1
|
Shahid N, Cromwell C, Hubbard BP, Hammond JR. Development of a Novel HEK293 Cell Model Lacking SLC29A1 to Study the Pharmacology of Endogenous SLC29A2-Encoded Equilibrative Nucleoside Transporter Subtype 2. Drug Metab Dispos 2024; 52:1094-1103. [PMID: 39054074 DOI: 10.1124/dmd.124.001814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Equilibrative nucleoside transporters (ENTs) mediate the transmembrane flux of endogenous nucleosides and nucleoside analogs used clinically. The predominant subtype, ENT1, has been well characterized. However, the other subtype, ENT2, has been less well characterized in its native milieu due to its relatively low expression and the confounding influence of coexpressed ENT1. We created a cell model where ENT1 was removed from human embryonic kidney (HEK293) cells using CRISPR/cas9 [ENT1 knockout (KO) cells]; this cell line has ENT2 as the only functional purine transporter. Transporter function was assessed through measurement of [3H]2-chloroadenosine uptake. ENT1 protein was quantified based on the binding of [3H]nitrobenzylthioinosine, and ENT1/ENT2 protein was detected by immunoblotting. Changes in expression of relevant transporters and enzymes involved in purine metabolism were examined by quantitative polymerase chain reaction. Wild-type HEK293 cells and ENT1KO cells had a similar expression of SLC29A2/ENT2 transcript/protein and ENT2-mediated [3H]2-chloroadenosine transport activity (Vmax values of 1.02 ± 0.06 and 1.50 ± 0.22 pmol/μl/s, respectively). Of the endogenous nucleosides/nucleobases tested, adenosine had the highest affinity (Ki) for ENT2 (2.6 μM), while hypoxanthine was the only nucleobase with a submillimolar affinity (320 μM). A range of nucleoside/nucleobase analogs were also tested for their affinity for ENT2 in this model, with affinities (Ki) ranging from 8.6 μM for ticagrelor to 2,300 μM for 6-mercaptopurine. Our data suggest that the removal of endogenous ENT1 from these cells does not change the expression or function of ENT2. This cell line should prove useful for the analysis of novel drugs acting via ENT2 and to study ENT2 regulation. SIGNIFICANCE STATEMENT: We have created a cell line whereby endogenous ENT2 can be studied in detail in the absence of the confounding influence of ENT1. Loss of ENT1 has no impact on the expression and function of ENT2. This novel cell line will provide an ideal model for studying drug interactions with ENT2 as well as the cellular regulation of ENT2 expression and function.
Collapse
Affiliation(s)
- Nayiar Shahid
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Basil P Hubbard
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - James R Hammond
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
3
|
Ojewunmi OO, Adeyemo TA, Oyetunji AI, Inyang B, Akinrindoye A, Mkumbe BS, Gardner K, Rooks H, Brewin J, Patel H, Lee SH, Chung R, Rashkin S, Kang G, Chianumba R, Sangeda R, Mwita L, Isa H, Agumadu UN, Ekong R, Faruk JA, Jamoh BY, Adebiyi NM, Umar IA, Hassan A, Grace C, Goel A, Inusa BPD, Falchi M, Nkya S, Makani J, Ahmad HR, Nnodu O, Strouboulis J, Menzel S. The genetic dissection of fetal haemoglobin persistence in sickle cell disease in Nigeria. Hum Mol Genet 2024; 33:919-929. [PMID: 38339995 PMCID: PMC11070134 DOI: 10.1093/hmg/ddae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
The clinical severity of sickle cell disease (SCD) is strongly influenced by the level of fetal haemoglobin (HbF) persistent in each patient. Three major HbF loci (BCL11A, HBS1L-MYB, and Xmn1-HBG2) have been reported, but a considerable hidden heritability remains. We conducted a genome-wide association study for HbF levels in 1006 Nigerian patients with SCD (HbSS/HbSβ0), followed by a replication and meta-analysis exercise in four independent SCD cohorts (3,582 patients). To dissect association signals at the major loci, we performed stepwise conditional and haplotype association analyses and included public functional annotation datasets. Association signals were detected for BCL11A (lead SNP rs6706648, β = -0.39, P = 4.96 × 10-34) and HBS1L-MYB (lead SNP rs61028892, β = 0.73, P = 1.18 × 10-9), whereas the variant allele for Xmn1-HBG2 was found to be very rare. In addition, we detected three putative new trait-associated regions. Genetically, dissecting the two major loci BCL11A and HBS1L-MYB, we defined trait-increasing haplotypes (P < 0.0001) containing so far unidentified causal variants. At BCL11A, in addition to a haplotype harbouring the putative functional variant rs1427407-'T', we identified a second haplotype, tagged by the rs7565301-'A' allele, where a yet-to-be-discovered causal DNA variant may reside. Similarly, at HBS1L-MYB, one HbF-increasing haplotype contains the likely functional small indel rs66650371, and a second tagged by rs61028892-'C' is likely to harbour a presently unknown functional allele. Together, variants at BCL11A and HBS1L-MYB SNPs explained 24.1% of the trait variance. Our findings provide a path for further investigation of the causes of variable fetal haemoglobin persistence in sickle cell disease.
Collapse
Affiliation(s)
- Oyesola O Ojewunmi
- School of Cancer and Pharmaceutical Sciences, King’s College London, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Titilope A Adeyemo
- Department of Haematology and Blood Transfusion, College of Medicine, University of Lagos, P.M.B 12003, Lagos, Nigeria
| | - Ajoke I Oyetunji
- Sickle Cell Foundation Nigeria, Ishaga Road, Idi-Araba, P.O. Box 3463, Lagos, Nigeria
| | - Bassey Inyang
- Department of Medical Biochemistry, College of Health Sciences, University of Abuja, Mohammed Maccido Road, Airport Road, P.M.B 117, Abuja, Nigeria
| | - Afolashade Akinrindoye
- Sickle Cell Foundation Nigeria, Ishaga Road, Idi-Araba, P.O. Box 3463, Lagos, Nigeria
- School of Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Baraka S Mkumbe
- Department of Biochemistry and Molecular Biology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, United Nations Rd, Dar es Salaam, Tanzania
- Department of Artificial Intelligence and Innovative Medicine, Tohoku University Graduate School of Medicine, 980-8573, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Kate Gardner
- School of Cancer and Pharmaceutical Sciences, King’s College London, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
- Clinical Haematology, Haematology and Oncology Directorate, Guy’s Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Helen Rooks
- School of Cancer and Pharmaceutical Sciences, King’s College London, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - John Brewin
- School of Cancer and Pharmaceutical Sciences, King’s College London, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
- Department of Haematological Medicine, King's College Hospital, London SE5 9RS, United Kingdom
| | - Hamel Patel
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) and Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, 16 De Crespigny Park, London SE5 8AB, United Kingdom
| | - Sang Hyuck Lee
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) and Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, 16 De Crespigny Park, London SE5 8AB, United Kingdom
| | - Raymond Chung
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) and Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, 16 De Crespigny Park, London SE5 8AB, United Kingdom
| | - Sara Rashkin
- St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Guolian Kang
- St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Reuben Chianumba
- Centre of Excellence for Sickle Cell Disease Research and Training (CESRTA), University of Abuja, Mohammed Maccido Road, Airport Road, P.M.B 117, Abuja, Nigeria
| | - Raphael Sangeda
- Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Liberata Mwita
- Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Hezekiah Isa
- Centre of Excellence for Sickle Cell Disease Research and Training (CESRTA), University of Abuja, Mohammed Maccido Road, Airport Road, P.M.B 117, Abuja, Nigeria
- Department of Haematology and Blood Transfusion, University of Abuja Teaching Hospital, Gwagwalada, P.M.B. 228, Gwagwalada, FCT Abuja, Nigeria
| | - Uche-Nnebe Agumadu
- Department of Paediatrics, College of Health Sciences, University of Abuja, Mohammed Maccido Road, Airport Road, P.M.B 117, Abuja, Nigeria
| | - Rosemary Ekong
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jamilu A Faruk
- Department of Paediatrics, Ahmadu Bello University/Ahmadu Bello University Teaching Hospital, P.M.B 006, Zaria, Nigeria
| | - Bello Y Jamoh
- Department of Internal Medicine, Ahmadu Bello University/Ahmadu Bello University Teaching Hospital, P.M.B 006, Zaria, Nigeria
| | - Niyi M Adebiyi
- Department of Paediatrics, Ahmadu Bello University/Ahmadu Bello University Teaching Hospital, P.M.B 006, Zaria, Nigeria
| | - Ismail A Umar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Sokoto Road, Samaru, P.M.B 006, Zaria, Nigeria
| | - Abdulaziz Hassan
- Department of Haematology and Blood Transfusion, Ahmadu Bello University, Sokoto Road, Samaru, P.M.B 006, Zaria, Nigeria
| | - Christopher Grace
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Centre for Human Genetics, Roosevelt Drive, Oxford OX37BN, United Kingdom
| | - Anuj Goel
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Centre for Human Genetics, Roosevelt Drive, Oxford OX37BN, United Kingdom
| | - Baba P D Inusa
- Evelina London Children’s Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, Westminster Bridge Rd, London SE1 7EH, United Kingdom
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King’s College London, St Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, United Kingdom
| | - Siana Nkya
- Department of Biochemistry and Molecular Biology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, United Nations Rd, Dar es Salaam, Tanzania
- Tanzania Human Genetics Organisation, Sickle Cell Centre, 1 Kipalapala Street, Dar es Salaam, Tanzania
- Sickle Cell Program, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, United Nations Rd, Dar es Salaam, Tanzania
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Science, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Julie Makani
- Sickle Cell Program, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, United Nations Rd, Dar es Salaam, Tanzania
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Science, P.O. Box 65001, Dar es Salaam, Tanzania
- Centre for Haematology, Department of Immunology & Inflammation, Imperial College London, Commonwealth Building, Hammersmith Campus, Du Cane Rd, London W12 0NN, United Kingdom
| | - Hafsat R Ahmad
- Department of Paediatrics, Ahmadu Bello University/Ahmadu Bello University Teaching Hospital, P.M.B 006, Zaria, Nigeria
| | - Obiageli Nnodu
- Centre of Excellence for Sickle Cell Disease Research and Training (CESRTA), University of Abuja, Mohammed Maccido Road, Airport Road, P.M.B 117, Abuja, Nigeria
- Department of Haematology and Blood Transfusion, University of Abuja Teaching Hospital, Gwagwalada, P.M.B. 228, Gwagwalada, FCT Abuja, Nigeria
| | - John Strouboulis
- School of Cancer and Pharmaceutical Sciences, King’s College London, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Stephan Menzel
- School of Cancer and Pharmaceutical Sciences, King’s College London, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
| |
Collapse
|
4
|
Huntsman MC, Kurashima CK, Marikawa Y. Validation of a mouse 3D gastruloid-based embryotoxicity assay in reference to the ICH S5(R3) guideline chemical exposure list. Reprod Toxicol 2024; 125:108558. [PMID: 38367697 PMCID: PMC11016378 DOI: 10.1016/j.reprotox.2024.108558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
There is growing interest in establishing alternative methods in place of conventional animal tests to assess the developmental and reproductive toxicity (DART) of chemicals. Gastruloids are 3D aggregates of pluripotent stem cells that spontaneously exhibit axial elongation morphogenesis similar to gastrulation. They have been explored as in vitro embryogenesis models for developmental and toxicological studies. Here, a mouse gastruloid-based assay was validated for DART assessment in accordance with the ICH S5(R3) guideline, which provides the plasma concentration data of various reference drugs in rodents, specifically Cmax and AUC for NOAEL and LOAEL. First, adverse effect concentrations of the reference drugs and their known metabolites on gastruloid development were determined based on morphological impact, namely reduced growth or aberrant elongation. Then, the NOAEL to LOAEL concentration range obtained from the gastruloid assay was compared with that in rodents to examine similarities in sensitivity between the in vitro and in vivo assays for each chemical. For 18 out of the 24 reference drugs that have both NOAEL and LOAEL information in rodents, the sensitivity of the gastruloid assay was comparable to the in vivo assay within an 8-fold concentration margin. For 7 out of the 8 additional reference drugs that have only NOAEL or LOAEL information in rodents, the gastruloid assay was in line with the in vivo data. Altogether, these results support the effectiveness of the gastruloid assay, which may be exploited as a non-animal alternative method for DART assessment.
