1
|
Tjhin ET, Howieson VM, Spry C, van Dooren GG, Saliba KJ. A novel heteromeric pantothenate kinase complex in apicomplexan parasites. PLoS Pathog 2021; 17:e1009797. [PMID: 34324601 PMCID: PMC8366970 DOI: 10.1371/journal.ppat.1009797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/16/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
Coenzyme A is synthesised from pantothenate via five enzyme-mediated steps. The first step is catalysed by pantothenate kinase (PanK). All PanKs characterised to date form homodimers. Many organisms express multiple PanKs. In some cases, these PanKs are not functionally redundant, and some appear to be non-functional. Here, we investigate the PanKs in two pathogenic apicomplexan parasites, Plasmodium falciparum and Toxoplasma gondii. Each of these organisms express two PanK homologues (PanK1 and PanK2). We demonstrate that PfPanK1 and PfPanK2 associate, forming a single, functional PanK complex that includes the multi-functional protein, Pf14-3-3I. Similarly, we demonstrate that TgPanK1 and TgPanK2 form a single complex that possesses PanK activity. Both TgPanK1 and TgPanK2 are essential for T. gondii proliferation, specifically due to their PanK activity. Our study constitutes the first examples of heteromeric PanK complexes in nature and provides an explanation for the presence of multiple PanKs within certain organisms.
Collapse
Affiliation(s)
- Erick T. Tjhin
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Vanessa M. Howieson
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Christina Spry
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Giel G. van Dooren
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Kevin J. Saliba
- Research School of Biology, The Australian National University, Canberra, Australia
- Medical School, The Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
2
|
Abstract
Pantothenic acid, a precursor of coenzyme A (CoA), is essential for the growth of pathogenic microorganisms. Since the structure of pantothenic acid was determined, many analogues of this essential metabolite have been prepared. Several have been demonstrated to exert an antimicrobial effect against a range of microorganisms by inhibiting the utilization of pantothenic acid, validating pantothenic acid utilization as a potential novel antimicrobial drug target. This review commences with an overview of the mechanisms by which various microorganisms acquire the pantothenic acid they require for growth, and the universal CoA biosynthesis pathway by which pantothenic acid is converted into CoA. A detailed survey of studies that have investigated the inhibitory activity of analogues of pantothenic acid and other precursors of CoA follows. The potential of inhibitors of both pantothenic acid utilization and biosynthesis as novel antibacterial, antifungal and antimalarial agents is discussed, focusing on inhibitors and substrates of pantothenate kinase, the enzyme catalysing the rate-limiting step of CoA biosynthesis in many organisms. The best strategies are considered for identifying inhibitors of pantothenic acid utilization and biosynthesis that are potent and selective inhibitors of microbial growth and that may be suitable for use as chemotherapeutic agents in humans.
Collapse
Affiliation(s)
- Christina Spry
- School of Biochemistry and Molecular Biology, The Australian National University, Canberra, Australia
| | | | | |
Collapse
|
3
|
Wilfred BR, Wang WX, Nelson PT. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab 2007; 91:209-17. [PMID: 17521938 PMCID: PMC1978064 DOI: 10.1016/j.ymgme.2007.03.011] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 03/26/2007] [Accepted: 03/26/2007] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNAs) are powerful regulators of gene expression. Although first discovered in worm larvae, miRNAs play fundamental biological roles-including in humans-well beyond development. MiRNAs participate in the regulation of metabolism (including lipid metabolism) for all animal species studied. A review of the fascinating and fast-growing literature on miRNA regulation of metabolism can be parsed into three main categories: (1) adipocyte biochemistry and cell fate determination; (2) regulation of metabolic biochemistry in invertebrates; and (3) regulation of metabolic biochemistry in mammals. Most research into the 'function' of a given miRNA in metabolic pathways has concentrated on a given miRNA acting upon a particular 'target' mRNA. Whereas in some biological contexts the effects of a given miRNA:mRNA pair may predominate, this might not be the case generally. In order to provide an example of how a single miRNA could regulate multiple 'target' mRNAs or even entire human metabolic pathways, we include a discussion of metabolic pathways that are predicted to be regulated by the miRNA paralogs, miR-103 and miR-107. These miRNAs, which exist in vertebrate genomes within introns of the pantothenate kinase (PANK) genes, are predicted by bioinformatics to affect multiple mRNA targets in pathways that involve cellular Acetyl-CoA and lipid levels. Significantly, PANK enzymes also affect these pathways, so the miRNA and 'host' gene may act synergistically. These predictions require experimental verification. In conclusion, a review of the literature on miRNA regulation of metabolism leads us believe that the future will provide researchers with many additional energizing revelations.
