1
|
Li D, Hamadalnil Y, Tu T. Hepatitis B Viral Protein HBx: Roles in Viral Replication and Hepatocarcinogenesis. Viruses 2024; 16:1361. [PMID: 39339838 PMCID: PMC11437454 DOI: 10.3390/v16091361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health concern worldwide, with approximately 296 million individuals chronically infected. The HBV-encoded X protein (HBx) is a regulatory protein of 17 kDa, reportedly responsible for a broad range of functions, including viral replication and oncogenic processes. In this review, we summarize the state of knowledge on the mechanisms underlying HBx functions in viral replication, the antiviral effect of therapeutics directed against HBx, and the role of HBx in liver cancer development (including a hypothetical model of hepatocarcinogenesis). We conclude by highlighting major unanswered questions in the field and the implications of their answers.
Collapse
Affiliation(s)
- Dong Li
- The Westmead Institute for Medical Research, Faculty of Medicine, The University of Sydney, Westmead, NSW 2145, Australia;
| | | | - Thomas Tu
- The Westmead Institute for Medical Research, Faculty of Medicine, The University of Sydney, Westmead, NSW 2145, Australia;
- Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
2
|
Yan W, Rao D, Fan F, Liang H, Zhang Z, Dong H. Hepatitis B virus X protein and TGF-β: partners in the carcinogenic journey of hepatocellular carcinoma. Front Oncol 2024; 14:1407434. [PMID: 38962270 PMCID: PMC11220127 DOI: 10.3389/fonc.2024.1407434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Hepatitis B infection is substantially associated with the development of liver cancer globally, with the prevalence of hepatocellular carcinoma (HCC) cases exceeding 50%. Hepatitis B virus (HBV) encodes the Hepatitis B virus X (HBx) protein, a pleiotropic regulatory protein necessary for the transcription of the HBV covalently closed circular DNA (cccDNA) microchromosome. In previous studies, HBV-associated HCC was revealed to be affected by HBx in multiple signaling pathways, resulting in genetic mutations and epigenetic modifications in proto-oncogenes and tumor suppressor genes. In addition, transforming growth factor-β (TGF-β) has dichotomous potentials at various phases of malignancy as it is a crucial signaling pathway that regulates multiple cellular and physiological processes. In early HCC, TGF-β has a significant antitumor effect, whereas in advanced HCC, it promotes malignant progression. TGF-β interacts with the HBx protein in HCC, regulating the pathogenesis of HCC. This review summarizes the respective and combined functions of HBx and TGB-β in HCC occurrence and development.
Collapse
Affiliation(s)
- Wei Yan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Dean Rao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Feimu Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Zunyi Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Hanhua Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| |
Collapse
|
3
|
Fu Y, Fang F, Guo H, Xiao X, Hu Y, Zeng Y, Chen T, Wu S, Lin N, Huang J, Jiang L, Ou Q, Liu C. Compartmentalisation of Hepatitis B virus X gene evolution in hepatocellular carcinoma microenvironment and the genotype-phenotype correlation of tumorigenicity in HBV-related patients with hepatocellular carcinoma. Emerg Microbes Infect 2022; 11:2486-2501. [PMID: 36102940 PMCID: PMC9621239 DOI: 10.1080/22221751.2022.2125344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) exists as quasispecies (QS). However, the evolutionary characteristics of haplotypes of HBV X gene in the hepatocellular carcinoma (HCC) microenvironment remain unclear. Mutations across X gene are essential for the tumorigenicity of HBV X protein (HBx). However, the functional phenotypes of many mutant HBx remain unknown. This study aims to compare the characteristics of X gene evolution between tumour and non-tumour tissues in HCC patients and investigate the tumorigenic phenotype of HBx harbouring mutation T81P/S101P/L123S. This study included 24 HCC patients. Molecular cloning of X gene was performed to analyse characteristics of haplotypes in liver tissues. HCC cell lines stably expressing wild-type or mutant HBx and subcutaneous tumour xenograft mouse model were used to assess HBx-T81P/S101P/L123S tumorigenicity. The mean heterogeneity of HBV QS across X gene in tumour tissues was lower than that in non-tumour tissues. A location bias was observed in X gene clones with genotype C or D in tumour tissues compared to those with genotype B. Mutations in genotype-C or - D clones were mainly clustered in the dimerization region and aa110-aa140 within the transactivation region. A novel mutation combination at residues 81, 101 and 123 was identified in tumour tissues. Further, HBx-T81P/S101P/L123S promotes cell proliferation and increases genomic instability, which was mediated by MYC. This study elucidates the compartmentalized evolution patterns of HBV X gene between intra tumour and non-tumour tissues in HCC patients and provides a new mechanism underlying HBV-driven hepatocarcinogenesis, suggesting a potential viral marker for monitoring HCC.
Collapse
Affiliation(s)
- Ya Fu
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Fengling Fang
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Hongyan Guo
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Xialin Xiao
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yuhai Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yongbin Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Tianbin Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Songhang Wu
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Ni Lin
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Jinlan Huang
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Ling Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Qishui Ou
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
- Qishui Ou Department of Laboratory Medicine, The First Affiliated Hospital, Clinical Laboratory Diagnostics, The First Clinical College, Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Can Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
- Can Liu Department of Laboratory Medicine, The First Affiliated Hospital, Clinical Laboratory Diagnostics, The First Clinical College, Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
4
|
Feitelson MA, Arzumanyan A, Spector I, Medhat A. Hepatitis B x (HBx) as a Component of a Functional Cure for Chronic Hepatitis B. Biomedicines 2022; 10:biomedicines10092210. [PMID: 36140311 PMCID: PMC9496119 DOI: 10.3390/biomedicines10092210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022] Open
Abstract
Patients who are carriers of the hepatitis B virus (HBV) are at high risk of chronic liver disease (CLD) which proceeds from hepatitis, to fibrosis, cirrhosis and to hepatocellular carcinoma (HCC). The hepatitis B-encoded X antigen, HBx, promotes virus gene expression and replication, protects infected hepatocytes from immunological destruction, and promotes the development of CLD and HCC. For virus replication, HBx regulates covalently closed circular (ccc) HBV DNA transcription, while for CLD, HBx triggers cellular oxidative stress, in part, by triggering mitochondrial damage that stimulates innate immunity. Constitutive activation of NF-κB by HBx transcriptionally activates pro-inflammatory genes, resulting in hepatocellular destruction, regeneration, and increased integration of the HBx gene into the host genome. NF-κB is also hepatoprotective, which sustains the survival of infected cells. Multiple therapeutic approaches include direct-acting anti-viral compounds and immune-stimulating drugs, but functional cures were not achieved, in part, because none were yet devised to target HBx. In addition, many patients with cirrhosis or HCC have little or no virus replication, but continue to express HBx from integrated templates, suggesting that HBx contributes to the pathogenesis of CLD. Blocking HBx activity will, therefore, impact multiple aspects of the host–virus relationship that are relevant to achieving a functional cure.
Collapse
Affiliation(s)
- Mark A. Feitelson
- Room 409 Biolife Building, Department of Biology, College of Science and Technology, Temple University, 1900 N. 12th Street, Philadelphia, PA 19122, USA
- Correspondence: ; Tel.: +1-215-204-8434
| | - Alla Arzumanyan
- Room 409 Biolife Building, Department of Biology, College of Science and Technology, Temple University, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| | | | - Arvin Medhat
- Department of Molecular Cell Biology, Islamic Azad University Tehran North Branch, Tehran 1975933411, Iran
| |
Collapse
|
5
|
Human Herpesvirus 6A Tegument Protein U14 Induces NF-κB Signaling by Interacting with p65. J Virol 2021; 95:e0126921. [PMID: 34549982 DOI: 10.1128/jvi.01269-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral infection induces host cells to mount a variety of immune responses, which may either limit viral propagation or create conditions conducive to virus replication in some instances. In this regard, activation of the NF-κB transcription factor is known to modulate virus replication. Human herpesvirus 6A (HHV-6A), which belongs to the Betaherpesvirinae subfamily, is frequently found in patients with neuroinflammatory diseases, although its role in disease pathogenesis has not been elucidated. In this study, we found that the HHV-6A-encoded U14 protein activates NF-κB signaling following interaction with the NF-κB complex protein, p65. Through induction of nuclear translocation of p65, U14 increases the expression of interleukin-6 (IL-6), IL-8, and monocyte chemoattractant protein 1 transcripts. We also demonstrated that activation of NF-κB signaling is important for HHV-6A replication, since inhibition of this pathway reduced virus protein accumulation and viral genome copy number. Taken together, our results suggest that HHV-6A infection activates the NF-κB pathway and promotes viral gene expression via late gene products, including U14. IMPORTANCE Human herpesvirus 6A (HHV-6A) is frequently found in patients with neuro-inflammation, although its role in the pathogenesis of this disease has not been elucidated. Most viral infections activate the NF-κB pathway, which causes the transactivation of various genes, including those encoding proinflammatory cytokines. Our results indicate that HHV-6A U14 activates the NF-κB pathway, leading to upregulation of proinflammatory cytokines. We also found that activation of the NF-κB transcription factor is important for efficient viral replication. This study provides new insight into HHV-6A U14 function in host cell signaling and identifies potential cellular targets involved in HHV-6A pathogenesis and replication.