Collapse
Affiliation(s)
- Margaret Carrell Huntsman
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Courtney Kehaulani Kurashima
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Yusuke Marikawa
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA.
| |
Collapse
|
5
|
Borsa BA, Hernandez LI, Jiménez T, Tellapragada C, Giske CG, Hernandez FJ. Therapeutic-oligonucleotides activated by nucleases (TOUCAN): A nanocarrier system for the specific delivery of clinical nucleoside analogues. J Control Release 2023; 361:260-269. [PMID: 37541593 DOI: 10.1016/j.jconrel.2023.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Nucleoside analogues have been in clinical use since 1960s and they are still used as the first therapeutic option for several cancers and viral infections, due to their high therapeutic efficacy. However, their wide clinical acceptance has been limited due to their high toxicity and severe side effects to patients. Herein, we report on a nanocarrier system that delivers nucleosides analogues in a target-specific manner, making nucleoside-based therapeutics safer and with the possibility to be used in other human conditions. This system, named, Therapeutic OligonUCleotides Activated by Nucleases" (TOUCAN) combines: i) the recognition power of oligonucleotides as substrates, ii) the use of nucleases as enzymatic biomarkers and iii) the clinical efficacy of nucleoside analogues, in a single approach. As a proof-of-concept, we report on a TOUCAN that is activated by a specific nuclease produced by bacteria and releases a therapeutic nucleoside, floxuridine. We demonstrate, for the first time, that, by incorporating a therapeutic nucleoside analogue into oligonucleotide probes, we can specifically inhibit bacterial growth in cultures. In this study, Staphylococcus aureus was selected as the targeted bacteria and the TOUCAN strategy successfully inhibited its growth with minimal inhibitory concentration (MIC) values ranging from 0.62 to 40 mg/L across all tested strains. Moreover, our results indicate that the intravenous administration of TOUCANs at a dose of 20 mg/kg over a 24-h period is a highly effective method for treating bacterial infections in a mouse model of pyomyositis. Importantly, no signs of toxicity were observed in our in vitro and in vivo studies. This work can significantly impact the current management of bacterial infections, laying the grounds for the development of a different class of antibiotics. Furthermore, it can provide a safer delivery platform for clinical nucleoside therapeutics in any human conditions, such as cancer and viral infection, where specific nuclease activity has been reported.
Collapse
Affiliation(s)
- Baris A Borsa
- Wallenberg Center for Molecular Medicine (WCMM), Linköping, Sweden; Department of Physics, Chemistry and Biology (IFM), Linköping University, Sweden; Nucleic Acid Technologies Laboratory (NAT-Lab), Linköping, Sweden
| | - Luiza I Hernandez
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Sweden; SOMAprobes, Science and Technology Park of Gipuzkoa, Donostia-San Sebastian, Spain
| | - Tania Jiménez
- SOMAprobes, Science and Technology Park of Gipuzkoa, Donostia-San Sebastian, Spain
| | - Chaitanya Tellapragada
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Christian G Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Frank J Hernandez
- Wallenberg Center for Molecular Medicine (WCMM), Linköping, Sweden; Department of Physics, Chemistry and Biology (IFM), Linköping University, Sweden; Nucleic Acid Technologies Laboratory (NAT-Lab), Linköping, Sweden.
| |
Collapse
|
6
|
de Mariz E Miranda LS. The synergy between nucleotide biosynthesis inhibitors and antiviral nucleosides: New opportunities against viral infections? Arch Pharm (Weinheim) 2023; 356:e2200217. [PMID: 36122181 DOI: 10.1002/ardp.202200217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023]
Abstract
5'-Phosphorylated nucleoside derivatives are molecules that can be found in all living organisms and viruses. Over the last century, the development of structural analogs that could disrupt the transcription and translation of genetic information culminated in the development of clinically relevant anticancer and antiviral drugs. However, clinically effective broad-spectrum antiviral compounds or treatments are lacking. This viewpoint proposes that molecules that inhibit nucleotide biosynthesis may sensitize virus-infected cells toward direct-acting antiviral nucleosides. Such potentially synergistic combinations might allow the repurposing of drugs, leading to the development of new combination therapies.
Collapse
Affiliation(s)
- Leandro S de Mariz E Miranda
- Department of Organic Chemistry, Chemistry Institute, Biocatalysis and Organic Synthesis Group, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Boakes JC, Harborne SPD, Ngo JTS, Pliotas C, Goldman A. Novel variants provide differential stabilisation of human equilibrative nucleoside transporter 1 states. Front Mol Biosci 2022; 9:970391. [DOI: 10.3389/fmolb.2022.970391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
Human equilibrative nucleoside transporters represent a major pharmaceutical target for cardiac, cancer and viral therapies. Understanding the molecular basis for transport is crucial for the development of improved therapeutics through structure-based drug design. ENTs have been proposed to utilise an alternating access mechanism of action, similar to that of the major facilitator superfamily. However, ENTs lack functionally-essential features of that superfamily, suggesting that they may use a different transport mechanism. Understanding the molecular basis of their transport requires insight into diverse conformational states. Differences between intermediate states may be discrete and mediated by subtle gating interactions, such as salt bridges. We identified four variants of human equilibrative nucleoside transporter isoform 1 (hENT1) at the large intracellular loop (ICL6) and transmembrane helix 7 (TM7) that stabilise the apo-state (∆Tm 0.7–1.5°C). Furthermore, we showed that variants K263A (ICL6) and I282V (TM7) specifically stabilise the inhibitor-bound state of hENT1 (∆∆Tm 5.0 ± 1.7°C and 3.0 ± 1.8°C), supporting the role of ICL6 in hENT1 gating. Finally, we showed that, in comparison with wild type, variant T336A is destabilised by nitrobenzylthioinosine (∆∆Tm -4.7 ± 1.1°C) and binds it seven times worse. This residue may help determine inhibitor and substrate sensitivity. Residue K263 is not present in the solved structures, highlighting the need for further structural data that include the loop regions.
Collapse
|
8
|
Mechanisms of Ethanol-Induced Cerebellar Ataxia: Underpinnings of Neuronal Death in the Cerebellum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168678. [PMID: 34444449 PMCID: PMC8391842 DOI: 10.3390/ijerph18168678] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/19/2022]
Abstract
Ethanol consumption remains a major concern at a world scale in terms of transient or irreversible neurological consequences, with motor, cognitive, or social consequences. Cerebellum is particularly vulnerable to ethanol, both during development and at the adult stage. In adults, chronic alcoholism elicits, in particular, cerebellar vermis atrophy, the anterior lobe of the cerebellum being highly vulnerable. Alcohol-dependent patients develop gait ataxia and lower limb postural tremor. Prenatal exposure to ethanol causes fetal alcohol spectrum disorder (FASD), characterized by permanent congenital disabilities in both motor and cognitive domains, including deficits in general intelligence, attention, executive function, language, memory, visual perception, and communication/social skills. Children with FASD show volume deficits in the anterior lobules related to sensorimotor functions (Lobules I, II, IV, V, and VI), and lobules related to cognitive functions (Crus II and Lobule VIIB). Various mechanisms underlie ethanol-induced cell death, with oxidative stress and endoplasmic reticulum (ER) stress being the main pro-apoptotic mechanisms in alcohol abuse and FASD. Oxidative and ER stresses are induced by thiamine deficiency, especially in alcohol abuse, and are exacerbated by neuroinflammation, particularly in fetal ethanol exposure. Furthermore, exposure to ethanol during the prenatal period interferes with neurotransmission, neurotrophic factors and retinoic acid-mediated signaling, and reduces the number of microglia, which diminishes expected cerebellar development. We highlight the spectrum of cerebellar damage induced by ethanol, emphasizing physiological-based clinical profiles and biological mechanisms leading to cell death and disorganized development.
Collapse
|
9
|
Abstract
Nucleosides play central roles in all facets of life, from metabolism to cellular signaling. Because of their physiochemical properties, nucleosides are lipid bilayer impermeable and thus rely on dedicated transport systems to cross biological membranes. In humans, two unrelated protein families mediate nucleoside membrane transport: the concentrative and equilibrative nucleoside transporter families. The objective of this review is to provide a broad outlook on the current status of nucleoside transport research. We will discuss the role played by nucleoside transporters in human health and disease, with emphasis placed on recent structural advancements that have revealed detailed molecular principles of these important cellular transport systems and exploitable pharmacological features.
Collapse
Affiliation(s)
- Nicholas J. Wright
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
- Correspondence and requests for materials should be addressed to: S.-Y. Lee., , tel: 919-684-1005, fax: 919-684-8885
| |
Collapse
|
10
|
Attia F, Fathy S, Anani M, Hassan A, Attia F, Ibrahim G, Elazab M. Human equilibrative nucleoside transporter-1 and deoxycytidine kinase can predict gemcitabine effectiveness in Egyptian patients with Hepatocellular carcinoma. J Clin Lab Anal 2020; 34:e23457. [PMID: 32671914 PMCID: PMC7676182 DOI: 10.1002/jcla.23457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 01/30/2023] Open
Abstract
Background Several biomarkers of gemcitabine effectiveness have been studied in cancers, but less so in hepatocellular carcinoma (HCC), which is identified as the fifth most common cancer worldwide. Investigation of human equilibrative nucleoside transporter‐1 (HENT‐1) and deoxycytidine kinase (DCK), genes involved in gemcitabine uptake and metabolism, can be beneficial in the selection of potential cancer patients who could be responding to the treatment. Aim To study HENT‐1 and DCK gene expression in HCC patients with different protocols of treatment. Methods Using real‐time PCR, we analyzed expression levels of HENT‐1 and DCK genes from peripheral blood samples of 109 patients (20 controls & 89 HCC patients) between March 2015 and March 2017. All the 89 HCC patients received the antioxidants selenium (Se) and vitamin E (Vit.E) either alone (45 patients) or in combination with gemcitabine (24 patients) or radiofrequency ablation (RFA) (20 patients). Results There was a significant increase in HENT‐1 expression levels in HCC patients treated with Se and Vit.E alone as compared to controls (P ˂ .0001), while there was no significant difference between HCC patients treated with gemcitabine or RFA as compared to controls. In contrast, expression of DCK was significantly increased in all groups of HCC patients as compared to controls (P ˂ .0001). Conclusions HENT‐1 and DCK mRNA expressions are important markers of HCC and for GEM effect and GEM sensitivity in patients with HCC. This could be beneficial in the selection of HCC patients sensitive to gemcitabine to avoid subjecting resistant patients to unnecessary chemotherapy.
Collapse
Affiliation(s)
- Fadia Attia
- Departments of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Sara Fathy
- Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Maha Anani
- Departments of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Adel Hassan
- Infectious and Endemic Disease Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Fawzy Attia
- Internal Medicine Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Gehan Ibrahim
- Departments of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mona Elazab
- Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
11
|
Anderson JT, Huang KM, Lustberg MB, Sparreboom A, Hu S. Solute Carrier Transportome in Chemotherapy-Induced Adverse Drug Reactions. Rev Physiol Biochem Pharmacol 2020; 183:177-215. [PMID: 32761456 DOI: 10.1007/112_2020_30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Members of the solute carrier (SLC) family of transporters are responsible for the cellular influx of a broad range of endogenous compounds and xenobiotics. These proteins are highly expressed in the gastrointestinal tract and eliminating organs such as the liver and kidney, and are considered to be of particular importance in governing drug absorption and elimination. Many of the same transporters are also expressed in a wide variety of organs targeted by clinically important anticancer drugs, directly affect cellular sensitivity to these agents, and indirectly influence treatment-related side effects. Furthermore, targeted intervention strategies involving the use of transport inhibitors have been recently developed, and have provided promising lead candidates for combinatorial therapies associated with decreased toxicity. Gaining a better understanding of the complex interplay between transporter-mediated on-target and off-target drug disposition will help guide the further development of these novel treatment strategies to prevent drug accumulation in toxicity-associated organs, and improve the safety of currently available treatment modalities. In this report, we provide an update on this rapidly emerging field with particular emphasis on anticancer drugs belonging to the classes of taxanes, platinum derivatives, nucleoside analogs, and anthracyclines.
