nuclear receptor-interacting coactivator, with demonstrated functions in transcription steps ranging from chromatin remodeling to subsequent PIC formation and function. Here we discuss our current understanding of (i) pathways involved in Mediator recruitment and function through nuclear receptor target gene enhancers and promoters, (ii) conditional requirements for the strong nuclear receptor-Mediator interactions mediated by NR AF2 domains and the MED1 LXXLL motifs, (iii) Mediator functions, through different nuclear receptor-interacting subunits, in different metabolic pathways, (iv) emerging functions of Mediator as a corepressor in addition to its major role as a coactivator and (v) mechanisms by which Mediator acts to transmit signals from enhancer-bound nuclear receptors to the general transcription machinery at core promoters to effect PIC formation and function. As a nuclear receptor coregulator with increasingly diverse functions, Mediator may thus modulate nuclear receptor signaling through several different mechanisms.
Collapse
Affiliation(s)
- Wei Chen
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA.
| | | |
Collapse
|
15
|
Davis TL, Whitesell JD, Cantlon JD, Clay CM, Nett TM. Does a nonclassical signaling mechanism underlie an increase of estradiol-mediated gonadotropin-releasing hormone receptor binding in ovine pituitary cells? Biol Reprod 2011; 85:770-8. [PMID: 21734267 DOI: 10.1095/biolreprod.111.091926] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Estradiol-17beta (E2) is the major regulator of GnRH receptor (GnRHR) gene expression and number during the periovulatory period; however, the mechanisms underlying E2 regulation of the GNRHR gene remain undefined. Herein, we find that E2 conjugated to BSA (E2-BSA) mimics the stimulatory effect of E2 on GnRH binding in primary cultures of ovine pituitary cells. The time course for maximal GnRH analog binding was similar for both E2 and E2-BSA. The ability of E2 and E2-BSA to increase GnRH analog binding was blocked by the estrogen receptor (ER) antagonist ICI 182,780. Also, increased GnRH analog binding in response to E2 and the selective ESR1 agonist propylpyrazole triol was blocked by expression of a dominant-negative form of ESR1 (L540Q). Thus, membrane-associated ESR1 is the likely candidate for mediating E2 activation of the GNRHR gene. As cAMP response element binding protein (CREB) is an established target for E2 activation in gonadotrophs, we next explored a potential role for this protein as an intracellular mediator of the E2 signal. Consistent with this possibility, adenoviral-mediated expression of a dominant-negative form of CREB (A-CREB) completely abolished the ability of E2 to increase GnRH analog binding in primary cultures of ovine pituitary cells. Finally, the presence of membrane-associated E2 binding sites on ovine pituitary cells was demonstrated using a fluorescein isothiocyanate conjugate of E2-BSA. We suggest that E2 regulation of GnRHR number during the preovulatory period reflects a membrane site of action and may proceed through a nonclassical signaling mechanism, specifically a CREB-dependent pathway.
Collapse
Affiliation(s)
- Tracy L Davis
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | | | | | | | | |
Collapse
|
16
|
Zhang D, Jiang P, Xu Q, Zhang X. Arginine and glutamate-rich 1 (ARGLU1) interacts with mediator subunit 1 (MED1) and is required for estrogen receptor-mediated gene transcription and breast cancer cell growth. J Biol Chem 2011; 286:17746-54. [PMID: 21454576 DOI: 10.1074/jbc.m110.206029] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Estrogen receptor is a nuclear receptor superfamily member of transcriptional activators that regulate gene expression by recruiting diverese transcriptional coregulators. The Mediator complex is a central transcriptional coactivator complex that acts as a bridge between transcriptional activators and RNA polymerase II. MED1 (Mediator subunit 1) is the key Mediator subunit that directly interacts with estrogen receptor to mediate its functions both in vitro and in vivo. Interestingly, our previous biochemical analyses indicated that MED1 exists only in a subpopulation of the Mediator complex that is enriched with a number of distinct Mediator subunits and RNA polymerase II. Here, we report ARGLU1 as a MED1/Mediator-associated protein. We found that ARGLU1 (arginine and glutamate rich 1) not only colocalizes with MED1 in the nucleus, but also directly interacts with a far C-terminal region of MED1. Reporter assays indicate that ARGLU1 is able to cooperate with MED1 to regulate estrogen receptor-mediated gene transcription. Importantly, ARGLU1 is recruited, in a ligand-dependent manner, to endogenous estrogen receptor target gene promoters and is required for their expression. Furthermore, by ChIP-reChIP assay, we confirm that ARGLU1 and MED1 colocalize on the same estrogen receptor target gene promoter upon estrogen induction. Moreover, we found that depletion of ARGLU1 significantly impairs the growth, as well as anchorage-dependent and -independent colony formation of breast cancer cells. Taken together, these results establish ARGLU1 as a new MED1-interacting protein required for estrogen-dependent gene transcription and breast cancer cell growth.
Collapse
Affiliation(s)
- Dingxiao Zhang
- Department of Cancer and Cell Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | |
Collapse
|
17
|
Genome-wide analysis of estrogen receptor alpha DNA binding and tethering mechanisms identifies Runx1 as a novel tethering factor in receptor-mediated transcriptional activation. Mol Cell Biol 2010; 30:3943-55. [PMID: 20547749 DOI: 10.1128/mcb.00118-10] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nuclear receptor estrogen receptor alpha (ER alpha) controls the expression of hundreds of genes responsible for target cell phenotypic properties, but the relative importance of direct versus tethering mechanisms of DNA binding has not been established. In this first report, we examine the genome-wide chromatin localization of an altered-specificity mutant ER with a DNA binding domain deficient in binding to estrogen response element (ERE)-containing DNA (DBDmut ER) versus wild-type ER alpha. Using high-throughput sequencing of ER chromatin immunoprecipitations (ChIP-Seq) and mRNA transcriptional profiling, we show that direct ERE binding is required for most of (75%) estrogen-dependent gene regulation and 90% of hormone-dependent recruitment of ER to genomic binding sites. De novo motif analysis of the chromatin binding regions in MDA-MB-231 human breast cancer cells defined unique transcription factor profiles responsible for genes regulated through tethering versus direct ERE binding, with Runx motifs enriched in ER-tethered sites. We confirmed a role for Runx1 in mediating ER alpha genomic recruitment and regulation of tethering genes. Our findings delineate the contributions of direct receptor ERE binding versus binding through response elements for other transcription factors in chromatin localization and ER-dependent gene regulation, paradigms likely to underlie the gene regulatory actions of other nuclear receptors as well.
Collapse
|
18
|
Key roles for MED1 LxxLL motifs in pubertal mammary gland development and luminal-cell differentiation. Proc Natl Acad Sci U S A 2010; 107:6765-70. [PMID: 20351249 DOI: 10.1073/pnas.1001814107] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mediator recently has emerged as a central player in the direct transduction of signals from transcription factors to the general transcriptional machinery. In the case of nuclear receptors, in vitro studies have shown that the transcriptional coactivator function of the Mediator involves direct ligand-dependent interactions of the MED1 subunit, through its two classical LxxLL motifs, with the receptor AF2 domain. However, despite the strong in vitro evidence, there currently is little information regarding in vivo functions of the LxxLL motifs either in MED1 or in other coactivators. Toward this end, we have generated MED1 LxxLL motif-mutant knockin mice. Interestingly, these mice are both viable and fertile and do not exhibit any apparent gross abnormalities. However, they do exhibit severe defects in pubertal mammary gland development. Consistent with this phenotype, as well as loss of the strong ligand-dependent estrogen receptor (ER)alpha-Mediator interaction, expression of a number of known ERalpha-regulated genes was down-regulated in MED1-mutant mammary epithelial cells and could no longer respond to estrogen stimulation. Related, estrogen-stimulated mammary duct growth in MED1-mutant mice was also greatly diminished. Finally, additional studies show that MED1 is differentially expressed in different types of mammary epithelial cells and that its LxxLL motifs play a role in mammary luminal epithelial cell differentiation and progenitor/stem cell determination. Our results establish a key nuclear receptor- and cell-specific in vivo role for MED1 LxxLL motifs, through Mediator-ERalpha interactions, in mammary gland development.
