1
|
Mars JC, Culjkovic-Kraljacic B, Borden KL. eIF4E orchestrates mRNA processing, RNA export and translation to modify specific protein production. Nucleus 2024; 15:2360196. [PMID: 38880976 PMCID: PMC11185188 DOI: 10.1080/19491034.2024.2360196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
The eukaryotic translation initiation factor eIF4E acts as a multifunctional factor that simultaneously influences mRNA processing, export, and translation in many organisms. Its multifactorial effects are derived from its capacity to bind to the methyl-7-guanosine cap on the 5'end of mRNAs and thus can act as a cap chaperone for transcripts in the nucleus and cytoplasm. In this review, we describe the multifactorial roles of eIF4E in major mRNA-processing events including capping, splicing, cleavage and polyadenylation, nuclear export and translation. We discuss the evidence that eIF4E acts at two levels to generate widescale changes to processing, export and ultimately the protein produced. First, eIF4E alters the production of components of the mRNA processing machinery, supporting a widescale reprogramming of multiple mRNA processing events. In this way, eIF4E can modulate mRNA processing without physically interacting with target transcripts. Second, eIF4E also physically interacts with both capped mRNAs and components of the RNA processing or translation machineries. Further, specific mRNAs are sensitive to eIF4E only in particular mRNA processing events. This selectivity is governed by the presence of cis-acting elements within mRNAs known as USER codes that recruit relevant co-factors engaging the appropriate machinery. In all, we describe the molecular bases for eIF4E's multifactorial function and relevant regulatory pathways, discuss the basis for selectivity, present a compendium of ~80 eIF4E-interacting factors which play roles in these activities and provide an overview of the relevance of its functions to its oncogenic potential. Finally, we summarize early-stage clinical studies targeting eIF4E in cancer.
Collapse
Affiliation(s)
- Jean-Clément Mars
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Katherine L.B. Borden
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Herrmannová A, Jelínek J, Pospíšilová K, Kerényi F, Vomastek T, Watt K, Brábek J, Mohammad MP, Wagner S, Topisirovic I, Valášek LS. Perturbations in eIF3 subunit stoichiometry alter expression of ribosomal proteins and key components of the MAPK signaling pathways. eLife 2024; 13:RP95846. [PMID: 39495207 PMCID: PMC11534336 DOI: 10.7554/elife.95846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Protein synthesis plays a major role in homeostasis and when dysregulated leads to various pathologies including cancer. To this end, imbalanced expression of eukaryotic translation initiation factors (eIFs) is not only a consequence but also a driver of neoplastic growth. eIF3 is the largest, multi-subunit translation initiation complex with a modular assembly, where aberrant expression of one subunit generates only partially functional subcomplexes. To comprehensively study the effects of eIF3 remodeling, we contrasted the impact of eIF3d, eIF3e or eIF3h depletion on the translatome of HeLa cells using Ribo-seq. Depletion of eIF3d or eIF3e, but not eIF3h reduced the levels of multiple components of the MAPK signaling pathways. Surprisingly, however, depletion of all three eIF3 subunits increased MAPK/ERK pathway activity. Depletion of eIF3e and partially eIF3d also increased translation of TOP mRNAs that encode mainly ribosomal proteins and other components of the translational machinery. Moreover, alterations in eIF3 subunit stoichiometry were often associated with changes in translation of mRNAs containing short uORFs, as in the case of the proto-oncogene MDM2 and the transcription factor ATF4. Collectively, perturbations in eIF3 subunit stoichiometry exert specific effect on the translatome comprising signaling and stress-related transcripts with complex 5' UTRs that are implicated in homeostatic adaptation to stress and cancer.
Collapse
Affiliation(s)
- Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Jan Jelínek
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Klára Pospíšilová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Farkas Kerényi
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Tomáš Vomastek
- Laboratory of Cell Signaling, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Kathleen Watt
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska InstitutetSolnaSweden
| | - Jan Brábek
- Lady Davis Institute, Laboratory of Cancer Cell Invasion, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Susan Wagner
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Ivan Topisirovic
- Lady Davis Institute, Gerald Bronfman Department of Oncology, Department of Biochemistry, Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
3
|
Zhang J, Jin H, Chen Y, Jiang Y, Gu L, Lin G, Lin C, Wang Q. The eukaryotic translation initiation factor eIF4E regulates flowering and circadian rhythm in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:123-138. [PMID: 39145515 DOI: 10.1111/tpj.16975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Translation initiation is a critical, rate-limiting step in protein synthesis. The eukaryotic translation initiation factor 4E (eIF4E) plays an essential role in this process. However, the mechanisms by which eIF4E-dependent translation initiation regulates plant growth and development remain not fully understood. In this study, we found that Arabidopsis eIF4E proteins are distributed in both the nucleus and cytoplasm, with only the cytoplasmic eIF4E being involved in the control of photoperiodic flowering. Genome-wide translation profiling using Ribo-tag sequencing reveals that eIF4E may regulate plant flowering by maintaining the homeostatic translation of components in the photoperiodic flowering pathway. eIF4E not only regulates the translation of flowering genes such as FLOWERING LOCUS T (FT) and FLOWERING LOCUS D (FLD) but also influences the translation of circadian genes like CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and PSEUDO-RESPONSE REGULATOR 9 (PRR9). Consistently, our results show that the eIF4E modulates the rhythmic oscillation of the circadian clock. Together, our study provides mechanistic insights into how the protein translation regulates multiple developmental processes in Arabidopsis, including the circadian clock and photoperiodic flowering.
Collapse
Affiliation(s)
- Jing Zhang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huanhuan Jin
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yadi Chen
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yonghong Jiang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Gu
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guifang Lin
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qin Wang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Borden KLB. The eukaryotic translation initiation factor eIF4E unexpectedly acts in splicing thereby coupling mRNA processing with translation: eIF4E induces widescale splicing reprogramming providing system-wide connectivity between splicing, nuclear mRNA export and translation. Bioessays 2024; 46:e2300145. [PMID: 37926700 PMCID: PMC11021180 DOI: 10.1002/bies.202300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Recent findings position the eukaryotic translation initiation factor eIF4E as a novel modulator of mRNA splicing, a process that impacts the form and function of resultant proteins. eIF4E physically interacts with the spliceosome and with some intron-containing transcripts implying a direct role in some splicing events. Moreover, eIF4E drives the production of key components of the splicing machinery underpinning larger scale impacts on splicing. These drive eIF4E-dependent reprogramming of the splicing signature. This work completes a series of studies demonstrating eIF4E acts in all the major mRNA maturation steps whereby eIF4E drives production of the RNA processing machinery and escorts some transcripts through various maturation steps. In this way, eIF4E couples the mRNA processing-export-translation axis linking nuclear mRNA processing to cytoplasmic translation. eIF4E elevation is linked to worse outcomes in acute myeloid leukemia patients where these activities are dysregulated. Understanding these effects provides new insight into post-transcriptional control and eIF4E-driven cancers.
Collapse
Affiliation(s)
- Katherine L. B. Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell BiologyUniversity of MontrealMontrealQuebecCanada
| |
Collapse
|
5
|
Tsangaris TE, Smyth S, Gomes GNW, Liu ZH, Milchberg M, Bah A, Wasney GA, Forman-Kay JD, Gradinaru CC. Delineating Structural Propensities of the 4E-BP2 Protein via Integrative Modeling and Clustering. J Phys Chem B 2023; 127:7472-7486. [PMID: 37595014 PMCID: PMC10858721 DOI: 10.1021/acs.jpcb.3c04052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
The intrinsically disordered 4E-BP2 protein regulates mRNA cap-dependent translation through interaction with the predominantly folded eukaryotic initiation factor 4E (eIF4E). Phosphorylation of 4E-BP2 dramatically reduces the level of eIF4E binding, in part by stabilizing a binding-incompatible folded domain. Here, we used a Rosetta-based sampling algorithm optimized for IDRs to generate initial ensembles for two phospho forms of 4E-BP2, non- and 5-fold phosphorylated (NP and 5P, respectively), with the 5P folded domain flanked by N- and C-terminal IDRs (N-IDR and C-IDR, respectively). We then applied an integrative Bayesian approach to obtain NP and 5P conformational ensembles that agree with experimental data from nuclear magnetic resonance, small-angle X-ray scattering, and single-molecule Förster resonance energy transfer (smFRET). For the NP state, inter-residue distance scaling and 2D maps revealed the role of charge segregation and pi interactions in driving contacts between distal regions of the chain (∼70 residues apart). The 5P ensemble shows prominent contacts of the N-IDR region with the two phosphosites in the folded domain, pT37 and pT46, and, to a lesser extent, delocalized interactions with the C-IDR region. Agglomerative hierarchical clustering led to partitioning of each of the two ensembles into four clusters with different global dimensions and contact maps. This helped delineate an NP cluster that, based on our smFRET data, is compatible with the eIF4E-bound state. 5P clusters were differentiated by interactions of C-IDR with the folded domain and of the N-IDR with the two phosphosites in the folded domain. Our study provides both a better visualization of fundamental structural poses of 4E-BP2 and a set of falsifiable insights on intrachain interactions that bias folding and binding of this protein.
Collapse
Affiliation(s)
- Thomas E Tsangaris
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Spencer Smyth
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Gregory-Neal W Gomes
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Zi Hao Liu
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Moses Milchberg
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Alaji Bah
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Gregory A Wasney
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
6
|
Fernandez A, Monsen PJ, Platanias LC, Schiltz GE. Medicinal chemistry approaches to target the MNK-eIF4E axis in cancer. RSC Med Chem 2023; 14:1060-1087. [PMID: 37360400 PMCID: PMC10285747 DOI: 10.1039/d3md00121k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Aberrant translation of proteins that promote cell proliferation is an essential factor that defines oncogenic processes and cancer. The process for ribosomal translation of proteins from mRNA requires an essential initiation step which is controlled by the protein eIF4E, which binds the RNA 5'-cap and forms the eIF4F complex that subsequently translates protein. Typically, eIF4E is activated by phosphorylation on Ser209 by MNK1 and MNK2 kinases. Substantial work has shown that eIF4E and MNK1/2 are dysregulated in many cancers and this axis has therefore become an active area of interest for developing new cancer therapeutics. This review summarizes and discusses recent work to develop small molecules that target different steps in the MNK-eIF4E axis as potential cancer therapeutics. The aim of this review is to cover the breadth of different molecular approaches being taken and the medicinal chemistry basis for their optimization and testing as new cancer therapeutics.
