1
|
MacFarlane ER, Donaldson PJ, Grey AC. UV light and the ocular lens: a review of exposure models and resulting biomolecular changes. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1414483. [PMID: 39301012 PMCID: PMC11410779 DOI: 10.3389/fopht.2024.1414483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
UV light is known to cause damage to biomolecules in living tissue. Tissues of the eye that play highly specialised roles in forming our sense of sight are uniquely exposed to light of all wavelengths. While these tissues have evolved protective mechanisms to resist damage from UV wavelengths, prolonged exposure is thought to lead to pathological changes. In the lens, UV light exposure is a risk factor for the development of cataract, which is a condition that is characterised by opacity that impairs its function as a focusing element in the eye. Cataract can affect spatially distinct regions of the lens. Age-related nuclear cataract is the most prevalent form of cataract and is strongly associated with oxidative stress and a decrease in the antioxidant capacity of the central lens region. Since UV light can generate reactive oxygen species to induce oxidative stress, its effects on lens structure, transparency, and biochemistry have been extensively investigated in animal models in order to better understand human cataract aetiology. A review of the different light exposure models and the advances in mechanistic understanding gained from these models is presented.
Collapse
Affiliation(s)
- Emily R MacFarlane
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Angus C Grey
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Li X, Xie J, Xu J, Deng L, Cao G, Huang S, Zeng C, Liu C, Zhu S, He G, Lin Z, Ma W, Yang P, Liu T. Long-Term Exposure to Ambient PM 2.5 and Age-Related Cataracts among Chinese Middle-Aged and Older Adults: Evidence from Two National Cohort Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11792-11802. [PMID: 37534997 DOI: 10.1021/acs.est.3c02646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Cataract is one key cause of visual disability and blindness. Ambient particulate matter is more likely to increase cataract risk due to eye continuous exposure to the environment. However, less is known about whether long-term exposure to particulate matter 2.5 (PM2.5) is related to age-related cataracts. We conducted a population-based study among 22,298 adults from two multicenter cohort studies [China Family Panel Studies (CFPS) and Chinese Longitudinal Healthy Longevity Survey (CLHLS)]. The associations between PM2.5 and age-related cataracts were analyzed by Cox proportional hazard regression models, which were also stratified according to demographic characteristics. The restricted cubic spline (RCS) model was used to explore the dose-response relationships between PM2.5 and age-related cataracts. The population attributable fraction (PAF) was calculated to assess the burden of age-related cataracts that can be attributed to PM2.5. In the final analysis, 1897 participants reported age-related cataracts during follow-up. Long-term exposure to PM2.5 was associated with age-related cataracts, with HRs of 1.165 (1.130, 1.201), 1.138 (1.103, 1.173), and 1.091 (1.057, 1.126) for per 10 μg/m3 increase at one-, two-, and three-year before the end of follow-up, respectively. Furthermore, associations between PM2.5 and age-related cataracts were also demonstrated in RCS models. The PAF of age-related cataracts to PM2.5 in the total participants was 24.63%. Our research found that long-term exposure to PM2.5 may increase the risk of age-related cataracts, and age-related cataracts should be considered as an important public health issue due to air pollution.
Collapse
Affiliation(s)
- Xiaojie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jinying Xie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jiahong Xu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Langjing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ganxiang Cao
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Songyi Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chenyan Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chaoqun Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ziqiang Lin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
- Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou 510632, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
- Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Zhang J, Wang W, Yang G, Ha J, Tan X, Shang X, Zhu Z, Han X, Liu Z, Zhang L, He M, Luo L. Body mass index is not associated with early onset cataract in the 45 and Up cohort study. ANNALS OF TRANSLATIONAL MEDICINE 2022; 9:1640. [PMID: 34988149 PMCID: PMC8667097 DOI: 10.21037/atm-21-2775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/12/2021] [Indexed: 12/03/2022]
Abstract
Background Body mass index (BMI) has been reported to be associated with age-related cataract, whereas its impact on early onset cataract (EOC) remains unknown. Methods A total of 73,007 individuals aged 45–55 years who had no previous cataract surgeries at baseline were enrolled from the population-based 45 and Up Study. BMI was calculated based on self-reported height and weight from the baseline questionnaire. Data on cataract surgeries were obtained from the Medicare Benefits Schedule database. EOC was defined as cataract surgically treated prior to 65 years of age. A Cox proportional hazards regression was used to assess the association between BMI and the incidence of EOC during the follow-up. Results A total of 1,764 participants underwent cataract surgery over 643,717 person-years of follow-up. No significant association was observed between BMI and EOC (P for trend 0.35). Among participants who drank 5 to 7 alcoholic drinks per week, a 73% and 27% reduction in the risk of EOC was observed in participants with a BMI of 18.5–19.99 and 25.0–27.49 kg/m2, respectively, compared to those with a BMI of 20.0–22.49 kg/m2. Conclusions No association was identified between BMI and the incidence of EOC. Moderate alcohol intake may be protective against EOC.
Collapse
Affiliation(s)
- Jiaqing Zhang
- State Key Laboratory of Ophthalmology, National Clinical Research Center, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, National Clinical Research Center, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Guangyao Yang
- Department of Ophthalmology, Municipal Hospital of Chifeng, Inner Mongolia Autonomous Region, Chifeng, China
| | - Jason Ha
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Xuhua Tan
- State Key Laboratory of Ophthalmology, National Clinical Research Center, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xianwen Shang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Zhuoting Zhu
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xiaotong Han
- State Key Laboratory of Ophthalmology, National Clinical Research Center, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhenzhen Liu
- State Key Laboratory of Ophthalmology, National Clinical Research Center, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia.,Central Clinical School, Faculty of Medicine, Monash University, Melbourne, Australia.,Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mingguang He
- State Key Laboratory of Ophthalmology, National Clinical Research Center, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, National Clinical Research Center, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Shin J, Lee H, Kim H. Association between Exposure to Ambient Air Pollution and Age-Related Cataract: A Nationwide Population-Based Retrospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9231. [PMID: 33321894 PMCID: PMC7763970 DOI: 10.3390/ijerph17249231] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate the association between ambient air pollutants and cataracts in the general population aged 50 years or older using data from the Korean National Insurance Service-National Sample Cohort. Cataract patients were defined as those diagnosed by a physician and having undergone cataract surgery. After matching the average concentrations of PM2.5, PM10, NO2, CO, SO2, and O3 in residential areas, the association between quartile level of air pollutants and incidence of cataract was analyzed using a multivariate Cox-proportional hazard risk model. Among the 115,728 participants, 16,814 (14.5%) were newly diagnosed with cataract and underwent related surgery between 1 January 2004, and 31 December 2015. Exposure to PM10, NO2, and SO2 was positively associated with cataract incidence, while O3 was negatively associated. The adjusted hazard ratio (HR) with 95% confidence interval was 1.069 (1.025-1.115) in PM10 and 1.080 (1.030-1.133) in NO2. However, the association between cataract and the quartile of PM2.5 measured during one year in 2015 was not clear. The HR of female participants aged 65 or older was significantly increased according to quartile of air pollutants. We identified exposure to PM10, NO2, SO2, and O3 associated with cataract development in Korean adults aged ≥ 50 years. This information may be helpful for policymaking to control air pollution as a risk factor for eye health.
