1
|
Kkadan MSP, Jílek Š, Profant V, Kapitán J, Kessler J, Bouř P. Detection of Guanine Quadruplexes by Raman Optical Activity and Quantum-Chemical Interpretation of the Spectra. Chemistry 2024; 30:e202403245. [PMID: 39329464 DOI: 10.1002/chem.202403245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Quadruplexes formed by guanine derivatives or guanine-rich nucleic acids are involved in metabolism and genetic storage of many living organisms, they are used in DNA nanotechnologies or as biosensors. Since many quadruplex geometries are possible the determination of their structures in aqueous solutions is difficult. Raman optical activity (ROA) can make it easier: For guanosine monophosphate (GMP), we observed a distinct change of the spectra upon its condensation and quadruplex formation. The vibrational bands become more numerous, stronger, and narrower. In particular, a huge ROA signal appears below 200 cm-1. The aggregation can be induced by high concentration, low temperature, or by a metal ion. We focused on well-defined quadruplexes stabilized by potassium, where using molecular dynamics and density functional theory the spectra and particular features related to GMP geometric parameters could be understood. The simulations explain the main experimental trends and confirm that the ROA spectroscopy is sensitive to fine structural details, including guanine base twist in the quadruplex helix.
Collapse
Affiliation(s)
- Mohammed Siddhique Para Kkadan
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague, Czech Republic
| | - Štěpán Jílek
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague, Czech Republic
| | - Václav Profant
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague, Czech Republic
| | - Josef Kapitán
- Department of Optics, Faculty of Sciences, Palacký University Olomouc, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| |
Collapse
|
2
|
Ding Y, Li J, Gao Y, Wang X, Wang Y, Zhu C, Liu Q, Zheng L, Qi M, Zhang L, Ji H, Yang F, Fan X, Dong W. Analysis of morphology, histology characteristics, and circadian clock gene expression of Onychostoma macrolepis at the overwintering period and the breeding period. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1265-1279. [PMID: 38568383 DOI: 10.1007/s10695-024-01336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/22/2024] [Indexed: 06/29/2024]
Abstract
Fish typically adapt to their environment through evolutionary traits, and this adaptive strategy plays a critical role in promoting species diversity. Onychostoma macrolepis is a rare and endangered wild species that exhibits a life history of overwintering in caves and breeding in mountain streams. We analyzed the morphological characteristics, histological structure, and expression of circadian clock genes in O. macrolepis to elucidate its adaptive strategies to environmental changes in this study. The results showed that the relative values of O. macrolepis eye diameter, body height, and caudal peduncle height enlarged significantly during the breeding period. The outer layer of the heart was dense; the ventricular myocardial wall was thickened; the fat was accumulated in the liver cells; the red and white pulp structures of the spleen, renal tubules, and glomeruli were increased; and the goblet cells of the intestine were decreased in the breeding period. In addition, the spermatogenic cyst contained mature sperm, and the ovaries were filled with eggs at various stages of development. Throughout the overwintering period, the melano-macrophage center is located between the spleen and kidney, and the melano-macrophage center in the cytoplasm has the ability to synthesize melanin, and is arranged in clusters to form cell clusters or white pulp scattered in it. Circadian clock genes were identified in all organs, exhibiting significant differences between the before/after overwintering period and the breeding period. These findings indicate that the environment plays an important role in shaping the behavior of O. macrolepis, helping the animals to build self-defense mechanisms during cyclical habitat changes. Studying the morphological, histological structure and circadian clock gene expression of O. macrolepis during the overwintering and breeding periods is beneficial for understanding its unique hibernation behavior in caves. Additionally, it provides an excellent biological sample for investigating the environmental adaptability of atypical cavefish species.
Collapse
Affiliation(s)
- Yibin Ding
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jincan Li
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yao Gao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xiaolin Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Shaanxi Dayi Xunlong Biotechnology Co., Ltd, Yangling, 712100, Shaanxi, China
| | - Chao Zhu
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Qimin Liu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Lijuan Zheng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Meng Qi
- China Institute of Selenium Industry, Ankang, 725000, Shaanxi, China
| | - Lijun Zhang
- China Institute of Selenium Industry, Ankang, 725000, Shaanxi, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
- Shaanxi Dayi Xunlong Biotechnology Co., Ltd, Yangling, 712100, Shaanxi, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
- Shaanxi Dayi Xunlong Biotechnology Co., Ltd, Yangling, 712100, Shaanxi, China.
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Gayford JH, Brazeau MD, Naylor GJP. Evolutionary trends in the elasmobranch neurocranium. Sci Rep 2024; 14:11471. [PMID: 38769415 PMCID: PMC11106257 DOI: 10.1038/s41598-024-62004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
The neurocranium (braincase) is one of the defining vertebrate characters. Housing the brain and other key sensory organs, articulating with the jaws and contributing to the shape of the anteriormost portion of the body, the braincase is undoubtedly of great functional importance. Through studying relationships between braincase shape and ecology we can gain an improved understanding of form-function relationships in extant and fossil taxa. Elasmobranchii (sharks and rays) represent an important case study of vertebrate braincase diversity as their neurocranium is simplified and somewhat decoupled from other components of the cranium relative to other vertebrates. Little is known about the associations between ecology and braincase shape in this clade. In this study we report patterns of mosaic cranial evolution in Elasmobranchii that differ significantly from those present in other clades. The degree of evolutionary modularity also differs between Selachii and Batoidea. In both cases innovation in the jaw suspension appears to have driven shifts in patterns of integration and modularity, subsequently facilitating ecological diversification. Our results confirm the importance of water depth and biogeography as drivers of elasmobranch cranial diversity and indicate that skeletal articulation between the neurocranium and jaws represents a major constraint upon the evolution of braincase shape in vertebrates.
Collapse
Affiliation(s)
- Joel H Gayford
- Department of Life Sciences, Silwood Park Campus, Imperial College London, London, UK.
- Shark Measurements, London, UK.
| | - Martin D Brazeau
- Department of Life Sciences, Silwood Park Campus, Imperial College London, London, UK
- The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Gavin J P Naylor
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Gastineau R, Otis C, Boyle B, Lemieux C, Turmel M, St-Cyr J, Koken M. The mitochondrial genome of the bioluminescent fish Malacosteus niger Ayres, 1848 (Stomiidae, Actinopterygii) is large and complex, and contains an inverted-repeat structure. Zookeys 2023; 1157:177-191. [DOI: 10.3897/zookeys.1157.97921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/17/2023] [Indexed: 04/08/2023] Open
Abstract
We determined the complete mitogenome sequence of the bioluminescent fish Malacosteus niger using long-read sequencing technologies. The 21,263 bp mitogenome features a complex structure with two copies of a 1198-bp inverted-repeat and a region of 2616-bp containing alternating copies of 16 and 26 bp repeat elements. Whole mitogenome phylogenies inferred from both nucleotide and amino-acid datasets place M. niger among Melanostomiinae. The need for additional complete mitogenome sequences from the subfamily Malacosteinae is discussed.
Collapse
|
5
|
Nag TC, Chakraborti S, Das D. The eye of the tongue sole Cynoglossus bilineatus (Lacepède, 1802) (Teleostei: Pleuronectiformes). Tissue Cell 2021; 74:101710. [PMID: 34953346 DOI: 10.1016/j.tice.2021.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
Abstract
We report the ocular features of the tongue sole, Cynoglossus bilineatus (Lacepède, 1802), a marine, bottom-dwelling flatfish. In this species, both eyes are located juxtaposed on the same side of the flat head. Histology revealed the sclera to be fibrous (collagenous) in nature. The choroid possesses the choriocapillaris, and adjacent to it, 3-4 rows of iridophores with stacks of cytoplasmic platelets. No choroidal gland is present. The retinal pigment epithelium (RPE) contains scanty melanin granules. Its vitread half is modified into a dense tapetum with lipid spheres (about 0.34 μm in diameter). In juveniles, the tapetal spheres arise by budding from the smooth endoplasmic reticulum of the RPE. There are blood vessels within the retina; the vitreal vessels penetrate the retina and ramify close to the level of the outer limiting membrane. The vessels are capillaries in nature. The photoreceptor layer contains abundant rods, and twin cones and single cones, being arranged into square mosaics. The optic disc is non-pleated and shows pan- cytokeratin immunopositivity, which is related to the bundled cytokeratin filaments detected in astrocytes by electron microscopy. The retinal tapetum and choroidal iridophores help the species to live in a muddy bottom having dim-light environment. The lack of a choroidal gland, hypoxic aquatic condition and presence of a dense retinal tapetum (that limits O2 transport to the photoreceptors) appear to have favored the proliferation of vitreal vessels within the retina in this species. The fibrous sclera has probably arisen to provide structural support to the eye in migration from the lateral to the dorsal aspect of the head during larval metamorphosis.