Collapse
Affiliation(s)
- Ann Fernandez
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Paige J Monsen
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center Chicago IL 60611 USA
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University Chicago IL 60611 USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center Chicago IL 60612 USA
| | - Gary E Schiltz
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
- Robert H. Lurie Comprehensive Cancer Center Chicago IL 60611 USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine Chicago IL 60611 USA
| |
Collapse
|
7
|
Wojtczak BA, Bednarczyk M, Sikorski PJ, Wojtczak A, Surynt P, Kowalska J, Jemielity J. Synthesis and Evaluation of Diguanosine Cap Analogs Modified at the C8-Position by Suzuki-Miyaura Cross-Coupling: Discovery of 7-Methylguanosine-Based Molecular Rotors. J Org Chem 2023. [PMID: 37209102 DOI: 10.1021/acs.joc.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chemical modifications of the mRNA cap structure can enhance the stability, translational properties, and half-life of mRNAs, thereby altering the therapeutic properties of synthetic mRNA. However, cap structure modification is challenging because of the instability of the 5'-5'-triphosphate bridge and N7-methylguanosine. The Suzuki-Miyaura cross-coupling reaction between boronic acid and halogen compound is a mild, convenient, and potentially applicable approach for modifying biomolecules. Herein, we describe two methods to synthesize C8-modified cap structures using the Suzuki-Miyaura cross-coupling reaction. Both methods employed phosphorimidazolide chemistry to form the 5',5'-triphosphate bridge. However, in the first method, the introduction of the modification via the Suzuki-Miyaura cross-coupling reaction at the C8 position occurs postsynthetically, at the dinucleotide level, whereas in the second method, the modification was introduced at the level of the nucleoside 5'-monophosphate, and later, the triphosphate bridge was formed. Both methods were successfully applied to incorporate six different groups (methyl, cyclopropyl, phenyl, 4-dimethylaminophenyl, 4-cyanophenyl, and 1-pyrene) into either the m7G or G moieties of the cap structure. Aromatic substituents at the C8-position of guanosine form a push-pull system that exhibits environment-sensitive fluorescence. We demonstrated that this phenomenon can be harnessed to study the interaction with cap-binding proteins, e.g., eIF4E, DcpS, Nudt16, and snurportin.
Collapse
Affiliation(s)
- Blazej A Wojtczak
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
| | - Marcelina Bednarczyk
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093, Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
| | - Anna Wojtczak
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093, Warsaw, Poland
| | - Piotr Surynt
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093, Warsaw, Poland
| | - Joanna Kowalska
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
8
|
Seo MJ, Kim IY, Lee DM, Park YJ, Cho MY, Jin HJ, Choi KS. Dual inhibition of thioredoxin reductase and proteasome is required for auranofin-induced paraptosis in breast cancer cells. Cell Death Dis 2023; 14:42. [PMID: 36658130 PMCID: PMC9852458 DOI: 10.1038/s41419-023-05586-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
Auranofin (AF), a gold (I)-containing phosphine compound, is being investigated for oncological application as a repurposed drug. We show here that 4~5 µM AF induces paraptosis, a non-apoptotic cell death mode characterized by dilation of the endoplasmic reticulum (ER) and mitochondria, in breast cancer cells. Although the covalent inhibition of thioredoxin reductase (TrxR), an enzyme that critically controls intracellular redox homeostasis, is considered the primary mechanism of AF's anticancer activity, knockdown of TrxR1 did not induce paraptosis. Instead, both TrxR1 knockdown plus the proteasome inhibitor (PI), bortezomib (Bz), and 2 μM AF plus Bz induced paraptosis, thereby mimicking the effect of 5 μM AF. These results suggest that the paraptosis induced by 5 μM AF requires the inhibition of both TrxR1 and proteasome. We found that TrxR1 knockdown/Bz or subtoxic doses of AF and Bz induced paraptosis selectively in breast cancer cells, sparing non-transformed MCF10A cells, whereas 4~5 μM AF killed both cancer and MCF10A cells. GSH depletion was found to be more critical than ROS generation for the paraptosis induced by dual TrxR1/proteasome inhibition. In this process, the ATF4/CHAC1 (glutathione-specific gamma-glutamylcyclotransferase 1) axis leads to GSH degradation, contributing to proteotoxic stress possibly due to the accumulation of misfolded thiol-containing proteins. These results suggest that the paraptosis-inducing strategy of AF plus a PI may provide an effective therapeutic strategy against pro-apoptotic therapy-resistant cancers and reduce the potential side effects associated with high-dose AF.
Collapse
Affiliation(s)
- Min Ji Seo
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
| | - In Young Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
- Nano-safety Team, Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Korea
| | - Dong Min Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
| | - Yeon Jung Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
| | - Mi-Young Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Hyo Joon Jin
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Ajou University School of Medicine, Suwon, 16499, Korea
| | - Kyeong Sook Choi
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea.
| |
Collapse
|
9
|
Identification of MYEOV-Associated Gene Network as a Potential Therapeutic Target in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14215439. [DOI: 10.3390/cancers14215439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The molecular mechanism that promotes pancreatic cancer remains unclear, so it is important to find the molecular network of important genes related to pancreatic cancer. To find the key molecule of pancreatic cancer, differential gene expression analyses were analyzed by the Deseq2 package, edgeR package, and limma-voom package, respectively. Pancreatic cancer survival-related genes were analyzed by COX survival analysis. Finally, we integrated the results to obtain the significantly differentially expressed gene, MYEOV (myeloma overexpressed gene), most strongly related to survival in pancreatic cancer. Experimental verification by qRT-PCR confirmed that transcription levels of MYEOV mRNA markedly increased in pancreatic cancer cells relative to normal human pancreatic ductal epithelial cells (HPDE). Through the comprehensive analysis of multiple databases, we constructed a molecular network centered on MYEOV and found specific links between molecules in this network and tumor-associated immune cells. It was noted that MYEOV could serve as a ceRNA by producing molecular sponging effects on hsa-miR-103a-3p and hsa-miR-107, thus affecting the role of GPRC5A, SERPINB5, EGFR, KRAS, EIF4G2, and PDCD4 on pancreatic cancer progression. Besides, we also identified that infiltrated immune cells are potential mediators for the molecules in the MYEOV-related network to promote pancreatic cancer progression. It is the first report to focus on the possibility that MYEOV may act as a competing endogenous RNA (ceRNA) to form an interactive network with some pancreatic cancer-related genes such as KRAS and serve as a key therapeutic target of pancreatic cancer treatment.
Collapse
|
10
|
Cai Q, Yang HS, Li YC, Zhu J. Dissecting the Roles of PDCD4 in Breast Cancer. Front Oncol 2022; 12:855807. [PMID: 35795053 PMCID: PMC9251513 DOI: 10.3389/fonc.2022.855807] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
The human programmed cell death 4 (PDCD4) gene was mapped at chromosome 10q24 and encodes the PDCD4 protein comprised of 469 amino acids. PDCD4 inhibits protein translation PDCD4 inhibits protein translation to suppress tumor progression, and its expression is frequently decreased in breast cancer. PDCD4 blocks translation initiation complex by binding eIF4A via MA-3 domains or by directly binding 5’ mRNA internal ribosome entry sites with an RNA binding domain to suppress breast cancer progression and proliferation. Numerous regulators and biological processes including non-coding RNAs, proteasomes, estrogen, natural compounds and inflammation control PDCD4 expression in breast cancer. Loss of PDCD4 expression is also responsible for drug resistance in breast cancer. HER2 activation downregulates PDCD4 expression by activating MAPK, AKT, and miR-21 in aromatase inhibitor-resistant breast cancer cells. Moreover, modulating the microRNA/PDCD4 axis maybe an effective strategy for overcoming chemoresistance in breast cancer. Down-regulation of PDCD4 is significantly associated with short overall survival of patients, which suggests that PDCD4 may be an independent prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Qian Cai
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovasular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Hsin-Sheng Yang
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY, United States
| | - Yi-Chen Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Jiang Zhu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Jiang Zhu,
| |
Collapse
|
11
|
Borden K. The search for genetic dark matter and lessons learned from the journey. Biochem Cell Biol 2022; 100:276-281. [DOI: 10.1139/bcb-2022-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this review, I describe our scientific journey to unearth the impact of RNA metabolism in cancer using the eukaryotic translation initiation factor eIF4E as an exemplar. This model allowed us to discover new structural, biochemical, and molecular features of RNA processing, and to reveal their substantial impact on cell physiology. This led us to develop proof-of-principle strategies to target these pathways in cancer patients leading to clinical benefit. I discuss the important role that the unexpected plays in research and the necessity of embracing the data even when it clashes with dogma. I also touch on the importance of equity, diversity and inclusion to the success of the scientific enterprise.
Collapse
Affiliation(s)
- Katherine Borden
- University of Montreal, 5622, Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Sunavala-Dossabhoy G. Disorder at the Start: The Contribution of Dysregulated Translation Initiation to Cancer Therapy Resistance. FRONTIERS IN ORAL HEALTH 2022; 2:765931. [PMID: 35048066 PMCID: PMC8757695 DOI: 10.3389/froh.2021.765931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022] Open
Abstract
Translation of cellular RNA to protein is an energy-intensive process through which synthesized proteins dictate cellular processes and function. Translation is regulated in response to extracellular effectors and availability of amino acids intracellularly. Most eukaryotic mRNA rely on the methyl 7-guanosine (m7G) nucleotide cap to recruit the translation machinery, and the uncoupling of translational control that occurs in tumorigenesis plays a significant role in cancer treatment response. This article provides an overview of the mammalian translation initiation process and the primary mechanisms by which it is regulated. An outline of how deregulation of initiation supports tumorigenesis and how initiation at a downstream open reading frame (ORF) of Tousled-like kinase 1 (TLK1) leads to treatment resistance is discussed.
Collapse
Affiliation(s)
- Gulshan Sunavala-Dossabhoy
- Department of Biochemistry and Molecular Biology, Louisiana State University Health and Feist Weiller Cancer Center, Shreveport, LA, United States
| |
Collapse
|
13
|
Mars JC, Ghram M, Culjkovic-Kraljacic B, Borden KLB. The Cap-Binding Complex CBC and the Eukaryotic Translation Factor eIF4E: Co-Conspirators in Cap-Dependent RNA Maturation and Translation. Cancers (Basel) 2021; 13:6185. [PMID: 34944805 PMCID: PMC8699206 DOI: 10.3390/cancers13246185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022] Open
Abstract
The translation of RNA into protein is a dynamic process which is heavily regulated during normal cell physiology and can be dysregulated in human malignancies. Its dysregulation can impact selected groups of RNAs, modifying protein levels independently of transcription. Integral to their suitability for translation, RNAs undergo a series of maturation steps including the addition of the m7G cap on the 5' end of RNAs, splicing, as well as cleavage and polyadenylation (CPA). Importantly, each of these steps can be coopted to modify the transcript signal. Factors that bind the m7G cap escort these RNAs through different steps of maturation and thus govern the physical nature of the final transcript product presented to the translation machinery. Here, we describe these steps and how the major m7G cap-binding factors in mammalian cells, the cap binding complex (CBC) and the eukaryotic translation initiation factor eIF4E, are positioned to chaperone transcripts through RNA maturation, nuclear export, and translation in a transcript-specific manner. To conceptualize a framework for the flow and integration of this genetic information, we discuss RNA maturation models and how these integrate with translation. Finally, we discuss how these processes can be coopted by cancer cells and means to target these in malignancy.