Collapse
Affiliation(s)
- Jinyoung Shin
- Department of Family Medicine, Konkuk University Medical Center, Seoul 05030, Korea;
| | - Hyungwoo Lee
- Department of Ophthalmology, Konkuk University Medical Center, Seoul 05030, Korea;
| | - Hyeongsu Kim
- Department of Preventive Medicine, Konkuk University School of Medicine, Seoul 05030, Korea
| |
Collapse
|
5
|
Roskamp KW, Montelongo DM, Anorma CD, Bandak DN, Chua JA, Malecha KT, Martin RW. Multiple Aggregation Pathways in Human γS-Crystallin and Its Aggregation-Prone G18V Variant. Invest Ophthalmol Vis Sci 2017; 58:2397-2405. [PMID: 28444328 PMCID: PMC5407245 DOI: 10.1167/iovs.16-20621] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Purpose Cataract results from the formation of light-scattering precipitates due to point mutations or accumulated damage in the structural crystallins of the eye lens. Although excised cataracts are predominantly amorphous, in vitro studies show that crystallins are capable of adopting a variety of morphologies depending on the preparation method. Here we characterize thermal, pH-dependent, and UV-irradiated aggregates from wild-type human γS-crystallin (γS-WT) and its aggregation-prone variant, γS-G18V. Methods Aggregates of γS-WT and γS-G18V were prepared under acidic, neutral, and basic pH conditions and held at 25°C or 37°C for 48 hours. UV-induced aggregates were produced by irradiation with a 355-nm laser. Aggregation and fibril formation were monitored via turbidity and thioflavin T (ThT) assays. Aggregates were characterized using intrinsic aromatic fluorescence, powder x-ray diffraction, and mass spectrometry. Results γS-crystallin aggregates displayed different characteristics depending on the preparation method. γS-G18V produced a larger amount of detectable aggregates than did γS-WT and at less-extreme conditions. Aggregates formed under basic and acidic conditions yielded elevated ThT fluorescence; however, aggregates formed at low pH did not produce strongly turbid solutions. UV-induced aggregates produced highly turbid solutions but displayed only moderate ThT fluorescence. X-ray diffraction confirms amyloid character in low-pH samples and UV-irradiated samples, although the relative amounts vary. Conclusions γS-G18V demonstrates increased aggregation propensity compared to γS-WT when treated with heat, acid, or UV light. The resulting aggregates differ in their ThT fluorescence and turbidity, suggesting that at least two different aggregation pathways are accessible to both proteins under the conditions tested.
Collapse
Affiliation(s)
- Kyle W Roskamp
- Department of Chemistry, University of California, Irvine, Irvine, California, United States
| | - David M Montelongo
- Department of Chemistry, University of California, Irvine, Irvine, California, United States
| | - Chelsea D Anorma
- Department of Chemistry, University of California, Irvine, Irvine, California, United States
| | - Diana N Bandak
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, United States
| | - Janine A Chua
- Department of Chemistry, University of California, Irvine, Irvine, California, United States
| | - Kurtis T Malecha
- Department of Chemistry, University of California, Irvine, Irvine, California, United States
| | - Rachel W Martin
- Department of Chemistry, University of California, Irvine, Irvine, California, United States 2Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, United States
| |
Collapse
|
6
|
López-Valverde G, Garcia-Martin E, Fernández-Mateos J, Cruz-González F, Larrosa-Povés JM, Polo-Llorens V, Pablo-Júlvez LE. Asociación de factores de riesgo ambientales en el desarrollo de las cataratas preseniles. REVISTA MEXICANA DE OFTALMOLOGÍA 2017. [DOI: 10.1016/j.mexoft.2016.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
7
|
El Okda EA, Mohamed MM, Shaheed EB, Abdel-Moemin AR. Switching to instant black coffee modulates sodium selenite-induced cataract in rats. GERMAN MEDICAL SCIENCE : GMS E-JOURNAL 2016; 14:Doc05. [PMID: 27158251 PMCID: PMC4844918 DOI: 10.3205/000232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 03/07/2016] [Indexed: 12/04/2022]
Abstract
The influence of daily consumption of some common beverages on the development of cataract in rats was investigated. Total phenol content was determined in the beverages and an oral standardized dose of total phenols from each beverage was given to the treated rats. Weaned male albino rats were used and divided into five groups (n=7). Rats were fed Ain 93G and administered the standardized dose of instant coffee, black tea and hibiscus beverages for 30 days. On day 14 all rats were injected with a single dose of sodium selenite (Na2SeO3) 15 µmol/kg bodyweight, except the control groups NC (negative control, did not receive Na2SeO3) and PC (positive control, was already injected on day 1 of the study). The rats were continued on Ain 93G and the standardized dose for another 16 days. Positive control rats were used. Total phenols were 210, 40, and 44 mg/g dry weight gallic acid equivalent in black coffee, black tea, and hibiscus, respectively. Decreased levels (statistically significant P<0.05) of malondialdehyde, total nitric oxide, Ca-ATPase, tumor necrosis factor-α, interleukin-1β, superoxide dismutase, and conversely, increased levels (statistically significant P<0.05) of total protein, reduced glutathione, catalase were found in the lenses of the coffee group compared to PC. There are co-phenol substances in the instant black coffee that promoted coffee to be the most effective beverage.