Collapse
|
6
|
Abstract
Viral infections lead to the death of more than a million people each year around the world, both directly and indirectly. Viruses interfere with many cell functions, particularly critical pathways for cell death, by affecting various intracellular mediators. MicroRNAs (miRNAs) are a major example of these mediators because they are involved in many (if not most) cellular mechanisms. Virus-regulated miRNAs have been implicated in three cell death pathways, namely, apoptosis, autophagy, and anoikis. Several molecules (e.g., BECN1 and B cell lymphoma 2 [BCL2] family members) are involved in both apoptosis and autophagy, while activation of anoikis leads to cell death similar to apoptosis. These mechanistic similarities suggest that common regulators, including some miRNAs (e.g., miR-21 and miR-192), are involved in different cell death pathways. Because the balance between cell proliferation and cell death is pivotal to the homeostasis of the human body, miRNAs that regulate cell death pathways have drawn much attention from researchers. miR-21 is regulated by several viruses and can affect both apoptosis and anoikis via modulating various targets, such as PDCD4, PTEN, interleukin (IL)-12, Maspin, and Fas-L. miR-34 can be downregulated by viral infection and has different effects on apoptosis, depending on the type of virus and/or host cell. The present review summarizes the existing knowledge on virus-regulated miRNAs involved in the modulation of cell death pathways. Understanding the mechanisms for virus-mediated regulation of cell death pathways could provide valuable information to improve the diagnosis and treatment of many viral diseases.
Collapse
|
7
|
Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther 2020; 5:125. [PMID: 32661235 PMCID: PMC7356129 DOI: 10.1038/s41392-020-00233-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Stress proteins (SPs) including heat-shock proteins (HSPs), RNA chaperones, and ER associated stress proteins are molecular chaperones essential for cellular homeostasis. The major functions of HSPs include chaperoning misfolded or unfolded polypeptides, protecting cells from toxic stress, and presenting immune and inflammatory cytokines. Regarded as a double-edged sword, HSPs also cooperate with numerous viruses and cancer cells to promote their survival. RNA chaperones are a group of heterogeneous nuclear ribonucleoproteins (hnRNPs), which are essential factors for manipulating both the functions and metabolisms of pre-mRNAs/hnRNAs transcribed by RNA polymerase II. hnRNPs involve in a large number of cellular processes, including chromatin remodelling, transcription regulation, RNP assembly and stabilization, RNA export, virus replication, histone-like nucleoid structuring, and even intracellular immunity. Dysregulation of stress proteins is associated with many human diseases including human cancer, cardiovascular diseases, neurodegenerative diseases (e.g., Parkinson’s diseases, Alzheimer disease), stroke and infectious diseases. In this review, we summarized the biologic function of stress proteins, and current progress on their mechanisms related to virus reproduction and diseases caused by virus infections. As SPs also attract a great interest as potential antiviral targets (e.g., COVID-19), we also discuss the present progress and challenges in this area of HSP-based drug development, as well as with compounds already under clinical evaluation.
Collapse
Affiliation(s)
- Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Dan Song
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China. .,CityU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
8
|
Song F, Wei M, Wang J, Liu Y, Guo M, Li X, Luo J, Zhou J, Wang M, Guo D, Chen L, Sun G. Hepatitis B virus-regulated growth of liver cancer cells occurs through the microRNA-340-5p-activating transcription factor 7-heat shock protein A member 1B axis. Cancer Sci 2019; 110:1633-1643. [PMID: 30891870 PMCID: PMC6501011 DOI: 10.1111/cas.14004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer with poor prognosis. Hepatitis B virus (HBV) is one of the leading causes of HCC, but the precise mechanisms by which this infection promotes cancer development are not fully understood. Recently, miR‐340‐5p, a microRNA (miRNA) that has been identified as a cancer suppressor gene, was found to inhibit the migration and invasion of liver cancer cells. However, the effect of miR‐340‐5p on cell proliferation and apoptosis in HBV‐associated HCC remains unknown. In our study, we show that miR‐340‐5p plays an important role during HBV infection and hepatocellular carcinoma development. Specifically, this miRNA directly binds to the mRNA encoding activating transcription factor 7 (ATF7), a protein that both promotes cell proliferation and suppresses apoptosis through its interaction with heat shock protein A member 1B (HSPA1B). We further found that miR‐340‐5p is downregulated by HBV, which enhances ATF7 expression, leading to enhanced cell proliferation and inhibition of apoptosis. Notably, ATF7 is upregulated in HCC tissue, suggesting that HBV may target miR‐340‐5p in vivo to promote ATF7/HSPA1B‐mediated proliferation and apoptosis and regulate liver cancer progression. This work helps to elucidate the complex interactions between HBV and host miRNAs and further suggests that miR‐340‐5p may represent a promising candidate for the development of improved therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Feifei Song
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mingcong Wei
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jingwen Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yang Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaolu Li
- Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan, China
| | - Jun Luo
- Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junying Zhou
- Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Deyin Guo
- School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Lang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, China
| |
Collapse
|
9
|
Dynamic expression of ZNF382 and its tumor-suppressor role in hepatitis B virus-related hepatocellular carcinogenesis. Oncogene 2019; 38:4804-4819. [PMID: 30804458 DOI: 10.1038/s41388-019-0759-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/24/2018] [Accepted: 02/10/2019] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection is the primary cause of hepatocellular carcinoma (HCC). Zinc-finger protein 382 (ZNF382), which belongs to zinc-finger protein family, has been documented to be downregulated in certain types of cancer. However, its role in HCC remains largely unknown. In this study, we demonstrated that ZNF382 expression was significantly elevated in HBV-infected liver cirrhosis tissues relative to HBV-negative normal liver tissues at protein levels, but not at mRNA levels, and was positively correlated with the levels of HBV DNA and hepatitis B virus X protein (HBx). Further studies revealed that ZNF382 was a target of miR-6867, and HBx promoted the translation of ZNF382 during HBV chronic infection through Erk-mediated miR-6867 inhibition. In addition, our data showed that ZNF382 was frequently downregulated by promoter methylation in HBV-related HCCs relative to HBV-infected liver cirrhosis tissues, and decreased expression of ZNF382 was strongly correlated with poor survival in early-stage HCC patients. Functional studies demonstrated that ZNF382 was a potent tumor suppressor in HCC cells through inhibiting cell proliferation, colony formation, migration, invasion, and tumorigenic potential in nude mice, and inducing cell apoptosis. Mechanistically, ZNF382 exerted its tumor-suppressor functions in HCC through transcriptionally repressing its downstream targets such as Fos proto-oncogene (FOS), Jun proto-oncogene (JUN), disheveled segment polarity protein 2 (DVL2), and frizzled class receptor 1 (FZD1), thereby impairing the activities of activating protein 1 (AP-1) and Wnt/β-catenin pathways and activating p53 signaling. Altogether, our data show that ZNF382 acts as a tumor suppressor, and is co-regulated by HBx and epigenetic mechanism in HBV-related hepatocellular carcinogenesis.
Collapse
|
10
|
Wu J, Li M, He J, Lv K, Wang M, Guan W, Liu J, Tao Y, Li S, Ho CT, Zhao H. Protective effect of pterostilbene on concanavalin A-induced acute liver injury. Food Funct 2019; 10:7308-7314. [DOI: 10.1039/c9fo01405e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pterostilbene (PTE) is broadly found in berries and has antioxidant and anti-inflammatory properties.
Collapse
|
11
|
Association between serum S100A9 levels and liver necroinflammation in chronic hepatitis B. J Transl Med 2018; 16:83. [PMID: 29615081 PMCID: PMC5883874 DOI: 10.1186/s12967-018-1462-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/27/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND S100A9 protein, which is recently classified as a novel damage associated molecular pattern, is released from stressed cells undergoing necrosis or secreted by living cells undergoing a stress that act as endogenous danger signal associated with infection, tissue damage and cancer. Here, we evaluated the relationship of serum S100A9 with viral replication and liver necroinflammation in patients with chronic hepatitis B (CHB) infection. METHODS A total of one hundred and eighty-three recruited patients with CHB infection underwent liver biopsy for grading of necroinflammation (G) and staging of fibrosis (S). Forty-nine healthy individuals were included as healthy controls (HCs). Serum S100A9 levels were determined by enzyme-linked immunosorbent assay. Correlations of serum S100A9 with viral replication and liver necroinflammation were analyzed. The receiver operating characteristic curve was used to assess the discriminating power of serum S100A9 to grade liver necroinflammation (G). Liver normal L02 cells were transfected with a HBV plasmid, and S100A9 levels were determined. RESULTS Serum S100A9 levels were increased in CHB patients compared to HCs. Intrahepatic immunoreactivity for S100A9 was enhanced in liver sample from CHB patients. Infection of HBV also resulted in an elevated S100A9 expression in L02 cells. Serum S100A9 was correlated with the serum HBV DNA levels. CHB patients with moderate-to-severe liver necroinflammation (G ≥ 2) showed significantly higher serum S100A9 levels than those without or with mild necroinflammation (G < 2). In patients with normal ALT levels, the area under the curve (AUC) of S100A9 for discriminating patients with moderate-to-severe necroinflammation (G ≥ 2) was 0.791 [95% confidence interval (CI), 0.670-0.913] with 91.7% sensitivity, 65.0% specificity and 78.3% accuracy. In patients with an alanine aminotransferase (ALT) < 2 upper limit of normal, the AUC of S100A9 for discriminating patients with moderate-to-severe necroinflammation (G ≥ 2) was 0.826 (95% CI, 0.729-0.923) with 87.9% sensitivity, 72.5% specificity and 80.2% accuracy. CONCLUSIONS HBV infection may enhance S100A9 expression. Serum S100A9 levels are correlated with viral load. Serum S100A9 has potential to discriminate the grades of liver necroinflammation, particularly in CHB patients with normal or mildly increased ALT levels.
Collapse
|
12
|
Pan X, Zhu F, Li G, Cao H, Liu J. HBx induces expression of CTGF in the transfected hepatoma cell line HepG2. Future Virol 2018. [DOI: 10.2217/fvl-2017-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To investigate the effect of HBx on CTGF expression by hepatocytes. Materials & methods: HepG2 cells were transfected with the full-length gene of HBV, HBV protein-expressing plasmids, rhTGFβ1, LY2109761 or Smad2 siRNA, respectively, using Lipofectamine 3000. CTGF expression was detected by real-time PCR, ELISA, respectively. Then the effect of IL-32 on CTGF promoter was assayed by the Dual Luciferase® Reporter Assay System. Results: We found that HBx could induce CTGF expression by HepG2 cells in a concentration-dependent manner. CTGF expression induced by HBx employed the activation of TGFβ1-Smad2 signal pathway. Inhibition of TGFβ1 or Smad2 decreased CTGF expression induced by HBx. Conclusion: HBV might be involved in the pathogenesis of liver fibrosis through the HBx-induced CTGF expression.