Collapse
Affiliation(s)
- Bernard R. Wilfred
- Sanders-Brown Center on Aging and Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY 40536 USA
| | - Wang-Xia Wang
- Sanders-Brown Center on Aging and Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY 40536 USA
| | - Peter T. Nelson
- Sanders-Brown Center on Aging and Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY 40536 USA
- *Corresponding Author: Peter T. Nelson MD PhD, 311 Sanders-Brown Center on Aging, 800 S Limestone, University of Kentucky, Lexington, KY 40536-0230, Ph # (859) 257-1412 x 254, Fx # (859) 257-6054,
| |
Collapse
|
4
|
Zhang YM, Chohnan S, Virga KG, Stevens RD, Ilkayeva OR, Wenner BR, Bain JR, Newgard CB, Lee RE, Rock CO, Jackowski S. Chemical knockout of pantothenate kinase reveals the metabolic and genetic program responsible for hepatic coenzyme A homeostasis. ACTA ACUST UNITED AC 2007; 14:291-302. [PMID: 17379144 PMCID: PMC1892532 DOI: 10.1016/j.chembiol.2007.01.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/20/2006] [Accepted: 01/29/2007] [Indexed: 12/19/2022]
Abstract
Coenzyme A (CoA) is the major acyl group carrier in intermediary metabolism. Hopantenate (HoPan), a competitive inhibitor of the pantothenate kinases, was used to chemically antagonize CoA biosynthesis. HoPan dramatically reduced liver CoA and mice developed severe hypoglycemia. Insulin was reduced, glucagon and corticosterone were elevated, and fasting accelerated hypoglycemia. Metabolic profiling revealed a large increase in acylcarnitines, illustrating the role of carnitine in buffering acyl groups to maintain the nonesterified CoASH level. HoPan triggered significant changes in hepatic gene expression that substantially increased the thioesterases, which liberate CoASH from acyl-CoA, and increased pyruvate dehydrogenase kinase 1, which prevents the conversion of CoASH to acetyl-CoA. These results identify the metabolic rearrangements that maintain the CoASH pool which is critical to mitochondrial functions, including gluconeogenesis, fatty acid oxidation, and the tricarboxylic acid and urea cycles.