Collapse
|
19
|
Abstract
The keratinocytes of the skin are unique in being not only the primary source of vitamin D for the body, but also possessing the enzymatic machinery to metabolize vitamin D to active metabolites [in particular, 1,25 dihydroxyvitamin D (1,25(OH)(2)D)] and the vitamin D receptor (VDR) that enables the keratinocytes to respond to the 1,25(OH)(2)D they produce. Numerous functions of the skin are regulated by vitamin D and/or its receptor: these include inhibition of proliferation, stimulation of differentiation including formation of the permeability barrier, promotion of innate immunity, regulation of the hair follicle cycle, and suppression of tumor formation. Regulation of these actions is exerted by a number of different coregulators including the coactivators DRIP and SRC, a less well known inhibitor, hairless, and beta-catenin. Different coregulators appear to be involved in different VDR-regulated functions. This review examines the various functions of vitamin D and its receptor, and to the extent known explores the mechanisms by which these functions are regulated.
Collapse
Affiliation(s)
- Daniel D Bikle
- Veterans Affairs Medical Center, University of California, 4150 Clement St (111N), San Francisco, CA 94121, USA.
| |
Collapse
|
20
|
Hammerich-Hille S, Kaipparettu BA, Tsimelzon A, Creighton CJ, Jiang S, Polo JM, Melnick A, Meyer R, Oesterreich S. SAFB1 mediates repression of immune regulators and apoptotic genes in breast cancer cells. J Biol Chem 2010; 285:3608-3616. [PMID: 19901029 PMCID: PMC2823501 DOI: 10.1074/jbc.m109.066431] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/04/2009] [Indexed: 12/18/2022] Open
Abstract
The scaffold attachment factors SAFB1 and SAFB2 are paralogs, which are involved in cell cycle regulation, apoptosis, differentiation, and stress response. They have been shown to function as estrogen receptor corepressors, and there is evidence for a role in breast tumorigenesis. To identify their endogenous target genes in MCF-7 breast cancer cells, we utilized a combined approach of chromatin immunoprecipitation (ChIP)-on-chip and gene expression array studies. By performing ChIP-on-chip on microarrays containing 24,000 promoters, we identified 541 SAFB1/SAFB2-binding sites in promoters of known genes, with significant enrichment on chromosomes 1 and 6. Gene expression analysis revealed that the majority of target genes were induced in the absence of SAFB1 or SAFB2 and less were repressed. Interestingly, there was no significant overlap between the genes identified by ChIP-on-chip and gene expression array analysis, suggesting regulation through regions outside the proximal promoters. In contrast to SAFB2, which shared most of its target genes with SAFB1, SAFB1 had many unique target genes, most of them involved in the regulation of the immune system. A subsequent analysis of the estrogen treatment group revealed that 12% of estrogen-regulated genes were dependent on SAFB1, with the majority being estrogen-repressed genes. These were primarily genes involved in apoptosis, such as BBC3, NEDD9, and OPG. Thus, this study confirms the primary role of SAFB1/SAFB2 as corepressors and also uncovers a previously unknown role for SAFB1 in the regulation of immune genes and in estrogen-mediated repression of genes.
Collapse
Affiliation(s)
- Stephanie Hammerich-Hille
- From the Lester and Sue Smith Breast Center, Department of Medicine and Molecular and Cellular Biology, Texas Children's Cancer Center, Houston, Texas 77030
| | - Benny A Kaipparettu
- From the Lester and Sue Smith Breast Center, Department of Medicine and Molecular and Cellular Biology, Texas Children's Cancer Center, Houston, Texas 77030
| | - Anna Tsimelzon
- From the Lester and Sue Smith Breast Center, Department of Medicine and Molecular and Cellular Biology, Texas Children's Cancer Center, Houston, Texas 77030
| | - Chad J Creighton
- From the Lester and Sue Smith Breast Center, Department of Medicine and Molecular and Cellular Biology, Texas Children's Cancer Center, Houston, Texas 77030
| | - Shiming Jiang
- From the Lester and Sue Smith Breast Center, Department of Medicine and Molecular and Cellular Biology, Texas Children's Cancer Center, Houston, Texas 77030
| | - Jose M Polo
- the Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ari Melnick
- the Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Rene Meyer
- Department of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Houston, Texas 77030 and
| | - Steffi Oesterreich
- From the Lester and Sue Smith Breast Center, Department of Medicine and Molecular and Cellular Biology, Texas Children's Cancer Center, Houston, Texas 77030; Department of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Houston, Texas 77030 and.
| |
Collapse
|
21
|
Maturation of microRNA is hormonally regulated by a nuclear receptor. Mol Cell 2009; 36:340-7. [PMID: 19854141 DOI: 10.1016/j.molcel.2009.08.017] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 06/10/2009] [Accepted: 08/14/2009] [Indexed: 01/06/2023]
Abstract
Steroid hormones and their cognate nuclear receptors exert a wide spectrum of biological actions through regulation of transcriptional and posttranscriptional processes. However, the underlying molecular mechanism by which steroid hormones control posttranscriptional processes is largely unknown. We now report that estrogen receptor alpha (ERalpha) inhibits the maturation of a particular microRNA (miRNA) and thereby stabilizes the mRNA of an ERalpha target gene through the 3'UTR. Estrogen-bound ERalpha downregulated expression of a set of miRNAs in both animals and cultured cells. Activated ERalpha attenuated the processing of primary miRNAs into pre-miRNAs through estrogen-dependent association with the Drosha complex, resulting in stabilization of the transcript of an ERalpha target gene through its 3'UTR. Thus, a steroid hormone achieves posttranscriptional control by regulating the maturation of miRNA.
Collapse
|
22
|
Biochemical analyses of nuclear receptor-dependent transcription with chromatin templates. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:137-92. [PMID: 20374704 DOI: 10.1016/s1877-1173(09)87005-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Chromatin, the physiological template for transcription, plays important roles in gene regulation by nuclear receptors (NRs). It can (1) restrict the binding of NRs or the transcriptional machinery to their genomic targets, (2) serve as a target of regulatory posttranslational modifications by NR coregulator proteins with histone-directed enzymatic activities, and (3) function as a binding scaffold for a variety of transcription-related proteins. The advent of in vitro or "cell-free" systems that accurately recapitulate ligand-dependent transcription by NRs with chromatin templates has allowed detailed analyses of these processes. Biochemical studies have advanced our understanding of the mechanisms of gene regulation, including the role of ligands, coregulators, and nucleosome remodeling. In addition, they have provided new insights about the dynamics of NR-mediated transcription. This chapter reviews the current methodologies for assembling, transcribing, and analyzing chromatin in vitro, as well as the new information that has been gained from these studies.
