1
|
Liu Y, Zhan J, Li J, Lian M, Li J, Xia C, Zhou F, Xie W. Characterization of the DNA accessibility of chloroplast genomes in grasses. Commun Biol 2024; 7:760. [PMID: 38909165 PMCID: PMC11193712 DOI: 10.1038/s42003-024-06374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/23/2024] [Indexed: 06/24/2024] Open
Abstract
Although the chloroplast genome (cpDNA) of higher plants is known to exist as a large protein-DNA complex called 'plastid nucleoid', researches on its DNA state and regulatory elements are limited. In this study, we performed the assay for transposase-accessible chromatin sequencing (ATAC-seq) on five common tissues across five grasses, and found that the accessibility of different regions in cpDNA varied widely, with the transcribed regions being highly accessible and accessibility patterns around gene start and end sites varying depending on the level of gene expression. Further analysis identified a total of 3970 putative protein binding footprints on cpDNAs of five grasses. These footprints were enriched in intergenic regions and co-localized with known functional elements. Footprints and their flanking accessibility varied dynamically among tissues. Cross-species analysis showed that footprints in coding regions tended to overlap non-degenerate sites and contain a high proportion of highly conserved sites, indicating that they are subject to evolutionary constraints. Taken together, our results suggest that the accessibility of cpDNA has biological implications and provide new insights into the transcriptional regulation of chloroplasts.
Collapse
Affiliation(s)
- Yinmeng Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430000, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430000, China
| | - Jinling Zhan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430000, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430000, China
| | - Junjie Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430000, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430000, China
| | - Mengjie Lian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430000, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430000, China
| | - Jiacheng Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430000, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430000, China
| | - Chunjiao Xia
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430000, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430000, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430000, China.
| |
Collapse
|
2
|
Sato N. Are Cyanobacteria an Ancestor of Chloroplasts or Just One of the Gene Donors for Plants and Algae? Genes (Basel) 2021; 12:genes12060823. [PMID: 34071987 PMCID: PMC8227023 DOI: 10.3390/genes12060823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 12/04/2022] Open
Abstract
Chloroplasts of plants and algae are currently believed to originate from a cyanobacterial endosymbiont, mainly based on the shared proteins involved in the oxygenic photosynthesis and gene expression system. The phylogenetic relationship between the chloroplast and cyanobacterial genomes was important evidence for the notion that chloroplasts originated from cyanobacterial endosymbiosis. However, studies in the post-genomic era revealed that various substances (glycolipids, peptidoglycan, etc.) shared by cyanobacteria and chloroplasts are synthesized by different pathways or phylogenetically unrelated enzymes. Membranes and genomes are essential components of a cell (or an organelle), but the origins of these turned out to be different. Besides, phylogenetic trees of chloroplast-encoded genes suggest an alternative possibility that chloroplast genes could be acquired from at least three different lineages of cyanobacteria. We have to seriously examine that the chloroplast genome might be chimeric due to various independent gene flows from cyanobacteria. Chloroplast formation could be more complex than a single event of cyanobacterial endosymbiosis. I present the “host-directed chloroplast formation” hypothesis, in which the eukaryotic host cell that had acquired glycolipid synthesis genes as an adaptation to phosphate limitation facilitated chloroplast formation by providing glycolipid-based membranes (pre-adaptation). The origins of the membranes and the genome could be different, and the origin of the genome could be complex.
Collapse
Affiliation(s)
- Naoki Sato
- Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
3
|
Shahmir F, Pauls KP. Identification, Gene Structure, and Expression of BnMicEmUP: A Gene Upregulated in Embryogenic Brassica napus Microspores. FRONTIERS IN PLANT SCIENCE 2021; 11:576008. [PMID: 33519838 PMCID: PMC7845737 DOI: 10.3389/fpls.2020.576008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Microspores of Brassica napus can be diverted from normal pollen development into embryogenesis by treating them with a mild heat shock. As microspore embryogenesis closely resembles zygotic embryogenesis, it is used as model for studying the molecular mechanisms controlling embryo formation. A previous study comparing the transcriptomes of three-day-old sorted embryogenic and pollen-like (non-embryogenic) microspores identified a gene homologous to AT1G74730 of unknown function that was upregulated 8-fold in the embryogenic cells. In the current study, the gene was isolated and sequenced from B. napus and named BnMicEmUP (B. napus microspore embryogenesis upregulated gene). Four forms of BnMicEmUP mRNA and three forms of genomic DNA were identified. BnMicEmUP2,3 was upregulated more than 7-fold by day 3 in embryogenic microspore cultures compared to non-induced cultures. BnMicEmUP1,4 was highly expressed in leaves. Transient expression studies of BnMicEmUP3::GFP fusion protein in Nicotiana benthamiana and in stable Arabidopsis transgenics showed that it accumulates in chloroplasts. The features of the BnMicEmUP protein, which include a chloroplast targeting region, a basic region, and a large region containing 11 complete leucine-rich repeats, suggest that it is similar to a bZIP PEND (plastid envelope DNA-binding protein) protein, a DNA binding protein found in the inner envelope membrane of developing chloroplasts. Here, we report that the BnMicEmUP3 overexpression in Arabidopsis increases the sensitivity of seedlings to exogenous abscisic acid (ABA). The BnMicEmUP proteins appear to be transcription factors that are localized in plastids and are involved in plant responses to biotic and abiotic environmental stresses; as well as the results obtained from this study can be used to improve crop yield.