Collapse
Affiliation(s)
- E A El Okda
- Department of Home Economics, Women's College, Ain Shams University, Cairo, Egypt
| | - M M Mohamed
- Department of Home Economics, Women's College, Ain Shams University, Cairo, Egypt
| | - E B Shaheed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - A R Abdel-Moemin
- Department of Nutrition and Food Science, Faculty of Home Economics, Helwan University, Cairo, Egypt
| |
Collapse
|
8
|
Affiliation(s)
- David C Klonoff
- Diabetes Research Institute, Mills-Peninsula Health Services, San Mateo, CA, USA
| |
Collapse
|
9
|
Suh J, Moncaster JA, Wang L, Hafeez I, Herz J, Tanzi RE, Goldstein LE, Guénette SY. FE65 and FE65L1 amyloid precursor protein-binding protein compound null mice display adult-onset cataract and muscle weakness. FASEB J 2015; 29:2628-39. [PMID: 25757569 DOI: 10.1096/fj.14-261453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/19/2015] [Indexed: 12/11/2022]
Abstract
FE65 and FE65L1 are cytoplasmic adaptor proteins that bind a variety of proteins, including the amyloid precursor protein, and that mediate the assembly of multimolecular complexes. We previously reported that FE65/FE65L1 double knockout (DKO) mice display disorganized laminin in meningeal fibroblasts and a cobblestone lissencephaly-like phenotype in the developing cortex. Here, we examined whether loss of FE65 and FE65L1 causes ocular and muscular deficits, 2 phenotypes that frequently accompany cobblestone lissencephaly. Eyes of FE65/FE65L1 DKO mice develop normally, but lens degeneration becomes apparent in young adult mice. Abnormal lens epithelial cell migration, widespread small vacuole formation, and increased laminin expression underneath lens capsules suggest impaired interaction between epithelial cells and capsular extracellular matrix in DKO lenses. Cortical cataracts develop in FE65L1 knockout (KO) mice aged 16 months or more but are absent in wild-type or FE65 KO mice. FE65 family KO mice show attenuated grip strength, and the nuclei of DKO muscle cells frequently locate in the middle of muscle fibers. These findings reveal that FE65 and FE65L1 are essential for the maintenance of lens transparency, and their loss produce phenotypes in brain, eye, and muscle that are comparable to the clinical features of congenital muscular dystrophies in humans.
Collapse
Affiliation(s)
- Jaehong Suh
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Juliet A Moncaster
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lirong Wang
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Imran Hafeez
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joachim Herz
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rudolph E Tanzi
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lee E Goldstein
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Suzanne Y Guénette
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Bertrand V, Bozukova D, Lanero TS, Huang YS, Schol D, Rosière N, Grauwels M, Duwez AS, Jérôme C, Pagnoulle C, De Pauw E, De Pauw-Gillet MC. Biointerface multiparametric study of intraocular lens acrylic materials. J Cataract Refract Surg 2014; 40:1536-44. [DOI: 10.1016/j.jcrs.2014.01.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/21/2014] [Accepted: 01/21/2014] [Indexed: 10/24/2022]
|
11
|
Stem Cells and the Ocular Lens: Implications for Cataract Research and Therapy. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE 2014. [DOI: 10.1007/978-1-4939-0787-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Gao J, Wang H, Sun X, Varadaraj K, Li L, White TW, Mathias RT. The effects of age on lens transport. Invest Ophthalmol Vis Sci 2013; 54:7174-87. [PMID: 24065810 DOI: 10.1167/iovs.13-12593] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE Age-related nuclear cataracts involve denaturation and aggregation of intracellular proteins. We have documented age-dependent changes in membrane transport in the mouse lens to see what might initiate changes in the intracellular milieu. METHODS Microelectrode-based intracellular impedance studies of intact lenses were used to determine gap junction coupling conductance, fiber and surface cell membrane conductances, effective extracellular resistivity, and intracellular voltage. Fiber cell connexin expression was detected by Western blotting. Intracellular hydrostatic pressure was measured with a microelectrode/manometer system. Concentrations of intracellular sodium and calcium were measured by intracellular injection of sodium-binding benzofuran isophthalate and Fura2, respectively. RESULTS In adult lenses, as age increased: fiber cell gap junction coupling conductance declined significantly, correlating with decreases in Cx46 and Cx50 labeling in Western blots; fiber and surface cell membrane conductances did not change systematically; effective extracellular resistivity increased monotonically; center to surface gradients for intracellular pressure, sodium, calcium, and voltage all increased, but in an interdependent manner that moderated changes. In newborn pup lenses, there were changes that did not simply fit with the above paradigm. CONCLUSIONS In newborn pup lenses, the observed changes may relate to growth factors that are not related to age-dependent changes seen in adult lenses. The major change in adult lenses was an age-dependent decrease in gap junction coupling, probably due to oxidative damage leading to degradation of connexin proteins. These changes clearly lead to compromise of intracellular homeostasis and may be a causal factor in age-related nuclear cataracts.
Collapse
Affiliation(s)
- Junyuan Gao
- Department of Physiology & Biophysics, SUNY at Stony Brook, Stony Brook, New York
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
This literature review is aimed at the evaluation of the potential for cataract prevention in Europe. It was performed using PubMed with Mesh and free-text terms. Studies included were (i) performed on a population of Caucasian origin at an age range of 40-95 years, (ii) cataract was clinically verified, (iii) drug record of prescriptions, their indication, a record of every diagnosis, dosage and quantity of prescribed medicine were available, (iv) sample size >300 and (v) published between 1990 and 2009. The results of 29 articles were reviewed. Former [3.75 (2.26-6.21)] or current smoking [2.34 (1.07-5.15)], diabetes of duration >10 years [2.72 (1.72-4.28)], asthma or chronic bronchitis [2.04 (1.04-3.81)], and cardiovascular disease [1.96 (1.22-3.14)] increased the risk of cataract. Cataract was more common in patients taking chlorpromazine during ≥90 days with a dosage ≥300 mg [8.8 (3.1-25.1)] and corticosteroids >5 years [3.25 (1.39-7.58)] in a daily dose >1600 mg [1.69 (1.17-2.43)]. Intake of a multivitamin/mineral formulation [2.00 (1.35-2.98)] or corticosteroids [2.12 (1.93-2.33)] also increased the risk of cataract. Corticosteroids applied orally [3.25 (1.39-7.58)], parenteral [1.56 (1.34-1.82)] or inhalational [1.58 (1.46-1.71)] lead to cataract more frequently than those applied topically: nasal [1.33 (1.21-1.45)], ear [1.31 (1.19-1.45)] or skin [1.43 (1.36-1.50)]. Outpatient cataract surgery was negatively associated with total cataract surgery costs, and chlorpromazine, corticosteroids and multivitamin/mineral formation increase the risk of posterior subcapsular cataract dependent on dose, treatment application and duration. This review presented a comprehensive overview of specific and general cataract risk factors and an update on most recent experimental studies and randomized control trials directed at cataract prevention.