Collapse
Affiliation(s)
- T C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - S Chakraborti
- Department of Zoology, Bidhannagar College, Salt Lake 1, Kolkata, 700064, West Bengal, India
| | - D Das
- Department of Zoology, Taki Government College, Taki, North 24 Parganas, West Bengal, 743429, India
| |
Collapse
|
6
|
Tosetto L, Williamson JE, White TE, Hart NS. Can the Dynamic Colouration and Patterning of Bluelined Goatfish (Mullidae; Upeneichthys lineatus) Be Perceived by Conspecifics? BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:103-123. [PMID: 34856558 DOI: 10.1159/000519894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Bluelined goatfish (Upeneichthys lineatus) exhibit dynamic body colour changes and transform rapidly from a pale, buff/white, horizontally banded pattern to a conspicuous, vertically striped, red pattern when foraging. This red pattern is potentially an important foraging signal for communication with conspecifics, provided that U. lineatus can detect and discriminate the pattern. Using both physiological and behavioural experiments, we first examined whether U. lineatus possess visual pigments with sensitivity to long ("red") wavelengths of light, and whether they can discriminate the colour red. Microspectrophotometric measurements of retinal photoreceptors showed that while U. lineatuslack visual pigments dedicated to the red part of the spectrum, their pigments likely confer some sensitivity in this spectral band. Behavioural colour discrimination experiments suggested that U. lineatuscan distinguish a red reward stimulus from a grey distractor stimulus of variable brightness. Furthermore, when presented with red stimuli of varying brightness they could mostly discriminate the darker and lighter reds from the grey distractor. We also obtained anatomical estimates of visual acuity, which suggest that U. lineatus can resolve the contrasting bands of conspecifics approximately 7 m away in clear waters. Finally, we measured the spectral reflectance of the red and white colouration on the goatfish body. Visual models suggest that U. lineatus can discriminate both chromatic and achromatic differences in body colouration where longer wavelength light is available. This study demonstrates that U. lineatus have the capacity for colour vision and can likely discriminate colours in the long-wavelength region of the spectrum where the red body pattern reflects light strongly. The ability to see red may therefore provide an advantage in recognising visual signals from conspecifics. This research furthers our understanding of how visual signals have co-evolved with visual abilities, and the role of visual communication in the marine environment.
Collapse
Affiliation(s)
- Louise Tosetto
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jane E Williamson
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Thomas E White
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Nathan S Hart
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Lupše N, Cortesi F, Freese M, Marohn L, Pohlman JD, Wysujack K, Hanel R, Musilova Z. Visual gene expression reveals a cone to rod developmental progression in deep-sea fishes. Mol Biol Evol 2021; 38:5664-5677. [PMID: 34562090 PMCID: PMC8662630 DOI: 10.1093/molbev/msab281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Vertebrates use cone cells in the retina for colour vision and rod cells to see in dim light. Many deep-sea fishes have adapted to their environment to have only rod cells in the retina, while both rod and cone genes are still preserved in their genomes. As deep-sea fish larvae start their lives in the shallow, and only later submerge to the depth, they have to cope with diverse environmental conditions during ontogeny. Using a comparative transcriptomic approach in 20 deep-sea fish species from eight teleost orders, we report on a developmental cone-to-rod switch. While adults mostly rely on rod opsin (RH1) for vision in dim light, larvae almost exclusively express middle-wavelength-sensitive ("green") cone opsins (RH2) in their retinas. The phototransduction cascade genes follow a similar ontogenetic pattern of cone- followed by rod-specific gene expression in most species, except for the pearleye and sabretooth (Aulopiformes), in which the cone cascade remains dominant throughout development. By inspecting the whole genomes of five deep-sea species (four of them sequenced within this study: Idiacanthus fasciola, Chauliodus sloani; Stomiiformes; Coccorella atlantica, and Scopelarchus michaelsarsi; Aulopiformes), we found that deep-sea fish possess one or two copies of the rod RH1 opsin gene, and up to seven copies of the cone RH2 opsin genes in their genomes, while other cone opsin classes have been mostly lost. Our findings hence provide molecular evidence for a limited opsin gene repertoire and a conserved vertebrate pattern whereby cone photoreceptors develop first and rod photoreceptors are added only at later developmental stages.
Collapse
Affiliation(s)
- Nik Lupše
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Fabio Cortesi
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - Marko Freese
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Lasse Marohn
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Jan-Dag Pohlman
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Klaus Wysujack
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Reinhold Hanel
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Zuzana Musilova
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| |
Collapse
|
8
|
Musilova Z, Salzburger W, Cortesi F. The Visual Opsin Gene Repertoires of Teleost Fishes: Evolution, Ecology, and Function. Annu Rev Cell Dev Biol 2021; 37:441-468. [PMID: 34351785 DOI: 10.1146/annurev-cellbio-120219-024915] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual opsin genes expressed in the rod and cone photoreceptor cells of the retina are core components of the visual sensory system of vertebrates. Here, we provide an overview of the dynamic evolution of visual opsin genes in the most species-rich group of vertebrates, teleost fishes. The examination of the rich genomic resources now available for this group reveals that fish genomes contain more copies of visual opsin genes than are present in the genomes of amphibians, reptiles, birds, and mammals. The expansion of opsin genes in fishes is due primarily to a combination of ancestral and lineage-specific gene duplications. Following their duplication, the visual opsin genes of fishes repeatedly diversified at the same key spectral-tuning sites, generating arrays of visual pigments sensitive from the ultraviolet to the red spectrum of the light. Species-specific opsin gene repertoires correlate strongly with underwater light habitats, ecology, and color-based sexual selection. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Zuzana Musilova
- Department of Zoology, Charles University, Prague 128 44, Czech Republic;
| | | | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Queensland, Australia;
| |
Collapse
|
9
|
Pucci C, Martinelli C, Degl'Innocenti A, Desii A, De Pasquale D, Ciofani G. Light-Activated Biomedical Applications of Chlorophyll Derivatives. Macromol Biosci 2021; 21:e2100181. [PMID: 34212510 DOI: 10.1002/mabi.202100181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/06/2021] [Indexed: 02/01/2023]
Abstract
Tetrapyrroles are the basis of essential physiological functions in most living organisms. These compounds represent the basic scaffold of porphyrins, chlorophylls, and bacteriochlorophylls, among others. Chlorophyll derivatives, obtained by the natural or artificial degradation of chlorophylls, present unique properties, holding great potential in the scientific and medical fields. Indeed, they can act as cancer-preventing agents, antimutagens, apoptosis inducers, efficient antioxidants, as well as antimicrobial and immunomodulatory molecules. Moreover, thanks to their peculiar optical properties, they can be exploited as photosensitizers for photodynamic therapy and as vision enhancers. Most of these molecules, however, are highly hydrophobic and poorly soluble in biological fluids, and may display undesired toxicity due to accumulation in healthy tissues. The advent of nanomedicine has prompted the development of nanoparticles acting as carriers for chlorophyll derivatives, facilitating their targeted administration with demonstrated applicability in diagnosis and therapy. In this review, the chemical and physical properties of chlorophyll derivatives that justify their usage in the biomedical field, with particular regard to light-activated dynamics are described. Their role as antioxidants and photoactive agents are discussed, introducing the most recent nanomedical applications and focusing on inorganic and organic nanocarriers exploited in vitro and in vivo.
Collapse
Affiliation(s)
- Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Chiara Martinelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Andrea Degl'Innocenti
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Andrea Desii
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| |
Collapse
|
10
|
Corbo JC. Vitamin A 1/A 2 chromophore exchange: Its role in spectral tuning and visual plasticity. Dev Biol 2021; 475:145-155. [PMID: 33684435 DOI: 10.1016/j.ydbio.2021.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 01/20/2023]
Abstract
Vertebrate rod and cone photoreceptors detect light via a specialized organelle called the outer segment. This structure is packed with light-sensitive molecules known as visual pigments that consist of a G-protein-coupled, seven-transmembrane protein known as opsin, and a chromophore prosthetic group, either 11-cis retinal ('A1') or 11-cis 3,4-didehydroretinal ('A2'). The enzyme cyp27c1 converts A1 into A2 in the retinal pigment epithelium. Replacing A1 with A2 in a visual pigment red-shifts its spectral sensitivity and broadens its bandwidth of absorption at the expense of decreased photosensitivity and increased thermal noise. The use of vitamin A2-based visual pigments is strongly associated with the occupation of aquatic habitats in which the ambient light is red-shifted. By modulating the A1/A2 ratio in the retina, an organism can dynamically tune the spectral sensitivity of the visual system to better match the predominant wavelengths of light in its environment. As many as a quarter of all vertebrate species utilize A2, at least during a part of their life cycle or under certain environmental conditions. A2 utilization therefore represents an important and widespread mechanism of sensory plasticity. This review provides an up-to-date account of the A1/A2 chromophore exchange system.