Collapse
Affiliation(s)
- Xingfei Pan
- Department of Infectious Diseases, the 3rd Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Fengqin Zhu
- Department of Gastroenterology, the Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Gang Li
- Department of Infectious Diseases, the 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Hong Cao
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Bowel Disease, Wuhan 430071, China
| |
Collapse
|
13
|
White MK, Khalili K. CRISPR/Cas9 and cancer targets: future possibilities and present challenges. Oncotarget 2017; 7:12305-17. [PMID: 26840090 PMCID: PMC4914286 DOI: 10.18632/oncotarget.7104] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/23/2016] [Indexed: 02/07/2023] Open
Abstract
All cancers have multiple mutations that can largely be grouped into certain classes depending on the function of the gene in which they lie and these include oncogenic changes that enhance cellular proliferation, loss of function of tumor suppressors that regulate cell growth potential and induction of metabolic enzymes that confer resistance to chemotherapeutic agents. Thus the ability to correct such mutations is an important goal in cancer treatment. Recent research has led to the developments of reagents which specifically target nucleotide sequences within the cellular genome and these have a huge potential for expanding our anticancer armamentarium. One such a reagent is the clustered regulatory interspaced short palindromic repeat (CRISPR)-associated 9 (Cas9) system, a powerful, highly specific and adaptable tool that provides unparalleled control for editing the cellular genome. In this short review, we discuss the potential of CRISPR/Cas9 against human cancers and the current difficulties in translating this for novel therapeutic approaches.
Collapse
Affiliation(s)
- Martyn K White
- Department of Neuroscience, Center for Neurovirology and Comprehensive Neuroaids Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and Comprehensive Neuroaids Center, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
14
|
Zhou SJ, Deng YL, Liang HF, Jaoude JC, Liu FY. Hepatitis B virus X protein promotes CREB-mediated activation of miR-3188 and Notch signaling in hepatocellular carcinoma. Cell Death Differ 2017; 24:1577-1587. [PMID: 28574502 PMCID: PMC5563993 DOI: 10.1038/cdd.2017.87] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 02/07/2023] Open
Abstract
Familiar clustering of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) has been frequently reported. However, limited information is available about the underlying molecular mechanisms in HBV-related HCC patients with family history of HCC. In our previous study, Agilent miRNA Base 16.0 microarray showed miRNA profiles of the plasma of HBV-related HCC patients who had a family history of HCC. This study aims to explore the expression, function, and mechanisms of miR-3188 in HCC that might provide novel insights into the role of family history on the risk of HCC. The expression levels of miR-3188 were markedly overexpressed in HCC tissues, HBV transgenic mice, and HepG2.215 cells. We knocked out miR-3188 in HCC cell lines using the CRISPR/Cas9 system, and demonstrated that miR-3188 knockout (KO) suppressed cell growth, migration, and invasion, and inhibited xenografts tumor growth in nude mice. Next, we determined that miR-3188 KO exerts antitumor functions by directly repressing ZHX2. It has been reported that HBV X protein (HBx) plays a critical role in HBV-related HCC, promoting CREB-mediated activation of miR-3188 and activation of Notch signaling through repressing ZHX2. Finally, we verified that ZHX2 functions as a transcriptional repressor to Notch1 via interaction with NF-YA. Our data demonstrate that the HBx–miR-3188–ZHX2-Notch1 signaling pathway plays an important role in the pathogenesis and progression of HBV-related HCC with family history of HCC. These findings have important implications for identifying new therapeutic targets in HBV-related HCC.
Collapse
Affiliation(s)
- Shao-Jun Zhou
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yue-Ling Deng
- Department of Gastroenterology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Fang Liang
- Department of Hepatology Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jonathan C Jaoude
- Department of GI Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Fu-Yao Liu
- Department of GI Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|
15
|
Zhang B, Han S, Feng B, Chu X, Chen L, Wang R. Hepatitis B virus X protein-mediated non-coding RNA aberrations in the development of human hepatocellular carcinoma. Exp Mol Med 2017; 49:e293. [PMID: 28186085 PMCID: PMC5336563 DOI: 10.1038/emm.2016.177] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/03/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) has an important role in the development of human hepatocellular carcinoma (HCC). Accumulated evidence has shown that HBV-encoded X protein (HBx) can induce both genetic alterations in tumor suppressor genes and oncogenes, as well as epigenetic aberrations in HCC pathogens. Non-coding RNAs (ncRNAs) mainly include microRNAs and long non-coding RNAs (lncRNAs). Although ncRNAs cannot code proteins, growing evidence has shown that they have various important biological functions in cell proliferation, cell cycle control, anti-apoptosis, epithelial–mesenchymal transition, tumor invasion and metastasis. This review summarizes the current knowledge regarding the mechanisms and emerging roles of ncRNAs in the pathogenesis of HBV-related HCC. Accumulated data have shown that ncRNAs regulated by HBx have a crucial role in HBV-associated hepatocarcinogenesis. The findings of these studies will contribute to more clinical applications of HBV-related ncRNAs as potential diagnostic markers or as molecular therapeutic targets to prevent and treat HBV-related HCC.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Chen JY, Chen YJ, Yen CJ, Chen WS, Huang WC. HBx sensitizes hepatocellular carcinoma cells to lapatinib by up-regulating ErbB3. Oncotarget 2016; 7:473-89. [PMID: 26595522 PMCID: PMC4808012 DOI: 10.18632/oncotarget.6337] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/06/2015] [Indexed: 12/26/2022] Open
Abstract
Poor prognosis of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) involves HBV X protein (HBx)-induced tumor progression. HBx also contributes to chemo-resistance via inducing the expressions of anti-apoptosis and multiple drug resistance genes. However, the impact of HBx expression on the therapeutic efficacy of various receptor tyrosine kinase inhibitors remains unknown. In this study, our data showed that HBx overexpression did not alter the cellular sensitivity of HCC cell lines to sorafenib but unexpectedly enhanced the cell death induced by EGFR family inhibitors, including gefitinib, erlotinib, and lapatinib due to ErbB3 up-regulation. Mechanistically, HBx transcriptionally up-regulates ErbB3 expression in a NF-κB dependent manner. In addition, HBx also physically interacts with ErbB2 and ErbB3 proteins and enhances the formation of ErbB2/ErbB3 heterodimeric complex. The cell viability of HBx-overexpressing cells was decreased by silencing ErbB3 expression, further revealing the pivotal role of ErbB3 in HBx-mediated cell survival. Our data suggest that HBx shifts the oncogenic addiction of HCC cells to ErbB2/ErbB3 signaling pathway via inducing ErbB3 expression and thereby enhances their sensitivity to EGFR/ErbB2 inhibitors.
Collapse
Affiliation(s)
- Jhen-Yu Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.,Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yun-Ju Chen
- Department of Biological Science & Technology, I-Shou University, Kaohsiung, Taiwan.,School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan.,Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Chia-Jui Yen
- Internal Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Wen-Shu Chen
- Center for Molecular Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Wei-Chien Huang
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.,Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,Center for Molecular Medicine, China Medical University and Hospital, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
17
|
Milićević D, Nastasijevic I, Petrovic Z. Mycotoxin in the food supply chain-implications for public health program. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2016; 34:293-319. [PMID: 27717290 DOI: 10.1080/10590501.2016.1236607] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mycotoxins are a group of naturally occurring toxic chemical substances, produced mainly by microscopic filamentous fungal species. Regarding potential synergisms or even mitigating effects between toxic elements, mycotoxin contamination will continue to be an area of concern for producers, manufacturers, regulatory agencies, researchers, and consumers in the future. In Serbia, recent drought and then flooding confirmed that mycotoxins are one of the foodborne hazards most susceptible to climate change. In this article, we review key aspects of mycotoxin contamination of the food supply chain and implications for public health from the Serbian perspective.