Collapse
Affiliation(s)
- Elena Prokofyeva
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany.
| | | | | |
Collapse
|
14
|
A Class I UV-blocking (senofilcon A) soft contact lens prevents UVA-induced yellow fluorescence and NADH loss in the rabbit lens nucleus in vivo. Exp Eye Res 2012; 102:17-27. [PMID: 22766154 DOI: 10.1016/j.exer.2012.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 11/21/2022]
Abstract
It is known that fluorescence, much of it caused by UVA light excitation, increases in the aging human lens, resulting in loss of sharp vision. This study used an in vivo animal model to investigate UVA-excited fluorescence in the rabbit lens, which contains a high level of the UVA chromophore NADH, existing both free and bound to λ-crystallin. Also, the ability of a Class I (senofilcon A) soft contact lens to protect against UVA-induced effects on the rabbit lens was tested. Rabbit eyes were irradiated with UVA light in vivo (100 mW/cm(2) on the cornea) for 1 h using monochromatic 365 nm light. Irradiation was conducted in the presence of either a senofilcon A contact lens, a minimally UV-absorbing lotrafilcon A contact lens, or no contact lens at all. Eyes irradiated without a contact lens showed blue 365 nm-excited fluorescence initially, but this changed to intense yellow fluorescence after 1 h. Isolated, previously irradiated lenses exhibited yellow fluorescence originating from the lens nucleus when viewed under 365 nm light, but showed normal blue fluorescence arising from the cortex. Previously irradiated lenses also exhibited a faint yellow color when observed under visible light. The senofilcon A contact lens protected completely against the UVA-induced effects on fluorescence and lens yellowing, whereas the lotrafilcon A lens showed no protection. The UVA-exposure also produced a 53% loss of total NADH (free plus bound) in the lens nucleus, with only a 13% drop in the anterior cortex. NADH loss in the nucleus was completely prevented with use of a senofilcon A contact lens, but no significant protection was observed with a lotrafilcon A lens. Overall, the senofilcon A lens provided an average of 67% protection against UVA-induced loss of four pyridine nucleotides in four different regions of the lens. HPLC analysis with fluorescence detection indicated a nearly six-fold increase in 365 nm-excited yellow fluorescence arising from lens nuclear λ-crystallin after the in vivo UVA exposure. It is concluded that UVA-induced loss of free NADH (which fluoresces blue) may have allowed the natural yellow fluorescence of λ-crystallin and other proteins in the lens nucleus to become visible. Increased fluorescence exhibited by UVA-exposed λ-crystallin may have been the result of a UVA-induced change in the conformation of the protein occurring during the initial UVA-exposure in vivo. The results demonstrate the greater susceptibility of the lens nucleus to UVA-induced stress, and may relate to the formation of human nuclear cataract. The senofilcon A contact lens was shown to be beneficial in protecting the rabbit lens against effects of UVA light, including changes in fluorescence, increased yellowing and loss of pyridine nucleotides.
Collapse
|
15
|
Beebe DC, Holekamp NM, Shui YB. Oxidative damage and the prevention of age-related cataracts. Ophthalmic Res 2010; 44:155-65. [PMID: 20829639 DOI: 10.1159/000316481] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE Cataracts are often considered to be an unavoidable consequence of aging. Oxidative damage is a major cause or consequence of cortical and nuclear cataracts, the most common types of age-related cataracts. METHODS In this review, we consider the different risk factors, natural history and etiology of each of the 3 major types of age-related cataract, as well as the potential sources of oxidative injury to the lens and the mechanisms that protect against these insults. The evidence linking different oxidative stresses to the different types of cataracts is critically evaluated. RESULTS We conclude from this analysis that the evidence for a causal role of oxidation is strong for nuclear, but substantially lower for cortical and posterior subcapsular cataracts. The preponderance of evidence suggests that exposure to increased levels of molecular oxygen accelerates the age-related opacification of the lens nucleus, leading to nuclear cataract. Factors in the eye that maintain low oxygen partial pressure around the lens are, therefore, important in protecting the lens from nuclear cataract. CONCLUSIONS Maintaining or restoring the low oxygen partial pressure around that lens should decrease or prevent nuclear cataracts.
Collapse
Affiliation(s)
- David C Beebe
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO 63110, USA.
| | | | | |
Collapse
|
16
|
Antioxidative properties of nitroxyl radicals and hydroxyamines in reactions with triplet and deaminated kynurenine. Russ Chem Bull 2010. [DOI: 10.1007/s11172-010-0046-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Yanshole VV, Sherin PS, Gritsan NP, Snytnikova OA, Mamatyuk VI, Grilj J, Vauthey E, Sagdeev RZ, Tsentalovich YP. Photoinduced tautomeric transformations of xanthurenic acid. Phys Chem Chem Phys 2010; 12:9502-15. [DOI: 10.1039/c000735h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Meyer LM, Löfgren S, Ho YS, Lou M, Wegener A, Holz F, Söderberg P. Absence of glutaredoxin1 increases lens susceptibility to oxidative stress induced by UVR-B. Exp Eye Res 2009; 89:833-9. [PMID: 19664619 DOI: 10.1016/j.exer.2009.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 07/09/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
Abstract
We investigated if the absence of glutaredoxin1, a critical protein thiol repair enzyme, increases lens susceptibility to oxidative stress caused by in vivo exposure to ultraviolet radiation type B (UVR-B). Glrx(-/-) mice and Glrx(+/+) mice were unilaterally exposed in vivo to UVR-B for 15 min. Groups of 12 animals each received 4.3, 8.7, and 14.5 kJ/m(2) respectively. 48 h post UVR-B exposure, the induced cataract was quantified as forward lens light scattering. Cataract morphology was documented with darkfield illumination photography. Glutathione (GSH/GSSG) content was analyzed in Glrx(-/-) and Glrx(+/+) lenses. UVR-B exposure induced anterior sub-capsular cataract (ASC) in Glrx(-/-) and Glrx(+/+) mice. In Glrx(-/-) lenses the opacities extended further towards the lens equator than in wild type animals (Glrx(+/+)). Lens light scattering in Glrx(-/-) mice was increased in all dose groups compared to lenses with normal glutaredoxin1 function. The difference was more pronounced with increasing exposure dose. Lens sensitivity for UVR-B induced damage was significantly higher in Glrx(-/-) lenses compared to Glrx(+/+) lenses. The Glrx gene provides a 44% increase of protection against close to threshold UVR-B induced oxidative stress compared to the absence of the Glrx gene. In conclusion, the absence of glutaredoxin1 increases lens susceptibility to UVR-B induced oxidative stress in the mouse.