Collapse
Affiliation(s)
- Jean-Clement Mars
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Mehdi Ghram
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Katherine L B Borden
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
14
|
Kumari S, Sikander M, Malik S, Tripathi MK, Hafeez BB, Yallapu MM, Chauhan SC, Khan S, Jaggi M. Steviol Represses Glucose Metabolism and Translation Initiation in Pancreatic Cancer Cells. Biomedicines 2021; 9:1814. [PMID: 34944630 PMCID: PMC8698284 DOI: 10.3390/biomedicines9121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/02/2022] Open
Abstract
Pancreatic cancer has the worst prognosis and lowest survival rate among all cancers. Pancreatic cancer cells are highly metabolically active and typically reprogrammed for aberrant glucose metabolism; thus they respond poorly to therapeutic modalities. It is highly imperative to understand mechanisms that are responsible for high glucose metabolism and identify natural/synthetic agents that can repress glucose metabolic machinery in pancreatic cancer cells, to improve the therapeutic outcomes/management of pancreatic cancer patients. We have identified a glycoside, steviol that effectively represses glucose consumption in pancreatic cancer cells via the inhibition of the translation initiation machinery of the molecular components. Herein, we report that steviol effectively inhibits the glucose uptake and lactate production in pancreatic cancer cells (AsPC1 and HPAF-II). The growth, colonization, and invasion characteristics of pancreatic cancer cells were also determined by in vitro functional assay. Steviol treatment also inhibited the tumorigenic and metastatic potential of human pancreatic cancer cells by inducing apoptosis and cell cycle arrest in the G1/M phase. The metabolic shift by steviol was mediated through the repression of the phosphorylation of mTOR and translation initiation proteins (4E-BP1, eIF4e, eIF4B, and eIF4G). Overall, the results of this study suggest that steviol can effectively suppress the glucose metabolism and translation initiation in pancreatic cancer cells to mitigate their aggressiveness. This study might help in the design of newer combination therapeutic strategies for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Sonam Kumari
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
| | - Mohammed Sikander
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Shabnam Malik
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Manish K. Tripathi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Bilal B. Hafeez
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sheema Khan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
15
|
Lehman SL, Wilson ED, Camphausen K, Tofilon PJ. Translation Initiation Machinery as a Tumor Selective Target for Radiosensitization. Int J Mol Sci 2021; 22:ijms221910664. [PMID: 34639005 PMCID: PMC8508945 DOI: 10.3390/ijms221910664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/04/2023] Open
Abstract
Towards improving the efficacy of radiotherapy, one approach is to target the molecules and processes mediating cellular radioresponse. Along these lines, translational control of gene expression has been established as a fundamental component of cellular radioresponse, which suggests that the molecules participating in this process (i.e., the translational machinery) can serve as determinants of radiosensitivity. Moreover, the proteins comprising the translational machinery are often overexpressed in tumor cells suggesting the potential for tumor specific radiosensitization. Studies to date have shown that inhibiting proteins involved in translation initiation, the rate-limiting step in translation, specifically the three members of the eIF4F cap binding complex eIF4E, eIF4G, and eIF4A as well as the cap binding regulatory kinases mTOR and Mnk1/2, results in the radiosensitization of tumor cells. Because ribosomes are required for translation initiation, inhibiting ribosome biogenesis also appears to be a strategy for radiosensitization. In general, the radiosensitization induced by targeting the translation initiation machinery involves inhibition of DNA repair, which appears to be the consequence of a reduced expression of proteins critical to radioresponse. The availability of clinically relevant inhibitors of this component of the translational machinery suggests opportunities to extend this approach to radiosensitization to patient care.
Collapse
|
16
|
Inhibitory effects of Tomivosertib in acute myeloid leukemia. Oncotarget 2021; 12:955-966. [PMID: 34012509 PMCID: PMC8121614 DOI: 10.18632/oncotarget.27952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
The MAPK-interacting kinases 1 and 2 (MNK1/2) have generated increasing interest as therapeutic targets for acute myeloid leukemia (AML). We evaluated the therapeutic potential of the highly-selective MNK1/2 inhibitor Tomivosertib on AML cells. Tomivosertib was highly effective at blocking eIF4E phosphorylation on serine 209 in AML cells. Such inhibitory effects correlated with dose-dependent suppression of cellular viability and leukemic progenitor colony formation. Moreover, combination of Tomivosertib and Venetoclax resulted in synergistic anti-leukemic responses in AML cell lines. Mass spectrometry studies identified novel putative MNK1/2 interactors, while in parallel studies we demonstrated that MNK2 - RAPTOR - mTOR complexes are not disrupted by Tomivosertib. Overall, these findings demonstrate that Tomivosertib exhibits potent anti-leukemic properties on AML cells and support the development of clinical translational efforts involving the use of this drug, alone or in combination with other therapies for the treatment of AML.
Collapse
|
17
|
Evaluation of carboxyfluorescein-labeled 7-methylguanine nucleotides as probes for studying cap-binding proteins by fluorescence anisotropy. Sci Rep 2021; 11:7687. [PMID: 33833335 PMCID: PMC8032668 DOI: 10.1038/s41598-021-87306-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
Fluorescence anisotropy (FA) is a powerful technique for the discovery of protein inhibitors in a high-throughput manner. In this study, we sought to develop new universal FA-based assays for the evaluation of compounds targeting mRNA 5′ cap-binding proteins of therapeutic interest, including eukaryotic translation initiation factor 4E and scavenger decapping enzyme. For this purpose, a library of 19 carboxyfluorescein probes based on 7-methylguanine nucleotides was evaluated as FA probes for these proteins. Optimal probe:protein systems were further investigated in competitive binding experiments and adapted for high-throughput screening. Using a small in-house library of compounds, we verified and confirmed the accuracy of the developed FA assay to study cap-binding protein binders. The applications of the most promising probes were then extended to include evaluation of allosteric inhibitors as well as RNA ligands. From this analysis, we confirmed the utility of the method to study small molecule ligands and evaluate differently 5′ capped RNAs.
Collapse
|
18
|
The Nuclear Pore Complex and mRNA Export in Cancer. Cancers (Basel) 2020; 13:cancers13010042. [PMID: 33375634 PMCID: PMC7796397 DOI: 10.3390/cancers13010042] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Export of mRNAs from the nucleus to the cytoplasm is a key regulatory step in the expression of proteins. mRNAs are transported through the nuclear pore complex (NPC). Export of mRNAs responds to a variety of cellular stimuli and stresses. Revelations of the specific effects elicited by NPC components and associated co-factors provides a molecular basis for the export of selected RNAs, independent of bulk mRNA export. Aberrant RNA export has been observed in primary human cancer specimens. These cargo RNAs encode factors involved in nearly all facets of malignancy. Indeed, the NPC components involved in RNA export as well as the RNA export machinery can be found to be dysregulated, mutated, or impacted by chromosomal translocations in cancer. The basic mechanisms associated with RNA export with relation to export machinery and relevant NPC components are described. Therapeutic strategies targeting this machinery in clinical trials is also discussed. These findings firmly position RNA export as a targetable feature of cancer along with transcription and translation.
Collapse
|
19
|
Culjkovic-Kraljacic B, Skrabanek L, Revuelta MV, Gasiorek J, Cowling VH, Cerchietti L, Borden KLB. The eukaryotic translation initiation factor eIF4E elevates steady-state m 7G capping of coding and noncoding transcripts. Proc Natl Acad Sci U S A 2020; 117:26773-26783. [PMID: 33055213 PMCID: PMC7604501 DOI: 10.1073/pnas.2002360117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Methyl-7-guanosine (m7G) "capping" of coding and some noncoding RNAs is critical for their maturation and subsequent activity. Here, we discovered that eukaryotic translation initiation factor 4E (eIF4E), itself a cap-binding protein, drives the expression of the capping machinery and increased capping efficiency of ∼100 coding and noncoding RNAs. To quantify this, we developed enzymatic (cap quantification; CapQ) and quantitative cap immunoprecipitation (CapIP) methods. The CapQ method has the further advantage that it captures information about capping status independent of the type of 5' cap, i.e., it is not restricted to informing on m7G caps. These methodological advances led to unanticipated revelations: 1) Many RNA populations are inefficiently capped at steady state (∼30 to 50%), and eIF4E overexpression increased this to ∼60 to 100%, depending on the RNA; 2) eIF4E physically associates with noncoding RNAs in the nucleus; and 3) approximately half of eIF4E-capping targets identified are noncoding RNAs. eIF4E's association with noncoding RNAs strongly positions it to act beyond translation. Coding and noncoding capping targets have activities that influence survival, cell morphology, and cell-to-cell interaction. Given that RNA export and translation machineries typically utilize capped RNA substrates, capping regulation provides means to titrate the protein-coding capacity of the transcriptome and, for noncoding RNAs, to regulate their activities. We also discovered a cap sensitivity element (CapSE) which conferred eIF4E-dependent capping sensitivity. Finally, we observed elevated capping for specific RNAs in high-eIF4E leukemia specimens, supporting a role for cap dysregulation in malignancy. In all, levels of capping RNAs can be regulated by eIF4E.
Collapse
Affiliation(s)
- Biljana Culjkovic-Kraljacic
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Lucy Skrabanek
- Applied Bioinformatics Core, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
| | - Maria V Revuelta
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Jadwiga Gasiorek
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Leandro Cerchietti
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Katherine L B Borden
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| |
Collapse
|
20
|
Programmed cell death 4 modulates lysosomal function by inhibiting TFEB translation. Cell Death Differ 2020; 28:1237-1250. [PMID: 33100324 DOI: 10.1038/s41418-020-00646-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/27/2022] Open
Abstract
Transcription factor EB (TFEB) is a master regulator of autophagy and lysosomal biogenesis. The post-translational phosphorylation modulations of TFEB by mTOR and ERK signaling can determine its nucleocytoplasmic shuttling and activity in response to nutrient availability. However, regulations of TFEB at translational level are rarely known. Here, we found that programmed cell death 4 (PDCD4), a tumor suppressor, decreased levels of nuclear TFEB to inhibit lysosome biogenesis and function. Mechanistically, PDCD4 reduces global pool of TFEB by suppressing TFEB translation in an eIF4A-dependent manner, rather than influencing mTOR- and ERK2-dependnet TFEB nucleocytoplasmic shuttling. Both of MA3 domains within PDCD4 are required for TFEB translation inhibition. Furthermore, TFEB is required for PDCD4-mediated lysosomal function suppression. In the tumor microenvironment, PDCD4 deficiency promotes the anti-tumor effect of macrophage via enhancing TFEB expression. Our research reveals a novel PDCD4-dependent TFEB translational regulation and supports PDCD4 as a potential therapeutic target for lysosome dysfunction related diseases.