Collapse
Affiliation(s)
- Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, 63110, United States.
| |
Collapse
|
11
|
Falco F, Barra M, Wu G, Dioguardi M, Stincone P, Cuttitta A, Torri M, Bonanno A, Cammarata M. Engraulis encrasicolus larvae from two different environmental spawning areas of the Central Mediterranean Sea: first data on amino acid profiles and biochemical evaluations. EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1823493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- F. Falco
- Marine Biological and Biotechnological Resources Institute (IRBIM), National Research Council (CNR), Italy
| | - M. Barra
- Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment (IAS), Units of Capo Granitola (TP) and Naples, Italy
| | - G. Wu
- Department of Animal Science, Texas A&M University, TX, USA
| | - M. Dioguardi
- Department of Earth and Marine Sciences, University of Palermo, Italy
| | - P. Stincone
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Brazil
| | - A. Cuttitta
- Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment (IAS), Units of Capo Granitola (TP) and Naples, Italy
| | - M. Torri
- Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment (IAS), Units of Capo Granitola (TP) and Naples, Italy
| | - A. Bonanno
- Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment (IAS), Units of Capo Granitola (TP) and Naples, Italy
| | - M. Cammarata
- Department of Earth and Marine Sciences, University of Palermo, Italy
| |
Collapse
|
12
|
de Busserolles F, Fogg L, Cortesi F, Marshall J. The exceptional diversity of visual adaptations in deep-sea teleost fishes. Semin Cell Dev Biol 2020; 106:20-30. [PMID: 32536437 DOI: 10.1016/j.semcdb.2020.05.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
The deep-sea is the largest and one of the dimmest habitats on earth. In this extreme environment, every photon counts and may make the difference between life and death for its inhabitants. Two sources of light are present in the deep-sea; downwelling light, that becomes dimmer and spectrally narrower with increasing depth until completely disappearing at around 1000 m, and bioluminescence, the light emitted by animals themselves. Despite these relatively dark and inhospitable conditions, many teleost fish have made the deep-sea their home, relying heavily on vision to survive. Their visual systems have had to adapt, sometimes in astonishing and bizarre ways. This review examines some aspects of the visual system of deep-sea teleosts and highlights the exceptional diversity in both optical and retinal specialisations. We also reveal how widespread several of these adaptations are across the deep-sea teleost phylogeny. Finally, the significance of some recent findings as well as the surprising diversity in visual adaptations is discussed.
Collapse
Affiliation(s)
- Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Lily Fogg
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Justin Marshall
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
13
|
Carleton KL, Escobar-Camacho D, Stieb SM, Cortesi F, Marshall NJ. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J Exp Biol 2020; 223:jeb193334. [PMID: 32327561 PMCID: PMC7188444 DOI: 10.1242/jeb.193334] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among vertebrates, teleost eye diversity exceeds that found in all other groups. Their spectral sensitivities range from ultraviolet to red, and the number of visual pigments varies from 1 to over 40. This variation is correlated with the different ecologies and life histories of fish species, including their variable aquatic habitats: murky lakes, clear oceans, deep seas and turbulent rivers. These ecotopes often change with the season, but fish may also migrate between ecotopes diurnally, seasonally or ontogenetically. To survive in these variable light habitats, fish visual systems have evolved a suite of mechanisms that modulate spectral sensitivities on a range of timescales. These mechanisms include: (1) optical media that filter light, (2) variations in photoreceptor type and size to vary absorbance and sensitivity, and (3) changes in photoreceptor visual pigments to optimize peak sensitivity. The visual pigment changes can result from changes in chromophore or changes to the opsin. Opsin variation results from changes in opsin sequence, opsin expression or co-expression, and opsin gene duplications and losses. Here, we review visual diversity in a number of teleost groups where the structural and molecular mechanisms underlying their spectral sensitivities have been relatively well determined. Although we document considerable variability, this alone does not imply functional difference per se. We therefore highlight the need for more studies that examine species with known sensitivity differences, emphasizing behavioral experiments to test whether such differences actually matter in the execution of visual tasks that are relevant to the fish.
Collapse
Affiliation(s)
- Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Sara M Stieb
- Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| |
Collapse
|
14
|
The retinal pigments of the whale shark ( Rhincodon typus) and their role in visual foraging ecology. Vis Neurosci 2019; 36:E011. [PMID: 31718726 DOI: 10.1017/s0952523819000105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The spectral tuning properties of the whale shark (Rhincodon typus) rod (rhodopsin or Rh1) and long-wavelength-sensitive (LWS) cone visual pigments were examined to determine whether these retinal pigments have adapted to the broadband light spectrum available for surface foraging or to the narrowband blue-shifted light spectrum available at depth. Recently published whale shark genomes have identified orthologous genes for both the whale shark Rh1 and LWS cone opsins suggesting a duplex retina. Here, the whale shark Rh1 and LWS cone opsin sequences were examined to identify amino acid residues critical for spectral tuning. Surprisingly, the predicted absorbance maximum (λmax) for both the whale shark Rh1 and LWS visual pigments is near 500 nm. Although Rh1 λmax values near 500 nm are typical of terrestrial vertebrates, as well as surface foraging fish, it is uncommon for a vertebrate LWS cone pigment to be so greatly blue-shifted. We propose that the spectral tuning properties of both the whale shark Rh1 and LWS cone pigments are most likely adaptations to the broadband light spectrum available at the surface. Whale shark melanopsin (Opn4) deactivation kinetics was examined to better understand the underlying molecular mechanisms of the pupillary light reflex. Results show that the deactivation rate of whale shark Opn4 is similar to the Opn4 deactivation rate from vertebrates possessing duplex retinae and is significantly faster than the Opn4 deactivation rate from an aquatic rod monochromat lacking functional cone photoreceptors. The rapid deactivation rate of whale shark Opn4 is consistent with a functional cone class and would provide the animal with an exponential increase in the number of photons required for photoreceptor signaling when transitioning from photopic to scotopic light conditions, as is the case when diving.
Collapse
|
15
|
Long-Wavelength Reflecting Filters Found in the Larval Retinas of One Mantis Shrimp Family (Nannosquillidae). Curr Biol 2019; 29:3101-3108.e4. [DOI: 10.1016/j.cub.2019.07.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/22/2019] [Accepted: 07/23/2019] [Indexed: 11/23/2022]
|
16
|
Observations on the retina and ‘optical fold’ of a mesopelagic sabretooth fish, Evermanella balbo. Cell Tissue Res 2019; 378:411-425. [DOI: 10.1007/s00441-019-03060-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/16/2019] [Indexed: 11/26/2022]
|
17
|
Musilova Z, Cortesi F, Matschiner M, Davies WIL, Patel JS, Stieb SM, de Busserolles F, Malmstrøm M, Tørresen OK, Brown CJ, Mountford JK, Hanel R, Stenkamp DL, Jakobsen KS, Carleton KL, Jentoft S, Marshall J, Salzburger W. Vision using multiple distinct rod opsins in deep-sea fishes. Science 2019; 364:588-592. [PMID: 31073066 PMCID: PMC6628886 DOI: 10.1126/science.aav4632] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/16/2019] [Indexed: 02/01/2023]
Abstract
Vertebrate vision is accomplished through light-sensitive photopigments consisting of an opsin protein bound to a chromophore. In dim light, vertebrates generally rely on a single rod opsin [rhodopsin 1 (RH1)] for obtaining visual information. By inspecting 101 fish genomes, we found that three deep-sea teleost lineages have independently expanded their RH1 gene repertoires. Among these, the silver spinyfin (Diretmus argenteus) stands out as having the highest number of visual opsins in vertebrates (two cone opsins and 38 rod opsins). Spinyfins express up to 14 RH1s (including the most blueshifted rod photopigments known), which cover the range of the residual daylight as well as the bioluminescence spectrum present in the deep sea. Our findings present molecular and functional evidence for the recurrent evolution of multiple rod opsin-based vision in vertebrates.