Collapse
Affiliation(s)
- Linda M Meyer
- Herzog Carl Theodor Eye Clinic, Nymphenburgerstrasse 43, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Kopylova LV, Snytnikova OA, Chernyak EI, Morozov SV, Forbes MDE, Tsentalovich YP. Kinetics and mechanism of thermal decomposition of kynurenines and biomolecular conjugates: ramifications for the modification of mammalian eye lens proteins. Org Biomol Chem 2009; 7:2958-66. [PMID: 19582306 DOI: 10.1039/b903196k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermal degradation reactions of kynurenine (KN), 3-hydroxykynurenine (3OHKN), and several adducts of KN, to amino acids and reduced glutathione (GSH) have been studied at physiological temperature. These compounds are all implicated in age-related mammalian eye lens cataract formation at the molecular level. The main reaction pathway for both KN and 3OHKN is deamination via beta-elimination to carboxyketoalkenes CKA and 3OHCKA. These reactions show a weak pH dependence below pH values of approximately 8, and a strong pH dependence above this value. The 3OHKN structure deaminates at a faster rate than KN. A mechanism for the deamination reaction is proposed, involving an aryl carbonyl enol/enolate ion, that is strongly supported by the structural, kinetic, and pH data. The degradation of Lys, His, Cys and GSH adducts of the CKA moieties was also studied. The Lys adduct was found to be relatively stable over 200 h at 37 degrees C, while significant degradation was observed for the other adducts. The results are discussed in terms of known post-translational modification reactions of the lens proteins and compared to incubation studies involving KN and related compounds in the presence of proteins.
Collapse
Affiliation(s)
- Lyudmila V Kopylova
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk, 630090, Russia
| | | | | | | | | | | |
Collapse
|
20
|
Sherin PS, Grilj J, Tsentalovich YP, Vauthey E. Ultrafast Excited-State Dynamics of Kynurenine, a UV Filter of the Human Eye. J Phys Chem B 2009; 113:4953-62. [DOI: 10.1021/jp900541b] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter S. Sherin
- International Tomography Center SB RAS, Institutskaya 3a, 630090 Novosibirsk, Russia, and Department of Physical Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Jakob Grilj
- International Tomography Center SB RAS, Institutskaya 3a, 630090 Novosibirsk, Russia, and Department of Physical Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Yuri P. Tsentalovich
- International Tomography Center SB RAS, Institutskaya 3a, 630090 Novosibirsk, Russia, and Department of Physical Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Eric Vauthey
- International Tomography Center SB RAS, Institutskaya 3a, 630090 Novosibirsk, Russia, and Department of Physical Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
21
|
Sherin P, Tsentalovich Y, Snytnikova O, Sagdeev R. Photoactivity of kynurenine-derived UV filters. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2008; 93:127-32. [DOI: 10.1016/j.jphotobiol.2008.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 06/30/2008] [Accepted: 07/28/2008] [Indexed: 10/21/2022]
|
22
|
Simpanya MF, Ansari RR, Leverenz V, Giblin FJ. Measurement of lens protein aggregation in vivo using dynamic light scattering in a guinea pig/UVA model for nuclear cataract. Photochem Photobiol 2008; 84:1589-95. [PMID: 18627516 DOI: 10.1111/j.1751-1097.2008.00390.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The role of UVA radiation in the formation of human nuclear cataract is not well understood. We have previously shown that exposing guinea pigs for 5 months to a chronic low level of UVA light produces increased lens nuclear light scattering and elevated levels of protein disulfide. Here we have used the technique of dynamic light scattering (DLS) to investigate lens protein aggregation in vivo in the guinea pig/UVA model. DLS size distribution analysis conducted at the same location in the lens nucleus of control and UVA-irradiated animals showed a 28% reduction in intensity of small diameter proteins in experimental lenses compared with controls (P < 0.05). In addition, large diameter proteins in UVA-exposed lens nuclei increased five-fold in intensity compared to controls (P < 0.05). The UVA-induced increase in apparent size of lens nuclear small diameter proteins was three-fold (P < 0.01), and the size of large diameter aggregates was more than four-fold in experimental lenses compared with controls. The diameter of crystallin aggregates in the UVA-irradiated lens nucleus was estimated to be 350 nm, a size able to scatter light. No significant changes in protein size were detected in the anterior cortex of UVA-irradiated lenses. It is presumed that the presence of a UVA chromophore in the guinea pig lens (NADPH bound to zeta crystallin), as well as traces of oxygen, contributed to UVA-induced crystallin aggregation. The results indicate a potentially harmful role for UVA light in the lens nucleus. A similar process of UVA-irradiated protein aggregation may take place in the older human lens nucleus, accelerating the formation of human nuclear cataract.
Collapse
|
23
|
Abstract
Oxidative and particularly photo-oxidative processes are critical factors many ocular conditions but are often poorly recognized by those investigating ocular disease. The author discusses oxidative stress in inflammatory processes of the conjunctiva, cornea, and uvea; in cataract formation in the lens; in retinal degeneration; and in optic nerve pathologic conditions, inflammatory in optic neuritis and degenerative in glaucoma.
Collapse
Affiliation(s)
- David L Williams
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, England, UK; St. John's College, Cambridge CB2 1TP, England, UK.
| |
Collapse
|
24
|
The effect of single and repeated UVB radiation on rabbit lens. Graefes Arch Clin Exp Ophthalmol 2008; 246:551-8. [PMID: 18193260 DOI: 10.1007/s00417-007-0747-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 11/29/2007] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In our previous investigations, a significant cumulative effect of ultraviolet radiation (UVR) on the corneal and aqueous humour metabolic profiles was revealed. The purpose of the present study was to monitor the alterations in the rabbit lenses under the same experimental design and thereby supplement and complete prior findings. METHODS Albino rabbit eyes were exposed to single (312 nm, 3.12 J/cm2) or repeated (312 nm, 3 x 1.04 J/cm2) UVB irradiations of the same overall doses. Lenticular samples were analysed by high resolution magic angle spinning proton nuclear magnetic resonance (HR-MAS 1H NMR) spectroscopy. Special grouping patterns between the UVB-irradiated and untreated control samples were evaluated using principal component analysis (PCA). Percentage alterations in the lenticular metabolite concentrations from UVR-B exposed rabbits were calculated relative to the levels in the control group. RESULTS UVB irradiation of the albino rabbit lenses resulted in a significant decrease in the concentrations of antioxidants (glutathione), osmolytes (taurine, myoinositol) and amino acids (alanine), and a concomitant elevation in the contents of a sugar-related compound, sorbitol. Repeated UVR-B exposure of the rabbit eye had a stronger effect on the lenticular metabolic profile than a single irradiation of the same overall dose. CONCLUSIONS This study reveals the cumulative effect of repeated UVB irradiations, and shows that even a 48-hour interval between subsequent UVR-B exposures is not sufficient for the healing processes to restore lenticular integrity.