Collapse
Affiliation(s)
- D Milićević
- a Institute of Meat Hygiene an Technology , Kaćanskog , R. Serbia
| | - I Nastasijevic
- a Institute of Meat Hygiene an Technology , Kaćanskog , R. Serbia
| | - Z Petrovic
- a Institute of Meat Hygiene an Technology , Kaćanskog , R. Serbia
| |
Collapse
|
18
|
Li W, Li M, Liao D, Lu X, Gu X, Zhang Q, Zhang Z, Li H. Carboxyl-terminal truncated HBx contributes to invasion and metastasis via deregulating metastasis suppressors in hepatocellular carcinoma. Oncotarget 2016; 7:55110-55127. [PMID: 27391153 PMCID: PMC5342405 DOI: 10.18632/oncotarget.10399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/17/2016] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) X protein (HBx), a trans-regulator, is frequently expressed in truncated form without carboxyl-terminus in hepatocellular carcinoma (HCC), but its functional mechanisms are not fully defined. In this report, we investigated frequency of this natural HBx mutant in HCCs and its functional significance. In 102 HBV-infected patients with HCC, C-terminal truncation of HBx, in contrast to full-length HBx, were more prevalent in tumors (70.6%) rather than adjacent non-tumorous tissues (29.4%) (p = 0.0032). Furthermore, two naturally-occurring HBx variants (HBxΔ31), which have 31 amino acids (aa) deleted (codons 123-125/124-126) at C-terminus were identified in tumors and found that the presence of HBxΔ31 significantly correlated with intrahepatic metastasis. We also show that over-expression of HBxΔ31 enhanced hepatoma cell invasion in vitro and metastasis in vivo compared to full-length HBx. Interestingly, HBxΔ31 exerts this function via down-regulating Maspin, RhoGDIα and CAPZB, a set of putative metastasis-suppressors in HCC, in part, by enhancing the binding of transcriptional repressor, myc-associated zinc finger protein (MAZ) to the promoters through physical association with MAZ. Notably, these HBxΔ31-repressed proteins were also significantly lower expression in a subset of HCC tissues with C-terminal HBx truncation than the adjacent non-tumorous tissues, highlighting the clinical significance of this novel HBxΔ31-driven metastatic molecular cascade. Our data suggest that C-terminal truncation of HBx, particularly breakpoints at 124aa, plays a role in enhancing hepatoma cell invasion and metastasis by deregulating a set of metastasis-suppressors partially through MAZ, thus uncovering a novel mechanism for the progression of HBV-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Weihua Li
- Department of Gastroenterology, Zhujiang Hospital of Nanfang Medical University, Guangzhou 510280, China
| | - Man Li
- Department of Infectious Disease and Hepatology, Hepatitis Research Room, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Dongjiang Liao
- Pathology Research Room, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou 510120, China
| | - Xinpeng Lu
- Pathology Research Room, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou 510120, China
| | - Xia Gu
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Qianqian Zhang
- Department of Infectious Disease and Hepatology, Hepatitis Research Room, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhixiang Zhang
- Department of Infectious Disease and Hepatology, Hepatitis Research Room, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Hui Li
- Department of Infectious Disease and Hepatology, Hepatitis Research Room, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
19
|
Chen WS, Yen CJ, Chen YJ, Chen JY, Wang LY, Chiu SJ, Shih WL, Ho CY, Wei TT, Pan HL, Chien PH, Hung MC, Chen CC, Huang WC. miRNA-7/21/107 contribute to HBx-induced hepatocellular carcinoma progression through suppression of maspin. Oncotarget 2016; 6:25962-74. [PMID: 26296971 PMCID: PMC4694878 DOI: 10.18632/oncotarget.4504] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/06/2015] [Indexed: 02/07/2023] Open
Abstract
Maspin suppresses tumor progression by promoting cell adhesion and apoptosis and by inhibiting cell motility. However, its role in tumorigenesis of hepatocellular carcinoma (HCC) remains unclear. The gene regulation of maspin and its relationship with HCC patient prognosis were investigated in this study. Maspin expression was specifically reduced in HBV-associated patients and correlated with their poor prognosis. Maspin downregulation in HCC cells was induced by HBx to promote their motility and resistance to anoikis and chemotherapy. HBx-dependent induction of microRNA-7, -107, and -21 was further demonstrated to directly target maspin mRNA, leading to its protein downregulation. Higher expressions of these microRNAs also correlated with maspin downregulation in HBV-associated patients, and were associated with their poor overall survival. These data not only provided new insights into the molecular mechanisms of maspin deficiency by HBx, but also indicated that downregulation of maspin by microRNAs confers HBx-mediated aggressiveness and chemoresistance in HCC.
Collapse
Affiliation(s)
- Wen-Shu Chen
- Department of Pharmacology, National Taiwan University, Taipei, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Chia-Jui Yen
- Internal Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Yun-Ju Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan.,Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Jhen-Yu Chen
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan
| | - Li-Yun Wang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Shu-Jun Chiu
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan.,Institute of Radiation Sciences, Tzu Chi Technology College, Hualien, Taiwan
| | - Wen-Ling Shih
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chien-Yi Ho
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Tzu-Tang Wei
- Department of Pharmacology, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Lin Pan
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Pei-Hsuan Chien
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ching-Chow Chen
- Department of Pharmacology, National Taiwan University, Taipei, Taiwan
| | - Wei-Chien Huang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
20
|
Chen X, Bode AM, Dong Z, Cao Y. The epithelial–mesenchymal transition (EMT) is regulated by oncoviruses in cancer. FASEB J 2016; 30:3001-10. [DOI: 10.1096/fj.201600388r] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/31/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Xue Chen
- Key Laboratory of Carcinogenesis and InvasionChinese Ministry of EducationXiangya HospitalCentral South University Changsha China
- Cancer Research InstituteXiangya School of MedicineCentral South University Changsha China
- Key Laboratory of CarcinogenesisChinese Ministry of Health Changsha China
- Hunan Cancer Hospital Changsha China
| | - Ann M. Bode
- The Hormel InstituteUniversity of Minnesota Austin Minnesota USA
| | - Zigang Dong
- The Hormel InstituteUniversity of Minnesota Austin Minnesota USA
| | - Ya Cao
- Key Laboratory of Carcinogenesis and InvasionChinese Ministry of EducationXiangya HospitalCentral South University Changsha China
- Cancer Research InstituteXiangya School of MedicineCentral South University Changsha China
- Key Laboratory of CarcinogenesisChinese Ministry of Health Changsha China
| |
Collapse
|
21
|
White MK, Khalili K. CRISPR/Cas9 and cancer targets: future possibilities and present challenges. Oncotarget 2016. [PMID: 26840090 DOI: 10.18632/oncotarget.7104.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
All cancers have multiple mutations that can largely be grouped into certain classes depending on the function of the gene in which they lie and these include oncogenic changes that enhance cellular proliferation, loss of function of tumor suppressors that regulate cell growth potential and induction of metabolic enzymes that confer resistance to chemotherapeutic agents. Thus the ability to correct such mutations is an important goal in cancer treatment. Recent research has led to the developments of reagents which specifically target nucleotide sequences within the cellular genome and these have a huge potential for expanding our anticancer armamentarium. One such a reagent is the clustered regulatory interspaced short palindromic repeat (CRISPR)-associated 9 (Cas9) system, a powerful, highly specific and adaptable tool that provides unparalleled control for editing the cellular genome. In this short review, we discuss the potential of CRISPR/Cas9 against human cancers and the current difficulties in translating this for novel therapeutic approaches.
Collapse
Affiliation(s)
- Martyn K White
- Department of Neuroscience, Center for Neurovirology and Comprehensive Neuroaids Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and Comprehensive Neuroaids Center, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
22
|
Lee WP, Lan KH, Li CP, Chao Y, Lin HC, Lee SD. Oncogenic circuit constituted by Ser31-HBx and Akt increases risks of chronic hepatitis and hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2016; 1862:837-849. [PMID: 26791804 DOI: 10.1016/j.bbadis.2015.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/29/2015] [Accepted: 12/16/2015] [Indexed: 01/27/2023]
Abstract
The X protein of hepatitis B virus (HBx) has been specifically implicated in the development of hepatocellular carcinoma (HCC). Clinical associations of HBx isoforms with chronic hepatitis and HCC have not been well studied. HBx has two roles in liver cells, namely pro-apoptotic and anti-apoptotic. In this report, we examined the role of Ser31-HBx in HCC and chronic hepatitis. Using the case-control study, we determined risks of chronic hepatitis and HCC conferred by hepatitis B virus (HBV) containing Ser31-HBx that was phosphorylated by Akt. Ser31-HBx isoforms conferred 3.23-fold risk of HCC in male and 3.36-fold risk in female. Ser31 isoforms were associated with 3.12-fold risk of chronic hepatitis and 3.43-fold risk of cirrhosis and also associated with higher HBV viral load and replication efficiency and lower rate of HBe loss. To determine the mechanism, we found that Ser31-HBx constituted an oncogenic circuit with Akt and cooperated with ras to transform NIH3T3 cells in contrast to non-Ser31-HBxs that did not transduce oncogenic signals. Our results give a clue to account for an underlying cause of HBx-mediated hepatocarcinogenesis. It appears that Ser31 phosphorylation of HBx by Akt plays an important role. The current study provides an example of association of HBV genome variations with risks of HCC and chronic hepatitis.
Collapse
Affiliation(s)
- Wei-Ping Lee
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Keng-Hsin Lan
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Pin Li
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yee Chao
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Dong Lee
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
23
|
De Ruyck K, De Boevre M, Huybrechts I, De Saeger S. Dietary mycotoxins, co-exposure, and carcinogenesis in humans: Short review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2015; 766:32-41. [PMID: 26596546 DOI: 10.1016/j.mrrev.2015.07.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/05/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023]
Abstract
Mycotoxins, toxic secondary metabolites of fungi, affect global agriculture so prolifically that they are virtually ubiquitous at some concentration in the average human diet. Studies of in vitro and in vivo toxicity are discussed, leading to investigations of co-exposed mycotoxins, as well as carcinogenic effects. Some of the most common and toxicologically significant mycotoxins, such as the aflatoxins, ochratoxins, fumonisins, deoxynivalenol, T-2 toxin, HT-2 toxin, patulin, zearalenone, and some ergot alkaloids are outlined. The wide variety of pathogenic mechanisms these compounds employ are shown capable of inducing a complex set of interactions. Of particular note are potential synergisms between mycotoxins with regard to carcinogenic attributable risk, indicating an important field for future study.
Collapse
Affiliation(s)
- Karl De Ruyck
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Marthe De Boevre
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Inge Huybrechts
- International Agency for Research on Cancer, Dietary Exposure Assessment Group, 150 Cours Albert Thomas, 69008 Lyon, France.
| | - Sarah De Saeger
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
24
|
Viruses and human cancers: a long road of discovery of molecular paradigms. Clin Microbiol Rev 2015; 27:463-81. [PMID: 24982317 DOI: 10.1128/cmr.00124-13] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
About a fifth of all human cancers worldwide are caused by infectious agents. In 12% of cancers, seven different viruses have been causally linked to human oncogenesis: Epstein-Barr virus, hepatitis B virus, human papillomavirus, human T-cell lymphotropic virus, hepatitis C virus, Kaposi's sarcoma herpesvirus, and Merkel cell polyomavirus. Here, we review the many molecular mechanisms of oncogenesis that have been discovered over the decades of study of these viruses. We discuss how viruses can act at different stages in the complex multistep process of carcinogenesis. Early events include their involvement in mutagenic events associated with tumor initiation such as viral integration and insertional mutagenesis as well as viral promotion of DNA damage. Also involved in tumor progression is the dysregulation of cellular processes by viral proteins, and we describe how this has been investigated by studies in cell culture and in experimental animals and by molecular cellular approaches. Also important are the molecular mechanisms whereby viruses interact with the immune system and the immune evasion strategies that have evolved.