Collapse
|
23
|
Chi SW, Kim J, Yi GS, Hong HJ, Ryu SE. Broadly neutralizing anti-HBV antibody binds to non-epitope regions of preS1. FEBS Lett 2009; 583:3095-100. [DOI: 10.1016/j.febslet.2009.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/18/2009] [Accepted: 08/18/2009] [Indexed: 12/25/2022]
|
24
|
Kim GH, Park K, Yeom SY, Lee KJ, Kim G, Ko J, Rhee DK, Kim YH, Lee HK, Kim HW, Oh GT, Lee KU, Lee JW, Kim SW. Characterization of ASC-2 as an antiatherogenic transcriptional coactivator of liver X receptors in macrophages. Mol Endocrinol 2009; 23:966-74. [PMID: 19342446 DOI: 10.1210/me.2008-0308] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Activating signal cointegrator-2 (ASC-2) functions as a transcriptional coactivator of many nuclear receptors and also plays important roles in the physiology of the liver and pancreas by interacting with liver X receptors (LXRs), which antagonize the development of atherosclerosis. This study was undertaken to establish the specific function of ASC-2 in macrophages and atherogenesis. Intriguingly, ASC-2 was more highly expressed in macrophages than in the liver and pancreas. To inhibit LXR-specific activity of ASC-2, we used DN2, which contains the C-terminal LXXLL motif of ASC-2 and thereby acts as an LXR-specific, dominant-negative mutant of ASC-2. In DN2-overexpressing transgenic macrophages, cellular cholesterol content was higher and cholesterol efflux lower than in control macrophages. DN2 reduced LXR ligand-dependent increases in the levels of ABCA1, ABCG1, and apolipoprotein E (apoE) transcripts as well as the activity of luciferase reporters driven by the LXR response elements (LXREs) of ABCA1, ABCG1, and apoE genes. These inhibitory effects of DN2 were reversed by overexpression of ASC-2. Chromatin immunoprecipitation analysis demonstrated that ASC-2 was recruited to the LXREs of the ABCA1, ABCG1, and apoE genes in a ligand-dependent manner and that DN2 interfered with the recruitment of ASC-2 to these LXREs. Furthermore, low-density lipoprotein receptor (LDLR)-null mice receiving bone marrow transplantation from DN2-transgenic mice showed accelerated atherogenesis when administered a high-fat diet. Taken together, these results indicate that suppression of the LXR-specific activity of ASC-2 results in both defective cholesterol metabolism in macrophages and accelerated atherogenesis, suggesting that ASC-2 is an antiatherogenic coactivator of LXRs in macrophages.
Collapse
Affiliation(s)
- Geun Hyang Kim
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Postrecruitment regulation of RNA polymerase II directs rapid signaling responses at the promoters of estrogen target genes. Mol Cell Biol 2008; 29:1123-33. [PMID: 19103744 DOI: 10.1128/mcb.00841-08] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Under classical models for signal-dependent transcription in eukaryotes, DNA-binding activator proteins regulate the recruitment of RNA polymerase II (Pol II) to a set of target promoters. However, recent studies, as well as our results herein, show that Pol II is widely distributed (i.e., "preloaded") at the promoters of many genes prior to specific signaling events. How Pol II recruitment and Pol II preloading fit within a unified model of gene regulation is unclear. In addition, the mechanisms through which cellular signals activate preloaded Pol II across mammalian genomes remain largely unknown. We show here that the predominant genomic outcome of estrogen signaling is the postrecruitment regulation of Pol II activity at target gene promoters, likely through specific changes in Pol II phosphorylation rather than through recruitment of Pol II to the promoters. Furthermore, we show that negative elongation factor binds to estrogen target promoters in conjunction with preloaded Pol II and represses gene expression until the appropriate signal is received. Finally, our studies reveal that the estrogen-dependent activation of preloaded Pol II facilitates rapid gene regulatory responses which play important physiological roles in regulating estrogen signaling itself. Our results reveal a broad use of postrecruitment Pol II regulation by the estrogen signaling pathway, a mode of regulation that is likely to apply to a wide variety of signal-regulated pathways.
Collapse
|
26
|
Scafonas A, Reszka AA, Kimmel DB, Hou XS, Su Q, Birzin ET, Kim S, Chen HY, Tan Q, Roher SP, Dininno F, Hammond ML, Rodan GA, Towler DA, Schmidt A. Agonist-like SERM effects on ERalpha-mediated repression of MMP1 promoter activity predict in vivo effects on bone and uterus. J Steroid Biochem Mol Biol 2008; 110:197-206. [PMID: 18508261 DOI: 10.1016/j.jsbmb.2007.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
Abstract
Estradiol receptors (ER), ERalpha and ERbeta, are ligand-dependent transcription factors that regulate gene expression. Human and murine genetics suggest that ERalpha is the key target for estradiol action on bone, uterus and breast. To date, the molecular mode of action of estradiol and selective estradiol receptor modulators (SERMs) on bone is not fully understood. This is exemplified by a lack of in vitro assays that reliably predict SERM agonist activities in vivo. We hypothesized that ligand-dependent ERalpha transrepression, via protein-protein interactions at AP1, may predict estrogenic effects on bone. We modeled this using the MMP1 promoter, which encodes an AP1 binding site. We show that ICI-182780, raloxifene, 4-hydroxytamoxifen and estradiol all exhibit differential agonistic activities on the MMP1 promoter by suppressing activity by 20-80%. Transrepression efficacy and potency correlated with both uterotrophic (R(2)=0.98) and osteoprotective (R(2)=0.80) potential in the ovariectomized rat. This identifies MMP1 promoter transrepression as an agonist activity commonly shared by AF2 agonists and "antagonists" alike. Mutation analysis showed that the repression by estradiol and SERMs required correct amino acid sequences in the AF-2 domain. For instance, L540Q AF2 mutation did not alter responses to raloxifene, although it greatly increased responses to ICI-182780 (threefold) and reduced estradiol's effect by 20%. Furthermore, all tested ligands repressed the MMP1 promoter through the L540Q mutant with identical efficacy. Together, these data suggest that estradiol and SERMs share common agonist transcriptional activity via protein-protein interactions at AP1.
Collapse
Affiliation(s)
- Angela Scafonas
- Molecular Endocrinology, Merck Research Laboratories, West Point, 770 Sumneytown Pike, PA 19486, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
ANCCA, an estrogen-regulated AAA+ ATPase coactivator for ERalpha, is required for coregulator occupancy and chromatin modification. Proc Natl Acad Sci U S A 2007; 104:18067-72. [PMID: 17998543 DOI: 10.1073/pnas.0705814104] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AAA+ proteins play crucial roles in diverse biological processes via their ATPase-driven remodeling of macromolecular complexes. Here we report our identification of an evolutionarily conserved AAA+ protein, ANCCA/pro2000, endowed with a bromodomain that is strongly induced by estrogen in human breast cancer cells and is a direct target of protooncogene ACTR/AIB1/SRC-3. We found that ANCCA associates directly with estrogen-bound estrogen receptor (ER) alpha and ACTR. It is selectively recruited, upon estrogen stimulation, to a subset of ERalpha target genes including cyclin D1, c-myc, and E2F1 and is required for their estrogen-induced expression as well as breast cancer cell proliferation. Further studies indicate that ANCCA binds and hydrolyzes ATP and is critical for recruitment of coregulator CBP and histone hyperacetylation at the ER target chromatin. Moreover, mutations at the ATP binding motifs rendered ANCCA defective as a coactivator in mediating estrogen induction of gene expression. Together, our findings reveal an unexpected layer of regulatory mechanism in hormone signaling mediated by ANCCA and suggest that hormone-induced assembly of transcriptional coregulator complexes at chromatin is a process facilitated by AAA+ ATPase proteins.