Collapse
Affiliation(s)
- Yong-Mei Zhang
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Shigeru Chohnan
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee 38105
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, Tennessee 38105
- *Address correspondence to: Suzanne Jackowski, Ph.D., Department of Infectious Diseases, Protein Science Division St Jude Children’s Research Hospital, 332 N. Lauderdale, Memphis, Tennessee 38105-2794, Voice: 901 495-3494, Fax: 901 495-3099,
| | - Kristopher G. Virga
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Robert D. Stevens
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27704
| | - Olga R. Ilkayeva
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27704
| | - Brett R. Wenner
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27704
| | - James R. Bain
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27704
| | - Christopher B. Newgard
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27704
| | - Richard E. Lee
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Charles O. Rock
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Suzanne Jackowski
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee 38105
- *Address correspondence to: Suzanne Jackowski, Ph.D., Department of Infectious Diseases, Protein Science Division St Jude Children’s Research Hospital, 332 N. Lauderdale, Memphis, Tennessee 38105-2794, Voice: 901 495-3494, Fax: 901 495-3099,
| |
Collapse
|
5
|
Zhang YM, Rock CO, Jackowski S. Feedback regulation of murine pantothenate kinase 3 by coenzyme A and coenzyme A thioesters. J Biol Chem 2005; 280:32594-601. [PMID: 16040613 DOI: 10.1074/jbc.m506275200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pantothenate kinase catalyzes a key regulatory step in coenzyme A biosynthesis, and there are four mammalian genes that encode isoforms of this enzyme. Pantothenate kinase isoform PanK3 is highly related to the previously characterized PanK1beta isoform (79% identical, 91% similar), and these two almost identical proteins are expressed most highly in the same tissues. PanK1beta and PanK3 had very similar molecular sizes, oligomeric form, cytoplasmic cellular location, and kinetic constants for ATP and pantothenate. However, these two PanK isoforms possessed distinct regulatory properties. PanK3 was significantly more sensitive to feedback regulation by acetyl-CoA (IC50 = 1 microm) than PanK1beta (IC50 = 10 microm), and PanK3 was stringently regulated by long-chain acyl-CoA (IC50 = 2 microm), whereas PanK1beta was not. Domain swapping experiments localized the difference in the two proteins to a 48-amino-acid domain, where they are the most divergent. Consistent with these more stringent regulatory properties, metabolic labeling experiments showed that coenzyme A (CoA) levels in cells overexpressing PanK3 were lower than in cells overexpressing an equivalent amount of PanK1beta. Thus, the distinct regulatory properties exhibited by the family of the pantothenate kinases allowed the rate of CoA biosynthesis to be controlled by regulatory signals from CoA thioesters involved in different branches of intermediary metabolism.
Collapse
MESH Headings
- Adenosine Triphosphate/chemistry
- Amino Acid Sequence
- Animals
- Biochemistry/methods
- Blotting, Western
- Catalysis
- Cell Line
- Chromatography
- Chromatography, Gel
- Coenzyme A/chemistry
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Esters/chemistry
- Feedback, Physiological
- Gene Expression Regulation, Enzymologic
- Humans
- Inhibitory Concentration 50
- Kinetics
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Peptides/chemistry
- Phosphotransferases (Alcohol Group Acceptor)/chemistry
- Protein Isoforms
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/chemistry
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Yong-Mei Zhang
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|
6
|
Kupke T, Hernández-Acosta P, Culiáñez-Macià FA. 4'-phosphopantetheine and coenzyme A biosynthesis in plants. J Biol Chem 2003; 278:38229-37. [PMID: 12860978 DOI: 10.1074/jbc.m306321200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coenzyme A is required for many synthetic and degradative reactions in intermediary metabolism and is the principal acyl carrier in prokaryotic and eukaryotic cells. Coenzyme A is synthesized in five steps from pantothenate, and recently the CoaA biosynthetic genes in bacteria and human have all been identified and characterized. Coenzyme A biosynthesis in plants is not fully understood, and to date only the AtHAL3a (AtCoaC) gene of Arabidopsis thaliana has been cloned and identified as 4'-phosphopantothenoylcysteine (PPC) decarboxylase (Kupke, T., Hernández-Acosta, P., Steinbacher, S., and Culiáñez-Macià, F. A. (2001) J. Biol. Chem. 276, 19190-19196). Here, we demonstrate the cloning of the four missing genes, purification of the enzymes, and identification of their functions. In contrast to bacterial PPC synthetases, the plant synthetase is not CTP-but ATP-dependent. The complete biosynthetic pathway from pantothenate to coenzyme A was reconstituted in vitro by adding the enzymes pantothenate kinase (AtCoaA), 4'-phosphopantothenoylcysteine synthetase (AtCoaB), 4'-phosphopantothenoylcysteine decarboxylase (AtCoaC), 4'-phosphopantetheine adenylyltransferase (AtCoaD), and dephospho-coenzyme A kinase (AtCoaE) to a mixture containing pantothenate, cysteine, ATP, dithiothreitol, and Mg2+.