Collapse
Affiliation(s)
- Zuzana Musilova
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fabio Cortesi
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Matschiner
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Palaeontology and Museum, University of Zurich, Zurich, Switzerland
| | - Wayne I L Davies
- UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, The University of Western Australia, Perth, WA, Australia
- Oceans Graduate School, The University of Western Australia, Perth, WA, Australia
| | - Jagdish Suresh Patel
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Sara M Stieb
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Center for Ecology, Evolution and Biogeochemistry, Department of Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Martin Malmstrøm
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Celeste J Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Jessica K Mountford
- UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, The University of Western Australia, Perth, WA, Australia
| | - Reinhold Hanel
- Thünen Institute of Fisheries Ecology, Bremerhaven, Germany
| | | | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Darwish ST, Mohalal ME, Helal MM, El-Sayyad HI. Structural and functional analysis of ocular regions of five marine teleost fishes (Hippocampus hippocampus, Sardina pilchardus, Gobius niger, Mullus barbatus & Solea solea). ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2015.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Samah T. Darwish
- Zoology Department, Al-Arish Faculty of Science, Suez Canal University, Egypt
| | | | - Menna M. Helal
- Zoology Department, Al-Arish Faculty of Science, Suez Canal University, Egypt
| | | |
Collapse
|
19
|
Mitchell J, Yanamala N, Tan YL, Gardner EE, Tirupula KC, Balem F, Sheves M, Nietlispach D, Klein‐Seetharaman J. Structural and Functional Consequences of the Weak Binding of Chlorin e6 to Bovine Rhodopsin. Photochem Photobiol 2019; 95:787-802. [DOI: 10.1111/php.13074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022]
Affiliation(s)
- James Mitchell
- Biomedical Sciences Division Warwick Medical School University of Warwick Coventry UK
| | - Naveena Yanamala
- Department of Structural Biology School of Medicine University of Pittsburgh Pittsburgh PA
| | - Yi Lei Tan
- Department of Biochemistry University of Cambridge Cambridge UK
| | - Eric E. Gardner
- Department of Structural Biology School of Medicine University of Pittsburgh Pittsburgh PA
| | - Kalyan C. Tirupula
- Department of Structural Biology School of Medicine University of Pittsburgh Pittsburgh PA
| | - Fernanda Balem
- Department of Structural Biology School of Medicine University of Pittsburgh Pittsburgh PA
| | - Mordechai Sheves
- Organic Chemistry Department Weizmann Institute of Science Rehovot Israel
| | | | - Judith Klein‐Seetharaman
- Biomedical Sciences Division Warwick Medical School University of Warwick Coventry UK
- Department of Structural Biology School of Medicine University of Pittsburgh Pittsburgh PA
| |
Collapse
|
20
|
de Busserolles F, Marshall NJ. Seeing in the deep-sea: visual adaptations in lanternfishes. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0070. [PMID: 28193815 DOI: 10.1098/rstb.2016.0070] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2016] [Indexed: 11/12/2022] Open
Abstract
Ecological and behavioural constraints play a major role in shaping the visual system of different organisms. In the mesopelagic zone of the deep- sea, between 200 and 1000 m, very low intensities of downwelling light remain, creating one of the dimmest habitats in the world. This ambient light is, however, enhanced by a multitude of bioluminescent signals emitted by its inhabitants, but these are generally dim and intermittent. As a result, the visual system of mesopelagic organisms has been pushed to its sensitivity limits in order to function in this extreme environment. This review covers the current body of knowledge on the visual system of one of the most abundant and intensely studied groups of mesopelagic fishes: the lanternfish (Myctophidae). We discuss how the plasticity, performance and novelty of its visual adaptations, compared with other deep-sea fishes, might have contributed to the diversity and abundance of this family.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - N Justin Marshall
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
21
|
Thomas KN, Robison BH, Johnsen S. Two eyes for two purposes: in situ evidence for asymmetric vision in the cockeyed squids Histioteuthis heteropsis and Stigmatoteuthis dofleini. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0069. [PMID: 28193814 DOI: 10.1098/rstb.2016.0069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 11/12/2022] Open
Abstract
The light environment of the mesopelagic realm of the ocean changes with both depth and viewer orientation, and this has probably driven the high diversity of visual adaptations found among its inhabitants. The mesopelagic 'cockeyed' squids of family Histioteuthidae have unusual eyes, as the left and right eyes are dimorphic in size, shape and sometimes lens pigmentation. This dimorphism may be an adaptation to the two different sources of light in the mesopelagic realm, with the large eye oriented upward to view objects silhouetted against the dim, downwelling sunlight and the small eye oriented slightly downward to view bioluminescent point sources. We used in situ video footage from remotely operated vehicles in the Monterey Submarine Canyon to observe the orientation behaviour of 152 Histioteuthis heteropsis and nine Stigmatoteuthis dofleini We found evidence for upward orientation in the large eye and slightly downward orientation in the small eye, which was facilitated by a tail-up oblique body orientation. We also found that 65% of adult H. heteropsis (n = 69) had yellow pigmentation in the lens of the larger left eye, which may be used to break the counterillumination camouflage of their prey. Finally, we used visual modelling to show that the visual returns provided by increasing eye size are much higher for an upward-oriented eye than for a downward-oriented eye, which may explain the development of this unique visual strategy.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Kate N Thomas
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Bruce H Robison
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
22
|
Gao M, Harish B, Berghaus M, Seymen R, Arns L, McCallum SA, Royer CA, Winter R. Temperature and pressure limits of guanosine monophosphate self-assemblies. Sci Rep 2017; 7:9864. [PMID: 28852183 PMCID: PMC5574928 DOI: 10.1038/s41598-017-10689-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/14/2017] [Indexed: 12/31/2022] Open
Abstract
Guanosine monophosphate, among the nucleotides, has the unique property to self-associate and form nanoscale cylinders consisting of hydrogen-bonded G-quartet disks, which are stacked on top of one another. Such self-assemblies describe not only the basic structural motif of G-quadruplexes formed by, e.g., telomeric DNA sequences, but are also interesting targets for supramolecular chemistry and nanotechnology. The G-quartet stacks serve as an excellent model to understand the fundamentals of their molecular self-association and to unveil their application spectrum. However, the thermodynamic stability of such self-assemblies over an extended temperature and pressure range is largely unexplored. Here, we report a combined FTIR and NMR study on the temperature and pressure stability of G-quartet stacks formed by disodium guanosine 5′-monophosphate (Na25′-GMP). We found that under abyssal conditions, where temperatures as low as 5 °C and pressures up to 1 kbar are reached, the self-association of Na25′-GMP is most favoured. Beyond those conditions, the G-quartet stacks dissociate laterally into monomer stacks without significantly changing the longitudinal dimension. Among the tested alkali cations, K+ is the most efficient one to elevate the temperature as well as the pressure limits of GMP self-assembly.
Collapse
Affiliation(s)
- Mimi Gao
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 4a, 44227, Dortmund, Germany
| | - Balasubramanian Harish
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, United States
| | - Melanie Berghaus
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 4a, 44227, Dortmund, Germany
| | - Rana Seymen
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 4a, 44227, Dortmund, Germany
| | - Loana Arns
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 4a, 44227, Dortmund, Germany
| | - Scott A McCallum
- NMR Facility Center for Biotechnology and Interdisciplinary Science, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Catherine A Royer
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, United States
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 4a, 44227, Dortmund, Germany.
| |
Collapse
|
23
|
Chlorophyll derivatives enhance invertebrate red-light and ultraviolet phototaxis. Sci Rep 2017; 7:3374. [PMID: 28611460 PMCID: PMC5469770 DOI: 10.1038/s41598-017-03247-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/25/2017] [Indexed: 12/04/2022] Open
Abstract
Chlorophyll derivatives are known to enhance vision in vertebrates. They are thought to bind visual pigments (i.e., opsins apoproteins bound to retinal chromophores) directly within the retina. Consistent with previous findings in vertebrates, here we show that chlorin e6 — a chlorophyll derivative — enhances photophobicity in a flatworm (Dugesia japonica), specifically when exposed to UV radiation (λ = 405 nm) or red light (λ = 660 nm). This is the first report of chlorophyll derivatives acting as modulators of invertebrate phototaxis, and in general the first account demonstrating that they can artificially alter animal response to light at a behavioral level. Our findings show that the interaction between chlorophyll derivatives and opsins virtually concerns the vast majority of bilaterian animals, and also occurs in visual systems based on rhabdomeric (rather than ciliary) opsins.