Collapse
|
28
|
Stender JD, Frasor J, Komm B, Chang KCN, Kraus WL, Katzenellenbogen BS. Estrogen-regulated gene networks in human breast cancer cells: involvement of E2F1 in the regulation of cell proliferation. Mol Endocrinol 2007; 21:2112-23. [PMID: 17550982 DOI: 10.1210/me.2006-0474] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Estrogens generally stimulate the proliferation of estrogen receptor (ER)-containing breast cancer cells, but they also suppress proliferation of some ER-positive breast tumors. Using a genome-wide analysis of gene expression in two ER-positive human breast cancer cell lines that differ in their proliferative response to estrogen, we sought to identify genes involved in estrogen-regulated cell proliferation. To this end, we compared the transcriptional profiles of MCF-7 and MDA-MB-231ER+ cells, which have directionally opposite 17beta-estradiol (E2)-dependent proliferation patterns, MCF-7 cells being stimulated and 231ER+ cells suppressed by E2. We identified a set of approximately 70 genes regulated by E2 in both cells, with most being regulated by hormone in an opposite fashion. Using a variety of bioinformatics approaches, we found the E2F binding site to be overrepresented in the potential regulatory regions of many cell cycle-related genes stimulated by estrogen in MCF-7 but inhibited by estrogen in 231ER+ cells. Biochemical analyses confirmed that E2F1 and E2F downstream target genes were increased in MCF-7 and decreased in 231ER+ cells upon estrogen treatment. Furthermore, RNA interference-mediated knockdown of E2F1 blocked estrogen regulation of E2F1 target genes and resulted in loss of estrogen regulation of proliferation. These results demonstrate that regulation by estrogen of E2F1, and subsequently its downstream target genes, is critical for hormone regulation of the proliferative program of these breast cancer cells, and that gene expression profiling combined with bioinformatic analyses of transcription factor binding site enrichment in regulated genes can identify key components associated with nuclear receptor hormonal regulation of important cellular functions.
Collapse
Affiliation(s)
- Joshua D Stender
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3704, USA
| | | | | | | | | | | |
Collapse
|
29
|
Kininis M, Chen BS, Diehl AG, Isaacs GD, Zhang T, Siepel AC, Clark AG, Kraus WL. Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters. Mol Cell Biol 2007; 27:5090-104. [PMID: 17515612 PMCID: PMC1951957 DOI: 10.1128/mcb.00083-07] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To explore the global mechanisms of estrogen-regulated transcription, we used chromatin immunoprecipitation coupled with DNA microarrays to determine the localization of RNA polymerase II (Pol II), estrogen receptor alpha (ERalpha), steroid receptor coactivator proteins (SRC), and acetylated histones H3/H4 (AcH) at estrogen-regulated promoters in MCF-7 cells with or without estradiol (E2) treatment. In addition, we correlated factor occupancy with gene expression and the presence of transcription factor binding elements. Using this integrative approach, we defined a set of 58 direct E2 target genes based on E2-regulated Pol II occupancy and classified their promoters based on factor binding, histone modification, and transcriptional output. Many of these direct E2 target genes exhibit interesting modes of regulation and biological activities, some of which may be relevant to the onset and proliferation of breast cancers. Our studies indicate that about one-third of these direct E2 target genes contain promoter-proximal ERalpha-binding sites, which is considerably more than previous estimates. Some of these genes represent possible novel targets for regulation through the ERalpha/AP-1 tethering pathway. Our studies have also revealed several previously uncharacterized global features of E2-regulated gene expression, including strong positive correlations between Pol II occupancy and AcH levels, as well as between the E2-dependent recruitment of ERalpha and SRC at the promoters of E2-stimulated genes. Furthermore, our studies have revealed new mechanistic insights into E2-regulated gene expression, including the absence of SRC binding at E2-repressed genes and the presence of constitutively bound, promoter-proximally paused Pol IIs at some E2-regulated promoters. These mechanistic insights are likely to be relevant for understanding gene regulation by a wide variety of nuclear receptors.
Collapse
Affiliation(s)
- Miltiadis Kininis
- Department of Molecular Biology and Genetics, Cornell University, 465 Biotechnology Building, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Carvallo L, Henríquez B, Paredes R, Olate J, Onate S, van Wijnen AJ, Lian JB, Stein GS, Stein JL, Montecino M. 1α,25-dihydroxy vitamin D3-enhanced expression of the osteocalcin gene involves increased promoter occupancy of basal transcription regulators and gradual recruitment of the 1α,25-dihydroxy vitamin D3 receptor-SRC-1 coactivator complex. J Cell Physiol 2007; 214:740-9. [PMID: 17786964 DOI: 10.1002/jcp.21267] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Binding of 1alpha,25-dihydroxy vitamin D(3) to the C-terminal ligand-binding domain (LBD) of its receptor (VDR) induces a conformational change that enables interaction of VDR with transcriptional coactivators such as members of the p160/SRC family or the DRIP (vitamin D receptor-interacting complex)/Mediator complex. These interactions are critical for VDR-mediated transcriptional enhancement of target genes. The p160/SRC members contain intrinsic histone acetyl transferase (HAT) activities that remodel chromatin at promoter regulatory regions, and the DRIP/Mediator complex may establish a molecular bridge between the VDR complex and the basal transcription machinery. Here, we have analyzed the rate of recruitment of these coactivators to the bone-specific osteocalcin (OC) gene in response to short and long exposures to 1alpha,25-dihydroxy vitamin D3. We report that in intact osteoblastic cells VDR, in association with SRC-1, rapidly binds to the OC promoter in response to the ligand. The recruitment of SRC-1 correlates with maximal transcriptional enhancement of the OC gene at 4 h and with increased histone acetylation at the OC promoter. In contrast to other 1alpha,25-dihydroxy vitamin D3-enhanced genes, binding of the DRIP205 subunit, which anchors the DRIP/Mediator complex to the VDR, is detected at the OC promoter only after several hours of incubation with 1alpha,25-dihydroxy vitamin D(3), concomitant with the release of SRC-1. Together, our results support a model where VDR preferentially recruits SRC-1 to enhance bone-specific OC gene transcription.