Collapse
|
21
|
Yang J, Chen J, Fei X, Wang X, Wang K. N6-methyladenine RNA modification and cancer. Oncol Lett 2020; 20:1504-1512. [PMID: 32724392 DOI: 10.3892/ol.2020.11739] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
N6-methyladenosine (m6A) in messenger RNA (mRNA) is regulated by m6A methyltransferases and demethylases. Modifications of m6A are dynamic and reversible, may regulate gene expression levels and serve vital roles in numerous life processes, such as cell cycle regulation, cell fate decision and cell differentiation. In recent years, m6A modifications have been reported to exhibit functions in human cancers via regulation of RNA stability, microRNA processing, mRNA splicing and mRNA translation, including lung cancer, breast tumor and acute myeloid leukemia. In the present review, the roles of m6A modifications in the onset and progression of cancer were summarized. These modifications display an oncogenic role in certain types of cancer, whereas in other types of cancer they exhibit a tumor suppressor role. Therefore, understanding the biological functions performed by m6A in different types of tumors and identifying pivotal m6A target genes to deduce the potential mechanisms underlying the progression of cancer may assist in the development of novel therapeutics.
Collapse
Affiliation(s)
- Jun Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Junwen Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
22
|
Borden KLB, Volpon L. The diversity, plasticity, and adaptability of cap-dependent translation initiation and the associated machinery. RNA Biol 2020; 17:1239-1251. [PMID: 32496897 PMCID: PMC7549709 DOI: 10.1080/15476286.2020.1766179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Translation initiation is a critical facet of gene expression with important impacts that underlie cellular responses to stresses and environmental cues. Its dysregulation in many diseases position this process as an important area for the development of new therapeutics. The gateway translation factor eIF4E is typically considered responsible for ‘global’ or ‘canonical’ m7G cap-dependent translation. However, eIF4E impacts translation of specific transcripts rather than the entire translatome. There are many alternative cap-dependent translation mechanisms that also contribute to the translation capacity of the cell. We review the diversity of these, juxtaposing more recently identified mechanisms with eIF4E-dependent modalities. We also explore the multiplicity of functions played by translation factors, both within and outside protein synthesis, and discuss how these differentially contribute to their ultimate physiological impacts. For comparison, we discuss some modalities for cap-independent translation. In all, this review highlights the diverse mechanisms that engage and control translation in eukaryotes.
Collapse
Affiliation(s)
- Katherine L B Borden
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal , Montreal, Québec, Canada
| | - Laurent Volpon
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal , Montreal, Québec, Canada
| |
Collapse
|
23
|
Kosciuczuk EM, Kar AK, Blyth GT, Fischietti M, Abedin S, Mina AA, Siliezar R, Rzymski T, Brzozka K, Eklund EA, Beauchamp EM, Eckerdt F, Saleiro D, Platanias LC. Inhibitory effects of SEL201 in acute myeloid leukemia. Oncotarget 2019; 10:7112-7121. [PMID: 31903169 PMCID: PMC6935253 DOI: 10.18632/oncotarget.27388] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022] Open
Abstract
MAPK interacting kinase (MNK), a downstream effector of mitogen-activated protein kinase (MAPK) pathways, activates eukaryotic translation initiation factor 4E (eIF4E) and plays a key role in the mRNA translation of mitogenic and antiapoptotic genes in acute myeloid leukemia (AML) cells. We examined the antileukemic properties of a novel MNK inhibitor, SEL201. Our studies provide evidence that SEL201 suppresses eIF4E phosphorylation on Ser209 in AML cell lines and in primary patient-derived AML cells. Such effects lead to growth inhibitory effects and leukemic cell apoptosis, as well as suppression of leukemic progenitor colony formation. Combination of SEL201 with 5'-azacytidine or rapamycin results in synergistic inhibition of AML cell growth. Collectively, these results suggest that SEL201 has significant antileukemic activity and further underscore the relevance of the MNK pathway in leukemogenesis.
Collapse
Affiliation(s)
- Ewa M Kosciuczuk
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Aroop K Kar
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology/Oncology/Stem Cell Transplantation, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Gavin T Blyth
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mariafausta Fischietti
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sameem Abedin
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Division of Hematology and Oncology Department of Medicine Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alain A Mina
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rebekah Siliezar
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | | | | | - Elizabeth A Eklund
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Elspeth M Beauchamp
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
24
|
Modulating eIF6 levels unveils the role of translation in ecdysone biosynthesis during Drosophila development. Dev Biol 2019; 455:100-111. [DOI: 10.1016/j.ydbio.2019.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/01/2019] [Accepted: 05/28/2019] [Indexed: 11/18/2022]
|
25
|
RNA-binding proteins in hematopoiesis and hematological malignancy. Blood 2019; 133:2365-2373. [PMID: 30967369 PMCID: PMC6716123 DOI: 10.1182/blood-2018-10-839985] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/07/2019] [Indexed: 02/02/2023] Open
Abstract
RNA-binding proteins (RBPs) regulate fundamental processes, such as differentiation and self-renewal, by enabling the dynamic control of protein abundance or isoforms or through the regulation of noncoding RNA. RBPs are increasingly appreciated as being essential for normal hematopoiesis, and they are understood to play fundamental roles in hematological malignancies by acting as oncogenes or tumor suppressors. Alternative splicing has been shown to play roles in the development of specific hematopoietic lineages, and sequence-specific mutations in RBPs lead to dysregulated splicing in myeloid and lymphoid leukemias. RBPs that regulate translation contribute to the development and function of hematological lineages, act as nodes for the action of multiple signaling pathways, and contribute to hematological malignancies. These insights broaden our mechanistic understanding of the molecular regulation of hematopoiesis and offer opportunities to develop disease biomarkers and new therapeutic modalities.
Collapse
|
26
|
Kopcial M, Wojtczak BA, Kasprzyk R, Kowalska J, Jemielity J. N1-Propargylguanosine Modified mRNA Cap Analogs: Synthesis, Reactivity, and Applications to the Study of Cap-Binding Proteins. Molecules 2019; 24:molecules24101899. [PMID: 31108861 PMCID: PMC6572376 DOI: 10.3390/molecules24101899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023] Open
Abstract
The mRNA 5′ cap consists of N7-methylguanosine bound by a 5′,5′-triphosphate bridge to the first nucleotide of the transcript. The cap interacts with various specific proteins and participates in all key mRNA-related processes, which may be of therapeutic relevance. There is a growing demand for new biophysical and biochemical methods to study cap–protein interactions and identify the factors which inhibit them. The development of such methods can be aided by the use of properly designed fluorescent molecular probes. Herein, we synthesized a new class of m7Gp3G cap derivatives modified with an alkyne handle at the N1-position of guanosine and, using alkyne-azide cycloaddition, we functionalized them with fluorescent tags to obtain potential probes. The cap derivatives and probes were evaluated in the context of two cap-binding proteins, eukaryotic translation initiation factor (eIF4E) and decapping scavenger (DcpS). Biochemical and biophysical studies revealed that N1-propargyl moiety did not significantly disturb cap–protein interaction. The fluorescent properties of the probes turned out to be in line with microscale thermophoresis (MST)-based binding assays.
Collapse
Affiliation(s)
- Michal Kopcial
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland.
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland.
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093 Warsaw, Poland.
| | - Blazej A Wojtczak
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland.
| | - Renata Kasprzyk
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland.
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland.
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093 Warsaw, Poland.
| | - Joanna Kowalska
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093 Warsaw, Poland.
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
27
|
Marzoq AJ, Mustafa SA, Heidrich L, Hoheisel JD, Alhamdani MSS. Impact of the secretome of activated pancreatic stellate cells on growth and differentiation of pancreatic tumour cells. Sci Rep 2019; 9:5303. [PMID: 30923340 PMCID: PMC6438963 DOI: 10.1038/s41598-019-41740-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/12/2019] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) exists in a complex desmoplastic microenvironment. As part of it, pancreatic stellate cells (PSCs) provide a fibrotic niche, stimulated by a dynamic communication between activated PSCs and tumour cells. Investigating how PSCs contribute to tumour development and for identifying proteins that the cells secrete during cancer progression, we studied by means of complex antibody microarrays the secretome of activated PSCs. A large number of secretome proteins were associated with cancer-related functions, such as cell apoptosis, cellular growth, proliferation and metastasis. Their effect on tumour cells could be confirmed by growing tumour cells in medium conditioned with activated PSC secretome. Analyses of the tumour cells' proteome and mRNA revealed a strong inhibition of tumour cell apoptosis, but promotion of proliferation and migration. Many cellular proteins that exhibited variations were found to be under the regulatory control of eukaryotic translation initiation factor 4E (eIF4E), whose expression was triggered in tumour cells grown in the secretome of activated PSCs. Inhibition by an eIF4E siRNA blocked the effect, inhibiting tumour cell growth in vitro. Our findings show that activated PSCs acquire a pro-inflammatory phenotype and secret proteins that stimulate pancreatic cancer growth in an eIF4E-dependent manner, providing further insight into the role of stromal cells in pancreatic carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Aseel J Marzoq
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany
| | - Shakhawan A Mustafa
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany
- Kurdistan Institution for Strategic Studies and Scientific Research, Kurdistan Region, Sulaimaniya, Iraq
| | - Luzia Heidrich
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany
| | - Mohamed Saiel Saeed Alhamdani
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany.
| |
Collapse
|
28
|
Yuan X, Wu H, Bu H, Zhou J, Zhang H. Targeting the immunity protein kinases for immuno-oncology. Eur J Med Chem 2018; 163:413-427. [PMID: 30530193 DOI: 10.1016/j.ejmech.2018.11.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023]
Abstract
With the rise of immuno-oncology, small-molecule modulators targeting immune system and inflammatory processes are becoming a research hotspot. This work mainly focuses on key kinases acting as central nodes in immune signaling pathways. Although over thirty small-molecule kinase inhibitors have been approved by FDA for the treatment of various cancers, only a few are associated with immuno-oncology. With the going deep of the research work, more and more immunity protein kinase inhibitors are approved for clinical trials to treat solid tumors and hematologic malignancies by FDA, which remain good prospects. Meanwhile, in-depth understanding of biological function of immunity protein kinases in immune system is pushing the field forward. This article focuses on the development of safe and effective small-molecule immunity protein kinase inhibitors and further work needs to keep the promises of these inhibitors for patients' welfare.