Collapse
|
24
|
García M, Tomás S, Robles ML, Ramos A, Segovia Y. Morphology of the retina in deep-water fish Nezumia sclerorhynchus
(Valenciennes, 1838) (Gadiformes: Macrouridae). ACTA ZOOL-STOCKHOLM 2017. [DOI: 10.1111/azo.12194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Magdalena García
- Department of Biotechnology; University of Alicante; Alicante Spain
| | - Sabina Tomás
- Department of Biotechnology; University of Alicante; Alicante Spain
| | | | - Alfonso Ramos
- Department of Marine Sciences and Applied Biology; University of Alicante; Alicante Spain
| | - Yolanda Segovia
- Department of Biotechnology; University of Alicante; Alicante Spain
| |
Collapse
|
25
|
Localisation and origin of the bacteriochlorophyll-derived photosensitizer in the retina of the deep-sea dragon fish Malacosteus niger. Sci Rep 2016; 6:39395. [PMID: 27996027 PMCID: PMC5171636 DOI: 10.1038/srep39395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/22/2016] [Indexed: 11/08/2022] Open
|
26
|
Biagioni LM, Hunt DM, Collin SP. Morphological Characterization and Topographic Analysis of Multiple Photoreceptor Types in the Retinae of Mesopelagic Hatchetfishes with Tubular Eyes. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Sakata R, Kabutomori R, Okano K, Mitsui H, Takemura A, Miwa T, Yamamoto H, Okano T. Rhodopsin in the Dark Hot Sea: Molecular Analysis of Rhodopsin in a Snailfish, Careproctus rhodomelas, Living near the Deep-Sea Hydrothermal Vent. PLoS One 2015; 10:e0135888. [PMID: 26275172 PMCID: PMC4537116 DOI: 10.1371/journal.pone.0135888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/27/2015] [Indexed: 11/19/2022] Open
Abstract
Visual systems in deep-sea fishes have been previously studied from a photobiological aspect; however, those of deep-sea fish inhabiting the hydrothermal vents are far less understood due to sampling difficulties. In this study, we analyzed the visual pigment of a deep-sea snailfish, Careproctus rhodomelas, discovered and collected only near the hydrothermal vents of oceans around Japan. Proteins were solubilized from the C. rhodomelas eyeball and subjected to spectroscopic analysis, which revealed the presence of a pigment characterized by an absorption maximum (λmax) at 480 nm. Immunoblot analysis of the ocular protein showed a rhodopsin-like immunoreactivity. We also isolated a retinal cDNA encoding the entire coding sequence of putative C. rhodomelas rhodopsin (CrRh). HEK293EBNA cells were transfected with the CrRh cDNA and the proteins extracted from the cells were subjected to spectroscopic analysis. The recombinant CrRh showed the absorption maximum at 480 nm in the presence of 11-cis retinal. Comparison of the results from the eyeball extract and the recombinant CrRh strongly suggests that CrRh has an A1-based 11-cis-retinal chromophore and works as a photoreceptor in the C. rhodomelas retina, and hence that C. rhodomelas responds to dim blue light much the same as other deep-sea fishes. Because hydrothermal vent is a huge supply of viable food, C. rhodomelas likely do not need to participate diel vertical migration and may recognize the bioluminescence produced by aquatic animals living near the hydrothermal vents.
Collapse
Affiliation(s)
- Rie Sakata
- Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Ryo Kabutomori
- Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Keiko Okano
- Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Hiromasa Mitsui
- Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Akihiro Takemura
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Tetsuya Miwa
- Marine Technology Development Department, Marine Technology and Engineering Center, Japan Agency for Marine Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Hiroyuki Yamamoto
- Environmental Impact Assessment Research Group, Research and Development Centre for Submarine Resources, Japan Agency for Marine Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Toshiyuki Okano
- Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
- * E-mail:
| |
Collapse
|
28
|
Schluessel V, Kortekamp N, Cortes JAO, Klein A, Bleckmann H. Perception and discrimination of movement and biological motion patterns in fish. Anim Cogn 2015; 18:1077-91. [PMID: 25981056 DOI: 10.1007/s10071-015-0876-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 01/29/2023]
Abstract
Vision is of primary importance for many fish species, as is the recognition of movement. With the exception of one study, assessing the influence of conspecific movement on shoaling behaviour, the perception of biological motion in fish had not been studied in a cognitive context. The aim of the present study was therefore to assess the discrimination abilities of two teleost species in regard to simple and complex movement patterns of dots and objects, including biological motion patterns using point and point-light displays (PDs and PLDs). In two-alternative forced-choice experiments, in which choosing the designated positive stimulus was food-reinforced, fish were first tested in their ability to distinguish the video of a stationary black dot on a light background from the video of a moving black dot presented at different frequencies and amplitudes. While all fish succeeded in learning the task, performance declined with decreases in either or both parameters. In subsequent tests, cichlids and damselfish distinguished successfully between the videos of two dots moving at different speeds and amplitudes, between two moving dot patterns (sinus vs. expiring sinus) and between animated videos of two moving organisms (trout vs. eel). Transfer tests following the training of the latter showed that fish were unable to identify the positive stimulus (trout) by means of its PD alone, thereby indicating that the ability of humans to spontaneously recognize an organism based on its biological motion may not be present in fish. All participating individuals successfully discriminated between two PDs and two PLDs after a short period of training, indicating that biological motions presented in form of PLDs are perceived and can be distinguished. Results were the same for the presentation of dark dots on a light background and light dots on a dark background.
Collapse
Affiliation(s)
- V Schluessel
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115, Bonn, Germany,
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Claes JM, Partridge JC, Hart NS, Garza-Gisholt E, Ho HC, Mallefet J, Collin SP. Photon hunting in the twilight zone: visual features of mesopelagic bioluminescent sharks. PLoS One 2014; 9:e104213. [PMID: 25099504 PMCID: PMC4123902 DOI: 10.1371/journal.pone.0104213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/04/2014] [Indexed: 01/01/2023] Open
Abstract
The mesopelagic zone is a visual scene continuum in which organisms have developed various strategies to optimize photon capture. Here, we used light microscopy, stereology-assisted retinal topographic mapping, spectrophotometry and microspectrophotometry to investigate the visual ecology of deep-sea bioluminescent sharks [four etmopterid species (Etmopterus lucifer, E. splendidus, E. spinax and Trigonognathus kabeyai) and one dalatiid species (Squaliolus aliae)]. We highlighted a novel structure, a translucent area present in the upper eye orbit of Etmopteridae, which might be part of a reference system for counterillumination adjustment or acts as a spectral filter for camouflage breaking, as well as several ocular specialisations such as aphakic gaps and semicircular tapeta previously unknown in elasmobranchs. All species showed pure rod hexagonal mosaics with a high topographic diversity. Retinal specialisations, formed by shallow cell density gradients, may aid in prey detection and reflect lifestyle differences; pelagic species display areae centrales while benthopelagic and benthic species display wide and narrow horizontal streaks, respectively. One species (E. lucifer) displays two areae within its horizontal streak that likely allows detection of conspecifics' elongated bioluminescent flank markings. Ganglion cell topography reveals less variation with all species showing a temporal area for acute frontal binocular vision. This area is dorsally extended in T. kabeyai, allowing this species to adjust the strike of its peculiar jaws in the ventro-frontal visual field. Etmopterus lucifer showed an additional nasal area matching a high rod density area. Peak spectral sensitivities of the rod visual pigments (λmax) fall within the range 484–491 nm, allowing these sharks to detect a high proportion of photons present in their habitat. Comparisons with previously published data reveal ocular differences between bioluminescent and non-bioluminescent deep-sea sharks. In particular, bioluminescent sharks possess higher rod densities, which might provide them with improved temporal resolution particularly useful for bioluminescent communication during social interactions.
Collapse
Affiliation(s)
- Julien M. Claes
- Laboratoire de Biologie Marine, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- * E-mail:
| | - Julian C. Partridge
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- Neuroecology Group, School of Animal Biology and the UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Nathan S. Hart
- Neuroecology Group, School of Animal Biology and the UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Eduardo Garza-Gisholt
- Neuroecology Group, School of Animal Biology and the UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Hsuan-Ching Ho
- National Museum of Marine Biology and Aquarium, Checheng, Taiwan
- Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University, Shoufeng, Taiwan
| | - Jérôme Mallefet
- Laboratoire de Biologie Marine, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Shaun P. Collin
- Neuroecology Group, School of Animal Biology and the UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| |
Collapse
|
31
|
de Busserolles F, Fitzpatrick JL, Marshall NJ, Collin SP. The influence of photoreceptor size and distribution on optical sensitivity in the eyes of lanternfishes (Myctophidae). PLoS One 2014; 9:e99957. [PMID: 24927016 PMCID: PMC4057366 DOI: 10.1371/journal.pone.0099957] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/20/2014] [Indexed: 01/19/2023] Open
Abstract
The mesopelagic zone of the deep-sea (200-1000 m) is characterised by exponentially diminishing levels of downwelling sunlight and by the predominance of bioluminescence emissions. The ability of mesopelagic organisms to detect and behaviourally react to downwelling sunlight and/or bioluminescence will depend on the visual task and ultimately on the eyes and their capacity for detecting low levels of illumination and intermittent point sources of bioluminescent light. In this study, we investigate the diversity of the visual system of the lanternfish (Myctophidae). We focus specifically on the photoreceptor cells by examining their size, arrangement, topographic distribution and contribution to optical sensitivity in 53 different species from 18 genera. We also examine the influence(s) of both phylogeny and ecology on these photoreceptor variables using phylogenetic comparative analyses in order to understand the constraints placed on the visual systems of this large group of mesopelagic fishes at the first stage of retinal processing. We report great diversity in the visual system of the Myctophidae at the level of the photoreceptors. Photoreceptor distribution reveals clear interspecific differences in visual specialisations (areas of high rod photoreceptor density), indicating potential interspecific differences in interactions with prey, predators and/or mates. A great diversity in photoreceptor design (length and diameter) and density is also present. Overall, the myctophid eye is very sensitive compared to other teleosts and each species seems to be specialised for the detection of a specific signal (downwelling light or bioluminescence), potentially reflecting different visual demands for survival. Phylogenetic comparative analyses highlight several relationships between photoreceptor characteristics and the ecological variables tested (depth distribution and luminous tissue patterns). Depth distribution at night was a significant factor in most of the models tested, indicating that vision at night is of great importance for lanternfishes and may drive the evolution of their photoreceptor design.