Collapse
Affiliation(s)
- Loreto Carvallo
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias Biologicas, Universidad de Concepcion, Concepcion, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Raviscioni M, He Q, Salicru EM, Smith CL, Lichtarge O. Evolutionary identification of a subtype specific functional site in the ligand binding domain of steroid receptors. Proteins 2006; 64:1046-57. [PMID: 16835908 DOI: 10.1002/prot.21074] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nuclear receptors are ubiquitous eukaryotic ligand-activated transcription factors that modulate gene expression through varied interactions. However, the highly conserved functional sites known today seem insufficient to explain receptor specific recruitment of different coactivator and corepressor proteins and regulation of transcription. To search for new receptor-subtype specific functional sites, we applied difference evolutionary trace (difference ET) analysis to the ligand binding domain of steroid receptors, a subgroup of the nuclear receptor (NR) family. This computational approach identified a new functional site located on a surface opposite to currently known protein-protein interaction sites and distinct from the ligand binding pocket. Strikingly, the literature shows that in vivo variations at residues in the new site are linked to androgen resistance and leukemia, and our own targeted mutations to this site lower but do not eradicate transcriptional activation by estrogen receptor alpha (ERalpha), with reduced ligand binding affinity and SRC-1 interaction. Thus, these data demonstrate that this evolutionary important surface can function as an allosteric site that modulates some but not all receptor binding interactions. Evolutionary analysis further shows that this allosteric regulatory site is shared among all NRs from groups 2 (HNF4-like) and 4 (NGFIB-like), suggesting a role among many nuclear receptors. Its concave structure, hydrophobic composition, and residue variability among nuclear receptors further suggest that it would be amenable for specific drug design. This highlights the power of evolutionary information for the identification of new functional sites even in a protein family as well studied as NRs.
Collapse
Affiliation(s)
- Michele Raviscioni
- W. M. Keck Center for Computational and Structural Biology, Baylor College of Medicine, Houston Texas 77030, USA
| | | | | | | | | |
Collapse
|
32
|
Winkler GS, Mulder KW, Bardwell VJ, Kalkhoven E, Timmers HTM. Human Ccr4-Not complex is a ligand-dependent repressor of nuclear receptor-mediated transcription. EMBO J 2006; 25:3089-99. [PMID: 16778766 PMCID: PMC1500986 DOI: 10.1038/sj.emboj.7601194] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 05/17/2006] [Indexed: 12/27/2022] Open
Abstract
The Ccr4-Not complex is a highly conserved regulator of mRNA metabolism. The transcription regulatory function of this complex in higher eukaryotes, however, is largely unexplored. Here we report that CNOT1, the large human subunit, represses the ligand-dependent transcriptional activation function of oestrogen receptor (ER) alpha. Promoter recruitment assays indicate that CNOT1 contains an intrinsic ability to mediate transcriptional repression. Furthermore, CNOT1 can interact with the ligand-binding domain of ERalpha in a hormone-dependent fashion and is recruited with other Ccr4-Not subunits to endogenous oestrogen-regulated promoters dependent on the presence of ligand. In addition, siRNA-mediated depletion of endogenous CNOT1 or other Ccr4-Not subunits in breast cancer cells results in deregulation of ERalpha target genes. Finally, CNOT1 interacts in a ligand-dependent manner with RXR and represses transcription mediated by several RXR heterodimers. These findings define a function for the human Ccr4-Not complex as a transcriptional repressor of nuclear receptor signalling that is relevant for the understanding of molecular pathways involved in cancer.
Collapse
Affiliation(s)
- G Sebastiaan Winkler
- Department of Physiological Chemistry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Klaas W Mulder
- Department of Physiological Chemistry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Vivian J Bardwell
- Department of Genetics, Cell Biology and Development & Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Eric Kalkhoven
- Department of Metabolic and Endocrine Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - H Th Marc Timmers
- Department of Physiological Chemistry, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
33
|
Higgins KJ, Liu S, Abdelrahim M, Yoon K, Vanderlaag K, Porter W, Metz RP, Safe S. Vascular endothelial growth factor receptor-2 expression is induced by 17beta-estradiol in ZR-75 breast cancer cells by estrogen receptor alpha/Sp proteins. Endocrinology 2006; 147:3285-95. [PMID: 16574784 DOI: 10.1210/en.2006-0081] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Vascular endothelial growth factor receptor-2 kinase insert domain receptor (VEGFR2/KDR) is critical for angiogenesis, and VEGFR2 mRNA and protein are expressed in ZR-75 breast cancer cells and induced by 17beta-estradiol (E2). Deletion analysis of the VEGFR2 promoter indicates that the proximal GC-rich region is required for both basal and hormone-induced transactivation, and mutation of one or both of the GC-rich motifs at -58 and -44 results in loss of transactivation. Electrophoretic mobility shift and chromatin immunoprecipitation assays show that Sp1, Sp3, and Sp4 proteins bind the GC-rich region of the VEGFR2 promoter. Results of the chromatin immunoprecipitation assay also demonstrate that ERalpha is constitutively bound to the VEGFR2 promoter and that these interactions are not enhanced after treatment with E2, whereas ERalpha binding to the region of the pS2 promoter containing an estrogen-responsive element is enhanced by E2. RNA interference studies show that hormone-induced activation of the VEGFR2 promoter constructs requires Sp3 and Sp4 but not Sp1, demonstrating that hormonal activation of VEGFR2 involves a nonclassical mechanism in which ERalpha/Sp3 and ERalpha/Sp4 complexes activate GC-rich sites where Sp proteins but not ERalpha bind DNA. These results show for the first time that Sp3 and Sp4 cooperatively interact with ERalpha to activate VEGFR2 and are in contrast to previous results showing that several hormone-responsive genes are activated by ERalpha/Sp1 in breast cancer cell lines.
Collapse
Affiliation(s)
- Kelly J Higgins
- Department of Biochemistry, Texas A&M University, College Station, 77843-4466, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Belakavadi M, Fondell JD. Role of the mediator complex in nuclear hormone receptor signaling. Rev Physiol Biochem Pharmacol 2006; 156:23-43. [PMID: 16634145 DOI: 10.1007/s10254-005-0002-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mediator is an evolutionarily conserved multisubunit protein complex that plays a key role in regulating transcription by RNA polymerase II. The complex functions by serving as a molecular bridge between DNA-bound transcriptional activators and the basal transcription apparatus. In humans, Mediator was first characterized as a thyroid hormone receptor (TR)-associated protein (TRAP) complex that facilitates ligand-dependent transcriptional activation by TR. More recently, Mediator has been established as an essential coactivator for a broad range of nuclear hormone receptors (NRs) as well as several other types of gene-specific transcriptional activators. A single subunit of the complex, MED1/TRAP220, is required for direct ligand-dependent interactions with NRs. Mediator coactivates NR-regulated gene expression by facilitating the recruitment and activation of the RNA polymerase II-associated basal transcription apparatus. Importantly, Mediator acts in concert with other NR coactivators involved in chromatin remodeling to initiate transcription of NR target genes in a multistep manner. In this review, we summarize the functional role of Mediator in NR signaling pathways with an emphasis on the underlying molecular mechanisms by which the complex interacts with NRs and subsequently facilitates their action. We also focus on recent advances in our understanding of TRAP/Mediator's pathophysiological role in mammalian disease and development.