Collapse
|
25
|
Kopylova LV, Snytnikova OA, Chernyak EI, Morozov SV, Tsentalovich YP. UV filter decomposition. A study of reactions of 4-(2-aminophenyl)-4-oxocrotonic acid with amino acids and antioxidants present in the human lens. Exp Eye Res 2007; 85:242-9. [PMID: 17574242 DOI: 10.1016/j.exer.2007.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/23/2007] [Accepted: 04/24/2007] [Indexed: 11/16/2022]
Abstract
Deamination of UV filters, such as kynurenine (KN), in the human lens results in protein modification. Thermal reactions of the product of kynurenine deamination, 4-(2-aminophenyl)-4-oxocrotonic acid (CKA), with amino acids (histidine, lysine, methionine, tryptophan, tyrosine, cysteine) and antioxidants (ascorbate, NADH, glutathione reduced) were studied. The rate constants of the reactions under physiological conditions were measured. The rate constants of CKA addition to cysteine k(Cys)=36+/-4M(-1)s(-1) and to glutathione k(GSH)=2.1+/-0.2M(-1)s(-1) are 4-5 orders of magnitude higher than the rate constants of CKA reactions with the other amino acids and antioxidants. The Arrhenius parameters for k(Cys) and k(GSH) were determined: A(GSH)=(1.8+/-0.7)x10(5)M(-1)s(-1), E(GSH)=29.2+/-5.6kJmol(-1), A(Cys)=(2.7+/-0.9)x10(8)M(-1)s(-1), E(Cys)=40.4+/-5.7kJmol(-1). The large difference in frequency factors for k(Cys) and k(GSH) is attributed to steric hindrance, peculiar to the bulky GSH molecule.
Collapse
Affiliation(s)
- Lyudmila V Kopylova
- International Tomography Center, Institutskaya 3a, Novosibirsk 630090, Russia
| | | | | | | | | |
Collapse
|
26
|
Kinetics and mechanism of reactions of photoexcited kynurenine with molecules of some natural compounds. Russ Chem Bull 2007. [DOI: 10.1007/s11172-007-0109-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Snytnikova O, Sherin P, Tsentalovich Y. Biphotonic ionization of kynurenine and 3-hydroxykynurenine. J Photochem Photobiol A Chem 2007. [DOI: 10.1016/j.jphotochem.2006.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Antunes A, Safatle AMV, Barros PSM, Morelhão SL. X-ray imaging in advanced studies of ophthalmic diseases. Med Phys 2006; 33:2338-43. [PMID: 16898435 DOI: 10.1118/1.2207135] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Microscopic characterization of pathological tissues has one major intrinsic limitation, the small sampling areas with respect to the extension of the tissues. Mapping possible changes on vast tissues and correlating them with large ensembles of clinical cases is not a feasible procedure for studying most diseases, as for instance vision loss related diseases and, in particular, the cataract. Although intraocular lens implants are successful treatments, cataract still is a leading public-health issue that grows in importance as the population increases and life expectancy is extended worldwide. In this work we have exploited the radiation-tissue interaction properties of hard x-rays--very low absorption and scattering--to map distinct lesions on entire eye lenses. At the used synchrotron x-ray photon energy of 20 keV (wavelength lambda=0.062 nm), scattering and refraction are angular resolved effects. It allows the employed x-ray image technique to efficiently characterize two types of lesions in eye lenses under cataractogenesis: distributions of tiny scattering centers and extended areas of fiber cell compaction. The data collection procedure is relatively fast; allowing dozens of samples to be totally imaged (scattering, refraction, and mass absorption images) in a single day of synchrotron beam time. More than 60 cases of canine cataract, not correlated to specific causes, were investigated in this first application of x-rays to image entire lenses. Cortical opacity cases, or partial opacity, could be related to the presence of calcificated tissues at the cortical areas, clearly visible in the images, whose elemental contents were verified by micro x-ray fluorescence as very rich in calcium. Calcificated tissues were also observed at nuclear areas in some cases of hypermature cataract. Total opacity cases without distinguishable amount of scattering centers consist in 70% of the analyzed cases, where remarkable fissure marks owing to extended areas of fiber cell compaction are diagnosed.