Collapse
Affiliation(s)
- Jason T Anderson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Kevin M Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Maryam B Lustberg
- Department of Medical Oncology, The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Chambers ED, White A, Vang A, Wang Z, Ayala A, Weng T, Blackburn M, Choudhary G, Rounds S, Lu Q. Blockade of equilibrative nucleoside transporter 1/2 protects against Pseudomonas aeruginosa-induced acute lung injury and NLRP3 inflammasome activation. FASEB J 2020; 34:1516-1531. [PMID: 31914698 PMCID: PMC7045807 DOI: 10.1096/fj.201902286r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/11/2022]
Abstract
Pseudomonas aeruginosa infections are increasingly multidrug resistant and cause healthcare-associated pneumonia, a major risk factor for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Adenosine is a signaling nucleoside with potential opposing effects; adenosine can either protect against acute lung injury via adenosine receptors or cause lung injury via adenosine receptors or equilibrative nucleoside transporter (ENT)-dependent intracellular adenosine uptake. We hypothesized that blockade of intracellular adenosine uptake by inhibition of ENT1/2 would increase adenosine receptor signaling and protect against P. aeruginosa-induced acute lung injury. We observed that P. aeruginosa (strain: PA103) infection induced acute lung injury in C57BL/6 mice in a dose- and time-dependent manner. Using ENT1/2 pharmacological inhibitor, nitrobenzylthioinosine (NBTI), and ENT1-null mice, we demonstrated that ENT blockade elevated lung adenosine levels and significantly attenuated P. aeruginosa-induced acute lung injury, as assessed by lung wet-to-dry weight ratio, BAL protein levels, BAL inflammatory cell counts, pro-inflammatory cytokines, and pulmonary function (total lung volume, static lung compliance, tissue damping, and tissue elastance). Using both agonists and antagonists directed against adenosine receptors A2AR and A2BR, we further demonstrated that ENT1/2 blockade protected against P. aeruginosa -induced acute lung injury via activation of A2AR and A2BR. Additionally, ENT1/2 chemical inhibition and ENT1 knockout prevented P. aeruginosa-induced lung NLRP3 inflammasome activation. Finally, inhibition of inflammasome prevented P. aeruginosa-induced acute lung injury. Our results suggest that targeting ENT1/2 and NLRP3 inflammasome may be novel strategies for prevention and treatment of P. aeruginosa-induced pneumonia and subsequent ARDS.
Collapse
Affiliation(s)
- Eboni D. Chambers
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Alexis White
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Alexander Vang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Zhengke Wang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Alfred Ayala
- Division of Surgical Research, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02908
| | - Tingting Weng
- Departments of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Michael Blackburn
- Departments of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| |
Collapse
|
13
|
Milanese C, Bombardieri CR, Sepe S, Barnhoorn S, Payán-Goméz C, Caruso D, Audano M, Pedretti S, Vermeij WP, Brandt RMC, Gyenis A, Wamelink MM, de Wit AS, Janssens RC, Leen R, van Kuilenburg ABP, Mitro N, Hoeijmakers JHJ, Mastroberardino PG. DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering. Nat Commun 2019; 10:4887. [PMID: 31653834 PMCID: PMC6814737 DOI: 10.1038/s41467-019-12640-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 09/22/2019] [Indexed: 12/13/2022] Open
Abstract
Accumulation of DNA lesions causing transcription stress is associated with natural and accelerated aging and culminates with profound metabolic alterations. Our understanding of the mechanisms governing metabolic redesign upon genomic instability, however, is highly rudimentary. Using Ercc1-defective mice and Xpg knock-out mice, we demonstrate that combined defects in transcription-coupled DNA repair (TCR) and in nucleotide excision repair (NER) directly affect bioenergetics due to declined transcription, leading to increased ATP levels. This in turn inhibits glycolysis allosterically and favors glucose rerouting through the pentose phosphate shunt, eventually enhancing production of NADPH-reducing equivalents. In NER/TCR-defective mutants, augmented NADPH is not counterbalanced by increased production of pro-oxidants and thus pentose phosphate potentiation culminates in an over-reduced redox state. Skin fibroblasts from the TCR disease Cockayne syndrome confirm results in animal models. Overall, these findings unravel a mechanism connecting DNA damage and transcriptional stress to metabolic redesign and protective antioxidant defenses. ERCC1 is involved in a number of DNA repair pathways including nucleotide excision repair. Here the authors showed that reduced transcription in Ercc1-deficient mouse livers and cells increases ATP levels, suppressing glycolysis and rerouting glucose into the pentose phosphate shunt that generates reductive stress.
Collapse
Affiliation(s)
- Chiara Milanese
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Cíntia R Bombardieri
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sara Sepe
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sander Barnhoorn
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - César Payán-Goméz
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Wilbert P Vermeij
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Renata M C Brandt
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Akos Gyenis
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Mirjam M Wamelink
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, the Netherlands
| | - Annelieke S de Wit
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - René Leen
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany.,Oncode Institute, Princess Máxima Center, Utrecht, Netherlands
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands. .,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
14
|
Structures of human ENT1 in complex with adenosine reuptake inhibitors. Nat Struct Mol Biol 2019; 26:599-606. [PMID: 31235912 PMCID: PMC6705415 DOI: 10.1038/s41594-019-0245-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023]
Abstract
The human Equilibrative Nucleoside Transporter 1 (hENT1), a member of the SLC29 family, plays crucial roles in adenosine signaling, cellular uptake of nucleoside for DNA and RNA synthesis, and nucleoside-derived anticancer and antiviral drug transport in human. Because of its central role in adenosine signaling, it is the target of adenosine reuptake inhibitors (AdoRI), several of which are clinically used. Despite its importance in human physiology and pharmacology, the molecular basis of hENT1-mediated adenosine transport and its inhibition by AdoRIs are limited due to the absence of structural information on hENT1. Here we present crystal structures of hENT1 in complex with two chemically distinct AdoRIs: dilazep and S-(4-Nitrobenzyl)-6-thioinosine (NBMPR). Combined with mutagenesis study, our structural analyses elucidate two distinct inhibitory mechanisms exhibited on hENT1, while giving insight into adenosine recognition and transport. Our studies provide the platform for improved pharmacological intervention of adenosine and nucleoside analog drug transport by hENT1.
Collapse
|
15
|
Riachi M, Bas F, Darendeliler F, Hussain K. A novel 3' untranslated region mutation in the SLC29A3 gene associated with pigmentary hypertrichosis and non-autoimmune insulin-dependent diabetes mellitus syndrome. Pediatr Diabetes 2019; 20:474-481. [PMID: 30821020 DOI: 10.1111/pedi.12839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/08/2019] [Accepted: 02/08/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Pigmentary hypertrichosis and non-autoimmune insulin-dependent diabetes mellitus (PHID) is one of the rare H syndrome diseases mainly characterized by hyperpigmentation, hypertrichosis, sensorineural hearing loss, cardiac complications, developmental delay, and diabetes mellitus (DM). Mutations in the coding regions of the SLC29A3 gene that encodes for an equilibrative nucleoside transporter (ENT3) have been reported to cause the phenotypic spectrum of the H syndrome. Disease-causing mutations in the untranslated regions (UTRs) of the SLC29A3 gene have not been previously described in the literature. The aim of the study is to describe and assess the pathogenicity of a novel 3'UTR mutation in the SLC29A3 gene associated with the PHID phenotype in two Turkish patients. METHODS The mutation was identified by a targeted gene approach. To understand the pathogenicity of this 3'UTR mutation, RNA and protein expression studies were performed by using the quantitative real-time polymerase chain reaction method and western blotting, respectively, using fibroblasts cultured from the patients' skin biopsies. RESULTS SLC29A3 and ENT3 expression levels were both decreased in the patients compared to controls matched for passage numbers, RNA, and protein extraction methods. CONCLUSIONS A novel 3'UTR mutation in the SLC29A3 gene is associated with the PHID syndrome, highlighting a potentially new pathological mechanism for this disease. The involvement of the 3'UTR has not been previously established in any of the H syndrome disease cluster or in any complex syndrome of DM.
Collapse
Affiliation(s)
- Melissa Riachi
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Firdevs Bas
- Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Feyza Darendeliler
- Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Khalid Hussain
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK.,Department of Pediatrics, Division of Endocrinology, Sidra Medicine, Doha, Qatar
| |
Collapse
|
16
|
Bernareggi A, Sciancalepore M, Lorenzon P. Interplay Between Cholinergic and Adenosinergic Systems in Skeletal Muscle. Neuroscience 2019; 439:41-47. [PMID: 31121259 DOI: 10.1016/j.neuroscience.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
Since the pioneering works of Ricardo Miledi, the neuromuscular junction represents the best example of a synapse where ACh is the neurotransmitter acting on nicotinic ACh receptors. ATP, co-released with ACh, is promptly degraded to Ado, which acts as a modulator of the cholinergic synaptic activity. Consequently, both ACh and adenosine play a crucial role in controlling the nerve-muscle communication. Apart from their role in the context of synaptic transmission, ACh and adenosine are autocrinally released by skeletal muscle cells, suggesting also a non nerve-driven function of these molecules. Indeed, the existence of cholinergic and adenosinergic systems has been widely described in many other non neuronal cell types. In this review, we will describe the two systems and their interplay in non-innervated differentiating skeletal muscle cells, and in innervated adult skeletal muscle fibers. We believe that the better comprehension of the interactions between the activity of nAChRs and adenosine could help the knowledge of skeletal muscle physiology. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Annalisa Bernareggi
- Department of Life Sciences, University of Trieste, Trieste, Italy; B.R.A.I.N., Centre for Neuroscience, Trieste, Italy.
| | - Marina Sciancalepore
- Department of Life Sciences, University of Trieste, Trieste, Italy; B.R.A.I.N., Centre for Neuroscience, Trieste, Italy
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, Trieste, Italy; B.R.A.I.N., Centre for Neuroscience, Trieste, Italy
| |
Collapse
|
17
|
Khan AK, Jain AG, Afridi S, Wazir M, Rao JS, Ahmad S. Latest developments in chemotherapy for metastatic pancreatic cancer. THERANOSTIC APPROACH FOR PANCREATIC CANCER 2019:111-139. [DOI: 10.1016/b978-0-12-819457-7.00006-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Ye C, Han K, Lei J, Zeng K, Zeng S, Ju H, Yu L. Inhibition of histone deacetylase 7 reverses concentrative nucleoside transporter 2 repression in colorectal cancer by up-regulating histone acetylation state. Br J Pharmacol 2018; 175:4209-4217. [PMID: 30076612 DOI: 10.1111/bph.14467] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/03/2018] [Accepted: 07/24/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The concentrative nucleoside transporter 2 (CNT2) mediates the uptake of both natural nucleosides and nucleoside-derived drugs. Therefore, it is important both physiologically and pharmacologically. However, CNT2 expression is significantly repressed in colorectal cancer (CRC). Here, we have elucidated the mechanism(s) underlying CNT2 repression in CRC. EXPERIMENTAL APPROACH Repression of CNT2 in tumour samples from patients with CRC was identified using Western blot and RT-qPCR. The histone acetylation state at the CNT2 promoter region was then evaluated with chromatin immunoprecipitation and trichostatin A (TSA) treatment. To find the key enzyme responsible for hypoacetylation at the CNT2 promoter region, siRNA knockdown and RT-qPCR were used. Effects of combining HDAC inhibitors and cladribine were studied in HCT15 and HT29 cells. KEY RESULTS Histone deacetylase 7 was significantly up-regulated in CRC, leading to histone hypoacetylation at the CNT2 promoter region, especially at sites H3K9Ac, H3K18Ac and H4Ac. This hypoacetylation condensed the chromatin structure and reduced CNT2 expression. All these effects were reversed by treatment with TSA, a histone deacetylase inhibitor. In HCT15 and HT29 cells, inhibition of histone deacetylase increased cell uptake and decreased IC50 for cladribine. CONCLUSIONS AND IMPLICATIONS Histone hypoacetylation due to increased levels of histone deacetylase 7 results in CNT2 repression in CRC tumour tissue and could lead to decreased uptake of and consequent resistance to nucleoside anti-cancer agents. Such resistance could be overcome by combining inhibitors of histone deacetylase with the nucleoside anti-cancer agent.