Collapse
Affiliation(s)
- Xinrui Yuan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hanshu Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hong Bu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
29
|
Xu L, Zhang H, Mei M, Du C, Huang X, Li J, Wang Y, Bao S, Zheng H. Phosphorylation of serine/arginine-rich splicing factor 1 at tyrosine 19 promotes cell proliferation in pediatric acute lymphoblastic leukemia. Cancer Sci 2018; 109:3805-3815. [PMID: 30320932 PMCID: PMC6272096 DOI: 10.1111/cas.13834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/21/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022] Open
Abstract
Serine/arginine‐rich splicing factor 1 (SRSF1) has been linked to various human cancers including pediatric acute lymphoblastic leukemia (ALL). Our previous study has shown that SRSF1 potentially contributes to leukemogenesis; however, its underlying mechanism remains unclear. In this study, leukemic cells were isolated from pediatric ALL bone marrow samples, followed by immunoprecipitation assays and mass spectrometry analysis specific to SRSF1. Subcellular localization of the SRSF1 protein and its mutants were analyzed by immunofluorescence staining. Cell growth, colony formation, cell apoptosis, and the cell cycle were investigated using stable leukemic cell lines generated with lentivirus‐mediated overexpressed WT or mutant plasmids. Cytotoxicity of the Tie2 kinase inhibitor was also evaluated. Our results showed the phosphorylation of SRSF1 at tyrosine 19 (Tyr‐19) was identified in newly diagnosed ALL samples, but not in complete remission or normal control samples. Compared to the SRSF1 WT cells, the missense mutants of the Tyr‐19 phosphorylation affected the subcellular localization of SRSF1. In addition, the Tyr‐19 phosphorylation of SRSF1 also led to increased cell proliferation and enhanced colony‐forming properties by promoting the cell cycle. Remarkably, we further identified the kinase Tie2 as a potential therapeutic target in leukemia cells. In conclusion, we identify for the first time that the phosphorylation state of SRSF1 is linked to different phases in pediatric ALL. The Tyr‐19 phosphorylation of SRSF1 disrupts its subcellular localization and promotes proliferation in leukemia cells by driving cell‐cycle progression. Inhibitors targeting Tie2 kinase that could catalyze Tyr‐19 phosphorylation of SRSF1 offer a promising therapeutic target for treatment of pediatric ALL.
Collapse
Affiliation(s)
- Liting Xu
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Han Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Mei Mei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chaohao Du
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yingchun Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shilai Bao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huyong Zheng
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
30
|
The effects of kinase modulation on in vitro maturation according to different cumulus-oocyte complex morphologies. PLoS One 2018; 13:e0205495. [PMID: 30308003 PMCID: PMC6181369 DOI: 10.1371/journal.pone.0205495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/26/2018] [Indexed: 01/21/2023] Open
Abstract
Successful production of transgenic pigs requires oocytes with a high developmental competence. However, cumulus-oocyte complexes (COCs) obtained from antral follicles have a heterogeneous morphology. COCs can be classified into one of two classes: class I, with five or more layers of cumulus cells; and class II, with one or two layers of cumulus cells. Activator [e.g., epidermal growth factor (EGF)] or inhibitors (e.g., wortmannin and U0126) are added to modulate kinases in oocytes during meiosis. In the present study, we investigated the effects of kinase modulation on nuclear and cytoplasmic maturation in COCs. Class I COCs showed a significantly higher developmental competence than class II COCs. Moreover, the expression of two kinases, AKT and ERK, differed between class I and class II COCs during in vitro maturation (IVM). Initially, inhibition of the PI3K/AKT signaling pathway in class I COCs during early IVM (0-22 h) decreased developmental parameters, such as blastocyst formation rate, blastomere number, and cell survival. Conversely, EGF-mediated AKT activation in class II COCs enhanced developmental capacity. Regarding the MAPK signaling pathway, inhibition of ERK by U0126 in class II COCs during early IVM impaired developmental competence. However, transient treatment with U0126 in class II COCs increased oocyte maturation and AKT activity, improving embryonic development. Additionally, western blotting showed that inhibition of ERK activity negatively regulated the AKT signaling pathway, indicative of a relationship between AKT and MAPK signaling in the process underlying meiotic progression in pigs. These findings may help increase the developmental competence and utilization rate of pig COCs with regard to the production of transgenic pigs and improve our understanding of kinase-associated meiosis events.
Collapse
|
31
|
McKenna J, Kapfhamer D, Kinchen JM, Wasek B, Dunworth M, Murray-Stewart T, Bottiglieri T, Casero RA, Gambello MJ. Metabolomic studies identify changes in transmethylation and polyamine metabolism in a brain-specific mouse model of tuberous sclerosis complex. Hum Mol Genet 2018; 27:2113-2124. [PMID: 29635516 PMCID: PMC5985733 DOI: 10.1093/hmg/ddy118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/06/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant neurodevelopmental disorder and the quintessential disorder of mechanistic Target of Rapamycin Complex 1 (mTORC1) dysregulation. Loss of either causative gene, TSC1 or TSC2, leads to constitutive mTORC1 kinase activation and a pathologically anabolic state of macromolecular biosynthesis. Little is known about the organ-specific metabolic reprogramming that occurs in TSC-affected organs. Using a mouse model of TSC in which Tsc2 is disrupted in radial glial precursors and their neuronal and glial descendants, we performed an unbiased metabolomic analysis of hippocampi to identify Tsc2-dependent metabolic changes. Significant metabolic reprogramming was found in well-established pathways associated with mTORC1 activation, including redox homeostasis, glutamine/tricarboxylic acid cycle, pentose and nucleotide metabolism. Changes in two novel pathways were identified: transmethylation and polyamine metabolism. Changes in transmethylation included reduced methionine, cystathionine, S-adenosylmethionine (SAM-the major methyl donor), reduced SAM/S-adenosylhomocysteine ratio (cellular methylation potential), and elevated betaine, an alternative methyl donor. These changes were associated with alterations in SAM-dependent methylation pathways and expression of the enzymes methionine adenosyltransferase 2A and cystathionine beta synthase. We also found increased levels of the polyamine putrescine due to increased activity of ornithine decarboxylase, the rate-determining enzyme in polyamine synthesis. Treatment of Tsc2+/- mice with the ornithine decarboxylase inhibitor α-difluoromethylornithine, to reduce putrescine synthesis dose-dependently reduced hippocampal astrogliosis. These data establish roles for SAM-dependent methylation reactions and polyamine metabolism in TSC neuropathology. Importantly, both pathways are amenable to nutritional or pharmacologic therapy.
Collapse
Affiliation(s)
- James McKenna
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David Kapfhamer
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Brandi Wasek
- Center of Metabolomics, Baylor Scott and White Research Institute, Dallas 75204, TX, USA
| | - Matthew Dunworth
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Tracy Murray-Stewart
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Baylor Scott and White Research Institute, Dallas 75204, TX, USA
| | - Robert A Casero
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
32
|
Li F, Wang Q, Xiong X, Wang C, Liu X, Liao Z, Li K, Xie B, Lin Y. Expression of 4E-BP1 and phospho-4E-BP1 correlates with the prognosis of patients with clear cell renal carcinoma. Cancer Manag Res 2018; 10:1553-1563. [PMID: 29942157 PMCID: PMC6007205 DOI: 10.2147/cmar.s158547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Eukaryotic translation initiation factor 4E (eIF4E) is a key regulator of protein synthesis. Changes in eIF4E activity disproportionally affect the translation of a subset of oncogenic mRNAs in some cancers. Materials and methods We have assessed the expression levels of vascular endothelial growth factor C (VEGFC), eIF4E, eIF4E-binding proteins (4E-BPs) and phospho-4E-BP1 in clear cell renal carcinoma (ccRCC; n=101) using immunohistochemistry and analyzed the relevant mRNA levels and survival using online databases. Results The protein levels of VEGFC, an eIF4E-regulated gene, were upregulated in ccRCC tissues compared with adjacent normal renal tissues, indicating an enhanced eIF4E activity in ccRCC. The expression of eIF4E had no significant changes in ccRCC tissues. However, 4E-BP1 and phospho-4E-BP1 were found to be overexpressed in ccRCC tissues (P<0.05), and the high mRNA and protein levels of 4E-BP1 and phospho-4E-BP1 correlated with an unfavorable clinical outcome in ccRCC patients. Meanwhile, the mRNA expression of PIK3CD and PIK3CG were enhanced in ccRCC. Conclusion From these results, we could infer that the increase in eIF4E activity may be caused by the increased phospho-4E-BP1 level, which was probably due to the activation of phosphoinositide 3-kinase (PI3K) pathway.
Collapse
Affiliation(s)
- Feng Li
- Department of Pathology, Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.,Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian Province, People's Republic of China
| | - Qingshui Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Xiaoxue Xiong
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Chenyi Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Xiaohua Liu
- Department of Obstetrics, Anxi County Hospital, Anxi, Fujian Province, People's Republic of China
| | - Ziqiang Liao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Ke Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Bifeng Xie
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| |
Collapse
|
33
|
Wang Q, Yang HS. The role of Pdcd4 in tumour suppression and protein translation. Biol Cell 2018; 110:10.1111/boc.201800014. [PMID: 29806708 PMCID: PMC6261700 DOI: 10.1111/boc.201800014] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/03/2018] [Accepted: 05/13/2018] [Indexed: 01/07/2023]
Abstract
Programmed cell death 4 (Pdcd4), a tumour suppressor, is frequently down-regulated in various types of cancer. Pdcd4 has been demonstrated to efficiently suppress tumour promotion, progression and proliferation. The biochemical function of Pdcd4 is a protein translation inhibitor. Although the fact that Pdcd4 inhibits protein translation has been known for more than a decade, the mechanism by which Pdcd4 controls tumorigenesis through translational regulation of its target genes is still not fully understood. Recent studies show that Pdcd4 inhibits translation of stress-activated-protein kinase interacting protein 1 to suppress tumour invasion, depicting a picture of how Pdcd4 inhibits tumorigenesis through translational inhibition. Thus, understanding the mechanism of how Pdcd4 attenuates tumorigenesis by translational control should provide a new strategy for combating cancer.