Collapse
|
25
|
Li F, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Kumar AP, Ahn KS, Sethi G. NF-κB in cancer therapy. Arch Toxicol 2015; 89:711-31. [PMID: 25690730 DOI: 10.1007/s00204-015-1470-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/05/2015] [Indexed: 02/06/2023]
Abstract
The transcription factor nuclear factor kappa B (NF-κB) has attracted increasing attention in the field of cancer research from last few decades. Aberrant activation of this transcription factor is frequently encountered in a variety of solid tumors and hematological malignancies. NF-κB family members and their regulated genes have been linked to malignant transformation, tumor cell proliferation, survival, angiogenesis, invasion/metastasis, and therapeutic resistance. In this review, we highlight the diverse molecular mechanism(s) by which the NF-κB pathway is constitutively activated in different types of human cancers, and the potential role of various oncogenic genes regulated by this transcription factor in cancer development and progression. Additionally, various pharmacological approaches employed to target the deregulated NF-κB signaling pathway, and their possible therapeutic potential in cancer therapy is also discussed briefly.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, Cancer Science Institute, National University of Singapore, Singapore, 117597, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Paeoniflorin protects against concanavalin A-induced hepatitis in mice. Int Immunopharmacol 2015; 24:42-9. [DOI: 10.1016/j.intimp.2014.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/29/2014] [Accepted: 11/10/2014] [Indexed: 12/21/2022]
|
27
|
Lin MV, King LY, Chung RT. Hepatitis C virus-associated cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 10:345-70. [PMID: 25387053 DOI: 10.1146/annurev-pathol-012414-040323] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hepatitis C virus (HCV) is one of the major etiologic agents of liver cancer. HCV is an RNA virus that, unlike hepatitis B virus, is unable to integrate into the host genome. Through complex interactions between viral and host proteins that induce host responses and promote inflammation, fibrosis, and ultimately cirrhosis, HCV infection can result in the development of hepatocellular carcinoma (HCC). The HCV oncogenic process involves genetic and epigenetic alterations and oncogenic effects mediated by viral proteins in the activation of cellular oncogenes, inactivation of tumor-suppressor genes, and dysregulation of multiple signal-transduction pathways. Advances in genetics and gene expression profiling have enhanced our current understanding of the pathways involved in HCV-associated liver cancer development. In this review, we summarize the current understanding of mechanisms of hepatocarcinogenesis induced by HCV infection.
Collapse
Affiliation(s)
- Ming V Lin
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114; , ,
| | | | | |
Collapse
|
28
|
Deroubaix A, Osseman Q, Cassany A, Bégu D, Ragues J, Kassab S, Lainé S, Kann M. Expression of viral polymerase and phosphorylation of core protein determine core and capsid localization of the human hepatitis B virus. J Gen Virol 2014; 96:183-195. [PMID: 25274856 DOI: 10.1099/vir.0.064816-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Biopsies from patients show that hepadnaviral core proteins and capsids - collectively called core - are found in the nucleus and cytoplasm of infected hepatocytes. In the majority of studies, cytoplasmic core localization is related to low viraemia while nuclear core localization is associated with high viral loads. In order to better understand the molecular interactions leading to core localization, we analysed transfected hepatoma cells using immune fluorescence microscopy. We observed that expression of core protein in the absence of other viral proteins led to nuclear localization of core protein and capsids, while expression of core in the context of the other viral proteins resulted in a predominantly cytoplasmic localization. Analysis of which viral partner was responsible for cytoplasmic retention indicated that the HBx, surface proteins and HBeAg had no impact but that the viral polymerase was the major determinant. Further analysis revealed that ϵ, an RNA structure to which the viral polymerase binds, was essential for cytoplasmic retention. Furthermore, we showed that core protein phosphorylation at Ser 164 was essential for the cytoplasmic core localization phenotype, which is likely to explain differences observed between individual cells.
Collapse
Affiliation(s)
- Aurélie Deroubaix
- Hepatitis Virus Diversity Research Programme, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.,CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Quentin Osseman
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Aurélia Cassany
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Dominique Bégu
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Jessica Ragues
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Somar Kassab
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Sébastien Lainé
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Université Montpellier 1, CPBS, UMR 5236 CNRS, Montpellier, France
| | - Michael Kann
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,CHU de Bordeaux, Bordeaux, France.,CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| |
Collapse
|
29
|
Ali A, Abdel-Hafiz H, Suhail M, Al-Mars A, Zakaria MK, Fatima K, Ahmad S, Azhar E, Chaudhary A, Qadri I. Hepatitis B virus, HBx mutants and their role in hepatocellular carcinoma. World J Gastroenterol 2014; 20:10238-10248. [PMID: 25132741 PMCID: PMC4130832 DOI: 10.3748/wjg.v20.i30.10238] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/30/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of death induced by cancer in the modern world and majority of the cases are related to chronic hepatitis B virus (HBV) infection. HBV-encoded X protein (HBx) is known to play a pivotal role in the pathogenesis of viral induced HCC. HBx is a multifunctional protein of 17 kDa which modulates several cellular processes by direct or indirect interaction with a repertoire of host factors resulting in HCC. HBX might interfere with several cellular processes such as oxidative stress, DNA repair, signal transduction, transcription, protein degradation, cell cycle progression and apoptosis. A number of reports have indicated that HBx is one of the most common viral ORFs that is often integrated into the host genome and its sequence variants play a crucial role in HCC. By mutational or deletion analysis it was shown that carboxy terminal of HBx has a likely role in protein-protein interactions, transcriptional transactivation, DNA repair, cell, signaling and pathogenesis of HCC. The accumulated evidence thus far suggests that it is difficult to understand the mechanistic nature of HBx associated HCC, and HBx mediated transcriptional transactivation and signaling pathways may be a major determinant. This article addresses the role of HBx in the development of HCC with particular emphasis on HBx mutants and their putative targets.
Collapse
|
30
|
Zhang P, Li F, Li N, Zhu Q, Yang C, Han Q, Chen J, Lv Y, Yu L, Wei P, Liu Z. Genetic variations of SOCS1 are associated with chronic hepatitis B virus infection. Hum Immunol 2014; 75:709-14. [PMID: 24768946 DOI: 10.1016/j.humimm.2014.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/19/2014] [Accepted: 04/06/2014] [Indexed: 10/25/2022]
|
31
|
Sun Q, Wang R, Luo J, Wang P, Xiong S, Liu M, Cheng B. Notch1 promotes hepatitis B virus X protein-induced hepatocarcinogenesis via Wnt/β-catenin pathway. Int J Oncol 2014; 45:1638-48. [PMID: 25017705 DOI: 10.3892/ijo.2014.2537] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/24/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus X protein (HBx) is implicated in the pathogenesis of hepatocellular carcinoma (HCC) via a network of signaling pathways. Notch pathway is a major member of the network. Notch signaling may generate opposing effect in different steps of carcinogenesis, depending on the tumor cell type and the status of other signaling pathways, such as Wnt signaling pathway. Our previous studies have shown that activated Notch1 signaling is required for HBx to promote proliferation and survival of human hepatic cell line L02. However, the exact mechanisms remain vague. Here, we used L02/HBx cell lines as a cell model to study the relationship between Notch and Wnt/β-catenin pathways in promoting proliferation. We observed that activated Notch1 and Wnt/β-catenin signaling pathways and L02 cell malignant transformation were induced by HBx. Inhibition of the Notch1 pathway decreased the activation of Wnt/β-catenin pathway and cell proliferation, while inhibition of the Wnt/β-catenin pathway impaired cell proliferation, but did not significantly affect Notch1 signaling pathway in L02/HBx cells. Furthermore, inhibition of the Wnt/β-catenin pathway overcame the inhibition effect of knockdown Notch1 on proliferation and survival in L02/HBx cells. Additionally, the activity of Wnt/β-catenin signaling appears to be consistent with Fzd10 expression. Therefore, we demonstrate that Wnt signaling is downstream of the Notch pathway in regulating proliferation of L02/HBx cells, and which may be related to Fzd10 instead of Fzd7. These data suggest a new model of HBx-related HCC via cooperation between Wnt and Notch pathways.
Collapse
Affiliation(s)
- Qian Sun
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ronghua Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jing Luo
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Peng Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Man Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
32
|
Qiu W, Zhang S, Chen YG, Wang PH, Xu XP, Li CZ, Chen YH, Fan WZ, Yan H, Weng SP, FrancisChan S, He JG. Litopenaeus vannamei NF-κB is required for WSSV replication. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:156-162. [PMID: 24607287 DOI: 10.1016/j.dci.2014.02.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
Many viruses can hijack the host cell NF-κB as part of their life cycle, diverting NF-κB immune regulatory functions to favor their replications. There were several reports on the functions of Litopenaeus vannamei NF-κB (LvNF-κB) in White spot syndrome virus (WSSV) replication in vitro. Here, we studied the relationship between LvNF-κB family protein Dorsal (LvDorsal) and Relish (LvRelish) with WSSV replication in vivo. The expressions of LvDorsal and LvRelish were significantly upregulated by WSSV challenge. Virus loads and expression of viral envelope protein VP28 in LvDorsal or LvRelish silencing shrimps were significantly lower than the control shrimps injected with EGFP-dsRNA or PBS after challenge with 1×10(5) copies WSSV/shrimp. In addition to the LvDorsal activation of WSV069 (ie1) and WSV303 promoter that we have reported, LvRelish can also activate WSV069 (ie1) and WSV303 promoter by dual luciferase reporter assays through screening 40 WSSV gene promoters that have putative multiple NF-κB binding sites. The promoter activity of the WSV069 (ie1) by LvDorsal activation was significantly higher than that by LvRelish activation. WSSV replication in LvDorsal, LvRelish or WSV303 silencing shrimps were significantly inhibited. These results indicate that the L. vannamei NF-κB family proteins LvDorsal and LvRelish expressions are significantly activated by WSSV challenge and WSSV replication partially relied on the activations of LvDorsal and LvRelish in vivo.