Collapse
Affiliation(s)
- Chaonan Ye
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Kun Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jinxiu Lei
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Kui Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haixing Ju
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lushan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Takami Y, Yamamoto Y, Ueno M, Chiba Y, Norikane T, Hatakeyama T, Miyake K, Toyohara J, Nishiyama Y. Correlation of 4'-[methyl- 11C]-thiothymidine uptake with human equilibrative nucleoside transporter-1 and thymidine kinase-1 expressions in patients with newly diagnosed gliomas. Ann Nucl Med 2018; 32:634-641. [PMID: 30039191 DOI: 10.1007/s12149-018-1285-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE We examined expressions of human equilibrative nucleoside transporter-1 (hENT1) and thymidine kinase-1 (TK1), the key enzyme in 4'-[methyl-11C]-thiothymidine (4DST) phosphorylation, to elucidate the mechanism of 4DST uptake in patients with newly diagnosed gliomas. METHODS A total of 19 patients with newly diagnosed gliomas were examined with 4DST PET. Tumor lesions were identified as areas of focally increased uptake, exceeding that of normal brain background. For semi-quantitative analysis, tumor-to-contralateral normal brain tissue (T/N) ratio was determined by dividing the maximal standardized uptake value (SUV) for tumor by that of the mean SUV for reference tissue. The expressions of hENT1, TK1 and Ki-67 in tumor specimens were examined by immunohistochemistry and compared with 4DST T/N ratio. RESULTS All but two gliomas showed focally increased 4DST uptake. All gliomas showed hENT1 staining, except one grade II glioma, which was also not visualized on 4DST PET. A significant correlation was observed between T/N ratio and hENT1 score (ρ = 0.90, p < 0.001). All gliomas showed TK1 staining, except two gliomas which were also not visualized on 4DST PET. There was a significant correlation between T/N ratio and TK1 score (ρ = 0.92, p < 0.001). There was a significant correlation between T/N ratio and Ki-67 index (ρ = 0.50, p < 0.03). CONCLUSION Results of this preliminary study indicate that expressions of hENT1 and TK1 appear to be important determinants of 4DST uptake in newly diagnosed gliomas.
Collapse
Affiliation(s)
- Yasukage Takami
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Yuka Yamamoto
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Norikane
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Tetsuhiro Hatakeyama
- Department of Neurosurgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Keisuke Miyake
- Department of Neurosurgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yoshihiro Nishiyama
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| |
Collapse
|
20
|
Poppe D, Doerr J, Schneider M, Wilkens R, Steinbeck JA, Ladewig J, Tam A, Paschon DE, Gregory PD, Reik A, Müller CE, Koch P, Brüstle O. Genome Editing in Neuroepithelial Stem Cells to Generate Human Neurons with High Adenosine-Releasing Capacity. Stem Cells Transl Med 2018; 7:477-486. [PMID: 29589874 PMCID: PMC5980162 DOI: 10.1002/sctm.16-0272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 01/29/2018] [Indexed: 12/20/2022] Open
Abstract
As a powerful regulator of cellular homeostasis and metabolism, adenosine is involved in diverse neurological processes including pain, cognition, and memory. Altered adenosine homeostasis has also been associated with several diseases such as depression, schizophrenia, or epilepsy. Based on its protective properties, adenosine has been considered as a potential therapeutic agent for various brain disorders. Since systemic application of adenosine is hampered by serious side effects such as vasodilatation and cardiac suppression, recent studies aim at improving local delivery by depots, pumps, or cell-based applications. Here, we report on the characterization of adenosine-releasing human embryonic stem cell-derived neuroepithelial stem cells (long-term self-renewing neuroepithelial stem [lt-NES] cells) generated by zinc finger nuclease (ZFN)-mediated knockout of the adenosine kinase (ADK) gene. ADK-deficient lt-NES cells and their differentiated neuronal and astroglial progeny exhibit substantially elevated release of adenosine compared to control cells. Importantly, extensive adenosine release could be triggered by excitation of differentiated neuronal cultures, suggesting a potential activity-dependent regulation of adenosine supply. Thus, ZFN-modified neural stem cells might serve as a useful vehicle for the activity-dependent local therapeutic delivery of adenosine into the central nervous system. Stem Cells Translational Medicine 2018;7:477-486.
Collapse
Affiliation(s)
- Daniel Poppe
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie FoundationBonnGermany
| | - Jonas Doerr
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie FoundationBonnGermany
| | - Marion Schneider
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of BonnBonnGermany
| | - Ruven Wilkens
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie FoundationBonnGermany
| | - Julius A. Steinbeck
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie FoundationBonnGermany
| | - Julia Ladewig
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie FoundationBonnGermany
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | | | | | | | | | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of BonnBonnGermany
| | - Philipp Koch
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie FoundationBonnGermany
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie FoundationBonnGermany
| |
Collapse
|
21
|
Adamska A, Elaskalani O, Emmanouilidi A, Kim M, Abdol Razak NB, Metharom P, Falasca M. Molecular and cellular mechanisms of chemoresistance in pancreatic cancer. Adv Biol Regul 2018; 68:77-87. [PMID: 29221990 DOI: 10.1016/j.jbior.2017.11.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most chemoresistant cancers, and current therapies targeting cancer-associated molecular pathways have not given satisfactory results, owing in part to rapid upregulation of alternative compensatory pathways. Most of the available treatments are palliative, focussing on improving the quality of life. At present, available options are surgery, embolization, radiation, chemotherapy, immunotherapy and use of other more targeted drugs. In this review, we describe the cellular and molecular effects of current chemotherapy drugs such as gemcitabine, FOLFIRINOX (5-fluorouracil [5-FU], oxaliplatin, irinotecan, and leucovorin) and ABRAXANE (nab-Paclitaxel), which have shown a survival benefit, although modest, for pancreatic cancer patients. Nevertheless, gemcitabine remains the standard first-line option for advanced-stage pancreatic cancer patients and, as resistance to the drug has attracted an increasing scientific interest, we deliberate on the main intracellular processes and proteins vital in acquired chemoresistance to gemcitabine. Lastly, our review examines various microenvironmental factors capable of instigating PDAC to develop resistance to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Aleksandra Adamska
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Omar Elaskalani
- Platelet Research Laboratory, Curtin Health Innovation and Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Aikaterini Emmanouilidi
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Minkyoung Kim
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Norbaini Binti Abdol Razak
- Platelet Research Laboratory, Curtin Health Innovation and Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Pat Metharom
- Platelet Research Laboratory, Curtin Health Innovation and Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
22
|
Sharma HP, Halder N, Singh SB, Velpandian T. Involvement of nucleoside transporters in the transcorneal permeation of topically instilled substrates in rabbits in-vivo. Eur J Pharm Sci 2018; 114:364-371. [DOI: 10.1016/j.ejps.2017.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 11/09/2017] [Accepted: 12/29/2017] [Indexed: 01/02/2023]
|
23
|
Gu X, Xiao Q, Ruan Q, Shu Y, Dongre A, Iyer R, Humphreys WG, Lai Y. Comparative untargeted proteomic analysis of ADME proteins and tumor antigens for tumor cell lines. Acta Pharm Sin B 2018; 8:252-260. [PMID: 29719786 PMCID: PMC5925393 DOI: 10.1016/j.apsb.2017.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 12/16/2022] Open
Abstract
In the present study, total membrane proteins from tumor cell lines including HepG2, Hep3B2, H226, Ovcar3 and N87 were extracted and digested with γLysC and trypsin. The resulting peptide lysate were pre-fractionated and subjected to untargeted quantitative proteomics analysis using a high resolution mass spectrometer. The mass spectra were processed by the MaxQuant and the protein abundances were estimated using total peak area (TPA) method. A total of 6037 proteins were identified, and the analysis resulted in the identification of 2647 membrane proteins. Of those, tumor antigens and absorption, metabolism, disposition and elimination (ADME) proteins including UDP-glucuronosyltransferase, cytochrome P450, solute carriers and ATP-binding cassette transporters were detected and disclosed significant variations among the cell lines. The principal component analysis was performed for the cluster of cell lines. The results demonstrated that H226 is closely related with N87, while Hep3B2 aligned with HepG2. The protein cluster of Ovcar3 was apart from that of other cell lines investigated. By providing for the first time quantitative untargeted proteomics analysis, the results delineated the expression profiles of membrane proteins. These findings provided a useful resource for selecting targets of choice for anticancer therapy through advancing data obtained from preclinical tumor cell line models to clinical outcomes.
Collapse
|
24
|
Gorzkiewicz M, Jatczak-Pawlik I, Studzian M, Pułaski Ł, Appelhans D, Voit B, Klajnert-Maculewicz B. Glycodendrimer Nanocarriers for Direct Delivery of Fludarabine Triphosphate to Leukemic Cells: Improved Pharmacokinetics and Pharmacodynamics of Fludarabine. Biomacromolecules 2018; 19:531-543. [PMID: 29323872 DOI: 10.1021/acs.biomac.7b01650] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fludarabine, a nucleoside analogue antimetabolite, has complicated pharmacokinetics requiring facilitated transmembrane transport and intracellular conversion to triphosphate nucleotide form (Ara-FATP), causing it to be susceptible to emergence of drug resistance. We are testing a promising strategy to improve its clinical efficacy by direct delivery of Ara-FATP utilizing a biocompatible glycodendrimer nanocarrier system. Here, we present results of a proof-of-concept experiment in several in vitro-cultured leukemic cell lines (CCRF, THP-1, U937) using noncovalent complexes of maltose-modified poly(propyleneimine) dendrimer and fludarabine triphosphate. We show that Ara-FATP has limited cytotoxic activity toward investigated cells relative to free nucleoside (Ara-FA), but complexation with the glycodendrimer (which does not otherwise influence cellular metabolism) drastically increases its toxicity. Moreover, we show that transport via hENT1 is a limiting step in Ara-FA toxicity, while complexation with dendrimer allows Ara-FATP to kill cells even in the presence of a hENT1 inhibitor. Thus, the use of glycodendrimers for drug delivery would allow us to circumvent naturally occurring drug resistance due to decreased transporter activity. Finally, we demonstrate that complex formation does not change the advantageous multifactorial intracellular pharmacodynamics of Ara-FATP, preserving its high capability to inhibit DNA and RNA synthesis and induce apoptosis via the intrinsic pathway. In comparison to other nucleoside analogue drugs, fludarabine is hereby demonstrated to be an optimal candidate for maltose glycodendrimer-mediated drug delivery in antileukemic therapy.