Collapse
Affiliation(s)
- Fanny de Busserolles
- The School of Animal Biology and The UWA Oceans Institute, The University of Western Australia, Crawley, Australia; Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - John L Fitzpatrick
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Crawley, Australia; Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - N Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Shaun P Collin
- The School of Animal Biology and The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| |
Collapse
|
32
|
Partridge JC, Douglas RH, Marshall NJ, Chung WS, Jordan TM, Wagner HJ. Reflecting optics in the diverticular eye of a deep-sea barreleye fish (Rhynchohyalus natalensis). Proc Biol Sci 2014; 281:20133223. [PMID: 24648222 PMCID: PMC3973263 DOI: 10.1098/rspb.2013.3223] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We describe the bi-directed eyes of a mesopelagic teleost fish, Rhynchohyalus natalensis, that possesses an extensive lateral diverticulum to each tubular eye. Each diverticulum contains a mirror that focuses light from the ventro-lateral visual field. This species can thereby visualize both downwelling sunlight and bioluminescence over a wide field of view. Modelling shows that the mirror is very likely to be capable of producing a bright, well focused image. After Dolichopteryx longipes, this is only the second description of an eye in a vertebrate having both reflective and refractive optics. Although superficially similar, the optics of the diverticular eyes of these two species of fish differ in some important respects. Firstly, the reflective crystals in the D. longipes mirror are derived from a tapetum within the retinal pigment epithelium, whereas in R. natalensis they develop from the choroidal argentea. Secondly, in D. longipes the angle of the reflective crystals varies depending on their position within the mirror, forming a Fresnel-type reflector, but in R. natalensis the crystals are orientated almost parallel to the mirror's surface and image formation is dependent on the gross morphology of the diverticular mirror. Two remarkably different developmental solutions have thus evolved in these two closely related species of opisthoproctid teleosts to extend the restricted visual field of a tubular eye and provide a well-focused image with reflective optics.
Collapse
Affiliation(s)
- J C Partridge
- School of Biological Sciences, University of Bristol, , Woodland Road, Bristol BS8 1UG, UK, Department of Optometry and Visual Science, City University London, , Northampton Square, London EC1V 0HB, UK, Queensland Brain Institute, University of Queensland, , St Lucia, Brisbane, Queensland 4072, Australia, Anatomisches Institut, Universität Tübingen, , Ősterbergstrasse 3, Tübingen 72074, Germany, School of Animal Biology, University of Western Australia, , 35 Stirling Highway, Crawley, Perth, Western Australia 6009, Australia
| | | | | | | | | | | |
Collapse
|
33
|
de Busserolles F, Marshall NJ, Collin SP. The eyes of lanternfishes (Myctophidae, Teleostei): Novel ocular specializations for vision in dim light. J Comp Neurol 2014; 522:1618-40. [DOI: 10.1002/cne.23495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Fanny de Busserolles
- Neuroecology Group; School of Animal Biology and the Oceans Institute; The University of Western Australia; Crawley Western Australia 6012 Australia
| | - N. Justin Marshall
- Sensory Neurobiology Group; Queensland Brain Institute; University of Queensland; St. Lucia Queensland 4072 Australia
| | - Shaun P. Collin
- Neuroecology Group; School of Animal Biology and the Oceans Institute; The University of Western Australia; Crawley Western Australia 6012 Australia
| |
Collapse
|
34
|
Kenaley CP, DeVaney SC, Fjeran TT. THE COMPLEX EVOLUTIONARY HISTORY OF SEEING RED: MOLECULAR PHYLOGENY AND THE EVOLUTION OF AN ADAPTIVE VISUAL SYSTEM IN DEEP-SEA DRAGONFISHES (STOMIIFORMES: STOMIIDAE). Evolution 2014; 68:996-1013. [DOI: 10.1111/evo.12322] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 11/12/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Christopher P. Kenaley
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge Massachusetts 02138
| | - Shannon C. DeVaney
- Life Science Department; Los Angeles Pierce College; Woodland Hills California 91371
| | - Taylor T. Fjeran
- College of Forestry; Oregon State University; Corvallis Oregon 97331
| |
Collapse
|
35
|
Landgren E, Fritsches K, Brill R, Warrant E. The visual ecology of a deep-sea fish, the escolar Lepidocybium flavobrunneum (Smith, 1843). Philos Trans R Soc Lond B Biol Sci 2014; 369:20130039. [PMID: 24395966 DOI: 10.1098/rstb.2013.0039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Escolar (Lepidocybium flavobrunneum, family Gempylidae) are large and darkly coloured deep-sea predatory fish found in the cold depths (more than 200 m) during the day and in warm surface waters at night. They have large eyes and an overall low density of retinal ganglion cells that endow them with a very high optical sensitivity. Escolar have banked retinae comprising six to eight layers of rods to increase the optical path length for maximal absorption of the incoming light. Their retinae possess two main areae of higher ganglion cell density, one in the ventral retina viewing the dorsal world above (with a moderate acuity of 4.6 cycles deg(-1)), and the second in the temporal retina viewing the frontal world ahead. Electrophysiological recordings of the flicker fusion frequency (FFF) in isolated retinas indicate that escolar have slow vision, with maximal FFF at the highest light levels and temperatures (around 9 Hz at 23°C) which fall to 1-2 Hz in dim light or cooler temperatures. Our results suggest that escolar are slowly moving sit-and-wait predators. In dim, warm surface waters at night, their slow vision, moderate dorsal resolution and highly sensitive eyes may allow them to surprise prey from below that are silhouetted in the downwelling light.
Collapse
Affiliation(s)
- Eva Landgren
- Lund Vision Group, Department of Biology, University of Lund, , Sölvegatan 35, 22362 Lund, Sweden
| | | | | | | |
Collapse
|
36
|
Nilsson DE, Warrant E, Johnsen S. Computational visual ecology in the pelagic realm. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130038. [PMID: 24395965 PMCID: PMC3886326 DOI: 10.1098/rstb.2013.0038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Visual performance and visual interactions in pelagic animals are notoriously hard to investigate because of our restricted access to the habitat. The pelagic visual world is also dramatically different from benthic or terrestrial habitats, and our intuition is less helpful in understanding vision in unfamiliar environments. Here, we develop a computational approach to investigate visual ecology in the pelagic realm. Using information on eye size, key retinal properties, optical properties of the water and radiance, we develop expressions for calculating the visual range for detection of important types of pelagic targets. We also briefly apply the computations to a number of central questions in pelagic visual ecology, such as the relationship between eye size and visual performance, the maximum depth at which daylight is useful for vision, visual range relations between prey and predators, counter-illumination and the importance of various aspects of retinal physiology. We also argue that our present addition to computational visual ecology can be developed further, and that a computational approach offers plenty of unused potential for investigations of visual ecology in both aquatic and terrestrial habitats.
Collapse
Affiliation(s)
- Dan-E Nilsson
- The Lund Vision Group, Department of Biology, Lund University, , 22362 Lund, Sweden
| | | | | |
Collapse
|
37
|
Francke M, Kreysing M, Mack A, Engelmann J, Karl A, Makarov F, Guck J, Kolle M, Wolburg H, Pusch R, von der Emde G, Schuster S, Wagner HJ, Reichenbach A. Grouped retinae and tapetal cups in some Teleostian fish: Occurrence, structure, and function. Prog Retin Eye Res 2014; 38:43-69. [DOI: 10.1016/j.preteyeres.2013.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 11/27/2022]
|
38
|
Xu P, Lu B, Xiao H, Fu X, Murphy RW, Wu K. The evolution and expression of the moth visual opsin family. PLoS One 2013; 8:e78140. [PMID: 24205129 PMCID: PMC3813493 DOI: 10.1371/journal.pone.0078140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/17/2013] [Indexed: 12/24/2022] Open
Abstract
Because visual genes likely evolved in response to their ambient photic environment, the dichotomy between closely related nocturnal moths and diurnal butterflies forms an ideal basis for investigating their evolution. To investigate whether the visual genes of moths are associated with nocturnal dim-light environments or not, we cloned long-wavelength (R), blue (B) and ultraviolet (UV) opsin genes from 12 species of wild-captured moths and examined their evolutionary functions. Strong purifying selection appeared to constrain the functions of the genes. Dark-treatment altered the levels of mRNA expression in Helicoverpa armigera such that R and UV opsins were up-regulated after dark-treatment, the latter faster than the former. In contrast, B opsins were not significantly up-regulated. Diel changes of opsin mRNA levels in both wild-captured and lab-reared individuals showed no significant fluctuation within the same group. However, the former group had significantly elevated levels of expression compared with the latter. Consequently, environmental conditions appeared to affect the patterns of expression. These findings and the proportional expression of opsins suggested that moths potentially possessed color vision and the visual system played a more important role in the ecology of moths than previously appreciated. This aspect did not differ much from that of diurnal butterflies.