Collapse
Affiliation(s)
- Wei Qiu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shuang Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Yong-Gui Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Pei-Hui Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Xiao-Peng Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Chao-zheng Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Yi-Hong Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Wen-Zhou Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Hui Yan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shao-Ping Weng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | | | - Jian-Guo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
33
|
Anticancer potential of rhamnocitrin 4'-β-D-galactopyranoside against N-diethylnitrosamine-induced hepatocellular carcinoma in rats. Mol Cell Biochem 2013; 384:147-53. [PMID: 24026428 DOI: 10.1007/s11010-013-1792-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
The hepatoprotective activity of flavonoid rhamnocitrin 4'-β-D-galactopyranoside (RGP) obtained from leaves of Astragalus hamosus L. against N-diethylnitrosamine (DENA)-induced hepatic cancer in Wistar albino rats was evaluated. Hepatic cancer in rats was induced by single-dose intraperitoneal administration of DENA (200 mg/kg). Induction of hepatic cancer was confirmed after 7 days of DENA administration by measurement of elevated level of serum α-feto protein (AFP). Administration of DENA in a single dose lofted the levels of serum biochemical parameters like alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, total protein and AFP. Antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and lipid per oxidation (LPO) were annealed significantly by administration of RGP in a dose-dependant manner. The histopathological examination of rat liver section was found to reinforce the biochemical observations significantly. It was observed that a substantial and dose-dependent reversal of DENA-diminished activity of antioxidant enzymes like SOD, CAT, GPx, GST and the reduced DENA-elevated level of LPO with a marked change. Any elevation in the levels of serum markers along with suppression of free radical formation by scavenging the hydroxyl radicals is significantly prevented by RGP. It also modulates the levels of LPO and perceptibly increases the endogenous antioxidant enzymes level in DENA-induced hepatocellular carcinogenesis. The findings suggest that RGP prevents hepatocellular carcinoma by suppressing the marked increase in the levels of serum marker enzymes, and suppresses the free radical by scavenging hydroxyl radicals.
Collapse
|
34
|
Yang ST, Yen CJ, Lai CH, Lin YJ, Chang KC, Lee JC, Liu YW, Chang-Liao PY, Hsu LS, Chang WC, Hung WC, Tang TK, Liu YW, Hung LY. SUMOylated CPAP is required for IKK-mediated NF-κB activation and enhances HBx-induced NF-κB signaling in HCC. J Hepatol 2013; 58:1157-64. [PMID: 23369793 DOI: 10.1016/j.jhep.2013.01.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Constitutive activation of NF-κB is an important event involved in chronic inflammation in hepatocellular carcinoma (HCC). CPAP, which plays important roles in centrosomal functions, was previously identified as the transcriptional co-activator of NF-κB. However, the molecular mechanism is unclear. The goal of this study was to investigate the role of CPAP in activating the NF-κB pathway in HCC. METHODS SK-Hep1, HuH7, HepG2, HepG2X, Hep3B, and Hep3BX cells with CPAP overexpression or CPAP siRNA were used to evaluate activation of NF-κB under TNF-α stimulation by reporter assay, RT-PCR, Q-PCR, and Western blot analysis. In vivo SUMO modification of CPAP was demonstrated by an in situ PLA assay. Human HCC tissues were used to perform Q-PCR, Western blot, and IHC. RESULTS CPAP siRNA abolished the interaction between IKKβ and NF-κB, whereas overexpression of CPAP enhanced this interaction and finally led to augmented NF-κB activation by increasing the phosphorylation of NF-κB. CPAP could enter nuclei by associating with NF-κB. Furthermore, CPAP was SUMO-1 modified upon TNF-α stimulus, and this is essential for its NF-κB co-activator activity. SUMO-1-deficient CPAP mutant lost its NF-κB co-activator activity and failed to enter nuclei. Importantly, SUMOylated CPAP could synergistically increase the HBx-induced NF-κB activity. CONCLUSIONS CPAP is essential for the recruitment of the IKK complex to inactivated NF-κB upon TNF-α treatment. Expression of CPAP was positively correlated with a poor prognosis in HBV-HCC. CPAP has the potential to serve as a therapeutic target for inflammation and inflammation-related diseases.
Collapse
Affiliation(s)
- Shu-Ting Yang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Luo J, Zhou H, Wang F, Xia X, Sun Q, Wang R, Cheng B. The hepatitis B virus X protein downregulates NF-κB signaling pathways through decreasing the Notch signaling pathway in HBx-transformed L02 cells. Int J Oncol 2013; 42:1636-43. [PMID: 23450368 DOI: 10.3892/ijo.2013.1842] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/11/2013] [Indexed: 01/08/2023] Open
Abstract
Hepatitis B virus X protein (HBx) is implicated in the pathogenesis of hepatocellular carcinoma, which has been found to be associated with Notch and NF-κB signaling. This study aimed to investigate the crosstalk between Notch and NF-κB pathways in HBx-related hepatocellular carcinoma. An HBx-transformed non-tumor hepatic cell line L02 (L02/HBx) was previously established. Immunofluorescence assays were performed to visualize HBx and the Notch intracellular domain (NICD) in cell nuclei. Co-immunoprecipitation assays were used to investigate physical interactions between HBx and components of the Notch signaling pathway (NICD and JAG1), NF-κB signaling pathway (p65 and p50) or IκBα. L02/HBx cells were treated with the Notch signal inhibitor DAPT or Notch1 siRNA to inhibit the Notch1 pathway. qRT-PCR was used to quantify the expression of the p65, p50 and IκBα genes. Protein expression changes in cytoplasm and nuclei after treatment with DAPT or Notch1 siRNA were analyzed by western blotting and EMSA assays. We found that HBx directly regulated Notch1 signaling, which cross-talked with the NF-κB pathway. Downregulation of Notch1 decreased the binding of NF-κB p65 to its target gene promoter, reduced NF-κB expression and enhanced IκBα expression. The results suggest that HBx functions through the Notch signaling pathway; Notch contributes to hepatocarcinogenesis partially by regulating the NF-κB pathway. Our findings provide new insights into the role of Notch and NF-κB signaling in the progression of hepatocellular carcinoma related to HBx.
Collapse
Affiliation(s)
- Jing Luo
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | |
Collapse
|
36
|
An update on viral association of human cancers. Arch Virol 2013; 158:1433-43. [PMID: 23417394 DOI: 10.1007/s00705-013-1623-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/17/2012] [Indexed: 12/27/2022]
Abstract
Up to now, seven viruses that infect humans have been identified as oncogenic and are closely associated with different human cancers. Most of them encode oncogenes whose products play important roles in the development of cancers in the context of environmental and genetic factors; others may act via indirect mechanisms. The transforming activities of the human oncogenic viruses have much in common with the well-studied tumorigenic processes elicited by the acutely transforming murine retroviruses. Many of these mechanisms have been elucidated for or are represented in the successive steps leading to the efficient in vitro immortalization by the lymphotropic herpesvirus Epstein-Barr virus, although the establishment of malignancy in vivo takes longer. The development of cancer is a complicated process involving multiple factors, from the host and the environment. Although any one of these etiologic factors may exert an effect on the carcinogenic process, vaccination against the viral pathogen in several cases has shown efficacy in preventing the spread of the virus and, in turn, the development of the associated cancers. Modern laboratory techniques can be expected to facilitate the identification of new emerging viruses whose association with malignancies is suggested by epidemiologic and clinical data.
Collapse
|
37
|
Sze KMF, Chu GKY, Lee JMF, Ng IOL. C-terminal truncated hepatitis B virus x protein is associated with metastasis and enhances invasiveness by C-Jun/matrix metalloproteinase protein 10 activation in hepatocellular carcinoma. Hepatology 2013; 57:131-9. [PMID: 22821423 DOI: 10.1002/hep.25979] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 07/08/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED Random integration of hepatitis B virus (HBV) DNA into the host genome is frequent in human hepatocellular carcinoma (HCC) and this leads to truncation of the HBV DNA, particularly at the C-terminal end of the HBV X protein (HBx). In this study, we investigated the frequency of this natural C-terminal truncation of HBx in human HCCs and its functional significance. In 50 HBV-positive patients with HCC, full-length HBx was detected in all nontumorous livers. However, full-length HBx was found in only 27 (54%) of the HCC tumors, whereas natural carboxylic acid (COOH)-truncated HBx was found in the remaining 23 (46%) tumors. Upon clinicopathological analysis, the presence of natural COOH-truncated HBx significantly correlated with the presence of venous invasion, a hallmark of metastasis (P = 0.005). Inducible stable expression of the COOH-truncated HBx protein (with 24 amino acids truncated at the C-terminal end) enhanced the cell-invasive ability of HepG2 cells, as compared to full-length HBx, using the Matrigel cell-invasion assay. It also resulted in increased C-Jun transcriptional activity and enhanced transcription of matrix metalloproteinase 10 (MMP10), whereas activation of the MMP10 promoter by COOH-truncated HBx was abolished when the activator protein 1-binding sites on the MMP10 promoter were mutated. Furthermore, silencing of MMP10 by short interfering RNA in HBxΔC1-expressing HepG2 cells resulted in significant reduction of cell invasiveness. CONCLUSIONS Our data suggest that COOH truncation of HBx, particularly with 24 amino acids truncated at the C-terminal end, plays a role in enhancing cell invasiveness and metastasis in HCC by activating MMP10 through C-Jun.