Collapse
Affiliation(s)
| | | | | | - Łukasz Pułaski
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS , 106 Lodowa Street, 93-232 Lodz, Poland
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | | |
Collapse
|
25
|
Gorzkiewicz M, Klajnert-Maculewicz B. Dendrimers as nanocarriers for nucleoside analogues. Eur J Pharm Biopharm 2017; 114:43-56. [DOI: 10.1016/j.ejpb.2016.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/02/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
|
26
|
Grixti JM, O'Hagan S, Day PJ, Kell DB. Enhancing Drug Efficacy and Therapeutic Index through Cheminformatics-Based Selection of Small Molecule Binary Weapons That Improve Transporter-Mediated Targeting: A Cytotoxicity System Based on Gemcitabine. Front Pharmacol 2017; 8:155. [PMID: 28396636 PMCID: PMC5366350 DOI: 10.3389/fphar.2017.00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/10/2017] [Indexed: 12/23/2022] Open
Abstract
The transport of drug molecules is mainly determined by the distribution of influx and efflux transporters for which they are substrates. To enable tissue targeting, we sought to develop the idea that we might affect the transporter-mediated disposition of small-molecule drugs via the addition of a second small molecule that of itself had no inhibitory pharmacological effect but that influenced the expression of transporters for the primary drug. We refer to this as a “binary weapon” strategy. The experimental system tested the ability of a molecule that on its own had no cytotoxic effect to increase the toxicity of the nucleoside analog gemcitabine to Panc1 pancreatic cancer cells. An initial phenotypic screen of a 500-member polar drug (fragment) library yielded three “hits.” The structures of 20 of the other 2,000 members of this library suite had a Tanimoto similarity greater than 0.7 to those of the initial hits, and each was itself a hit (the cheminformatics thus providing for a massive enrichment). We chose the top six representatives for further study. They fell into three clusters whose members bore reasonable structural similarities to each other (two were in fact isomers), lending strength to the self-consistency of both our conceptual and experimental strategies. Existing literature had suggested that indole-3-carbinol might play a similar role to that of our fragments, but in our hands it was without effect; nor was it structurally similar to any of our hits. As there was no evidence that the fragments could affect toxicity directly, we looked for effects on transporter transcript levels. In our hands, only the ENT1-3 uptake and ABCC2,3,4,5, and 10 efflux transporters displayed measurable transcripts in Panc1 cultures, along with a ribonucleoside reductase RRM1 known to affect gemcitabine toxicity. Very strikingly, the addition of gemcitabine alone increased the expression of the transcript for ABCC2 (MRP2) by more than 12-fold, and that of RRM1 by more than fourfold, and each of the fragment “hits” served to reverse this. However, an inhibitor of ABCC2 was without significant effect, implying that RRM1 was possibly the more significant player. These effects were somewhat selective for Panc cells. It seems, therefore, that while the effects we measured were here mediated more by efflux than influx transporters, and potentially by other means, the binary weapon idea is hereby fully confirmed: it is indeed possible to find molecules that manipulate the expression of transporters that are involved in the bioactivity of a pharmaceutical drug. This opens up an entirely new area, that of chemical genomics-based drug targeting.
Collapse
Affiliation(s)
- Justine M Grixti
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Steve O'Hagan
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| | - Philip J Day
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Douglas B Kell
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| |
Collapse
|
27
|
Ii H, Warraich S, Tenn N, Quinonez D, Holdsworth DW, Hammond JR, Dixon SJ, Séguin CA. Disruption of biomineralization pathways in spinal tissues of a mouse model of diffuse idiopathic skeletal hyperostosis. Bone 2016; 90:37-49. [PMID: 27237608 DOI: 10.1016/j.bone.2016.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/06/2023]
Abstract
Equilibrative nucleoside transporter 1 (ENT1) mediates passage of adenosine across the plasma membrane. We reported previously that mice lacking ENT1 (ENT1(-/-)) exhibit progressive ectopic mineralization of spinal tissues resembling diffuse idiopathic skeletal hyperostosis (DISH) in humans. Here, we investigated mechanisms underlying aberrant mineralization in ENT1(-/-) mice. Micro-CT revealed ectopic mineralization of spinal tissues in both male and female ENT1(-/-) mice, involving the annulus fibrosus of the intervertebral discs (IVDs) of older mice. IVDs were isolated from wild-type and ENT1(-/-) mice at 2months of age (prior to disc mineralization), 4, and 6months of age (disc mineralization present) and processed for real-time PCR, cell isolation, or histology. Relative to the expression of ENTs in other tissues, ENT1 was the primary nucleoside transporter expressed in wild-type IVDs and mediated the functional uptake of [(3)H]2-chloroadenosine by annulus fibrosus cells. No differences in candidate gene expression were detected in IVDs from ENT1(-/-) and wild-type mice at 2 or 4months of age. However, at 6months of age, expression of genes that inhibit biomineralization Mgp, Enpp1, Ank, and Spp1 were reduced in IVDs from ENT1(-/-) mice. To assess whether changes detected in ENT1(-/-) mice were cell autonomous, annulus fibrosus cell cultures were established. Compared to wild-type cells, cells isolated from ENT1(-/-) IVDs at 2 or 6months of age demonstrated greater activity of alkaline phosphatase, a promoter of biomineralization. Cells from 2-month-old ENT1(-/-) mice also showed greater mineralization than wild-type. Interestingly, altered localization of alkaline phosphatase activity was detected in the inner annulus fibrosus of ENT1(-/-) mice in vivo. Alkaline phosphatase activity, together with the marked reduction in mineralization inhibitors, is consistent with the mineralization of IVDs seen in ENT1(-/-) mice at older ages. These findings establish that both cell-autonomous and systemic mechanisms contribute to ectopic mineralization in ENT1(-/-) mice.
Collapse
Affiliation(s)
- Hisataka Ii
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, and Bone and Joint Institute, The University of Western Ontario, London, Ontario, Canada; Department of Oral Health School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Sumeeta Warraich
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, and Bone and Joint Institute, The University of Western Ontario, London, Ontario, Canada
| | - Neil Tenn
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, and Bone and Joint Institute, The University of Western Ontario, London, Ontario, Canada
| | - Diana Quinonez
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, and Bone and Joint Institute, The University of Western Ontario, London, Ontario, Canada
| | - David W Holdsworth
- Imaging Research Laboratories, Robarts Research Institute, Department of Surgery, Schulich School of Medicine & Dentistry, and Bone and Joint Institute, The University of Western Ontario, London, Ontario, Canada
| | - James R Hammond
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - S Jeffrey Dixon
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, and Bone and Joint Institute, The University of Western Ontario, London, Ontario, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, and Bone and Joint Institute, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
28
|
Zhu Y, Hamlow LA, He CC, Strobehn SF, Lee JK, Gao J, Berden G, Oomens J, Rodgers MT. Influence of Sodium Cationization versus Protonation on the Gas-Phase Conformations and Glycosidic Bond Stabilities of 2'-Deoxyadenosine and Adenosine. J Phys Chem B 2016; 120:8892-904. [PMID: 27494378 DOI: 10.1021/acs.jpcb.6b06105] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The influence of noncovalent interactions with a sodium cation on the gas-phase structures and N-glycosidic bond stabilities of 2'-deoxyadenosine (dAdo) and adenosine (Ado), [dAdo+Na](+) and [Ado+Na](+), are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and energy-resolved collision-induced dissociation (ER-CID) experiments. ER-CID experiments are also performed on the protonated forms of these nucleosides, [dAdo+H](+) and [Ado+H](+), for comparison purposes. Complementary electronic structure calculations are performed to determine the structures and relative stabilities of the stable low-energy conformations of the sodium cationized nucleoside complexes and to predict their IR spectra. Comparison between the measured IRMPD action spectra and calculated IR spectra enables the conformations of the sodium cationized nucleosides present in the experiments to be elucidated. The influence of sodium cationization versus protonation on the structures and IR spectra is elucidated by comparison to IRMPD and theoretical results previously reported for the protonated forms of these nucleosides. The influence of sodium cationization versus protonation on the glycosidic bond stability of the adenine nucleosides is determined by comparison of the ER-CID behavior of these systems. All structures present in the experiments are found to involve tridentate binding of Na(+) to the N3, O4', and O5' atoms forming favorable 5- and 6-membered chelation rings, which requires that adenine rotate to a syn configuration. This mode of sodium cation binding results in moderate flexibility of the sugar moiety such that the sugar puckering of the conformations present varies between C2'-endo and O4'-endo. Sodium cationization is found to be less effective toward activating the N-glycosidic bond than protonation for both dAdo and Ado. Both the IRMPD yields and ER-CID behavior indicate that the 2'-hydroxyl substituent of Ado stabilizes the N-glycosidic bond relative to that of dAdo.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - L A Hamlow
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - C C He
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - S F Strobehn
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J K Lee
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J Gao
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - G Berden
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
29
|
Mukherjee I, Powell B, Parianos M, Downs D, Ross SB. Available technologies and clinical applications of targeted chemotherapy in pancreatic cancer. Cancer Genet 2016; 209:582-591. [PMID: 27613576 DOI: 10.1016/j.cancergen.2016.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/01/2016] [Indexed: 02/08/2023]
Abstract
The incidence of pancreatic cancer, the fourth leading cause of cancer death in United States, is increasing worldwide. Even though the cure rate has doubled in 40 years, it is abysmally poor at 6-7%. As surgical resection remains the only curative treatment and less than 20% of the newly diagnosed cancers are resectable, the major burden of disease management lies in early diagnosis, good prognostication, and proper neo-adjuvant and/or adjuvant therapy. With advancing technologies and their ease of availability, researchers have better tools to understand pancreatic cancer. In the post-genetic era, proteomic, phosphoproteomic, metabolomic, and more have brought us to a multi-omics era. These newer avenues bring promises of better screening modalities, less invasive diagnostics and monitoring, subtyping of pancreatic cancer, and fine tuning the treatment modalities not only to the right stage of tumor but also to the right tumor biology. As the multitudes of technologies are generating extensive amounts of incongruous data, they are giving clinicians a lot of non-actionable information. In this paper, we wish to encompass the newer technologies, sub-classifications, and future treatment modalities in personalized care of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Indraneil Mukherjee
- Southeastern Center for Digestive Disorders and Pancreatic Cancer, Florida Hospital Tampa, Tampa, FL, USA.
| | - Brett Powell
- Southeastern Center for Digestive Disorders and Pancreatic Cancer, Florida Hospital Tampa, Tampa, FL, USA
| | - Mary Parianos
- Southeastern Center for Digestive Disorders and Pancreatic Cancer, Florida Hospital Tampa, Tampa, FL, USA
| | - Darrell Downs
- Southeastern Center for Digestive Disorders and Pancreatic Cancer, Florida Hospital Tampa, Tampa, FL, USA
| | - Sharona B Ross
- Southeastern Center for Digestive Disorders and Pancreatic Cancer, Florida Hospital Tampa, Tampa, FL, USA
| |
Collapse
|
30
|
Crona M, Codó P, Jonna VR, Hofer A, Fernandes AP, Tholander F. A ribonucleotide reductase inhibitor with deoxyribonucleoside-reversible cytotoxicity. Mol Oncol 2016; 10:1375-1386. [PMID: 27511871 DOI: 10.1016/j.molonc.2016.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022] Open
Abstract
Ribonucleotide Reductase (RNR) is the sole enzyme that catalyzes the reduction of ribonucleotides into deoxyribonucleotides. Even though RNR is a recognized target for antiproliferative molecules, and the main target of the approved drug hydroxyurea, few new leads targeted to this enzyme have been developed. We have evaluated a recently identified set of RNR inhibitors with respect to inhibition of the human enzyme and cellular toxicity. One compound, NSC73735, is particularly interesting; it is specific for leukemia cells and is the first identified compound that hinders oligomerization of the mammalian large RNR subunit. Similar to hydroxyurea, it caused a disruption of the cell cycle distribution of cultured HL-60 cells. In contrast to hydroxyurea, the disruption was reversible, indicating higher specificity. NSC73735 thus defines a potential lead candidate for RNR-targeted anticancer drugs, as well as a chemical probe with better selectivity for RNR inhibition than hydroxyurea.