Collapse
Affiliation(s)
- Qing Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Hsin-Sheng Yang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
34
|
Tumour-specific triple-regulated oncolytic herpes virus to target glioma. Oncotarget 2017; 7:28658-69. [PMID: 27070093 PMCID: PMC5053753 DOI: 10.18632/oncotarget.8637] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/16/2016] [Indexed: 01/04/2023] Open
Abstract
Oncolytic herpes simplex virus type 1 (oHSV-1) therapy is an emerging treatment modality that selectively destroys cancer. Here we report use of a glioma specific HSV-1 amplicon virus (SU4-124 HSV-1) to selectively target tumour cells. To achieve transcriptional regulation of the SU4-124 HSV-1 virus, the promoter for the essential HSV-1 gene ICP4 was replaced with a tumour specific survivin promoter. Translational regulation was achieved by incorporating 5 copies of microRNA 124 target sequences into the 3'UTR of the ICP4 gene. Additionally, a 5'UTR of rat fibroblast growth factor -2 was added in front of the viral ICP4 gene open reading frame. Our results confirmed enhanced expression of survivin and eIF4E in different glioma cells and increased micro-RNA124 expression in normal human and mouse brain tissue. SU4-124 HSV-1 had an increased ICP4 expression and virus replication in different glioma cells compared to normal neuronal cells. SU4-124 HSV-1 exerted a strong antitumour effect against a panel of glioma cell lines. Intracranial injection of SU4-124 HSV-1 did not reveal any sign of toxicity on day 15 after the injection. Moreover, a significantly enhanced antitumour effect with the intratumourally injected SU4-124 HSV-1 virus was demonstrated in mice bearing human glioma U87 tumours, whereas viral DNA was almost undetectable in normal organs. Our study indicates that incorporation of multiple cancer-specific regulators in an HSV-1 system significantly enhances both cancer specificity and oncolytic activity.
Collapse
|
35
|
Berger MD, Stintzing S, Heinemann V, Yang D, Cao S, Sunakawa Y, Ning Y, Matsusaka S, Okazaki S, Miyamoto Y, Suenaga M, Schirripa M, Soni S, Zhang W, Falcone A, Loupakis F, Lenz HJ. Impact of genetic variations in the MAPK signaling pathway on outcome in metastatic colorectal cancer patients treated with first-line FOLFIRI and bevacizumab: data from FIRE-3 and TRIBE trials. Ann Oncol 2017; 28:2780-2785. [PMID: 29045529 PMCID: PMC5834083 DOI: 10.1093/annonc/mdx412] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The MAPK-interacting kinase 1 (MKNK1) is localized downstream of the RAS/RAF/ERK and the MAP3K1/MKK/p38 signaling pathway. Through phosphorylation MKNK1 regulates the function of eukaryotic translation initiation factor 4E, a key player in translational control, whose expression is often upregulated in metastatic colorectal cancer patients (mCRC). Preclinical data suggest that MKNK1 increases angiogenesis by upregulating angiogenic factors. We therefore hypothesize that variations in the MKNK1 gene predict outcome in mCRC patients treated with first-line FOLFIRI and bevacizumab (bev). PATIENTS AND METHODS A total of 567 patients with KRAS wild-type mCRC in the randomized phase III FIRE-3 and TRIBE trials treated with first-line FOLFIRI/bev (discovery and validation cohorts) or FOLFIRI and cetuximab (cet) (control cohort) were included in this study. Five single-nucleotide polymorphisms in the MAPK signaling pathway were analyzed. RESULTS AA genotype carriers of the MKNK1 rs8602 single-nucleotide polymorphism treated with FOLFIRI/bev in the discovery cohort (FIRE-3) had a shorter progression-free survival (PFS) than those harboring any C (7.9 versus 10.3 months, Hazard ratio (HR) 1.73, P = 0.038). This association could be confirmed in the validation cohort (TRIBE) in multivariable analysis (PFS 9.0 versus 11.0 months, HR 3.04, P = 0.029). Furthermore, AA carriers in the validation cohort had a decreased overall response rate (25% versus 66%, P = 0.049). Conversely, AA genotype carriers in the control group receiving FOLFIRI/cet did not show a shorter PFS. By combining both FOLFIRI/bev cohorts the worse outcome among AA carriers became more significant (PFS 9.0 versus 10.5 months) in univariable (HR 1.74, P = 0.015) and multivariable analysis (HR 1.76, P = 0.022). Accordingly, AA carriers did also exhibit an inferior overall response rate compared with those harboring any C (36% versus 65%, P = 0.005). CONCLUSION MKNK1 polymorphism rs8602 might serve as a predictive marker in KRAS wild-type mCRC patients treated with FOLFIRI/bev in the first-line setting. Additionally, MKNK1 might be a promising target for drug development.
Collapse
Affiliation(s)
- M D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Stintzing
- Department of Medical Oncology and Comprehensive Cancer Center, University of Munich (LMU), Munich, Germany
| | - V Heinemann
- Department of Medical Oncology and Comprehensive Cancer Center, University of Munich (LMU), Munich, Germany
| | - D Yang
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Y Sunakawa
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Y Ning
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Matsusaka
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Okazaki
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Y Miyamoto
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - M Suenaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - M Schirripa
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - W Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - A Falcone
- U.O. Oncologia Medica, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa
| | - F Loupakis
- Oncologia Medica 1, Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
| | - H-J Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA;.
| |
Collapse
|
36
|
Translational control and the cancer cell response to stress. Curr Opin Cell Biol 2017; 45:102-109. [PMID: 28582681 DOI: 10.1016/j.ceb.2017.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 11/24/2022]
Abstract
The evidence for the importance of aberrant translation in cancer cells is overwhelming. Reflecting the wealth of data, there are excellent reviews delineating how ribosomes and initiation factors are linked to cancer [1-3], and the therapeutic strategies being devised to target them [4]. Changes in translational efficiency can engender a malignant phenotype without the need for chromatin reorganization, transcription, splicing and mRNA export [5,6]. Thus, cancer-related modulations of the translational machinery are ideally suited to allow cancer cells to respond to the various stresses encountered along the path of tumorigenesis and organism-wide dissemination [7•,8,9,10•]. Emerging findings supporting this notion are the focus of this review.
Collapse
|
37
|
Gao W, Lam JWK, Li JZH, Chen SQ, Tsang RKY, Chan JYW, Wong TS. MicroRNA-138-5p controls sensitivity of nasopharyngeal carcinoma to radiation by targeting EIF4EBP1. Oncol Rep 2017; 37:913-920. [PMID: 28075468 DOI: 10.3892/or.2017.5354] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/26/2016] [Indexed: 11/06/2022] Open
Abstract
Radiation therapy is the standard treatment for primary nasopharyngeal carcinoma (NPC). MicroRNA regulates cancer responsiveness to radiation therapy by controlling the genes involved in radiation responses. Recent studies suggested that downregulation of microRNA-138-5p was clinically significant in NPC. Here, we evaluated the effect of miR-138-5p on radiosensitivity of NPC cells and explored the underlying mechanisms by identifying its target gene that impacted sensitivity to radiation. Our results revealed that overexpression of miR-138-5p reduced the ability to form colonies, inhibited proliferation, and enhanced radiation-induced DNA damage and autophagy in NPC cells upon radiation treatment. By integrating predicted targets with the transcripts downregulated by miR-138-5p, EIF4EBP1 was identified to be a target gene of miR-138-5p. Results from luciferase reporter assay demonstrated that miR-138-5p downregulated the expression of EIF4EBP1 by binding to the 3'-UTR. Silence of EIF4EBP1 enhanced radiosensitivity of NPC cells as evidenced by reduced ability to form colonies after radiation exposure. In summary, our results indicated that miR-138-5p enhanced radiosensitivity of NPC cells by targeting EIF4EBP1. Further studies are warranted to investigate the potential use of miR-138-5p in the clinical management and treatment prediction of NPC patients.
Collapse
Affiliation(s)
- Wei Gao
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Jacky Wei Kei Lam
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - John Zeng-Hong Li
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Si-Qi Chen
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | | | - Jimmy Yu-Wai Chan
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Thian-Sze Wong
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| |
Collapse
|
38
|
Santag S, Siegel F, Wengner AM, Lange C, Bömer U, Eis K, Pühler F, Lienau P, Bergemann L, Michels M, von Nussbaum F, Mumberg D, Petersen K. BAY 1143269, a novel MNK1 inhibitor, targets oncogenic protein expression and shows potent anti-tumor activity. Cancer Lett 2016; 390:21-29. [PMID: 28043914 DOI: 10.1016/j.canlet.2016.12.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 12/29/2022]
Abstract
The initiation of mRNA translation has received increasing attention as an attractive target for cancer treatment in the recent years. The oncogenic eukaryotic translation initiation factor 4E (eIF4E) is the major substrate of MAP kinase-interacting kinase 1 (MNK1), and it is located at the junction of the cancer-associated PI3K and MAPK pathways. The fact that MNK1 is linked to cell transformation and tumorigenesis renders the kinase a promising target for cancer therapy. We identified a novel small molecule MNK1 inhibitor, BAY 1143269, by high-throughput screening and lead optimization. In kinase assays, BAY 1143269 showed potent and selective inhibition of MNK1. By targeting MNK1 activity, BAY 1143269 strongly regulated downstream factors involved in cell cycle regulation, apoptosis, immune response and epithelial-mesenchymal transition in vitro or in vivo. In addition, BAY 1143269 demonstrated strong efficacy in monotherapy in cell line and patient-derived non-small cell lung cancer xenograft models as well as delayed tumor regrowth in combination treatment with standard of care chemotherapeutics. In summary, the inhibition of MNK1 activity with a highly potent and selective inhibitor BAY 1143269 may provide an innovative approach for anti-cancer therapy.
Collapse
Affiliation(s)
- Susann Santag
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Franziska Siegel
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Antje M Wengner
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Claudia Lange
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Ulf Bömer
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Knut Eis
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Florian Pühler
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Philip Lienau
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Linda Bergemann
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Martin Michels
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Franz von Nussbaum
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Dominik Mumberg
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Kirstin Petersen
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|
39
|
Role of Eukaryotic Initiation Factors during Cellular Stress and Cancer Progression. J Nucleic Acids 2016; 2016:8235121. [PMID: 28083147 PMCID: PMC5204094 DOI: 10.1155/2016/8235121] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
Protein synthesis can be segmented into distinct phases comprising mRNA translation initiation, elongation, and termination. Translation initiation is a highly regulated and rate-limiting step of protein synthesis that requires more than 12 eukaryotic initiation factors (eIFs). Extensive evidence shows that the transcriptome and corresponding proteome do not invariably correlate with each other in a variety of contexts. In particular, translation of mRNAs specific to angiogenesis, tumor development, and apoptosis is altered during physiological and pathophysiological stress conditions. In cancer cells, the expression and functions of eIFs are hampered, resulting in the inhibition of global translation and enhancement of translation of subsets of mRNAs by alternative mechanisms. A precise understanding of mechanisms involving eukaryotic initiation factors leading to differential protein expression can help us to design better strategies to diagnose and treat cancer. The high spatial and temporal resolution of translation control can have an immediate effect on the microenvironment of the cell in comparison with changes in transcription. The dysregulation of mRNA translation mechanisms is increasingly being exploited as a target to treat cancer. In this review, we will focus on this context by describing both canonical and noncanonical roles of eIFs, which alter mRNA translation.