Collapse
Affiliation(s)
- Karen M F Sze
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
38
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
39
|
Jung SY, Kim YJ. C-terminal region of HBx is crucial for mitochondrial DNA damage. Cancer Lett 2012; 331:76-83. [PMID: 23246371 DOI: 10.1016/j.canlet.2012.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 02/07/2023]
Abstract
HBx is strongly associated with hepatocellular carcinoma development through transcription factor activation and reactive oxygen species (ROSs) production. However, the exact role of HBx during hepatocellular carcinogenesis is not fully understood. Recently, it was reported that C-terminal truncated HBx is associated with tumor metastasis. In the present study, we confirmed that the C-terminal region of HBx is required for ROS production and 8-oxoguanine (8-oxoG) formation, which is considered as a reliable biomarker of oxidative stress. These results suggest ROS production induced by the C-terminal region of HBx leads to mitochondrial DNA damage, which may play a role in HCC development.
Collapse
Affiliation(s)
- Seung-Youn Jung
- Department of Molecular Biology, Pusan National University, Busan 609-735, Republic of Korea
| | | |
Collapse
|
40
|
van Breugel PC, Robert EI, Mueller H, Decorsière A, Zoulim F, Hantz O, Strubin M. Hepatitis B virus X protein stimulates gene expression selectively from extrachromosomal DNA templates. Hepatology 2012; 56:2116-24. [PMID: 22744635 DOI: 10.1002/hep.25928] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 06/15/2012] [Indexed: 12/22/2022]
Abstract
UNLABELLED Chronic hepatitis B virus (HBV) infection is a major risk factor for liver cancer development. HBV encodes the hepatitis B virus X (HBx) protein that promotes transcription of the viral episomal DNA genome by the host cell RNA polymerase II. Here we provide evidence that HBx accomplishes this task by a conserved and unusual mechanism. Thus, HBx strongly stimulates expression of transiently transfected reporter constructs, regardless of the enhancer and promoter sequences. This activity invariably requires HBx binding to the cellular UV-damaged DDB1 E3 ubiquitin ligase, suggesting a common mechanism. Unexpectedly, none of the reporters tested is stimulated by HBx when integrated into the chromosome, despite remaining responsive to their cognate activators. Likewise, HBx promotes gene expression from the natural HBV episomal template but not from a chromosomally integrated HBV construct. The same was observed with the HBx protein of woodchuck HBV. HBx does not affect nuclear plasmid copy number and functions independently of CpG dinucleotide methylation. CONCLUSION We propose that HBx supports HBV gene expression by a conserved mechanism that acts specifically on episomal DNA templates independently of the nature of the cis-regulatory sequences. Because of its uncommon property and key role in viral transcription, HBx represents an attractive target for new antiviral therapies.
Collapse
Affiliation(s)
- Pieter C van Breugel
- Department of Microbiology and Molecular Medicine, University Medical Centre (C.M.U.), Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
41
|
Xia L, Huang W, Tian D, Zhu H, Zhang Y, Hu H, Fan D, Nie Y, Wu K. Upregulated FoxM1 expression induced by hepatitis B virus X protein promotes tumor metastasis and indicates poor prognosis in hepatitis B virus-related hepatocellular carcinoma. J Hepatol 2012; 57:600-12. [PMID: 22613004 DOI: 10.1016/j.jhep.2012.04.020] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 04/04/2012] [Accepted: 04/06/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Forkhead box M1 (FoxM1) is a master regulator of tumor metastasis that plays an important role in the development of hepatocellular carcinoma (HCC). However, whether or not FoxM1 contributes to the progression of HBV-associated HCC (HBV-HCC) remains unknown. Therefore, we aimed at investigating the clinicopathologic significance of FoxM1 in HBV-HCC and the potential role of FoxM1 in hepatitis B virus X (HBx)-mediated invasiveness and metastasis. METHODS The expression of FoxM1 and its functional targets matrix metalloproteinase-7 (MMP-7), RhoC, and Rho-kinase 1 (ROCK1) in human HBV-HCC tissues was detected by immunohistochemistry. Luciferase reporter, chromatin immunoprecipitation, and electrophoretic mobility shift assays were used to measure the transcriptional regulation of FoxM1 promoter by HBx. The effect of FoxM1 on HBx-mediated invasiveness and metastasis was analyzed by transwell assays and an orthotopic metastatic model. RESULTS FoxM1 overexpression correlated with multiple malignant characteristics and indicated poor prognosis of HBV-HCC patients. FoxM1 expression was an independent factor affecting the recurrence and survival of patients with HBV-HCC after surgical resection. FoxM1 promoted hepatoma cell invasion and metastasis by promoting MMP-7, RhoC, and ROCK1 expression, while FoxM1 overexpression was associated with elevated expressions of these proteins in HBV-HCC tissues. HBx upregulated FoxM1 expression through the ERK/CREB pathway, and FoxM1 inhibition significantly decreased HBx-enhanced hepatoma cell invasion in vitro and lung metastasis in vivo. CONCLUSIONS We report a new molecular mechanism for HBV-associated hepatocarcinogenesis that involves the activation of FoxM1 expression by HBx through the ERK/CREB pathway, thereby leading to invasion and metastasis of hepatoma cells.
Collapse
Affiliation(s)
- Limin Xia
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
miR-338-3p is down-regulated by hepatitis B virus X and inhibits cell proliferation by targeting the 3'-UTR region of CyclinD1. Int J Mol Sci 2012; 13:8514-8539. [PMID: 22942717 PMCID: PMC3430248 DOI: 10.3390/ijms13078514] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/26/2012] [Accepted: 06/28/2012] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus X protein (HBx) is recognized as an oncogene in hepatocellular carcinoma (HCC). HBx regulates microRNA expression, including down-regulating miR-338-3p in LO2 cells. Here, we investigated miR-338-3p function in HBx-mediated hepatocarcinogenesis. In 23 HBV-infected HCC clinical patient tumor and adjacent non-tumor control tissues, 17 and 19 tumors expressed HBx mRNA and protein, respectively. When considered as a group, HBV-infected HCC tumors had lower miR-338-3p expression than controls; however, miR-338-3p was only significantly down-regulated in HBx-positive tumors, indicating that HBx inversely correlated with miR-338-3p. Functional characterization of miR-338-3p indicated that miR-338-3p mimics inhibited cell proliferation by inducing cell cycle arrest at the G1/S phase as assessed by EdU and cell cycle assays in HBx-expressing LO2 cells. CyclinD1, containing two putative miR-338-3p targets, was confirmed as a direct target using 3′-UTR luciferase reporter assays from cells transfected with mutated binding sites. Mutating the 2397–2403 nt binding site conferred the greatest resistance to miR-338-3p suppression of CyclinD1, indicating that miR-338-3p suppresses CyclinD1 at this site. Overall, this study demonstrates that miR-338-3p inhibits proliferation by regulating CyclinD1, and HBx down-regulates miR-338-3p in HCC. This newly identified miR-338-3p/CyclinD1 interaction provides novel insights into HBx-mediated hepatocarcinogenesis and may facilitate therapeutic development against HCC.
Collapse
|
43
|
Xia YJ, Zeng D, Xia LM, Yu F, Lin HH, Zhou L, Tian DA, Liu M. Role of monokine induced by interferon-γ in liver injury induced by hepatitis B virus in mice. J Viral Hepat 2012; 19:509-18. [PMID: 22676364 DOI: 10.1111/j.1365-2893.2011.01581.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The chemokine monokine induced by interferon-γ (Mig) is involved in the recruitment of inflammatory cells and liver injury during hepatitis B virus (HBV) infection. HBV protein X contributes to Mig expression in vitro by activation of nuclear factor (NF)-κB; however, the molecular mechanisms by which HBV induces Mig expression in vivo are unknown. In this paper, we established a mouse model for HBV study by tail vein injection of HBV genome-containing adenovirus vectors. Host immune response to the secreted hepatitis B surface antigen and e antigen was detected and serum alanine aminotransferase (ALT) was elevated at different time points. We also demonstrated that peripheral and intrahepatic Mig expression was increased after Ad-HBV infection. This was followed by inflammatory cell migration and formation of inflammatory foci in the liver. In addition, NF-κB p65 subunit translocated from the cytoplasm to the nucleus, and phosphoinositide 3-kinase/Akt, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) were to some extent phosphorylated after HBV injection. Following tail vein injection of Mig siRNA/in vivo-jetPEI-Gal complex, Mig expression was partially suppressed, inflammatory cell migration was inhibited, serum level of ALT were reduced. In conclusion, through NF-κB activation, HBV induced Mig expression in vivo, which recruited peripheral inflammatory cells to the liver and resulted in liver damage. Phosphorylation of phosphoinositide 3-kinase/Akt, ERK and JNK but not p38 might involved in the molecular mechanisms underlying HBV induced Mig expression in vivo.
Collapse
Affiliation(s)
- Y J Xia
- Division of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhou XJ, Sun SH, Wang P, Yu H, Hu JY, Shang SC, Zhou YS. Over-expression of uPA increases risk of liver injury in pAAV-HBV transfected mice. World J Gastroenterol 2012; 18:1892-902. [PMID: 22563169 PMCID: PMC3337564 DOI: 10.3748/wjg.v18.i16.1892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/24/2011] [Accepted: 04/01/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship between over-expression of urokinase plasminogen activator (uPA) and hepatitis B virus (HBV) related liver diseases in a transgenic mouse model.
METHODS: Albumin-tetracycline reverse transcriptional activator and tetO-uPA transgenic mice were generated respectively through pronuclear injection and crossed to produce the double transgenic in-alb-uPA mice, for which doxycycline (Dox)-inducible and liver-specific over-expression of uPA can be achieved. Hydrodynamic transfection of plasmid adeno-associated virus (AAV)-1.3HBV was performed through the tail veins of the Dox-induced in-alb-uPA mice. Expression of uPA and HBV antigens were analyzed through double-staining immunohistochemical assay. Cytokine production was detected by enzyme linked immunosorbent assay and α-fetoprotein (AFP) mRNA level was evaluated through real-time quantitative polymerase chain reaction.
RESULTS: Plasmid AAV-1.3HBV hydrodynamic transfection in Dox-induced transgenic mice not only resulted in severe liver injury with hepatocarcinoma-like histological changes and hepatic AFP production, but also showed an increased serum level of HBV antigens and cytokines like interleukin-6 and tumor necrosis factor-α, compared with the control group.