Collapse
Affiliation(s)
- M Belakavadi
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, UMDNJ, Piscataway, NJ 08854, USA
| | | |
Collapse
|
35
|
Khan S, Barhoumi R, Burghardt R, Liu S, Kim K, Safe S. Molecular mechanism of inhibitory aryl hydrocarbon receptor-estrogen receptor/Sp1 cross talk in breast cancer cells. Mol Endocrinol 2006; 20:2199-214. [PMID: 16675542 DOI: 10.1210/me.2006-0100] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The trifunctional carbamoylphosphate synthetase/aspartate transcarbamyltransferase/dihydroorotase (CAD) gene is hormone responsive in MCF-7 and ZR-75 breast cancer cells, and this response is inhibited by the aryl hydrocarbon receptor (AhR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Estrogen-dependent induction of CAD mRNA and reporter gene activity in cells transfected with constructs (pCAD) containing hormone-responsive GC-rich CAD promoter inserts involves estrogen receptor alpha (ERalpha)/Sp1 interactions with these proximal GC-rich motifs. TCDD also inhibits hormone-induced transactivation in MCF-7 and ZR-75 cells transfected with pCAD constructs. The mechanism of inhibitory AhR-ERalpha/Sp1 cross talk was further investigated by chromatin immunoprecipitation (ChIP), and the results show that ERalpha/Sp1 and the AhR are constitutively bound to the CAD gene promoter and only minor changes are observed after treatment with 17beta-estradiol, TCDD, or their combination. However, examination of interactions of these transcription factors by fluorescence resonance energy transfer shows that E2 enhances ERalpha-Sp1 interactions, whereas cotreatment with TCDD significantly decreases interaction of these proteins. These results suggest that inhibitory AhR-ERalpha/Sp1 cross talk is due, in part, to enhanced association of AhR and ERalpha (also determined by fluorescence resonance energy transfer), which coordinately dissociates ER and Sp1 and decreases ERalpha/Sp1-mediated transactivation, whereas remaining associated with the CAD promoter. This represents a novel interaction between two ligand activated receptors where one receptor inhibits activation of the second receptor.
Collapse
Affiliation(s)
- Shaheen Khan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, Texas 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
36
|
Kim MY, Woo EM, Chong YTE, Homenko DR, Lee Kraus W. Acetylation of estrogen receptor alpha by p300 at lysines 266 and 268 enhances the deoxyribonucleic acid binding and transactivation activities of the receptor. Mol Endocrinol 2006; 20:1479-93. [PMID: 16497729 PMCID: PMC1483068 DOI: 10.1210/me.2005-0531] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Using a variety of biochemical and cell-based approaches, we show that estrogen receptor alpha (ERalpha) is acetylated by the p300 acetylase in a ligand- and steroid receptor coactivator-dependent manner. Using mutagenesis and mass spectrometry, we identified two conserved lysine residues in ERalpha (Lys266 and Lys268) that are the primary targets of p300-mediated acetylation. These residues are acetylated in cells, as determined by immunoprecipitation-Western blotting experiments using an antibody that specifically recognizes ERalpha acetylated at Lys266 and Lys268. The acetylation of ERalpha by p300 is reversed by native cellular deacetylases, including trichostatin A-sensitive enzymes (i.e. class I and II deacetylases) and nicotinamide adenine dinucleotide-dependent/nicotinamide-sensitive enzymes (i.e. class III deacetylases, such as sirtuin 1). Acetylation at Lys266 and Lys268, or substitution of the same residues with glutamine (i.e. K266/268Q), a residue that mimics acetylated lysine, enhances the DNA binding activity of ERalpha in EMSAs. Likewise, substitution of Lys266 and Lys268 with glutamine enhances the ligand-dependent activity of ERalpha in a cell-based reporter gene assay. Collectively, our results implicate acetylation as a modulator of the ligand-dependent gene regulatory activity of ERalpha. Such regulation is likely to play a role in estrogen-dependent signaling outcomes in a variety of estrogen target tissues in both normal and pathological states.
Collapse
Affiliation(s)
- Mi Young Kim
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Eileen M. Woo
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10021
| | | | - Daria R. Homenko
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - W. Lee Kraus
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021
- Department of Molecular Biology and Genetics Cornell University 465 Biotechnology Building Ithaca, NY 14853 Phone: 607-255-6087; Fax: 607-255-6249; E-mail:
| |
Collapse
|
37
|
Abstract
The biological effects of hormones, ranging from organogenesis, metabolism, and proliferation, are transduced through nuclear receptors (NRs). Over the last decade, NRs have been used as a model to study transcriptional control. The conformation of activated NRs is favorable for the recruitment of coactivators, which promote transcriptional activation by directly communicating with chromatin. This review will focus on the function of different classes of coactivators and associated complexes, and on progress in our understanding of gene activation by NRs through chromatin remodeling.
Collapse
Affiliation(s)
- Wei Xu
- McArdle Laboratory for Cancer Research, Madison, WI 53706, USA.
| |
Collapse
|
38
|
Chi SW, Lee SH, Kim DH, Ahn MJ, Kim JS, Woo JY, Torizawa T, Kainosho M, Han KH. Structural Details on mdm2-p53 Interaction. J Biol Chem 2005; 280:38795-802. [PMID: 16159876 DOI: 10.1074/jbc.m508578200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mdm2 is a cellular antagonist of p53 that keeps a balanced cellular level of p53. The two proteins are linked by a negative regulatory feedback loop and physically bind to each other via a putative helix formed by residues 18-26 of p53 transactivation domain (TAD) and its binding pocket located within the N-terminal 100-residue domain of mdm2 (Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A. J., and Pavletich, N. P. (1996) Science 274, 948-953). In a previous report we demonstrated that p53 TAD in the mdm2-freee state is mostly unstructured but contains two nascent turns in addition to a "preformed" helix that is the same as the putative helix mediating p53-mdm2 binding. Here, using heteronuclear multidimensional NMR methods, we show that the two nascent turn motifs in p53 TAD, turn I (residues 40-45) and turn II (residues 49-54), are also capable of binding to mdm2. In particular, the turn II motif has a higher mdm2 binding affinity ( approximately 20 mum) than the turn I and targets the same site in mdm2 as the helix. Upon mdm2 binding this motif becomes a well defined full helix turn whose hydrophobic face formed by the side chains of Ile-50, Trp-53, and Phe-54 inserts deeply into the helix binding pocket. Our results suggest that p53-mdm2 binding is subtler than previously thought and involves global contacts such as multiple "non-contiguous" minimally structured motifs instead of being localized to one small helix mini-domain in p53 TAD.
Collapse
Affiliation(s)
- Seung-Wook Chi
- Protein Analysis and Design Laboratory, Division of Drug Discovery, Korea Research Institute of Bioscience and Biotechnology, Yusong P. O. Box 115, Daejon 305-600, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pavri R, Lewis B, Kim TK, Dilworth FJ, Erdjument-Bromage H, Tempst P, de Murcia G, Evans R, Chambon P, Reinberg D. PARP-1 Determines Specificity in a Retinoid Signaling Pathway via Direct Modulation of Mediator. Mol Cell 2005; 18:83-96. [PMID: 15808511 DOI: 10.1016/j.molcel.2005.02.034] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2004] [Revised: 01/26/2005] [Accepted: 02/28/2005] [Indexed: 12/20/2022]
Abstract
We show that PARP-1 is indispensable to retinoic acid receptor (RAR)-mediated transcription from the RARbeta2 promoter in a highly purified, reconstituted transcription system and that RA-inducible expression of all RARbeta isoforms is abrogated in PARP-1(-/-) cells in vivo. Importantly, PARP-1 activity was independent of its catalytic domain. PARP-1 directly interacts with RAR and Mediator. Chromatin immunoprecipitation experiments confirmed the presence of PARP-1 and Mediator on RAR-responsive promoters in vivo. Importantly, Mediator was inactive (Cdk8+) under basal conditions but was activated (Cdk8-) upon induction. However, in PARP-1(-/-) cells, Mediator was retained in its inactive state (Cdk8+) upon induction consistent with the absence of gene expression. PARP-1 became dispensable for ligand-dependent transcription in a chromatin reconstituted transcription assay when Mediator was devoid of the Cdk8 module (CRSP). PARP-1 appears to function as a specificity factor regulating the RA-induced switch of Mediator from the inactive (Cdk8+) to the active (Cdk8-) state in RAR-dependent transcription.