Collapse
|
4
|
Sato N. Complex origins of chloroplast membranes with photosynthetic machineries: multiple transfers of genes from divergent organisms at different times or a single endosymbiotic event? JOURNAL OF PLANT RESEARCH 2020; 133:15-33. [PMID: 31811433 PMCID: PMC6946739 DOI: 10.1007/s10265-019-01157-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/01/2019] [Indexed: 05/10/2023]
Abstract
The paradigm "cyanobacterial origin of chloroplasts" is currently viewed as an established fact. However, we may have to re-consider the origin of chloroplast membranes, because membranes are not replicated by their own. It is the genes for lipid biosynthetic enzymes that are inherited. In the current understandings, these enzymes became encoded by the nuclear genome as a result of endosymbiotic gene transfer from the endosymbiont. However, we previously showed that many enzymes involved in the synthesis of chloroplast peptidoglycan and glycolipids did not originate from cyanobacteria. Here I present results of comprehensive phylogenetic analysis of chloroplast enzymes involved in fatty acid and lipid biosynthesis, as well as additional chloroplast components related to photosynthesis and gene expression. Four types of phylogenetic relationship between chloroplast enzymes (encoded by the chloroplast and nuclear genomes) and cyanobacterial counterparts were found: type 1, chloroplast enzymes diverged from inside of cyanobacterial clade; type 2, chloroplast and cyanobacterial enzymes are sister groups; type 3, chloroplast enzymes originated from homologs of bacteria other than cyanobacteria; type 4, chloroplast enzymes diverged from eukaryotic homologs. Estimation of evolutionary distances suggested that the acquisition times of chloroplast enzymes were diverse, indicating that multiple gene transfers accounted for the chloroplast enzymes analyzed. Based on the results, I try to relax the tight logic of the endosymbiotic origin of chloroplasts involving a single endosymbiotic event by proposing alternative hypotheses. The hypothesis of host-directed chloroplast formation proposes that glycolipid synthesis ability had been acquired by the eukaryotic host before the acquisition of chloroplast ribosomes. Chloroplast membrane system could have been provided by the host, whereas cyanobacteria contributed to the genes for the genetic and photosynthesis systems, at various times, either before or after the formation of chloroplast membranes. The origin(s) of chloroplasts seems to be more complicated than the single event of primary endosymbiosis.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 153-8902, Japan.
| |
Collapse
|
5
|
Maurel MC, Leclerc F, Vergne J, Zaccai G. RNA Back and Forth: Looking through Ribozyme and Viroid Motifs. Viruses 2019; 11:E283. [PMID: 30901893 PMCID: PMC6466107 DOI: 10.3390/v11030283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/28/2022] Open
Abstract
Current cellular facts allow us to follow the link from chemical to biochemical metabolites, from the ancient to the modern world. In this context, the "RNA world" hypothesis proposes that early in the evolution of life, the ribozyme was responsible for the storage and transfer of genetic information and for the catalysis of biochemical reactions. Accordingly, the hammerhead ribozyme (HHR) and the hairpin ribozyme belong to a family of endonucleolytic RNAs performing self-cleavage that might occur during replication. Furthermore, regarding the widespread occurrence of HHRs in several genomes of modern organisms (from mammals to small parasites and elsewhere), these small ribozymes have been regarded as living fossils of a primitive RNA world. They fold into 3D structures that generally require long-range intramolecular interactions to adopt the catalytically active conformation under specific physicochemical conditions. By studying viroids as plausible remains of ancient RNA, we recently demonstrated that they replicate in non-specific hosts, emphasizing their adaptability to different environments, which enhanced their survival probability over the ages. All these results exemplify ubiquitous features of life. Those are the structural and functional versatility of small RNAs, ribozymes, and viroids, as well as their diversity and adaptability to various extreme conditions. All these traits must have originated in early life to generate novel RNA populations.