CONCLUSION: Over-expression of uPA plays a synergistic role in the development of liver injury, inflammation and regeneration during acute HBV infection.
Collapse
|
45
|
Luo N, Cai Y, Zhang J, Tang W, Slagle BL, Wu X, He S. The C-terminal region of the hepatitis B virus X protein is required for its stimulation of HBV replication in primary mouse hepatocytes. Virus Res 2012; 165:170-8. [PMID: 22387566 DOI: 10.1016/j.virusres.2012.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/15/2012] [Accepted: 02/15/2012] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus (HBV) infection is an important risk factor for hepatocellular carcinoma (HCC). The hepatitis B virus X protein (HBx), a multifunctional regulatory protein encoded by HBV, is known to be involved in stimulation of viral replication by modulating cell cycle status. HBx is required for maximal virus replication in plasmid-based replication assays in immortalized human liver HepG2 cells and in primary rat hepatocytes. Moreover, the C-terminal region of HBx is important for HBV replication in HepG2 cells. However, in normal hepatocytes, the region of HBx that is responsible for its effect on cell cycle regulation and HBV replication is unclear. We have demonstrated that HBx is similarly required for maximal HBV replication in primary mouse hepatocytes and that the C-terminus of HBx is essential for its ability to stimulate HBV replication by inducing quiescent hepatocytes to exit G0 phase of the cell cycle but stall in G1 phase. Our studies establish that primary mouse hepatocytes support HBx-dependent HBV replication, and provide further evidence for the effect of the C-terminal region of HBx on HBV infection and replication.
Collapse
Affiliation(s)
- Na Luo
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Wang Q, Zhang T, Ye L, Wang W, Zhang X. Analysis of hepatitis B virus X gene (HBx) mutants in tissues of patients suffered from hepatocellular carcinoma in China. Cancer Epidemiol 2011; 36:369-74. [PMID: 22178505 DOI: 10.1016/j.canep.2011.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 12/23/2022]
Abstract
Hepatitis B virus (HBV) X (HBx) gene multi-site mutations are a frequent event in the clinical hepatocellular carcinoma (HCC) tissues. It has been reported that the mutation of the HBx plays a crucial role in the development of HBV-related HCC. To identify the novel mutations of HBx in the HCC tissues, we examined and analyzed the sequences of HBx gene in 60 cases of HCC tumor tissues and paratumor tissues from China by polymerase chain reaction (PCR). The mutation patterns of HBx were analyzed by comparing the tumor tissues with non-tumor tissues. The data showed that 44 cases of tissues out of 60 patients were HBV-positive. Our results showed that the mutations at amino acid 30, 88, 144 from tumor samples and at amino acid 31, 43, 87, 94 from non-tumor samples were highly frequent events. Interestingly, we found that a novel type of HBx linked-mutations, such as at aa L30F/S144A, was 29.5% (13/44) positive in the tumor tissues. However, the role of HBx gene mutations at aa L30F/S144A relative to wild type HBx gene is unclear in hepatocarcinogenesis. The novel HBx linked-mutations may be significant in the development of HCC.
Collapse
Affiliation(s)
- Qi Wang
- Department of Cancer Research, Key Laboratory of Molecular Microbiology and Technology of Ministry of Education, Institute For Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | | | | | | | | |
Collapse
|
47
|
Xia L, Tian D, Huang W, Zhu H, Wang J, Zhang Y, Hu H, Nie Y, Fan D, Wu K. Upregulation of IL-23 expression in patients with chronic hepatitis B is mediated by the HBx/ERK/NF-κB pathway. THE JOURNAL OF IMMUNOLOGY 2011; 188:753-64. [PMID: 22174449 DOI: 10.4049/jimmunol.1101652] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IL-23 is a newly discovered proinflammatory cytokine that contributes to the maintenance and expansion of Th17 cells. IL-23 has recently been identified as playing a critical role in a number of chronic inflammatory diseases. However, the regulatory mechanism of IL-23 in chronic hepatitis B (CHB) remains largely unknown. The aims of this study were to detect the expression of IL-23 in CHB patients and to explore the molecular mechanism of hepatitis B virus (HBV)-induced IL-23 expression. Serum levels and hepatic expression of IL-23 were significantly upregulated in CHB patients. A positive correlation was found between IL-23 expression and the histological activity index score, HBV DNA load, and serum alanine aminotransferase and aspartate aminotransferase levels. HBx protein increased IL-23 expression in a dose-dependent manner. It also aided in the nuclear translocation of NF-κB, which directly bound to the promoters of IL-23 subunits p19 and p40 to facilitate their transcription. NF-κB inhibitors blocked the effect of HBx on IL-23 induction, and NF-κB subunits p65 and p50 increased the augmented IL-23 expression. Inhibition of ERK1/2 activation and transfection with ERK dominant-negative plasmid significantly blocked the HBx-induced IL-23 expression. Furthermore, PI3K and Ras-MEK-MAPK inhibitors significantly decreased the ERK1/2 activation and IL-23 expression. Thus, we report a new molecular mechanism for HBV-induced IL-23 expression, which involves the activation of the ERK/NF-κB pathway by HBx, leading to the transactivation of the IL-23 p19 and p40 promoters.
Collapse
Affiliation(s)
- Limin Xia
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Agents commonly used in cancer chemotherapy rely on the induction of cell death via apoptosis, mitotic catastrophe, premature senescence and autophagy. Chemoresistance is the major factor limiting long-term treatment success in patients with hepatocellular carcinoma (HCC). Recent studies have revealed that the hepatitis B virus X protein (HBx) exerts anti-apoptotic effects, resulting in an increased drug resistance in HCC cells. In this study, we showed that etoposide treatment activated caspase-8 and caspase-3, leading to cleavages of p53, Bid and PARP, which subsequently induced apoptosis. Furthermore, p53 and Bid were accumulated in cytoplasm following etoposide treatment. However, HBx significantly attenuated etoposide-induced cell death. In HBx-expressing cells, despite the translocation of p53 and Bid to cytoplasm, the activation of caspases was inhibited. Furthermore, the phosphorylation of extracellular-signal-regulated kinase (ERK) was markedly increased in HBx-expressing cells. Moreover, the pretreatment with trichostatin A (TSA, a histone deacetylase inhibitor) or TSA in combination with etoposide significantly sensitized HCC cells to apoptosis by inhibiting ERK phosphorylation, reactivating caspases and PARP, and inducing translocation of p53 and Bid to cytoplasm. Collectively, HBx reduces the sensitivity of HCC cells to chemotherapy. TSA in combination with etoposide can significantly overcome the increased resistance of HBx-expressing HCC cells to chemotherapy.
Collapse
|
49
|
The hepatitis B virus X protein elevates cytosolic calcium signals by modulating mitochondrial calcium uptake. J Virol 2011; 86:313-27. [PMID: 22031934 DOI: 10.1128/jvi.06442-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infections are associated with the development of hepatocellular carcinoma (HCC). The HBV X protein (HBx) is thought to play an important role in the development of HBV-associated HCC. One fundamental HBx function is elevation of cytosolic calcium signals; this HBx activity has been linked to HBx stimulation of cell proliferation and transcription pathways, as well as HBV replication. Exactly how HBx elevates cytosolic calcium signals is not clear. The studies described here show that HBx stimulates calcium entry into cells, resulting in an increased plateau level of inositol 1,4,5-triphosphate (IP3)-linked calcium signals. This increased calcium plateau can be inhibited by blocking mitochondrial calcium uptake and store-operated calcium entry (SOCE). Blocking SOCE also reduced HBV replication. Finally, these studies also demonstrate that there is increased mitochondrial calcium uptake in HBx-expressing cells. Cumulatively, these studies suggest that HBx can increase mitochondrial calcium uptake and promote increased SOCE to sustain higher cytosolic calcium and stimulate HBV replication.
Collapse
|
50
|
Xiangji L, Feng X, Qingbao C, Weifeng T, Xiaoqing J, Baihe Z, Feng S, Hongyang W, Mengchao W. Knockdown of HBV surface antigen gene expression by a lentiviral microRNA-based system inhibits HBV replication and HCC growth. J Viral Hepat 2011; 18:653-60. [PMID: 20642484 DOI: 10.1111/j.1365-2893.2010.01346.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Current options for the treatment of hepatitis B virus (HBV) infections, a common liver cancer risk factor, are limited. While RNA interference (RNAi) technologies have been shown to inhibit HBV replication, the consequent effects on hepatocellular carcinoma (HCC) cell growth are not fully understood. The aim of this study was to evaluate the effect of RNAi-mediated decrease in the HBV surface antigen (HBsAg) gene on HBV replication and HCC growth. A lentiviral microRNA-based system expressing siRNAs targeting the HBsAg gene (LVshHBS) was developed and transfected into HepG2.2.15 cells (HBV stably expressing line). We found that LVshHBS significantly inhibited the HBsAg mRNA and protein levels in the HepG2.2.15 cells, while HBsAg secretion into the culture supernatant decreased by 70%. BALB/c (nu/nu) mice were injected with HepG2.2.15 cells transduced with LVshHBS or control vectors to investigate the effect of inhibiting the HBsAg on the development of tumour growth in a human HCC nude mice model. Compared with the control, the tumour growth in nude mice was significantly decreased after injection with LVshHBS. Microarray analysis of tumour-related genes in LVshHBS-transduced HepG2.2.15 cells showed that the expressions of genes involved in cell cycle, differentiation and oncogenesis such as ACP2, BHLHB2, CLK3, CTSC, FOS, NR1D1, PIM1 and SEPT6 genes were downregulated, while that of the E2F3 gene was upregulated. In conclusion, lentiviral microRNA-based RNAi against the HBsAg gene not only inhibits HBV replication but also inhibits the growth of HCC. Downregulation of growth-related genes is implicated in this mechanism of inhibition.
Collapse
Affiliation(s)
- L Xiangji
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|