Collapse
Affiliation(s)
- Rushad Pavri
- Department of Biochemistry, Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey, 683 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kim K, Barhoumi R, Burghardt R, Safe S. Analysis of Estrogen Receptor α-Sp1 Interactions in Breast Cancer Cells by Fluorescence Resonance Energy Transfer. Mol Endocrinol 2005; 19:843-54. [PMID: 15637147 DOI: 10.1210/me.2004-0326] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Estrogen-dependent regulation of several genes associated with cell cycle progression, proliferation, and nucleotide metabolism in breast cancer cells is associated with interactions of estrogen receptor (ER)alpha/Sp1 with GC-rich promoter elements. This study investigates ligand-dependent interactions of ERalpha and Sp1 in MCF-7 breast cancer cells using fluorescence resonance energy transfer (FRET). Chimeric ERalpha and Sp1 proteins fused to cyan fluorescent protein or yellow fluorescent protein were transfected into MCF-7 cells, and a FRET signal was induced after treatment with 17beta-estradiol, 4'-hydroxytamoxifen, or ICI 182,780. Induction of FRET by these ERalpha agonists/antagonists was paralleled by their activation of gene expression in cells transfected with a construct (pSp1(3)) containing three tandem Sp1 binding sites linked to a luciferase reporter gene. In contrast, interactions between ERalpha and Sp1DeltaDBD [a DNA binding domain (DBD) deletion mutant of Sp1] are not observed, and this is consistent with the critical role of the C-terminal DBD of Sp1 for interaction with ERalpha. Results of the FRET assay are consistent with in vitro studies on ERalpha/Sp1 interactions and transactivation, and confirm that ERalpha and Sp1 interact in living breast cancer cells.
Collapse
Affiliation(s)
- Kyounghyun Kim
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, Veterinary Research Building 409, College Station, Texas 77843-4466, USA
| | | | | | | |
Collapse
|
41
|
Choi E, Lee S, Yeom SY, Kim GH, Lee JW, Kim SW. Characterization of activating signal cointegrator-2 as a novel transcriptional coactivator of the xenobiotic nuclear receptor constitutive androstane receptor. Mol Endocrinol 2005; 19:1711-9. [PMID: 15764585 DOI: 10.1210/me.2005-0066] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Activating signal cointegrator-2 (ASC-2) is a recently isolated transcriptional coactivator protein for a variety of different transcription factors, including many members of the nuclear receptor superfamily. In this report, we demonstrate that ASC-2 also serves as a coactivator of the xenobiotic nuclear receptor constitutive androstane receptor (CAR). First, transcriptional activation by CAR was enhanced by cotransfected ASC-2 in CV-1 and HeLa cells. In contrast, CAR transactivation was significantly impaired in HepG2 cells stably expressing specific small interfering RNA directed against ASC-2. Consistent with these results, chromatin immunoprecipitation experiments revealed that ASC-2 is recruited to the known CAR target genes in a ligand-dependent manner. Secondly, CAR specifically interacted with the first LXXLL motif of ASC-2, and these interactions were stimulated by CAR agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene and repressed by CAR inverse agonist androstanol, suggesting that this motif may mediate the interactions of ASC-2 and CAR in vivo. In support of this idea, DN1, a fragment of ASC-2 encompassing the first LXXLL motif, suppressed CAR transactivation, and coexpressed ASC-2 but not other LXXLL-type coactivators such as thyroid hormone receptor-associated protein 220 reversed this repression. Finally, CAR was recently found to play a pivotal role in effecting the severe acetaminophen-induced liver damage. Interestingly, transgenic mice expressing DN1 were resistant to the acetaminophen-induced hepatotoxicity and expression of a series of the known CAR target genes was specifically repressed in these transgenic mice. Taken together, these results strongly suggest that ASC-2 is a bona fide coactivator of the xenobiotic nuclear receptor CAR and mediate the specific xenobiotic response by CAR in vivo.
Collapse
Affiliation(s)
- Eunho Choi
- Division Diabetes, Endocrinology & Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
42
|
Dennis AP, Lonard DM, Nawaz Z, O'Malley BW. Inhibition of the 26S proteasome blocks progesterone receptor-dependent transcription through failed recruitment of RNA polymerase II. J Steroid Biochem Mol Biol 2005; 94:337-46. [PMID: 15857753 DOI: 10.1016/j.jsbmb.2004.11.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 11/29/2004] [Indexed: 10/25/2022]
Abstract
In the present study, we investigated the involvement of protein degradation via the 26S proteasome during progesterone receptor (PR)-mediated transcription in T-47D cells containing a stably integrated MMTV-CAT reporter construct (CAT0 cells). Progesterone induced CAT and HSD11beta2 transcription while co-treatment with the proteasome inhibitor, MG132, blocked PR-induced transcription in a time-dependent fashion. MG132 treatment also inhibited transcription of beta-actin and cyclophilin, but not two proteasome subunit genes, PSMA1 and PSMC1, indicating that proteasome inhibition affects a subset of RNA polymerase II (RNAP(II))-regulated genes. Progesterone-mediated recruitment of RNAP(II) was blocked by MG132 treatment at time points later than 1 h that was not dependent on the continued presence of PR, associated cofactors, and components of the general transcription machinery, supporting the concept that proteasome-mediated degradation is needed for continued transcription. Surprisingly, progesterone-mediated acetylation of histone H4 was inhibited by MG132 with the concomitant recruitment of HDAC3, NCoR, and SMRT. We demonstrate that the steady-state protein levels of SMRT and NCoR are higher in the presence of MG132 in CAT0 cells, consistent with other reports that SMRT and NCoR are targets of the 26S proteasome. However, inhibition of histone deacetylation by trichostatin A (TSA) treatment or SMRT/NCoR knockdown by siRNA did not restore MG132-inhibited progesterone-dependent transcription. Therefore, events other than histone deacetylation and stability of SMRT and NCoR must also play a role in inhibition of PR-mediated transcription.
Collapse
Affiliation(s)
- Andrew P Dennis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
43
|
Dennis AP, O'Malley BW. Rush hour at the promoter: how the ubiquitin-proteasome pathway polices the traffic flow of nuclear receptor-dependent transcription. J Steroid Biochem Mol Biol 2005; 93:139-51. [PMID: 15860256 DOI: 10.1016/j.jsbmb.2004.12.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptor-dependent transcription requires the functional activities of many proteins in order to achieve proper gene expression. Progress in understanding transcription mechanisms has revealed the unexpected involvement of the ubiquitin-proteasome pathway in the transcriptional process. In some instances, stabilization of the transcription protein augments the functional role or activation state of that protein, but other evidence supports the hypothesis that degradation of that factor may be required in order for transcription to proceed. Perhaps most peculiar is the observation that several yeast models support the uncoupling of ubiquitylation from concomitant proteasome-mediated degradation, with the former responsible for regulating posttranslational modification of histones and controlling differential recruitment of a transcription factor to distinct promoters. Additionally, the ATPases of the 19S proteasome regulatory cap have been shown to function in transcription elongation, independently of their role in proteolysis. This review summarizes and discusses progress thus far in integrating the disparate fields of ubiquitylation and proteasome-mediated protein degradation with gene transcription.