Collapse
Affiliation(s)
- Mikael Crona
- Department of Medicinal Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Paula Codó
- Department of Medicinal Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden
| | - Aristi P Fernandes
- Department of Medicinal Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Fredrik Tholander
- Department of Medicinal Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
31
|
Dar MS. Ethanol-Induced Cerebellar Ataxia: Cellular and Molecular Mechanisms. THE CEREBELLUM 2016; 14:447-65. [PMID: 25578036 DOI: 10.1007/s12311-014-0638-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cerebellum is an important target of ethanol toxicity given that cerebellar ataxia is the most consistent physical manifestation of acute ethanol consumption. Despite the significance of the cerebellum in ethanol-induced cerebellar ataxia (EICA), the cellular and molecular mechanisms underlying EICA are incompletely understood. However, two important findings have shed greater light on this phenomenon. First, ethanol-induced blockade of cerebellar adenosine uptake in rodent models points to a role for adenosinergic A1 modulation of EICA. Second, the consistent observation that intracerebellar administration of nicotine in mice leads to antagonism of EICA provides evidence for a critical role of cerebellar nitric oxide (NO) in EICA reversal. Based on these two important findings, this review discusses the potential molecular events at two key synaptic sites (mossy fiber-granule cell-Golgi cell (MGG synaptic site) and granule cell parallel fiber-Purkinje cell (GPP synaptic site) that lead to EICA. Specifically, ethanol-induced neuronal NOS inhibition at the MGG synaptic site acts as a critical trigger for Golgi cell activation which leads to granule cell deafferentation. Concurrently, ethanol-induced inhibition of adenosine uptake at the GPP synaptic site produces adenosine accumulation which decreases glutamate release and leads to the profound activation of Purkinje cells (PCs). These molecular events at the MGG and GPP synaptic sites are mutually reinforcing and lead to cerebellar dysfunction, decreased excitatory output of deep cerebellar nuclei, and EICA. The critical importance of PCs as the sole output of the cerebellar cortex suggests normalization of PC function could have important therapeutic implications.
Collapse
Affiliation(s)
- M Saeed Dar
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, 27858, USA,
| |
Collapse
|
32
|
Le N, Sund M, Vinci A. Prognostic and predictive markers in pancreatic adenocarcinoma. Dig Liver Dis 2016; 48:223-30. [PMID: 26769569 DOI: 10.1016/j.dld.2015.11.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/27/2015] [Accepted: 11/01/2015] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma is characterized by a poor prognosis and a low median survival, despite improvements observed for many other solid tumours. Intensive research efforts have been undertaken during the last decades to discover new prognostic and treatment predictive biomarkers for pancreatic ductal adenocarcinoma. The mainstay of medical treatment for the disease has been the well-tolerated nucleoside analogue, gemcitabine. The only targeted agent currently used in pancreatic ductal adenocarcinoma patients is the epithelial growth factor receptor inhibitor erlotinib in combination with gemcitabine. Recently, treatment regimens such as a combination of fluorouracil-leucovorin-irinotecan-oxaliplatin (FOLFIRINOX) and the combination of nab-paclitaxel with gemcitabine have been introduced for metastatic pancreatic ductal adenocarcinoma. Although these treatment regimens significantly improve survival of patients, there are no good predictive biomarkers available that can be used to identify who would benefit most from them. Therefore, the search for predictive biomarkers that would facilitate personalization of chemotherapy is highly relevant.
Collapse
Affiliation(s)
- Nha Le
- Semmelweis University, Second Internal Medicine Department, Gastroenterology Division, Budapest, Hungary
| | - Malin Sund
- University of Umeå, Department of Surgical and Perioperative Sciences, Umeå, Sweden.
| | - Alessio Vinci
- University of Pavia, Department of Surgery, IRCCS S. Matteo University Hospital Foundation, Pavia, Italy
| | | |
Collapse
|
33
|
Vorkapic D, Pressler K, Schild S. Multifaceted roles of extracellular DNA in bacterial physiology. Curr Genet 2016; 62:71-9. [PMID: 26328805 PMCID: PMC4723616 DOI: 10.1007/s00294-015-0514-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 11/08/2022]
Abstract
In textbooks, DNA is generally defined as the universal storage material for genetic information in all branches of life. Beyond this important intracellular role, DNA can also be present outside of living cells and is an abundant biopolymer in aquatic and terrestrial ecosystems. The origin of extracellular DNA in such ecological niches is diverse: it can be actively secreted or released by prokaryotic and eukaryotic cells by means of autolysis, apoptosis, necrosis, bacterial secretion systems or found in association with extracellular bacterial membrane vesicles. Especially for bacteria, extracellular DNA represents a significant and convenient element that can be enzymatically modulated and utilized for multiple purposes. Herein, we discuss briefly the main origins of extracellular DNA and the most relevant roles for the bacterial physiology, such as biofilm formation, nutrient source, antimicrobial means and horizontal gene transfer.
Collapse
Affiliation(s)
- Dina Vorkapic
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Katharina Pressler
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria.
| |
Collapse
|
34
|
Fujiwara Y, Kobayashi S, Nagano H, Kanai M, Hatano E, Toyoda M, Ajiki T, Takashima Y, Yoshimura K, Hamada A, Minami H, Ioka T. Pharmacokinetic Study of Adjuvant Gemcitabine Therapy for Biliary Tract Cancer following Major Hepatectomy (KHBO1101). PLoS One 2015; 10:e0143072. [PMID: 26633034 PMCID: PMC4669083 DOI: 10.1371/journal.pone.0143072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022] Open
Abstract
Background Biliary tract cancer (BTC) patients who have undergone surgical resection with major hepatectomy cannot tolerate the standard gemcitabine regimen (1,000 mg/m2 on days 1, 8, and 15 every 4 weeks) due to severe toxicities such as myelosuppression. Our dose-finding study of adjuvant gemcitabine therapy for biliary tract cancer following major hepatectomy determined that the recommended dose is 1,000 mg/m2 on days 1 and 15 every 4 weeks. Here, we evaluate the pharmacokinetics and pharmacodynamics of gemcitabine in these subjects. Methods We evaluated BTC patients scheduled to undergo surgical resection with major hepatectomy followed by gemcitabine therapy. A pharmacokinetic evaluation of gemcitabine and its main metabolite, 2′,2′-difluorodeoxyuridine (dFdU), was conducted at the initial administration of gemcitabine, which was given by intravenous infusion over 30 min at a dose of 800–1,000 mg/m2. Physical examination and adverse events were monitored for 12 weeks. Results Thirteen patients were enrolled from August 2011 to January 2013, with 12 ultimately completing the pharmacokinetic study. Eight patients had hilar cholangiocarcinoma, three had intrahepatic cholangiocarcinoma, and one had superficial spreading type cholangiocarcinoma. The median interval from surgery to first administration of gemcitabine was 65.5 days (range, 43–83 days). We observed the following toxicities: neutropenia (n = 11, 91.7%), leukopenia (n = 10, 83.3%), thrombocytopenia (n = 6, 50.0%), and infection (n = 5, 41.7%). Grade 3 or 4 neutropenia was observed in 25% (n = 3) of patients. There were differences in clearance of gemcitabine and dFdU between our subjects and the subjects who had not undergone hepatectomy. Conclusion Major hepatectomy did not affect the pharmacokinetics of gemcitabine or dFdU. Trial Registration UMIN-CTR in (JPRN) UMIN000005109
Collapse
Affiliation(s)
- Yutaka Fujiwara
- Division of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Experimental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital, Tokyo, Japan
- * E-mail:
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masashi Kanai
- Outpatient Oncology Unit, Kyoto University Hospital, Kyoto, Japan
| | - Etsuo Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Masanori Toyoda
- Division of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tetsuo Ajiki
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuki Takashima
- Department of Clinical Pharmacology, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Yoshimura
- Innovative Clinical Research Center, Kanazawa University, Kanazawa, Japan
| | - Akinobu Hamada
- Department of Clinical Pharmacology, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Hironobu Minami
- Division of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsuya Ioka
- Hepatobiliary and Pancreatic Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| |
Collapse
|
35
|
Wolff G, Truse R, Decking U. Extracellular Adenosine Formation by Ecto-5'-Nucleotidase (CD73) Is No Essential Trigger for Early Phase Ischemic Preconditioning. PLoS One 2015; 10:e0135086. [PMID: 26261991 PMCID: PMC4532361 DOI: 10.1371/journal.pone.0135086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/16/2015] [Indexed: 11/20/2022] Open
Abstract
Background Adenosine is a powerful trigger for ischemic preconditioning (IPC). Myocardial ischemia induces intracellular and extracellular ATP degradation to adenosine, which then activates adenosine receptors and elicits cardioprotection. Conventionally extracellular adenosine formation by ecto-5’-nucleotidase (CD73) during ischemia was thought to be negligible compared to the massive intracellular production, but controversial reports in the past demand further evaluation. In this study we evaluated the relevance of ecto-5’-nucleotidase (CD73) for infarct size reduction by ischemic preconditioning in in vitro and in vivo mouse models of myocardial infarction, comparing CD73-/- and wild type (WT) mice. Methods and Results 3x5 minutes of IPC induced equal cardioprotection in isolated saline perfused hearts of wild type (WT) and CD73-/- mice, reducing control infarct sizes after 20 minutes of ischemia and 90 minutes of reperfusion from 46 ± 6.3% (WT) and 56.1 ± 7.6% (CD73-/-) to 26.8 ± 4.7% (WT) and 25.6 ± 4.7% (CD73-/-). Coronary venous adenosine levels measured after IPC stimuli by high-pressure liquid chromatography showed no differences between WT and CD73-/- hearts. Pharmacological preconditioning of WT hearts with adenosine, given at the measured venous concentration, was evenly cardioprotective as conventional IPC. In vivo, 4x5 minutes of IPC reduced control infarct sizes of 45.3 ± 8.9% (WT) and 40.5 ± 8% (CD73-/-) to 26.3 ± 8% (WT) and 22.6 ± 6.6% (CD73-/-) respectively, eliciting again equal cardioprotection. The extent of IPC-induced cardioprotection in male and female mice was identical. Conclusion The infarct size limiting effects of IPC in the mouse heart in vitro and in vivo are not significantly affected by genetic inactivation of CD73. The ecto-5’-nucleotidase derived extracellular formation of adenosine does not contribute substantially to adenosine’s well known cardioprotective effect in early phase ischemic preconditioning.
Collapse
Affiliation(s)
- Georg Wolff
- Department of Cardiovascular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| | - Richard Truse
- Department of Cardiovascular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Decking
- Department of Cardiovascular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
36
|
Choi JS, Maity A, Gray T, Berdis AJ. A metal-containing nucleoside that possesses both therapeutic and diagnostic activity against cancer. J Biol Chem 2015; 290:9714-26. [PMID: 25713072 DOI: 10.1074/jbc.m114.620294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 12/29/2022] Open
Abstract
Nucleoside transport is an essential process that helps maintain the hyperproliferative state of most cancer cells. As such, it represents an important target for developing diagnostic and therapeutic agents that can effectively detect and treat cancer, respectively. This report describes the development of a metal-containing nucleoside designated Ir(III)-PPY nucleoside that displays both therapeutic and diagnostic properties against the human epidermal carcinoma cell line KB3-1. The cytotoxic effects of Ir(III)-PPY nucleoside are both time- and dose-dependent. Flow cytometry analyses validate that the nucleoside analog causes apoptosis by blocking cell cycle progression at G2/M. Fluorescent microscopy studies show rapid accumulation in the cytoplasm within 4 h. However, more significant accumulation is observed in the nucleus and mitochondria after 24 h. This localization is consistent with the ability of the metal-containing nucleoside to influence cell cycle progression at G2/M. Mitochondrial depletion is also observed after longer incubations (Δt ∼48 h), and this effect may produce additional cytotoxic effects. siRNA knockdown experiments demonstrate that the nucleoside transporter, hENT1, plays a key role in the cellular entry of Ir(III)-PPY nucleoside. Collectively, these data provide evidence for the development of a metal-containing nucleoside that functions as a combined therapeutic and diagnostic agent against cancer.