Collapse
Affiliation(s)
- Marie-Christine Maurel
- Sorbonne Université, Museum National d'Histoire Naturelle, CNRS MNHN UMR 7205, Institut de Systématique, Evolution, Biodiversité, ISYEB, F-75005 Paris, France.
| | - Fabrice Leclerc
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, F-91198 Gif-sur-Yvette, France.
| | - Jacques Vergne
- Sorbonne Université, Museum National d'Histoire Naturelle, CNRS MNHN UMR 7205, Institut de Systématique, Evolution, Biodiversité, ISYEB, F-75005 Paris, France.
| | - Giuseppe Zaccai
- Institut de Biologie Structurale CNRS-CEA-UGA, F-380447 Grenoble, France, and Institut Laue Langevin, 71 Avenue des Martyrs, F-38042 Grenoble, France.
| |
Collapse
|
6
|
Sato N, Awai K. "Prokaryotic Pathway" Is Not Prokaryotic: Noncyanobacterial Origin of the Chloroplast Lipid Biosynthetic Pathway Revealed by Comprehensive Phylogenomic Analysis. Genome Biol Evol 2018; 9:3162-3178. [PMID: 29145606 PMCID: PMC5716074 DOI: 10.1093/gbe/evx238] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
Lipid biosynthesis within the chloroplast, or more generally plastids, was conventionally called “prokaryotic pathway,” which produces glycerolipids bearing C18 acids at the sn-1 position and C16 acids at the sn-2 position, as in cyanobacteria such as Anabaena and Synechocystis. This positional specificity is determined during the synthesis of phosphatidate, which is a precursor to diacylglycerol, the acceptor of galactose for the synthesis of galactolipids. The first acylation at sn-1 is catalyzed by glycerol-3-phosphate acyltransferase (GPAT or GPT), whereas the second acylation at sn-2 is performed by lysophosphatidate acyltransferase (LPAAT, AGPAT, or PlsC). Here we present comprehensive phylogenomic analysis of the origins of various acyltransferases involved in the synthesis of phosphatidate, as well as phosphatidate phosphatases in the chloroplasts. The results showed that the enzymes involved in the two steps of acylation in cyanobacteria and chloroplasts are entirely phylogenetically unrelated despite a previous report stating that the chloroplast LPAAT (ATS2) and cyanobacterial PlsC were sister groups. Phosphatidate phosphatases were separated into eukaryotic and prokaryotic clades, and the chloroplast enzymes were not of cyanobacterial origin, in contrast with another previous report. These results indicate that the lipid biosynthetic pathway in the chloroplasts or plastids did not originate from the cyanobacterial endosymbiont and is not “prokaryotic” in the context of endosymbiotic theory of plastid origin. This is another line of evidence for the discontinuity of plastids and cyanobacteria, which has been suggested in the glycolipid biosynthesis.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Japan.,Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Koichiro Awai
- Japan Science and Technology Agency, CREST, Tokyo, Japan.,Department of Biological Science, Faculty of Science, and Research Institute of Electronics, Shizuoka University, Japan
| |
Collapse
|
7
|
Sato N, Toyoshima M, Tajima N, Takechi K, Takano H. Single-Pixel Densitometry Revealed the Presence of Peptidoglycan in the Intermembrane Space of the Moss Chloroplast Envelope in Conventional Electron Micrographs. PLANT & CELL PHYSIOLOGY 2017; 58:1743-1751. [PMID: 29017001 DOI: 10.1093/pcp/pcx113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Chloroplasts are believed to be descendants of ancestral cyanobacteria that have a peptidoglycan layer between the outer and the inner membranes. In particular, cyanelles having peptidoglycan in Cyanophora paradoxa are considered as evidence for the endosymbiotic origin of chloroplasts. The moss Physcomitrella patens has a complete set of genes involved in the synthesis of peptidoglycan, but a peptidoglycan layer has not been observed by conventional electron microscopy to date. Recently, a new metabolic labeling technique using a fluorescent probe was applied to visualize putative peptidoglycan surrounding the chloroplasts. The exact localization of the peptidoglycan, however, has not been clearly identified. Here we examined conventional electron micrographs of two types of moss materials (mutants or ampicillin-treated plants), one presumably having peptidoglycan and the other presumably lacking peptidoglycan, and analyzed in detail, by single-pixel densitometry, the electron density of the chloroplast envelope membranes and the intermembrane space. Statistical analysis showed that the relative electron density within the intermembrane space with respect to that of the envelope membranes was significantly higher in the materials presumably having peptidoglycan than in the materials presumably devoid of peptidoglycan. We consider this difference as bona fide evidence for the presence of peptidoglycan between the outer and the inner envelope membranes in the wild-type chloroplasts of the moss, although its density is lower than that in bacteria and cyanelles. We will also discuss this low-density peptidoglycan in the light of the phylogenetic origin of peptidoglycan biosynthesis enzymes.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo 102-0076, Japan
| | - Masakazu Toyoshima
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo 102-0076, Japan
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoyuki Tajima
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Katsuaki Takechi
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Hiroyoshi Takano