Collapse
|
40
|
Axitinib Has Antiangiogenic and Antitumorigenic Activity in Myxoid Liposarcoma. Sarcoma 2016; 2016:3484673. [PMID: 27822137 PMCID: PMC5086398 DOI: 10.1155/2016/3484673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/08/2016] [Accepted: 09/20/2016] [Indexed: 12/18/2022] Open
Abstract
Myxoid liposarcoma is a rare form of soft-tissue sarcoma. Although most patients initially respond well to treatment, approximately 21% relapse, highlighting the need for alternative treatments. To identify novel treatment regimens and gain a better understanding of myxoid liposarcoma tumor biology, we screened various candidate and approved targeted therapeutics and chemotherapeutics against myxoid liposarcoma cell lines. Therapeutics that target angiogenesis showed antitumor activity. The small molecule inhibitor axitinib, which targets angiogenesis by inhibiting the VEGFR and PDGFR families and c-Kit, inhibited cell cycle progression and induced apoptosis in vitro, as well as having significant antitumor activity against MLS 1765 myxoid liposarcoma xenografts in mice. Axitinib also displayed synergistic antitumor activity in vitro when combined with the potassium channel ionophore salinomycin or the BH3 mimetic ABT-737. Another angiogenesis-targeting therapeutic, 4EGI-1, which targets the oncoprotein eIF4E, significantly decreased angiogenic ligand expression by myxoid liposarcoma cells and reduced tumor cell growth. To verify this oncogenic addiction to angiogenic pathways, we utilized VEGFR-derived ligand traps and found that autocrine VEGFR signaling was crucial to myxoid liposarcoma cell survival. Overall, these findings suggest that autocrine angiogenic signaling through the VEGFR family is critical to myxoid liposarcoma cell survival and that further study of axitinib as a potential anticancer therapy is warranted.
Collapse
|
41
|
Demosthenous C, Han JJ, Stenson MJ, Maurer MJ, Wellik LE, Link B, Hege K, Dogan A, Sotomayor E, Witzig T, Gupta M. Translation initiation complex eIF4F is a therapeutic target for dual mTOR kinase inhibitors in non-Hodgkin lymphoma. Oncotarget 2016; 6:9488-501. [PMID: 25839159 PMCID: PMC4496233 DOI: 10.18632/oncotarget.3378] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 01/10/2023] Open
Abstract
Deregulated mRNA translation has been implicated in disease development and in part is controlled by a eukaryotic initiation complex eIF4F (composed of eIF4E, eIF4G and eIF4A). We demonstrate here that the cap bound fraction from lymphoma cells was enriched with eIF4G and eIF4E indicating that lymphoma cells exist in an activated translational state. Moreover, 77% (110/142) of diffuse large B cell lymphoma tumors expressed eIF4E and this was associated with an inferior event free survival. Over-expression of wild-type eIF4E (eIF4E(WT)) but not cap-mutant eIF4E (eIF4E(cap mutant)) increased the activation of the eIF4F complex. Treatment with the active-site dual mTOR inhibitor CC214-1 reduced the level of the eIF4F complex by decreasing the cap bound fraction of eIF4G and increasing the levels of 4E-BP1. CC214-1 inhibited both the cap dependent and global protein translation. CC214-1 inhibited c-Myc, and cyclin D3 translation by decreasing polysomal fractions from lymphoma cells. Inhibition of eIF4E with shRNA further decreased the CC214-1 induced inhibition of the eIF4F complex, c-Myc, cyclin D3 translation, and colony formation. These studies demonstrate that the eIF4F complex is deregulated in aggressive lymphoma and that dual mTOR therapy has therapeutic potential in these patients.
Collapse
Affiliation(s)
- Christos Demosthenous
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jing Jing Han
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mary J Stenson
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Matthew J Maurer
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Linda E Wellik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Brian Link
- Department of Internal Medicine, University of Iowa College of Medicine, IA, USA
| | | | - Ahmet Dogan
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Eduardo Sotomayor
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Thomas Witzig
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mamta Gupta
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
42
|
Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis. Oncogene 2016; 35:4675-88. [DOI: 10.1038/onc.2015.515] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 01/17/2023]
|
43
|
Feng ZM, Qiu J, Chen XW, Liao RX, Liao XY, Zhang LP, Chen X, Li Y, Chen ZT, Sun JG. Essential role of miR-200c in regulating self-renewal of breast cancer stem cells and their counterparts of mammary epithelium. BMC Cancer 2015; 15:645. [PMID: 26400441 PMCID: PMC4581477 DOI: 10.1186/s12885-015-1655-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 09/18/2015] [Indexed: 11/29/2022] Open
Abstract
Background Breast cancer stem cells (BCSCs) have been reported as the origin of breast cancer and the radical cause of drug resistance, relapse and metastasis in breast cancer. BCSCs could be derived from mutated mammary epithelial stem cells (MaSCs). Therefore, comparing the molecular differences between BCSCs and MaSCs may clarify the mechanism underlying breast carcinogenesis and the targets for gene therapy. Specifically, the distinct miRNome data of BCSCs and MaSCs need to be analyzed to find out the key miRNAs and reveal their roles in regulating the stemness of BCSCs. Methods MUC1−ESA+ cells were isolated from normal mammary epithelial cell line MCF-10A by fluorescence-activated cell sorting (FACS) and tested for stemness by clonogenic assay and multi-potential differentiation experiments. The miRNA profiles of MaSCs, BCSCs and breast cancer MCF-7 cells were compared to obtain the candidate miRNAs that may regulate breast tumorigenesis. An miRNA consecutively upregulated from MaSCs to BCSCs to MCF-7 cells, miR-200c, was chosen to determine its role in regulating the stemness of BCSCs and MaSCs in vitro and in vivo. Based on bioinformatics, the targets of miR-200c were validated by dual-luciferase report system, western blot and rescue experiments. Results In a 2-D clonogenic assay, MUC1−ESA+ cells gave rise to multiple morphological colonies, including luminal colonies, myoepithelial colonies and mixed colonies. The clonogenic potential of MUC1−ESA+ (61.5 ± 3.87 %) was significantly higher than that of non-stem MCF-10A cells (53.5 ± 3.42 %) (P < 0.05). In a 3-D matrigel culture, MUC1−ESA+ cells grew into mammospheres with duct-like structures. A total of 12 miRNAs of interest were identified, 8 of which were upregulated and 4 downregulated in BCSCs compared with MaSCs. In gain- and lost-of-function assays, miR-200c was sufficient to inhibit the self-renewal of BCSCs and MaSCs in vitro and the growth of BCSCs in vivo. Furthermore, miR-200c negatively regulated programmed cell death 10 (PDCD10) in BCSCs and MaSCs. PDCD10 could rescue the tumorigenesis inhibited by miR-200c in BCSCs. Discussion Accumulating evidence shows that there is a milignant transformation from MaSCs into BCSCs. The underlying mechanism remains unclear. In present study, miRNA profiles between MaSCs and BCSCs were obtained. Then miRNA-200c, downregulated in both MaSCs and BCSCs, were verified as anti-oncogene, and played essential role in regulating self-renewal of both kinds of stem-like cells. These findings reveal a novel insights of breast tumorigenesis. Conclusions PDCD10 is a target gene of miR-200c and also a possible mechanism by which miR-200c plays a role in regulating the stemness of BCSCs and MaSCs. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1655-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhong-Ming Feng
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| | - Jun Qiu
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| | - Xie-Wan Chen
- Department of Medical English, College of Basic Medicine, Third Military Medical University, Chongqing, 400038, P. R. China.
| | - Rong-Xia Liao
- Department of Medical English, College of Basic Medicine, Third Military Medical University, Chongqing, 400038, P. R. China.
| | - Xing-Yun Liao
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| | - Lu-Ping Zhang
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| | - Xu Chen
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| | - Yan Li
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| | - Zheng-Tang Chen
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| | - Jian-Guo Sun
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| |
Collapse
|
44
|
Sun L, Zhao Y, Shi H, Ma C, Wei L. LMP1 promotes nasal NK/T-cell lymphoma cell function by eIF4E via NF-κB pathway. Oncol Rep 2015; 34:3264-71. [PMID: 26397141 DOI: 10.3892/or.2015.4305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/07/2015] [Indexed: 11/05/2022] Open
Abstract
Nasal natural killer T-cell lymphoma (NKTL) is a highly malignant tumor that is closely associated with Epstein-Barr virus (EBV) infection. Latent membrane protein 1 (LMP1) is encoded by EBV and plays an important role in EBV-induced cell transformation. Therefore, we assessed the function of LMP1 as a stimulant of NKTL progression and the underlying mechanism. A human EBV-positive NKTL cell line (SNK-6) was transfected with pcDNA3.1-LMP1, LV-LMP1 shRNA or LV-eukaryotic translation initiation factor 4E (eIF4E)-shRNA. Then, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to assess the proliferation of SNK-6 cells, and cell migration and invasion were analyzed by transwell chamber assay. Flow cytometry was used to analyze the cell cycle and apoptosis. The results showed LMP1 was highly expressed in SNK-6 cells compared with control groups. Following pretreatment with LMP1 shRNA, the proliferation of SNK-6 cells was inhibited and resulted in a G0/G1 phase arrest. A reduction in invasion and migration was also observed. LMP1 silencing promoted cell apoptosis. Further mechanistic analysis suggested that LMP1 overexpression induced the expression of eIF4E, while eIF4E-shRNA dramatically attenuated the increase in cell proliferation, invasion, migration and the inhibition of apoptosis triggered by LMP-1 upregulation. Moreover, the effect of LMP1 on eIF4E expression was mediated by the NF-κB pathway. Therefore, this finding may provide a potential target against NKTL.