Collapse
Affiliation(s)
- Jung-Suk Choi
- From the Department of Chemistry and the Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio 44115 and
| | - Ayan Maity
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Thomas Gray
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Anthony J Berdis
- From the Department of Chemistry and the Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio 44115 and
| |
Collapse
|
37
|
Effect of hENT1 polymorphism G-706C on clinical outcomes of gemcitabine-containing chemotherapy for Chinese non-small-cell lung cancer patients. Cancer Epidemiol 2014; 38:728-32. [PMID: 25246379 DOI: 10.1016/j.canep.2014.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 11/21/2022]
Abstract
AIM To identify the single-nucleotide polymorphism (SNP) of hENT1 G-706C that is associated with response to gemcitabine-containing chemotherapy, and to determine the prognosis in patients with non-small-cell lung cancer (NSCLC). METHODS Patients with stage III (A+B) or IV NSCLC were recruited for this study (n=225). Each subject received gemcitabine-containing chemotherapy. The association between human equilibrative nucleoside transporter 1 (hENT1) polymorphism G-706C (rs61758845) and therapeutic effect was evaluated. The SNP hENT1 G-706C was genotyped by polymerase chain reaction (PCR) restriction fragment length polymorphism (RFLP) assays. RESULTS The polymorphic genotype and the allele frequency of hENT1 G-706C was significantly different between chemotherapy responders and non-responders; to be specific, the response rate of patients carrying an hENT1-706 GG allele was higher than that of patients with a GC or CC genotype. Logistic regression analysis showed that having the GC or CC genotypes was associated with a higher risk of being a non-responder compared with having the GG genotype (OR=2.34, 95% CI: 1.14-4.80; P=0.02). The overall survival in patients with the GG genotype was significantly longer than in those with GC or CC genotype (19.0 versus 15.1 months, P<0.001). The hazard ratio for the (GC+CC) genotype was 1.89 (95% CI: 1.23-2.90) compared with GG carriers (P=0.004). CONCLUSIONS The hENT1 genetic polymorphism of hENT1 G-706C was associated with response to the gemcitabine-containing chemotherapy and prognosis of NSCLC. Moreover, assaying this SNP in blood cells may represent a valuable biomarker for individualized treatment for NSCLC patients.
Collapse
|
38
|
Kruger S, Haas M, Ormanns S, Bächmann S, Siveke JT, Kirchner T, Heinemann V, Boeck S. Translational research in pancreatic ductal adenocarcinoma: current evidence and future concepts. World J Gastroenterol 2014; 20:10769-77. [PMID: 25152580 PMCID: PMC4138457 DOI: 10.3748/wjg.v20.i31.10769] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/26/2014] [Accepted: 04/08/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the major causes for cancer death worldwide. Treatment of metastatic disease remains challenging as only certain patients benefit from advances made with the intensified chemotherapy regimen folinic acid, irinotecan and oxaliplatin, the epidermal growth factor receptor inhibitor erlotinib or the recently FDA-approved nab-paclitaxel. Up to date, no established approach for prediction of treatment response or specific treatment allocation exists. Translational research was able to identify a number of potential biomarkers that might help to improve the dismal prognosis of PDA by facilitating upfront treatment allocation. This topic highlight is focused on current evidence on potential biomarkers for tumor biology, prognosis and prediction of treatment efficacy.
Collapse
|
39
|
Ferreira-Neto HC, Yao ST, Antunes VR. Purinergic and glutamatergic interactions in the hypothalamic paraventricular nucleus modulate sympathetic outflow. Purinergic Signal 2013; 9:337-49. [PMID: 23400372 PMCID: PMC3757145 DOI: 10.1007/s11302-013-9352-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/10/2013] [Indexed: 02/07/2023] Open
Abstract
P2X receptors are expressed on ventrolateral medulla projecting paraventricular nucleus (PVN) neurons. Here, we investigate the role of adenosine 5'-triphosphate (ATP) in modulating sympathetic nerve activity (SNA) at the level of the PVN. We used an in situ arterially perfused rat preparation to determine the effect of P2 receptor activation and the putative interaction between purinergic and glutamatergic neurotransmitter systems within the PVN on lumbar SNA (LSNA). Unilateral microinjection of ATP into the PVN induced a dose-related increase in the LSNA (1 nmol: 38 ± 6 %, 2.5 nmol: 72 ± 7 %, 5 nmol: 96 ±13 %). This increase was significantly attenuated by blockade of P2 receptors (pyridoxalphosphate-6-azophenyl-20,40-disulphonic acid, PPADS) and glutamate receptors (kynurenic acid, KYN) or a combination of both. The increase in LSNA elicited by L-glutamate microinjection into the PVN was not affected by a previous injection of PPADS. Selective blockade of non-N-methyl-D-aspartate receptors (6-cyano-7-nitroquinoxaline-2,3-dione disodium salt, CNQX), but not N-methyl-D-aspartate receptors (NMDA) receptors (DL-2-amino-5-phosphonopentanoic acid, AP5), attenuated the ATP-induced sympathoexcitatory effects at the PVN level. Taken together, our data show that purinergic neurotransmission within the PVN is involved in the control of SNA via P2 receptor activation. Moreover, we show an interaction between P2 receptors and non-NMDA glutamate receptors in the PVN suggesting that these functional interactions might be important in the regulation of sympathetic outflow.
Collapse
Affiliation(s)
- H. C. Ferreira-Neto
- />Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - S. T. Yao
- />Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria Australia
| | - V. R. Antunes
- />Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
40
|
Nam HW, Bruner RC, Choi DS. Adenosine signaling in striatal circuits and alcohol use disorders. Mol Cells 2013; 36:195-202. [PMID: 23912595 PMCID: PMC3887972 DOI: 10.1007/s10059-013-0192-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 01/19/2023] Open
Abstract
Adenosine signaling has been implicated in the pathophysiology of alcohol use disorders and other psychiatric disorders such as anxiety and depression. Numerous studies have indicated a role for A1 receptors (A1R) in acute ethanol-induced motor incoordination, while A2A receptors (A2AR) mainly regulate the rewarding effect of ethanol in mice. Recent findings have demonstrated that dampened A2AR-mediated signaling in the dorsomedial striatum (DMS) promotes ethanol-seeking behaviors. Moreover, decreased A2AR function is associated with decreased CREB activity in the DMS, which enhances goal-oriented behaviors and contributes to excessive ethanol drinking in mice. Interestingly, caffeine, the most commonly used psychoactive substance, is known to inhibit both the A1R and A2AR. This dampened adenosine receptor function may mask some of the acute intoxicating effects of ethanol. Furthermore, based on the fact that A2AR activity plays a role in goal-directed behavior, caffeine may also promote ethanol-seeking behavior. The A2AR is enriched in the striatum and exclusively expressed in striatopallidal neurons, which may be responsible for the regulation of inhibitory behavioral control over drug rewarding processes through the indirect pathway of the basal ganglia circuit. Furthermore, the antagonistic interactions between adenosine and dopamine receptors in the striatum also play an integral role in alcoholism and addiction-related disorders. This review focuses on regulation of adenosine signaling in striatal circuits and the possible implication of caffeine in goal-directed behaviors and addiction.
Collapse
Affiliation(s)
- Hyung Wook Nam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Robert C. Bruner
- Molecular Neuroscience Program, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Molecular Neuroscience Program, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| |
Collapse
|
41
|
Gene expression and thiopurine metabolite profiling in inflammatory bowel disease - novel clues to drug targets and disease mechanisms? PLoS One 2013; 8:e56989. [PMID: 23437289 PMCID: PMC3578787 DOI: 10.1371/journal.pone.0056989] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/16/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIMS Thiopurines are effective to induce and maintain remission in inflammatory bowel disease (IBD). The methyl thioinosine monophosphate (meTIMP)/6-thioguanine nucleotide (6-TGN) concentration ratio has been associated with drug efficacy. Here we explored the molecular basis of differences in metabolite profiles and in relation to disease activity. METHODS Transcriptional profiles in blood samples from an exploratory IBD-patient cohort (n = 21) with a normal thiopurine S-methyltransferase phenotype and meTIMP/6-TGN ratios >20, 10.0-14.0 and ≤4, respectively, were assessed by hybridization to microarrays. Results were further evaluated with RT qPCR in an expanded patient cohort (n = 54). Additionally, 30 purine/thiopurine related genes were analysed separately. RESULTS Among 17 genes identified by microarray-screening, there were none with a known relationship to pathways of purines/thiopurines. For nine of them a correlation between expression level and the concentration of meTIMP, 6-TGN and/or the meTIMP/6-TGN ratio was confirmed in the expanded cohort. Nine of the purine/thiopurine related genes were identified in the expanded cohort to correlate with meTIMP, 6-TGN and/or the meTIMP/6-TGN ratio. However, only small differences in gene expression levels were noticed over the three different metabolite profiles. The expression levels of four genes identified by microarray screening (PLCB2, HVCN1, CTSS, and DEF8) and one purine/thiopurine related gene (NME6) correlated significantly with the clinical activity of Crohn's disease. Additionally, 16 of the genes from the expanded patient cohort interacted in networks with candidate IBD susceptibility genes. CONCLUSIONS Seventeen of the 18 genes which correlated with thiopurine metabolite levels also correlated with disease activity or participated in networks with candidate IBD susceptibility genes involved in processes such as purine metabolism, cytokine signaling, and functioning of invariant natural killer T cells, T cells and B cells. Therefore, we conclude that the identified genes to a large extent are related to drug targets and disease mechanisms of IBD.
Collapse
|
42
|
Shinomiya A, Miyake K, Okada M, Nakamura T, Kawai N, Kushida Y, Haba R, Kudomi N, Tokuda M, Tamiya T. 3'-Deoxy-3'-[(18)F]-fluorothymidine ([(18)F]-FLT) transport in newly diagnosed glioma: correlation with nucleoside transporter expression, vascularization, and blood-brain barrier permeability. Brain Tumor Pathol 2013; 30:215-23. [PMID: 23423309 DOI: 10.1007/s10014-013-0136-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
Abstract
3'-Deoxy-3'-[(18)F]-fluorothymidine ([(18)F]-FLT), a marker of cellular proliferation, has been used in positron emission tomography (PET) examination of gliomas. The aim of this study was to investigate whether the uptake of [(18)F]-FLT in glioma correlates with messenger RNA (mRNA) levels of the equilibrative nucleoside transporter 1 (ENT1), microvascular density (assessed by CD34 immunohistochemistry), and the blood-brain barrier (BBB) breakdown. A total of 21 patients with newly diagnosed glioma were examined with [(18)F]-FLT PET. Tumor lesions were identified as areas of focally increased [(18)F]-FLT uptake, exceeding that of surrounding normal tissue. Dynamic analysis of [(18)F]-FLT PET revealed correlations between the phosphorylation rate constant k 3 and ENT1 expression; however there was no correlation between the kinetic parameters and CD34 score. There was a good correlation between the gadolinium (Gd) enhancement score (evaluating BBB breakdown) and ENT1 expression, CD34 score, and Ki-67 index. This preliminary study suggests that ENT1 expression might not reflect accumulation of [(18)F]-FLT in vivo due to BBB permeability in glioma.