Collapse
Affiliation(s)
- Thomas Kupke
- Lehrstuhl für Mikrobielle Genetik, Universität Tübingen, Auf der Morgenstelle 15, Verfügungsgebäude, 72076 Tübingen, Germany.
| | | | | |
Collapse
|
7
|
Ramaswamy G, Karim MA, Murti KG, Jackowski S. PPARalpha controls the intracellular coenzyme A concentration via regulation of PANK1alpha gene expression. J Lipid Res 2003; 45:17-31. [PMID: 14523052 DOI: 10.1194/jlr.m300279-jlr200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pantothenate kinase (PanK) is thought to catalyze the first rate-limiting step in CoA biosynthesis. The full-length cDNA encoding the human PanK1alpha protein was isolated, and the complete human PANK1 gene structure was determined. Bezafibrate (BF), a hypolipidemic drug and a peroxisome proliferator activator receptor-alpha (PPARalpha) agonist, specifically increased hPANK1alpha mRNA expression in human hepatoblastoma (HepG2) cells as a function of time and dose of the drug, compared with hPANK1beta, hPANK2, and hPANK3, which did not significantly increase. Four putative PPARalpha response elements were identified in the PANKIalpha promoter, and BF stimulated hPANK1alpha promoter activity but did not alter the mRNA half-life. Increased hPANK1alpha mRNA resulted in higher hPanK1 protein, localized in the cytoplasm, and elevated PanK enzyme activity. The enhanced hPANK1alpha gene expression translated into increased activity of the CoA biosynthetic pathway and established a higher steady-state CoA level in HepG2 cells. These data are consistent with a key role for PanK1alpha in the control of cellular CoA content and point to the PPARalpha transcription factor as a major factor governing hepatic CoA levels by specific modulation of PANK1alpha gene expression.
Collapse
Affiliation(s)
- Gayathri Ramaswamy
- Protein Science Division, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | | | | | |
Collapse
|
8
|
Westaway SK, Hayflick SJ, Zhou B, Gitschier JD. In reference to the Short Communication published by Ni et al. Int J Biochem Cell Biol 2002; 34:1629. [PMID: 12379284 DOI: 10.1016/s1357-2725(02)00125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Zhyvoloup A, Nemazanyy I, Babich A, Panasyuk G, Pobigailo N, Vudmaska M, Naidenov V, Kukharenko O, Palchevskii S, Savinska L, Ovcharenko G, Verdier F, Valovka T, Fenton T, Rebholz H, Wang ML, Shepherd P, Matsuka G, Filonenko V, Gout IT. Molecular cloning of CoA Synthase. The missing link in CoA biosynthesis. J Biol Chem 2002; 277:22107-10. [PMID: 11980892 DOI: 10.1074/jbc.c200195200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coenzyme A functions as a carrier of acetyl and acyl groups in living cells and is essential for numerous biosynthetic, energy-yielding, and degradative metabolic pathways. There are five enzymatic steps in CoA biosynthesis. To date, molecular cloning of enzymes involved in the CoA biosynthetic pathway in mammals has been only reported for pantothenate kinase. In this study, we present cDNA cloning and functional characterization of CoA synthase. It has an open reading frame of 563 aa and encodes a protein of approximately 60 kDa. Sequence alignments suggested that the protein possesses both phosphopantetheine adenylyltransferase and dephospho-CoA kinase domains. Biochemical assays using wild type recombinant protein confirmed the gene product indeed contained both these enzymatic activities. The presence of intrinsic phosphopantetheine adenylyltransferase activity was further confirmed by site-directed mutagenesis. Therefore, this study describes the first cloning and characterization of a mammalian CoA synthase and confirms this is a bifunctional enzyme containing the last two components of CoA biosynthesis.
Collapse
Affiliation(s)
- Alexander Zhyvoloup
- Department of Structure and Function of Nucleic Acid, The Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 143, Ukraine
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|