Collapse
Affiliation(s)
- Andrea Antunes
- Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
29
|
Colitz CMH, Barden CA, Lu P, Chandler HL. Ultraviolet irradiation up-regulates telomerase transcription and activity in lens epithelial cells. Vet Ophthalmol 2006; 9:379-85. [PMID: 16939468 DOI: 10.1111/j.1463-5224.2006.00499.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Ultraviolet irradiation (UVR) increases telomerase activity in various cell types including skin, a sun-exposed organ. The lens is also continually exposed to UVR and we hypothesized that lenses exposed to UVR would have increased telomerase activity, with up-regulated TERT and TR, the two main components of the telomerase holoenzyme. To evaluate whether the cornea would protect lenses from such changes, whole globes, as well as isolated lenses, were exposed to UVR, and lenses were evaluated for changes in telomerase activity. METHODS There were three parts to this project. The first part of this experiment evaluated freshly harvested normal adult canine lenses exposed to 0, 300, 600, or 1200 J/m(2) UVR, and then allowed to recover for 1, 2, 3 and 4 h. Since only 600 J/m(2) UVR increased telomerase activity, four more postexposure recovery time-points for this UVR dose were evaluated: 10 min, 30 min, 8 h and 24 h. The second part of this experiment used freshly enucleated whole canine globes exposed to 0, 50, 100, 150, 300, 600 or 1200 J/m(2) and incubated overnight; lens epithelial cells (LEC) were evaluated for telomerase activity. The third part evaluated lenses that were exposed to 0 or 600 J/m(2) UVR, and then allowed to recover for 8 and 24 h, before TERT and TR mRNA levels were measured. RESULTS Isolated lenses exposed to 600 J/m(2) UVR had significantly higher telomerase activity than unexposed controls and other UVR doses, at all time-points except 24 h postexposure. Lenses from whole globes exposed to UVR showed a dose-dependent increase in telomerase activity except at 50 J/m(2) and 1200 J/m(2). Isolated lenses exposed to 600 J/m(2) UVR and then allowed to recover for 8 and 24 h significantly up-regulated TERT and TR mRNAs compared to unexposed control lenses. CONCLUSIONS Telomerase activity is regulated at both the transcriptional and post-translational levels in canine LEC. Previous work in our laboratory showed dose, time, and age-dependent changes in telomerase activity in the lens. The present study showed that TERT and TR mRNA transcription was increased for up to 24 h following an acute dose of UVR. Both telomerase activity and TERT and TR mRNA levels were elevated until 24 h post-UVR exposure, TERT in combination with TR functions in proliferation-related telomerase activity, but TERT alone has an anti-apoptotic function and its up-regulation may protect LEC from the acute effects of UVR. We are continuing to evaluate the mechanisms by which telomerase is regulated in normal and cataractous LEC.
Collapse
Affiliation(s)
- Carmen M H Colitz
- Departments of Veterinary Clinical Science, The Ohio State University, Columbus, OH, USA.
| | | | | | | |
Collapse
|
30
|
Tsentalovich YP, Snytnikova OA, Forbes MDE, Chernyak EI, Morozov SV. Photochemical and thermal reactivity of kynurenine. Exp Eye Res 2006; 83:1439-45. [PMID: 16963024 DOI: 10.1016/j.exer.2006.07.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 07/17/2006] [Accepted: 07/25/2006] [Indexed: 11/23/2022]
Abstract
The thermal and photochemical reactivity of kynurenine (KN), a tryptophan metabolite found in human lenses, has been studied in aqueous solution. The decarboxylation reaction of KN, resulting in the formation of 4-hydroxyquinoline, is reported for the first time. Rate constants for KN deamination and decarboxylation were determined in the temperature range 50-90 degrees C. The quantum yields for KN photodecomposition under argon were measured to be Phi Ar=(2.0+/-0.2) x 10(-5) and under oxygen Phi O2=(1.1+/-0.1) x 10(-4).
Collapse
Affiliation(s)
- Yuri P Tsentalovich
- Department of Multispin Coordination Compounds, International Tomography Center, Institutskaya 3a, Novosibirsk, Russia.
| | | | | | | | | |
Collapse
|
31
|
Wolf N, Penn P, Pendergrass W, Van Remmen H, Bartke A, Rabinovitch P, Martin GM. Age-related cataract progression in five mouse models for anti-oxidant protection or hormonal influence. Exp Eye Res 2005; 81:276-85. [PMID: 16129095 DOI: 10.1016/j.exer.2005.01.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 01/24/2005] [Accepted: 01/26/2005] [Indexed: 11/23/2022]
Abstract
Five mouse models with known alterations of resistance to oxidative damage were compared by slit lamp examination for the presence and degree of advancement of age-related cataract in young adult and old animals along with wild type controls. A group of young and old normal C57BL/6Jax mice were examined first to constitute a standard, and they were found to exhibit age-related cataract development. Following this, four models on the C57BL/6 background with imposed genetic alterations affecting anti-oxidant enzyme presence or activity, and one outbred model in which a deletion blocked the growth hormone/IGF-1 axis, were similarly examined. There was no evidence of foetal or juvenile cataract development in any of these models, and an age-related severity for lens opacities was shown between young adult and old mice in all groups. Model 1, mice null for the anti-oxidant gene glutathione peroxidase-1 (GPX1) had significantly advanced cataracts in older mice vs. same age controls. In mouse model 2 hemizygous knockout of SOD2 (MnSOD) did not affect age-related cataract development. In model 3 combining the GPX1 and SOD2 deficiencies in the same animal did not advance cataract development beyond that of the GPX1 null alone. In model 4 the addition of anti-oxidant protection in the lens by transfection of human catalase targeted only to the mitochondria resulted in a significant delay in cataract development. The 5th model, growth hormone receptor knockout (GHR-/-) mice, also demonstrated a significant reduction in age-related cataract development, as well as dwarfism. These findings, in general, support the oxidative theory of age-related cataract development. The exception, the partial deletion of SOD2 in the hemizygous KO model, probably did not represent a sufficiently severe deprivation of anti-oxidant protection to produce pathologic changes in the lens.
Collapse
Affiliation(s)
- Norman Wolf
- Department of Pathology, University of Washington School of Medicine, Box 3557470, University of Washington, Seattle, WA 98195-7470, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Dairou J, Malecaze F, Dupret JM, Rodrigues-Lima F. The xenobiotic-metabolizing enzymes arylamine N-acetyltransferases in human lens epithelial cells: inactivation by cellular oxidants and UVB-induced oxidative stress. Mol Pharmacol 2005; 67:1299-306. [PMID: 15644493 DOI: 10.1124/mol.104.009738] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human arylamine N-acetyltransferases NAT1 and NAT2 are important xenobiotic-metabolizing enzymes involved in the detoxification and metabolic activation of numerous drugs and chemicals. NAT activity depends on genetic polymorphisms and on environmental factors. It has been shown that low NAT-acetylation activity could increase the risk of age-dependent cataract, suggesting that NAT detoxification function may be important for lens cells homeostasis. We report here that the NAT acetylation pathway may occur in human lens epithelial (HLE) cells. Functional NAT1 enzyme was readily detected in HLE cells by reverse transcription-polymerase chain reaction, Western blotting, and enzyme activity assays. NAT2 mRNA and enzymic activity were also detected. We investigated whether oxidants, known to be produced in HLE cells during oxidative stresses and involved in age-dependent cataract formation, decreased endogenous NAT1 and NAT2 activity. The exposure of HLE cells to peroxynitrite led to the dose-dependent irreversible inactivation of both NAT isoforms. Exposing HLE cells to continuously generated H(2)O(2) gave a dose-dependent inactivation of NAT1 and NAT2, reversible on addition of high concentrations of reducing agents. UVB irradiation also induced the reversible dose-dependent inactivation of endogenous NAT1 and NAT2, reversible on addition of reducing agents. Thus, our data suggest that functional NAT1 and NAT2 are present in HLE cells and may be impaired by oxidants produced during oxidative and photooxidative stresses. Oxidative-dependent inhibition of NATs in these cells may increase exposure of lens to the harmful effects of toxic chemicals that could contribute to cataractogenesis over time.