Collapse
Affiliation(s)
- Andrew P Dennis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
44
|
Tamrazi A, Carlson KE, Rodriguez AL, Katzenellenbogen JA. Coactivator proteins as determinants of estrogen receptor structure and function: spectroscopic evidence for a novel coactivator-stabilized receptor conformation. Mol Endocrinol 2005; 19:1516-28. [PMID: 15661830 DOI: 10.1210/me.2004-0458] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The direct regulation of gene transcription by nuclear receptors, such as the estrogen receptor (ER), involves not just ligand and DNA binding but the recruitment of coregulators. Typically, recruitment of p160 coactivator proteins to agonist-liganded ER is considered to be unidirectional, with ligand binding stabilizing an ER ligand binding domain (LBD) conformation that favors coactivator interaction. Using fluorophore-labeled ERalpha-LBDs, we present evidence for a pronounced stabilization of ER conformation that results from coactivator binding, manifest by decreased ER sensitivity to proteases and reduced conformational dynamics, as well as for the formation of a novel coactivator-stabilized (costabilized) receptor conformation, that can be conveniently monitored by the generation of an excimer emission from pyrene-labeled ERalpha-LBDs. This costabilized conformation may embody features required to support ER transcriptional activity. Different classes of coactivator proteins combine with estrogen agonists of different structure to elicit varying degrees of this receptor stabilization, and antagonists and coactivator binding inhibitors disfavor the costabilized conformation. Remarkably, high concentrations of coactivators engender this conformation even in apo- and antagonist-bound ERs (more so with selective ER modulators than with pure antagonists), providing an in vitro model for the development of resistance to hormone therapy in breast cancer.
Collapse
Affiliation(s)
- Anobel Tamrazi
- Department of Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
45
|
Kim SH, Tamrazi A, Carlson KE, Katzenellenbogen JA. A proteomic microarray approach for exploring ligand-initiated nuclear hormone receptor pharmacology, receptor selectivity, and heterodimer functionality. Mol Cell Proteomics 2004; 4:267-77. [PMID: 15613364 DOI: 10.1074/mcp.m400192-mcp200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear hormone receptors (NHRs) are major regulators of development and homeostasis in multiple organ systems. These proteins are ligand-modulated transcription factors that regulate gene expression in response to changes in circulating levels of their cognate hormones or hormone analogs. When NHRs bind ligands, they adopt distinct conformations that enable or disable the binding of coregulator proteins in a manner that reflects the agonist versus antagonist character of the ligand. Using the estrogen receptor ligand binding domain as a representative member of the NHR family, we show the development of functional protein microarrays and use them to explore coactivator recruitment and NHR homo- and heterodimer functionality. These NHR protein microarrays can be fabricated in either a forward mode (coactivator recruited to printed NHR) or a reversed mode (NHR recruited to printed coactivator). From these microarrays, we can predict the potency and pharmacological character of various NHR ligands through the nature of their coactivator recruitment. Additionally different coactivator proteins can be functionally classified and their affinity for NHRs can be quantified. NHR-selective antagonist ligands and small molecule coactivator mimics disrupt the coactivator-NHR complex. This novel proteomic approach was also used to assess coactivator recruitment to explore heterodimer functionality. Heterodimers of the estrogen receptor were found only to recruit coactivators when both monomers are bound with agonist ligands, an observation that provides an insight into the complex biology of hormones that act on tissues containing both NHR subtypes. We can extend this NHR proteomic approach to the analysis of multidomain full-length NHR constructs and can concurrently monitor the activation state of different classes of NHRs with a mixture of endogenous or synthetic ligands of varying NHR selectivity and pharmacology.
Collapse
Affiliation(s)
- Sung Hoon Kim
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
46
|
Meng G, Zhao Y, Nag A, Zeng M, Dimri G, Gao Q, Wazer DE, Kumar R, Band H, Band V. Human ADA3 binds to estrogen receptor (ER) and functions as a coactivator for ER-mediated transactivation. J Biol Chem 2004; 279:54230-40. [PMID: 15496419 DOI: 10.1074/jbc.m404482200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently identified the hADA3 protein, the human homologue of yeast transcriptional coactivator yADA3, as a novel HPV16 E6 target. Using ectopic expression approaches, we further demonstrated that hADA3 directly binds to the 9-cis retinoic acid receptors alpha and beta, and functions as a coactivator for retinoid receptor-mediated transcriptional activation. Here, we examined the role of endogenous hADA3 as a coactivator for estrogen receptor (ER), an important member of the nuclear hormone receptor superfamily. We show that ADA3 directly interacts with ER alpha and ER beta. Using the chromatin immunoprecipitation assay, we also show that hADA3 is a component of the activator complexes bound to the native ER response element within the promoter of the estrogen-responsive gene pS2. Furthermore, using an ER response element-luciferase reporter, we show that overexpression of ADA3 enhances the ER alpha- and ER beta-mediated sequence-specific transactivation. Reverse transcription-PCR analysis showed an ADA3-mediated increase in estrogen-induced expression of the endogenous pS2 gene. More importantly, using RNA interference against hADA3, we demonstrate that inhibition of endogenous hADA3 inhibited ER-mediated transactivation and the estrogen-induced increase in the expression of pS2, cathepsin D, and progesterone receptor, three widely known ER-responsive genes. The HPV E6 protein, by targeting hADA3 for degradation, inhibited the ER alpha-mediated transactivation and the protein expression of ER target genes. Thus, our results demonstrate that ADA3 directly binds to human estrogen receptor and enhances the transcription of ER-responsive genes, suggesting a broader role of mammalian hADA3 as a coactivator of nuclear hormone receptors and the potential role of these pathways in HPV oncogenesis.
Collapse
Affiliation(s)
- Gaoyuan Meng
- Department of Radiation Oncology, New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wu Q, Burghardt R, Safe S. Vitamin D-interacting protein 205 (DRIP205) coactivation of estrogen receptor alpha (ERalpha) involves multiple domains of both proteins. J Biol Chem 2004; 279:53602-12. [PMID: 15471764 DOI: 10.1074/jbc.m409778200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin D-interacting protein 205 (DRIP205) is a mediator complex protein that anchors the complex to the estrogen receptor (ER) and other nuclear receptors (NRs). In ZR-75 breast cancer cells treated with 17beta-estradiol (E2) and transfected with a construct containing three tandem estrogen responsive elements (pERE(3)), DRIP205 coactivates ERalpha-mediated transactivation. DRIP205Delta587-636 is a DRIP205 mutant in which both NR boxes within amino acids 587-636 have been deleted and, in parallel transfection studies, DRIP205Delta587-636 also coactivates ERalpha. Moreover, both wild-type and variant DRIP205 also colocalize with ERalpha in the nuclei of transfected cells. Extensive deletion analysis of DRIP205 shows that multiple domains of this protein play a role in coactivation of ERalpha and in interactions with ERalpha. Coactivation of ERalpha by DRIP205 does not require NR boxes, and variants with deletion of N-terminal (amino acids 1-639) and C-terminal (amino acids 576-1566) significantly coactivate ERalpha. DRIP205 resembles p160 coactivators that also interact with multiple regions of ERalpha; however, unlike p160 coactivators, DRIP205 coactivation of ERalpha does not require NR boxes.
Collapse
Affiliation(s)
- Qian Wu
- Department of Biochemistry and Biophysics, Department of Veterinary Integrative Biosciences, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|