Collapse
Affiliation(s)
- Lu Sun
- Department of Pathology, Hainan Branch of PLA General Hospital, Sanya 572000, P.R. China
| | - Yu Zhao
- Department of Hematology, PLA General Hospital, Beijing 100853, P.R. China
| | - Huaiyin Shi
- Department of Pathology, PLA General Hospital, Beijing 100853, P.R. China
| | - Chao Ma
- Department of Hematology, PLA General Hospital, Beijing 100853, P.R. China
| | - Lixin Wei
- Department of Pathology, PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
45
|
Ren M, Zhou C, Liang H, Wang X, Xu L. RNAi-Mediated Silencing of EIF3D Alleviates Proliferation and Migration of Glioma U251 and U87MG Cells. Chem Biol Drug Des 2015; 86:715-22. [PMID: 25682860 DOI: 10.1111/cbdd.12542] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/11/2014] [Accepted: 01/05/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Mingliang Ren
- Department of Neurosurgery; Research Institute of Field Surgery; Daping Hospital; Third Military Medical University; Chongqing 400042 China
| | - Chun Zhou
- Department of Neurosurgery; Research Institute of Field Surgery; Daping Hospital; Third Military Medical University; Chongqing 400042 China
| | - Hong Liang
- Department of Neurosurgery; Research Institute of Field Surgery; Daping Hospital; Third Military Medical University; Chongqing 400042 China
| | - Xuhui Wang
- Department of Neurosurgery; Research Institute of Field Surgery; Daping Hospital; Third Military Medical University; Chongqing 400042 China
| | - Lunshan Xu
- Department of Neurosurgery; Research Institute of Field Surgery; Daping Hospital; Third Military Medical University; Chongqing 400042 China
| |
Collapse
|
46
|
Vaklavas C, Meng Z, Choi H, Grizzle WE, Zinn KR, Blume SW. Small molecule inhibitors of IRES-mediated translation. Cancer Biol Ther 2015; 16:1471-85. [PMID: 26177060 PMCID: PMC4846101 DOI: 10.1080/15384047.2015.1071729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Many genes controlling cell proliferation and survival (those most important to cancer biology) are now known to be regulated specifically at the translational (RNA to protein) level. The internal ribosome entry site (IRES) provides a mechanism by which the translational efficiency of an individual or group of mRNAs can be regulated independently of the global controls on general protein synthesis. IRES-mediated translation has been implicated as a significant contributor to the malignant phenotype and chemoresistance, however there has been no effective means by which to interfere with this specialized mode of protein synthesis. A cell-based empirical high-throughput screen was performed in attempt to identify compounds capable of selectively inhibiting translation mediated through the IGF1R IRES. Results obtained using the bicistronic reporter system demonstrate selective inhibition of second cistron translation (IRES-dependent). The lead compound and its structural analogs completely block de novo IGF1R protein synthesis in genetically-unmodified cells, confirming activity against the endogenous IRES. Spectrum of activity extends beyond IGF1R to include the c-myc IRES. The small molecule IRES inhibitor differentially modulates synthesis of the oncogenic (p64) and growth-inhibitory (p67) isoforms of Myc, suggesting that the IRES controls not only translational efficiency, but also choice of initiation codon. Sustained IRES inhibition has profound, detrimental effects on human tumor cells, inducing massive (>99%) cell death and complete loss of clonogenic survival in models of triple-negative breast cancer. The results begin to reveal new insights into the inherent complexity of gene-specific translational regulation, and the importance of IRES-mediated translation to tumor cell biology.
Collapse
Affiliation(s)
- Christos Vaklavas
- a Comprehensive Cancer Center; University of Alabama at Birmingham ; Birmingham , AL USA.,b Department of Medicine , Division of Hematology / Oncology; University of Alabama at Birmingham ; Birmingham , AL USA
| | - Zheng Meng
- c Department of Biochemistry and Molecular Genetics; University of Alabama at Birmingham ; Birmingham , AL USA.,d Current address: Analytical Development Department; Novavax Inc. ; Gaithersburg , MD USA
| | - Hyoungsoo Choi
- a Comprehensive Cancer Center; University of Alabama at Birmingham ; Birmingham , AL USA.,b Department of Medicine , Division of Hematology / Oncology; University of Alabama at Birmingham ; Birmingham , AL USA.,e Current address: Department of Pediatrics; Seoul National University Bundang Hospital; Gyeonggi-do , Korea
| | - William E Grizzle
- a Comprehensive Cancer Center; University of Alabama at Birmingham ; Birmingham , AL USA.,f Department of Pathology; University of Alabama at Birmingham ; Birmingham , AL USA
| | - Kurt R Zinn
- a Comprehensive Cancer Center; University of Alabama at Birmingham ; Birmingham , AL USA.,b Department of Medicine , Division of Hematology / Oncology; University of Alabama at Birmingham ; Birmingham , AL USA.,f Department of Pathology; University of Alabama at Birmingham ; Birmingham , AL USA
| | - Scott W Blume
- a Comprehensive Cancer Center; University of Alabama at Birmingham ; Birmingham , AL USA.,b Department of Medicine , Division of Hematology / Oncology; University of Alabama at Birmingham ; Birmingham , AL USA.,c Department of Biochemistry and Molecular Genetics; University of Alabama at Birmingham ; Birmingham , AL USA
| |
Collapse
|
47
|
Integrin β6 can be translationally regulated by eukaryotic initiation factor 4E: Contributing to colonic tumor malignancy. Tumour Biol 2015; 36:6541-50. [PMID: 25982998 DOI: 10.1007/s13277-015-3348-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 03/16/2015] [Indexed: 01/09/2023] Open
Abstract
It is well known that both eukaryotic initiation factor 4E (eIF4E) and integrin αvβ6 can contribute to malignant behavior of colon cancer. We have found that integrin αvβ6 and eIF4E were co-expressed and positively correlated in colon cancer tissues. Recently, deregulation of the protein synthesis apparatus has begun to gain attention as a major participant in cancer development and progression. However, the regulation of integrin β6 expression at translational level has never been investigated before. In present study, gene-silencing technique for eIF4E by small interfering RNA (siRNA) was used in all the subsequent experiments, in order to investigate whether eIF4E could translationally regulate expression of integrin β6 in colon cancer SW480 and HT-29 cell lines. Additionally, the subsequent effects of eIF4E knockdown on cellular malignant behavior were observed. siRNA in SW480 and HT-29 transfectants. Subsequently, protein expression of β6 was markedly suppressed, while mRNA expression of β6 showed no significant variation before and after eIF4E RNA interfering. Therefore, it could be seen that eIF4E could upregulate the expression of β6, without effect on β6 mRNA expression. More importantly, after treated with eIF4E siRNA, cellular migratory capacity on fibronectin of HT-29 and β6-transfected SW480 as well as their survival to 5-FU was decreased distinctly. Expression of integrin β6 could be translationally regulated by eIF4E, which subsequently contributed to tumor malignancy through enhancing cellular migration, survival, anti-apoptosis, and chemoresistance of colon cancer in vitro. Thus, targeting eIF4E in integrin αvβ6 expressing tumors can be a potential therapeutic strategy for patients with colon cancer.
Collapse
|
48
|
eIF4E as a control target for viruses. Viruses 2015; 7:739-50. [PMID: 25690796 PMCID: PMC4353914 DOI: 10.3390/v7020739] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 01/04/2023] Open
Abstract
Translation is a complex process involving diverse cellular proteins, including the translation initiation factor eIF4E, which has been shown to be a protein that is a point for translational regulation. Viruses require components from the host cell to complete their replication cycles. Various studies show how eIF4E and its regulatory cellular proteins are manipulated during viral infections. Interestingly, viral action mechanisms in eIF4E are diverse and have an impact not only on viral protein synthesis, but also on other aspects that are important for the replication cycle, such as the proliferation of infected cells and stimulation of viral reactivation. This review shows how some viruses use eIF4E and its regulatory proteins for their own benefit in order to spread themselves.
Collapse
|
49
|
eIF4E is an adverse prognostic marker of melanoma patient survival by increasing melanoma cell invasion. J Invest Dermatol 2015; 135:1358-1367. [PMID: 25562667 DOI: 10.1038/jid.2014.552] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/01/2014] [Accepted: 12/11/2014] [Indexed: 12/26/2022]
Abstract
Human cutaneous melanoma is a devastating skin cancer because of its invasive nature and high metastatic potential. We used tissue microarray to study the role of human eukaryotic translation initiation factor 4E (eIF4E) in melanoma progression in 448 melanocytic lesions and found that high eIF4E expression was significantly increased in primary melanomas compared with dysplastic nevi (P<0.001), and further increased in metastatic melanomas (P<0.001). High eIF4E expression was associated with melanoma thickness (P=0.046), and poor overall and disease-specific 5-year survival of all, and primary melanoma patients, especially those with tumors ≥1 mm thick. Multivariate Cox regression analysis revealed that eIF4E is an independent prognostic marker. eIF4E knockdown (KD) in melanoma cells resulted in a significant increase in apoptosis (sub-G1 populations) and decrease in cell proliferation, and also resulted in downregulation of mesenchymal markers and upregulation of E-cadherin. In addition, eIF4E KD led to a decrease in melanoma cell invasion, matrix metalloproteinase-2 expression and activity, c-myc and BCL2 expression, and an increase in cleaved PARP and cleaved caspase-3 expression and chemosensitivity. Taken together, our data suggest that the eIF4E may promote melanoma cell invasion and metastasis, and may also serve as a promising prognostic marker and a potential therapeutic target for melanoma.
Collapse
|
50
|
Kannan S, Poulsen A, Yang HY, Ho M, Ang SH, Eldwin TSW, Jeyaraj DA, Chennamaneni LR, Liu B, Hill J, Verma CS, Nacro K. Probing the binding mechanism of Mnk inhibitors by docking and molecular dynamics simulations. Biochemistry 2014; 54:32-46. [PMID: 25431995 DOI: 10.1021/bi501261j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mitogen-activated protein kinases-interacting kinase 1 and 2 (Mnk1/2) activate the oncogene eukaryotic initiation factor 4E (eIF4E) by phosphorylation. High level of phosphorylated eIF4E is associated with various types of cancers. Inhibition of Mnk prevents eIF4E phosphorylation, making them potential therapeutic targets for cancer. Recently, we have designed and synthesized a series of novel imidazopyridine and imidazopyrazine derivatives that inhibit Mnk1/2 kinases with a potency in the nanomolar to micromolar range. In the current work we model the inhibition of Mnk kinase activity by these inhibitors using various computational approaches. Combining homology modeling, docking, molecular dynamics simulations, and free energy calculations, we find that all compounds bind similarly to the active sites of both kinases with their imidazopyridine and imidazopyrazine cores anchored to the hinge regions of the kinases through hydrogen bonds. In addition, hydrogen bond interactions between the inhibitors and the catalytic Lys78 (Mnk1), Lys113 (Mnk2) and Ser131 (Mnk1), Ser166 (Mnk2) appear to be important for the potency and stability of the bound conformations of the inhibitors. The computed binding free energies (ΔGPred) of these inhibitors are in accord with experimental bioactivity data (pIC50) with correlation coefficients (r(2)) of 0.70 and 0.68 for Mnk1 and Mnk2 respectively. van der Waals energies and entropic effects appear to dominate the binding free energy (ΔGPred) for each Mnk-inhibitor complex studied. The models suggest that the activities of these small molecule inhibitors arise from interactions with multiple residues in the active sites, particularly with the hydrophobic residues.
Collapse
|