Collapse
Affiliation(s)
- Julien Dairou
- Centre National de la Recherche Scientifique-Unité Mixte de Recherche 7000, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
33
|
Lapko VN, Cerny RL, Smith DL, Smith JB. Modifications of human betaA1/betaA3-crystallins include S-methylation, glutathiolation, and truncation. Protein Sci 2004; 14:45-54. [PMID: 15576560 PMCID: PMC2253330 DOI: 10.1110/ps.04738505] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Disulfide bonding of lens crystallins contributes to the aggregation and insolubilization of these proteins that leads to cataract. A high concentration of reduced glutathione is believed to be key in preventing oxidation of crystallin sulfhydryls to form disulfide bonds. This protective role is decreased in aged lenses because of lower glutathione levels, especially in the nucleus. We recently found that human gamma-crystallins undergo S-methylation at exposed cysteine residues, a reaction that may prevent disulfide bonding. We report here that betaA1/A3-crystallins are also methylated at specific cysteine residues and are the most heavily methylated of the human lens crystallins. Among the methylated sites, Cys 64, Cys 99, and Cys 167 of betaA1-crystallin, methylation at Cys 99 is highest. Cys 64 and Cys 99 are also glutathiolated, even in a newborn lens. These post-translational modifications of the exposed cysteines may be important for maintaining the crystallin structure required for lens transparency. Previously unreported N-terminal truncations were also found.
Collapse
Affiliation(s)
- Veniamin N Lapko
- Department of Chemistry, Hamilton Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | | | | | | |
Collapse
|
34
|
Srikanthan D, Bateman OA, Purkiss AG, Slingsby C. Sulfur in human crystallins. Exp Eye Res 2004; 79:823-31. [PMID: 15642319 DOI: 10.1016/j.exer.2004.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 05/11/2004] [Indexed: 11/28/2022]
Abstract
Molecular models of human gamma-crystallins and the 'alpha-crystallin domain' of human alphaA-crystallin have been built based on available related X-ray crystal structures. The accessibilities of the component cysteine, methionine and tryptophan side chains in the crystallin models have been calculated. The reactivities of these cysteines, which are oxidised in cataract, are assessed based on their known modifications and within the context of their location within the 3D models.
Collapse
Affiliation(s)
- Durga Srikanthan
- Department of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | | | | | | |
Collapse
|
35
|
Malina HZ. Comment on ‘The photosensitiser xanthurenic acid is not present in normal human lenses’ by P.G. Hains et al. [Exp. Eye Res. 77 (2003) 547–553]. Exp Eye Res 2004; 79:443-5; author reply 447-8. [PMID: 15336509 DOI: 10.1016/j.exer.2004.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 05/27/2004] [Indexed: 10/26/2022]
|
36
|
Hejtmancik JF, Kantorow M. Molecular genetics of age-related cataract. Exp Eye Res 2004; 79:3-9. [PMID: 15183095 PMCID: PMC1351356 DOI: 10.1016/j.exer.2004.03.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 03/05/2004] [Indexed: 12/26/2022]
Abstract
Advances in molecular biological and genetic technology have greatly accelerated elucidation of the genetic contribution to age-related cataract. Epidemiological studies have documented tendencies for cataracts to occur more frequently in relatives of cataract patients than in the general population, genetic studies have demonstrated contributory roles of some specific genes in age related cataract in small populations, and molecular studies have shown changes in expression of specific genes in cataractous lenses. Together, these studies are beginning to provide a conceptual framework for understanding age-related cataracts.
Collapse
Affiliation(s)
- J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, MD 20892, USA
| | - Marc Kantorow
- Department of Biomedical Sciences, Florida Atlantic University, 777 Glades Road, P.O. Box 3091, Boca Raton, FL 33431-0991, USA
- * Corresponding author. E-mail address: (M. Kantorow)
| |
Collapse
|
37
|
Paron I, D'Elia A, D'Ambrosio C, Scaloni A, D'Aurizio F, Prescott A, Damante G, Tell G. A proteomic approach to identify early molecular targets of oxidative stress in human epithelial lens cells. Biochem J 2004; 378:929-37. [PMID: 14678012 PMCID: PMC1224035 DOI: 10.1042/bj20031190] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 12/09/2003] [Accepted: 12/16/2003] [Indexed: 11/17/2022]
Abstract
Oxidative stress is one of the most relevant contributors of cataractogenesis. To identify early protein targets of oxidative stress in lens cells, we used a differential proteomics approach to CD5A human epithelial lens cells treated with 500 microM H2O2 for 30 min. This dose of H2O2 was assayed to induce efficiently a block of cellular proliferation and to activate the oxidative stress-early inducible transcription factor EGR-1 (early growth response gene product 1), previously reported as stimulated factor in a model of cataractogenesis [Nakajima, Nakajima, Fukiage, Azuma and Shearer (2002) Exp. Eye Res. 74, 231-236]. We identified nine proteins, which sensitively reacted to H2O2 treatment by using two-dimensional gel electrophoresis and matrix-assisted laserdesorption ionization-time-of-flight-MS. In addition to cytoskeletal proteins (tubulin 1alpha and vimentin) and enzymes (phosphoglycerate kinase 1, ATP synthase beta, enolase alpha, nucleophosmin and heat-shock cognate 54 kDa protein), which presented quantitative differences in expression profiles, peroxiredoxin and glyceraldehyde 3-phosphate dehydrogenase showed changes in pI as a result of overoxidation. Mass-mapping experiments demonstrated the specific modification of peroxiredoxin I active-site cysteine into cysteic acid, thus providing an explanation for the increase in negative charge measured for this protein. With respect to other global differential approaches based on gene expression analysis, our results allowed us to identify novel molecular targets of oxidative stress in lens cells. These results indicate that a combination of different approaches is required for a complete functional understanding of the biological events triggered by oxidative stress.
Collapse
Affiliation(s)
- Igor Paron
- Department of Biomedical Sciences and Technologies, University of Udine, P. le Kolbe 4, 33100 Udine, Italy
| | | | | | | | | | | | | | | |
Collapse
|