Collapse
Affiliation(s)
- Pengjun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Bin Lu
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Haijun Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Xiaowei Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Robert W. Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P.R. China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
39
|
Poulsen JY, Byrkjedal I, Willassen E, Rees D, Takeshima H, Satoh TP, Shinohara G, Nishida M, Miya M. Mitogenomic sequences and evidence from unique gene rearrangements corroborate evolutionary relationships of myctophiformes (Neoteleostei). BMC Evol Biol 2013; 13:111. [PMID: 23731841 PMCID: PMC3682873 DOI: 10.1186/1471-2148-13-111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/20/2013] [Indexed: 11/24/2022] Open
Abstract
Background A skewed assemblage of two epi-, meso- and bathypelagic fish families makes up the order Myctophiformes – the blackchins Neoscopelidae and the lanternfishes Myctophidae. The six rare neoscopelids show few morphological specializations whereas the divergent myctophids have evolved into about 250 species, of which many show massive abundances and wide distributions. In fact, Myctophidae is by far the most abundant fish family in the world, with plausible estimates of more than half of the oceans combined fish biomass. Myctophids possess a unique communication system of species-specific photophore patterns and traditional intrafamilial classification has been established to reflect arrangements of photophores. Myctophids present the most diverse array of larval body forms found in fishes although this attribute has both corroborated and confounded phylogenetic hypotheses based on adult morphology. No molecular phylogeny is available for Myctophiformes, despite their importance within all ocean trophic cycles, open-ocean speciation and as an important part of neoteleost divergence. This study attempts to resolve major myctophiform phylogenies from both mitogenomic sequences and corroborating evidence in the form of unique mitochondrial gene order rearrangements. Results Mitogenomic evidence from DNA sequences and unique gene orders are highly congruent concerning phylogenetic resolution on several myctophiform classification levels, corroborating evidence from osteology, larval ontogeny and photophore patterns, although the lack of larval morphological characters within the subfamily Lampanyctinae stands out. Neoscopelidae is resolved as the sister family to myctophids with Solivomer arenidens positioned as a sister taxon to the remaining neoscopelids. The enigmatic Notolychnus valdiviae is placed as a sister taxon to all other myctophids and exhibits an unusual second copy of the tRNA-Met gene – a gene order rearrangement reminiscent of that found in the tribe Diaphini although our analyses show it to be independently derived. Most tribes are resolved in accordance with adult morphology although Gonichthyini is found within a subclade of the tribe Myctophini consisting of ctenoid scaled species. Mitogenomic sequence data from this study recognize 10 reciprocally monophyletic lineages within Myctophidae, with five of these clades delimited from additional rearranged gene orders or intergenic non-coding sequences. Conclusions Mitogenomic results from DNA sequences and unique gene orders corroborate morphology in phylogeny reconstruction and provide a likely scenario for the phylogenetic history of Myctophiformes. The extent of gene order rearrangements found within the mitochondrial genomes of myctophids is unique for phylogenetic purposes.
Collapse
Affiliation(s)
- Jan Y Poulsen
- Natural History Collections, University Museum of Bergen, University of Bergen, Allégaten 41, P.O. Box 7800, Bergen N-5020, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Deng X, Wagner HJ, Popper AN. Interspecific Variations of Inner Ear Structure in the Deep-Sea Fish Family Melamphaidae. Anat Rec (Hoboken) 2013; 296:1064-82. [DOI: 10.1002/ar.22703] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 02/02/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaohong Deng
- Department of Biology; Center for Comparative and Evolutionary Biology of Hearing; Neuroscience and Cognitive Science Program, University of Maryland; College Park Maryland
| | - Hans-Joachim Wagner
- Anatomisches Institut, Medizinische Fakultät, University of Tübingen; Tübingen D-72074 Germany
| | - Arthur N. Popper
- Department of Biology; Center for Comparative and Evolutionary Biology of Hearing; Neuroscience and Cognitive Science Program, University of Maryland; College Park Maryland
| |
Collapse
|
41
|
Johnsen S, Frank TM, Haddock SHD, Widder EA, Messing CG. Light and vision in the deep-sea benthos: I. Bioluminescence at 500-1000 m depth in the Bahamian islands. ACTA ACUST UNITED AC 2013; 215:3335-43. [PMID: 22956246 DOI: 10.1242/jeb.072009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bioluminescence is common and well studied in mesopelagic species. However, the extent of bioluminescence in benthic sites of similar depths is far less studied, although the relatively large eyes of benthic fish, crustaceans and cephalopods at bathyal depths suggest the presence of significant biogenic light. Using the Johnson-Sea-Link submersible, we collected numerous species of cnidarians, echinoderms, crustaceans, cephalopods and sponges, as well as one annelid from three sites in the northern Bahamas (500-1000 m depth). Using mechanical and chemical stimulation, we tested the collected species for light emission, and photographed and measured the spectra of the emitted light. In addition, in situ intensified video and still photos were taken of different benthic habitats. Surprisingly, bioluminescence in benthic animals at these sites was far less common than in mesopelagic animals from similar depths, with less than 20% of the collected species emitting light. Bioluminescent taxa comprised two species of anemone (Actinaria), a new genus and species of flabellate Parazoanthidae (formerly Gerardia sp.) (Zoanthidea), three sea pens (Pennatulacea), three bamboo corals (Alcyonacea), the chrysogorgiid coral Chrysogorgia desbonni (Alcyonacea), the caridean shrimp Parapandalus sp. and Heterocarpus ensifer (Decapoda), two holothuroids (Elasipodida and Aspidochirota) and the ophiuroid Ophiochiton ternispinus (Ophiurida). Except for the ophiuroid and the two shrimp, which emitted blue light (peak wavelengths 470 and 455 nm), all the species produced greener light than that measured in most mesopelagic taxa, with the emissions of the pennatulaceans being strongly shifted towards longer wavelengths. In situ observations suggested that bioluminescence associated with these sites was due primarily to light emitted by bioluminescent planktonic species as they struck filter feeders that extended into the water column.
Collapse
Affiliation(s)
- Sönke Johnsen
- Biology Department, Duke University, Durham, NC 27708, USA.
| | | | | | | | | |
Collapse
|
42
|
Zintzen V, Anderson MJ, Roberts CD, Harvey ES, Stewart AL, Struthers CD. Diversity and composition of demersal fishes along a depth gradient assessed by baited remote underwater stereo-video. PLoS One 2012; 7:e48522. [PMID: 23119045 PMCID: PMC3485343 DOI: 10.1371/journal.pone.0048522] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 09/26/2012] [Indexed: 12/20/2022] Open
Abstract
Background Continental slopes are among the steepest environmental gradients on earth. However, they still lack finer quantification and characterisation of their faunal diversity patterns for many parts of the world. Methodology/Principal Findings Changes in fish community structure and diversity along a depth gradient from 50 to 1200 m were studied from replicated stereo baited remote underwater video deployments within each of seven depth zones at three locations in north-eastern New Zealand. Strong, but gradual turnover in the identities of species and community structure was observed with increasing depth. Species richness peaked in shallow depths, followed by a decrease beyond 100 m to a stable average value from 700 to 1200 m. Evenness increased to 700 m depth, followed by a decrease to 1200 m. Average taxonomic distinctness △+ response was unimodal with a peak at 300 m. The variation in taxonomic distinctness Λ+ first decreased sharply from 50 to 300 m, then increased beyond 500 m depth, indicating that species from deep samples belonged to more distant taxonomic groups than those from shallow samples. Fishes with northern distributions progressively decreased in their proportional representation with depth whereas those with widespread distributions increased. Conclusions/Significance This study provides the first characterization of diversity patterns for bait-attracted fish species on continental slopes in New Zealand and is an imperative primary step towards development of explanatory and predictive ecological models, as well as being fundamental for the implementation of efficient management and conservation strategies for fishery resources.