Collapse
Affiliation(s)
- Aya Shinomiya
- Department of Neurological Surgery, Kagawa University Faculty of Medicine, 1750-1 Ikenobe, Miki, Kagawa, 761-0173, Japan,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lu Q, Sakhatskyy P, Newton J, Shamirian P, Hsiao V, Curren S, Gabino Miranda GA, Pedroza M, Blackburn MR, Rounds S. Sustained adenosine exposure causes lung endothelial apoptosis: a possible contributor to cigarette smoke-induced endothelial apoptosis and lung injury. Am J Physiol Lung Cell Mol Physiol 2013; 304:L361-70. [PMID: 23316066 DOI: 10.1152/ajplung.00161.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pulmonary endothelial cell (EC) apoptosis has been implicated in the pathogenesis of emphysema. Cigarette smoke (CS) causes lung EC apoptosis and emphysema. In this study, we show that CS exposure increased lung tissue adenosine levels in mice, an effect associated with increased lung EC apoptosis and the development of emphysema. Adenosine has a protective effect against apoptosis via adenosine receptor-mediated signaling. However, sustained elevated adenosine increases alveolar cell apoptosis in adenosine deaminase-deficient mice. We established an in vitro model of sustained adenosine exposure by incubating lung EC with adenosine in the presence of an adenosine deaminase inhibitor, deoxycoformicin. We demonstrated that sustained adenosine exposure caused lung EC apoptosis via nucleoside transporter-facilitated intracellular adenosine uptake, subsequent activation of p38 and JNK in mitochondria, and ultimately mitochondrial defects and activation of the mitochondria-mediated intrinsic pathway of apoptosis. Our results suggest that sustained elevated adenosine may contribute to CS-induced lung EC apoptosis and emphysema. Our data also reconcile the paradoxical effects of adenosine on apoptosis, demonstrating that prolonged exposure causes apoptosis via nucleoside transporter-mediated intracellular adenosine signaling, whereas acute exposure protects against apoptosis via activation of adenosine receptors. Inhibition of adenosine uptake may become a new therapeutic target in treatment of CS-induced lung diseases.
Collapse
Affiliation(s)
- Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Department of Medicine, Alpert Medical School of Brown University, Providence, RI 02908, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nishida K, Kitada T, Kato J, Dohi Y, Nagasawa K. Expression of equilibrative nucleoside transporter 1 in rat circumvallate papillae. Neurosci Lett 2012; 533:104-8. [PMID: 23147119 DOI: 10.1016/j.neulet.2012.10.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/27/2012] [Accepted: 10/31/2012] [Indexed: 11/26/2022]
Abstract
In gustatory function, communication between four types taste buds cells plays crucial roles. ATP is one of the intercellular signaling molecules in taste buds, and the extracellular ATP fate is regulated by its cellular clearance, but there is little information on it. Therefore, we examined the expression profiles of nucleoside transporters (NTs) as a clearance system for ATP metabolite adenosine in rat circumvallate papillae (CP) by RT-PCR, real-time PCR and immunohistochemistry. Among NTs, mRNA for Ent1 was expressed by the CP, and significantly was greater in the CP as compared with non-CP. ENT1 immunoreactivity was detected in PLC-β2-positive type II (71.0±8.5%), chromogranin-A-positive type III (64.9±7.4%), and SNAP25-positive type III (77.0±10.4%) taste cells, but not in NTPDase2-positive type I ones. These results indicate that ENT1-expressing type II and III taste cells might comprise an adenosine clearance system in taste buds of the CP. ENT1 expression in taste cells is important for elucidation of complicated taste signaling.
Collapse
Affiliation(s)
- Kentaro Nishida
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, Misasagi, Kyoto 607-8414, Japan
| | | | | | | | | |
Collapse
|
45
|
Virgilio A, Spano D, Esposito V, Di Dato V, Citarella G, Marino N, Maffia V, De Martino D, De Antonellis P, Galeone A, Zollo M. Novel pyrimidopyrimidine derivatives for inhibition of cellular proliferation and motility induced by h-prune in breast cancer. Eur J Med Chem 2012; 57:41-50. [DOI: 10.1016/j.ejmech.2012.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/29/2012] [Accepted: 08/13/2012] [Indexed: 11/17/2022]
|
46
|
Fraschetti C, Filippi A, Crestoni ME, Villani C, Roselli G, Mortera SL, Speranza M. Enantioselective supramolecular carriers for nucleoside drugs. A thermodynamic and kinetic gas phase investigation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1778-1785. [PMID: 22864826 DOI: 10.1007/s13361-012-0432-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 06/01/2023]
Abstract
The enantioselective interactions between chiral tetra-amidic receptors and nucleosides have been investigated by the ESI-IT-MS and ESI-FT-ICR-MS methodologies. Configurational effects on the CID fragmentation of diastereomeric [M(H)(2)•H•A](+) aggregates (A = 2'-deoxycytidine dC, citarabine (ara-C) were found to be mostly offset by isotope effect in [S(X)(2)•H•A](+) (X = H, D) differently from the results obtained on the analogues (A = cytidine C and gemcitabine G). This result points the involvement of two different nucleoside/tetraamide isoforms. The structural differences of the [M(H)(2)•H•A](+) (A = C and G) complexes vs. the [M(H)(2)•H•A](+) (dC and ara-C) ones is fully confirmed by the kinetics of their uptake of the 2-aminobutane enantiomers, measured by FT-ICR mass spectrometry. Indeed, uptake of the 2-aminobutane enantiomers by [M(H)(n)•H•A](+) (n = 1,2; A = dC and ara-C) complexes is reversible, while that by [M(H)(n)•H•A](+) (n = 1,2; A = C and G) is not. The most encouraging result concerning the measured fragmentation and kinetic differences between C and ara-C, that are just epimers, indicates the possibility to subtly modulate the non-covalent drug/receptor interactions, through the electronic properties of the 2'-substituent on the nucleoside furanose ring, and furthermore on its three-dimensional position.
Collapse
Affiliation(s)
- Caterina Fraschetti
- Chimica e Tecnologie del Farmaco, Facoltà di Farmacia, Sapienza University of Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
47
|
Nucleoside transporters: biological insights and therapeutic applications. Future Med Chem 2012; 4:1461-78. [DOI: 10.4155/fmc.12.79] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nucleoside transporters play important physiological roles by regulating intra- and extra-cellular concentrations of purine and pyrimidine (deoxy)nucleosides. This review describes the biological function and activity of the two major families of membrane nucleoside transporters that exist in mammalian cells. These include equilibrative nucleoside transporters that transport nucleosides in a gradient-dependent fashion and concentrative nucleoside transporters that import nucleosides against a gradient by coupling movement with sodium transport. Particular emphasis is placed on describing the roles of nucleoside transport in normal physiological processes, including inflammation, cardiovascular function and nutrient transport across the blood–brain barrier. In addition, the role of nucleoside transport in pathological conditions such as cardiovascular disease and cancer are discussed. The potential therapeutic applications of manipulating nucleoside transport activities are discussed, focusing on nucleoside analogs as anti-neoplastic agents. Finally, we discuss future directions for the development of novel chemical entities to measure nucleoside transport activity at the cellular and organismal level.
Collapse
|
48
|
Lu Q, Newton J, Hsiao V, Shamirian P, Blackburn MR, Pedroza M. Sustained adenosine exposure causes lung endothelial barrier dysfunction via nucleoside transporter-mediated signaling. Am J Respir Cell Mol Biol 2012; 47:604-13. [PMID: 22744860 DOI: 10.1165/rcmb.2012-0012oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previous studies by our group as well as others have shown that acute adenosine exposure enhances lung vascular endothelial barrier integrity and protects against increased permeability lung edema. In contrast, there is growing evidence that sustained adenosine exposure has detrimental effects on the lungs, including lung edema. It is well established that adenosine modulates lung inflammation. However, little is known concerning the effect of sustained adenosine exposure on lung endothelial cells (ECs), which are critical to the maintenance of the alveolar-capillary barrier. We show that exogenous adenosine plus adenosine deaminase inhibitor caused sustained elevation of adenosine in lung ECs. This sustained adenosine exposure decreased EC barrier function, elevated cellular reactive oxygen species levels, and activated p38, JNK, and RhoA. Inhibition of equilibrative nucleoside transporters (ENTs) prevented sustained adenosine-induced p38 and JNK activation and EC barrier dysfunction. Inhibition of p38, JNK, or RhoA also partially attenuated sustained adenosine-induced EC barrier dysfunction. These data indicate that sustained adenosine exposure causes lung EC barrier dysfunction via ENT-dependent intracellular adenosine uptake and subsequent activation of p38, JNK, and RhoA. The antioxidant N-acetylcysteine and the NADPH inhibitor partially blunted sustained adenosine-induced JNK activation but were ineffective in attenuation of p38 activation or barrier dysfunction. p38 was activated exclusively in mitochondria, whereas JNK was activated in mitochondria and cytoplasm by sustained adenosine exposure. Our data further suggest that sustained adenosine exposure may cause mitochondrial oxidative stress, leading to activation of p38, JNK, and RhoA in mitochondria and resulting in EC barrier dysfunction.
Collapse
Affiliation(s)
- Qing Lu
- Alpert Medical School of Brown University, Providence VA Medical Center, Research Services, 830 Chalkstone Avenue, Providence, RI 02908, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Enhanced anticancer activity of gemcitabine coupling with conjugated linoleic acid against human breast cancer in vitro and in vivo. Eur J Pharm Biopharm 2012; 82:401-9. [PMID: 22728546 DOI: 10.1016/j.ejpb.2012.06.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/04/2012] [Accepted: 06/12/2012] [Indexed: 11/24/2022]
Abstract
Gemcitabine (GEM) is a nucleoside analog agent against a wide variety of tumors. To overcome its limitation of rapid metabolism in vivo that results in short circulation time and poor antitumor efficacy, a novel prodrug (CLA-GEM conjugate) has been developed through the covalent coupling of conjugated linoleic acid (CLA) to N(4)-amino group of GEM. The chemical structure of CLA-GEM conjugate was identified by NMR, FTIR and other methods. From in vitro tests, it was demonstrated that the linkage with CLA increased the plasma stability of GEM as well as the antitumor activity against human breast tumor cells (MCF-7). Importantly, it also altered the transport pattern of GEM across cell membrane (MCF-7 and MDA-MB-231), evidenced by the little effect of nucleoside transporter inhibitors (NBMPR and dipyridamole) on the IC(50) values of CLA-GEM, instead of the great effect on that of unmodified GEM. In vivo pharmacokinetic study showed that the CLA-GEM conjugate had a longer plasma half-life and a higher bioavailability compared to that of unmodified GEM. Significant stronger antitumor activity was observed in the nude mice xenografted MCF-7 breast tumor after treated with CLA-GEM than that of unmodified GEM, while no significant body weight loss was found in all treatments. In conclusion, the novel CLA-GEM conjugate prepared in this study would be a promising prodrug of gemcitabine for future clinical use.
Collapse
|
50
|
Ho HTB, Xia L, Wang J. Residue Ile89 in human plasma membrane monoamine transporter influences its organic cation transport activity and sensitivity to inhibition by dilazep. Biochem Pharmacol 2012; 84:383-90. [PMID: 22562044 DOI: 10.1016/j.bcp.2012.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 01/11/2023]
Abstract
Plasma membrane monoamine transporter (PMAT) is a polyspecific organic cation transporter belonging to the equilibrative nucleoside transporter (ENT) family. Despite its distinct substrate specificity from the classic nucleoside transporters ENT1 and 2, PMAT appears to share similar protein architecture with ENT1/2 and retains low affinity binding to classic ENT inhibitors such as nitrobenzylmercaptopurine riboside (NBMPR) and the coronary vasodilators dilazep and dipyridamole. Here we investigated the role of residue Ile89, a position known to be important for ENT interaction with dilazep, dipyridamole, and nucleoside substrates, in PMAT transport function and its interaction with classic ENT inhibitors using Madin-Darby canine kidney (MDCK) cells stably expressing human PMAT. Substitution of Ile89 in PMAT with Met, the counterpart residue in ENT1, resulted in normal plasma membrane localization and protein expression. Transport kinetic analysis revealed that I89M mutant had a 2.7-fold reduction in maximal transport velocity (V(max)) with no significant change in apparent binding affinity (K(m)) towards the prototype PMAT substrate 1-methyl-4-phenylpyridinium (MPP+), suggesting that I89 is an important determinant for the catalytic activity of PMAT. Dose-dependent inhibition studies further showed that the I89M mutation significantly increased PMAT's sensitivity to dilazep by 2.5-fold without affecting its sensitivity to dipyridamole and NBMPR. Located at the extracellular end of transmembrane domain 1 of PMAT, I89 may occupy an important position close to the substrate permeation pathway and may be involved in direct interaction with the vasodilator dilazep.
Collapse
Affiliation(s)
- Horace T B Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|