Collapse
Affiliation(s)
- Vincent Zintzen
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand.
| | | | | | | | | | | |
Collapse
|
43
|
DAVIES WAYNEIL, COLLIN SHAUNP, HUNT DAVIDM. Molecular ecology and adaptation of visual photopigments in craniates. Mol Ecol 2012; 21:3121-58. [DOI: 10.1111/j.1365-294x.2012.05617.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Lisney TJ, Theiss SM, Collin SP, Hart NS. Vision in elasmobranchs and their relatives: 21st century advances. JOURNAL OF FISH BIOLOGY 2012; 80:2024-54. [PMID: 22497415 DOI: 10.1111/j.1095-8649.2012.03253.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This review identifies a number of exciting new developments in the understanding of vision in cartilaginous fishes that have been made since the turn of the century. These include the results of studies on various aspects of the visual system including eye size, visual fields, eye design and the optical system, retinal topography and spatial resolving power, visual pigments, spectral sensitivity and the potential for colour vision. A number of these studies have covered a broad range of species, thereby providing valuable information on how the visual systems of these fishes are adapted to different environmental conditions. For example, oceanic and deep-sea sharks have the largest eyes amongst elasmobranchs and presumably rely more heavily on vision than coastal and benthic species, while interspecific variation in the ratio of rod and cone photoreceptors, the topographic distribution of the photoreceptors and retinal ganglion cells in the retina and the spatial resolving power of the eye all appear to be closely related to differences in habitat and lifestyle. Multiple, spectrally distinct cone photoreceptor visual pigments have been found in some batoid species, raising the possibility that at least some elasmobranchs are capable of seeing colour, and there is some evidence that multiple cone visual pigments may also be present in holocephalans. In contrast, sharks appear to have only one cone visual pigment. There is evidence that ontogenetic changes in the visual system, such as changes in the spectral transmission properties of the lens, lens shape, focal ratio, visual pigments and spatial resolving power, allow elasmobranchs to adapt to environmental changes imposed by habitat shifts and niche expansion. There are, however, many aspects of vision in these fishes that are not well understood, particularly in the holocephalans. Therefore, this review also serves to highlight and stimulate new research in areas that still require significant attention.
Collapse
Affiliation(s)
- T J Lisney
- Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | | | | | | |
Collapse
|
45
|
|
46
|
Abstract
Sensory systems detect small molecules, mechanical perturbations, or radiation via the activation of receptor proteins and downstream signaling cascades in specialized sensory cells. In vertebrates, the two principal categories of sensory receptors are ion channels, which mediate mechanosensation, thermosensation, and acid and salt taste; and G-protein-coupled receptors (GPCRs), which mediate vision, olfaction, and sweet, bitter, and umami tastes. GPCR-based signaling in rods and cones illustrates the fundamental principles of rapid activation and inactivation, signal amplification, and gain control. Channel-based sensory systems illustrate the integration of diverse modulatory signals at the receptor, as seen in the thermosensory/pain system, and the rapid response kinetics that are possible with direct mechanical gating of a channel. Comparisons of sensory receptor gene sequences reveal numerous examples in which gene duplication and sequence divergence have created novel sensory specificities. This is the evolutionary basis for the observed diversity in temperature- and ligand-dependent gating among thermosensory channels, spectral tuning among visual pigments, and odorant binding among olfactory receptors. The coding of complex external stimuli by a limited number of sensory receptor types has led to the evolution of modality-specific and species-specific patterns of retention or loss of sensory information, a filtering operation that selectively emphasizes features in the stimulus that enhance survival in a particular ecological niche. The many specialized anatomic structures, such as the eye and ear, that house primary sensory neurons further enhance the detection of relevant stimuli.
Collapse
Affiliation(s)
- David Julius
- Department of Physiology, University of California School of Medicine, San Francisco, California 94158, USA.
| | | |
Collapse
|
47
|
Rennison DJ, Owens GL, Taylor JS. Opsin gene duplication and divergence in ray-finned fish. Mol Phylogenet Evol 2011; 62:986-1008. [PMID: 22178363 DOI: 10.1016/j.ympev.2011.11.030] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 11/17/2022]
Abstract
Opsin gene sequences were first reported in the 1980s. The goal of that research was to test the hypothesis that human opsins were members of a single gene family and that variation in human color vision was mediated by mutations in these genes. While the new data supported both hypotheses, the greatest contribution of this work was, arguably, that it provided the data necessary for PCR-based surveys in a diversity of other species. Such studies, and recent whole genome sequencing projects, have uncovered exceptionally large opsin gene repertoires in ray-finned fishes (taxon, Actinopterygii). Guppies and zebrafish, for example, have 10 visual opsin genes each. Here we review the duplication and divergence events that have generated these gene collections. Phylogenetic analyses revealed that large opsin gene repertories in fish have been generated by gene duplication and divergence events that span the age of the ray-finned fishes. Data from whole genome sequencing projects and from large-insert clones show that tandem duplication is the primary mode of opsin gene family expansion in fishes. In some instances gene conversion between tandem duplicates has obscured evolutionary relationships among genes and generated unique key-site haplotypes. We mapped amino acid substitutions at so-called key-sites onto phylogenies and this exposed many examples of convergence. We found that dN/dS values were higher on the branches of our trees that followed gene duplication than on branches that followed speciation events, suggesting that duplication relaxes constraints on opsin sequence evolution. Though the focus of the review is opsin sequence evolution, we also note that there are few clear connections between opsin gene repertoires and variation in spectral environment, morphological traits, or life history traits.
Collapse
Affiliation(s)
- Diana J Rennison
- University of Victoria, Department of Biology, Station CSC, Victoria, BC, Canada V8W 3N5
| | | | | |
Collapse
|
48
|
Zylinski S, Johnsen S. Mesopelagic cephalopods switch between transparency and pigmentation to optimize camouflage in the deep. Curr Biol 2011; 21:1937-41. [PMID: 22079113 DOI: 10.1016/j.cub.2011.10.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/11/2011] [Accepted: 10/11/2011] [Indexed: 10/15/2022]
Abstract
Animals in the lower mesopelagic zone (600-1,000 m depth) of the oceans have converged on two major strategies for camouflage: transparency and red or black pigmentation [1]. Transparency conveys excellent camouflage under ambient light conditions, greatly reducing the conspicuousness of the animal's silhouette [1, 2]. Transparent tissues are seldom perfectly so, resulting in unavoidable internal light scattering [2]. Under directed light, such as that emitted from photophores thought to function as searchlights [3-8], the scattered light returning to a viewer will be brighter than the background, rendering the animal conspicuous [2, 4]. At depths where bioluminescence becomes the dominant source of light, most animals are pigmented red or black, thereby reflecting little light at wavelengths generally associated with photophore emissions and visual sensitivities [3, 9-14]. However, pigmented animals are susceptible to being detected via their silhouettes [5, 9-11]. Here we show evidence for rapid switching between transparency and pigmentation under changing optical conditions in two mesopelagic cephalopods, Japetella heathi and Onychoteuthis banksii. Reflectance measurements of Japetella show that transparent tissue reflects twice as much light as pigmented tissue under direct light. This is consistent with a dynamic strategy to optimize camouflage under ambient and searchlight conditions.
Collapse
Affiliation(s)
- Sarah Zylinski
- Biology Department, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
49
|
Hagfish predatory behaviour and slime defence mechanism. Sci Rep 2011; 1:131. [PMID: 22355648 PMCID: PMC3216612 DOI: 10.1038/srep00131] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/12/2011] [Indexed: 11/30/2022] Open
Abstract
Hagfishes (Myxinidae), a family of jawless marine pre-vertebrates, hold a unique evolutionary position, sharing a joint ancestor with the entire vertebrate lineage. They are thought to fulfil primarily the ecological niche of scavengers in the deep ocean. However, we present new footage from baited video cameras that captured images of hagfishes actively preying on other fish. Video images also revealed that hagfishes are able to choke their would-be predators with gill-clogging slime. This is the first time that predatory behaviour has been witnessed in this family, and also demonstrates the instantaneous effectiveness of hagfish slime to deter fish predators. These observations suggest that the functional adaptations and ecological role of hagfishes, past and present, might be far more diverse than previously assumed. We propose that the enduring success of this oldest extant family of fishes over 300 million years could largely be due to their unique combination of functional traits.
Collapse
|
50
|
Why different regions of the retina have different spectral sensitivities: A review of mechanisms and functional significance of intraretinal variability in spectral sensitivity in vertebrates. Vis Neurosci 2011; 28:281-93. [DOI: 10.1017/s0952523811000113] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractVision is used in nearly all aspects of animal behavior, from prey and predator detection to mate selection and parental care. However, the light environment typically is not uniform in every direction, and visual tasks may be specific to particular parts of an animal’s field of view. These spatial differences may explain the presence of several adaptations in the eyes of vertebrates that alter spectral sensitivity of the eye in different directions. Mechanisms that alter spectral sensitivity across the retina include (but are not limited to) variations in: corneal filters, oil droplets, macula lutea, tapeta, chromophore ratios, photoreceptor classes, and opsin expression. The resultant variations in spectral sensitivity across the retina are referred to as intraretinal variability in spectral sensitivity (IVSS). At first considered an obscure and rare phenomenon, it is becoming clear that IVSS is widespread among all vertebrates, and examples have been found from every major group. This review will describe the mechanisms mediating differences in spectral sensitivity, which are in general well understood, as well as explore the functional significance of intraretinal variability, which for the most part is unclear at best.
Collapse
|