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
8
|
Sato N. Revisiting the theoretical basis of the endosymbiotic origin of plastids in the original context of Lynn Margulis on the origin of mitosing, eukaryotic cells. J Theor Biol 2017; 434:104-113. [PMID: 28870618 DOI: 10.1016/j.jtbi.2017.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Fifty years ago, Lynn Margulis proposed a comprehensive hypothesis on the origin of eukaryotic cells with an emphasis on the origin of mitosis. This hypothesis postulated that the eukaryotic cell is a composite of different parts as a result of the symbiosis of various different bacteria. In this hypothesis, she integrated previously proposed ideas that mitochondria and chloroplasts were descendants of endosymbionts that originated from aerobic bacteria and blue-green algae (now cyanobacteria), respectively. However, the major part of her hypothesis, which she believed to be original, was the origin of mitosis. The core of her postulate involved a chromosome partition mechanism dependent on DNA-microtubule binding, which originated from a hypothetical centriole-DNA complex, with an ability to replicate. Surprisingly, her complete lack of real experimental works in the cytoskeleton, cell motility, or paleontology did not prevent this 29-year-old junior scientist from assembling archival knowledge and constructing a narrative on the evolution of all organisms. Whether the centriole-DNA complex originated from a spirochete or not was a minor anecdote in this initial postulate. Unfortunately, this hypothesis on the origin of mitosis, which she believed to be a holistic unity, testable by experiments, was entirely refuted. Despite falsification of her original narrative as a whole, her success as a founder of endosymbiotic theory on the origin of mitochondria and chloroplasts is undoubted. We will discuss the reasons for her success in terms of the historical situation in the latter half of the 20th century.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
9
|
Sato N, Takano H. Diverse origins of enzymes involved in the biosynthesis of chloroplast peptidoglycan. JOURNAL OF PLANT RESEARCH 2017; 130:635-645. [PMID: 28382528 DOI: 10.1007/s10265-017-0935-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/28/2017] [Indexed: 05/08/2023]
Abstract
Chloroplasts are believed to be descendants of ancestral cyanobacteria that had peptidoglycan layer between the outer and the inner membranes. Historically, the glaucophyte Cyanophora paradoxa and the rhizopod Paulinella chromatophora were believed to harbor symbiotic cyanobacteria having peptidoglycan, which were conventionally named "cyanelles". In addition, the complete set of genes involved in the synthesis of peptidoglycan has been found in the moss Physcomitrella patens and some plants and algae. The presence of peptidoglycan-like structures was demonstrated by a new metabolic labeling technique in P. patens. However, many green algae and all known red algae lack peptidoglycan-related genes. That is the reason why we questioned the origin of peptidoglycan-synthesizing enzymes in the chloroplasts of the green algae and plants. We performed phylogenetic analysis of ten enzymes involved in the synthesis of peptidoglycan exploiting the Gclust homolog clusters and additional genomic data. As expected, all the identified genes encoded in the chromatophore genome of P. chromatophora were closely related to cyanobacterial homologs. In the green algae and plants, only two genes, murA and mraY, were found to be closely related to cyanobacterial homologs. The origins of all other genes were diverse. Unfortunately, the origins of C. paradoxa genes were not clearly determined because of incompleteness of published genomic data. We discuss on the probable evolutionary scenarios to explain the mostly non-cyanobacterial origins of the biosynthetic enzymes of chloroplast peptidoglycan: A plausible one includes extensive multiple horizontal gene transfers during the early evolution of Viridiplantae.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 153-8902, Japan.
| | - Hiroyoshi Takano
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
- Institute of Pulsed Power Science, Kumamoto University, Kumamoto, 860-8555, Japan
| |
Collapse
|
10
|
Burroughs AM, Kaur G, Zhang D, Aravind L. Novel clades of the HU/IHF superfamily point to unexpected roles in the eukaryotic centrosome, chromosome partitioning, and biologic conflicts. Cell Cycle 2017; 16:1093-1103. [PMID: 28441108 PMCID: PMC5499826 DOI: 10.1080/15384101.2017.1315494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The HU superfamily of proteins, with a unique DNA-binding mode, has been extensively studied as the primary chromosome-packaging protein of the bacterial superkingdom. Representatives also play a role in DNA-structuring during recombination events and in eukaryotic organellar genome maintenance. However, beyond these well-studied roles, little is understood of the functional diversification of this large superfamily. Using sensitive sequence and structure analysis methods we identify multiple novel clades of the HU superfamily. We present evidence that a novel eukaryotic clade prototyped by the human CCDC81 protein acquired roles beyond DNA-binding, likely in protein-protein interaction in centrosome organization and as a potential cargo-binding protein in conjunction with Dynein-VII. We also show that these eukaryotic versions were acquired via an early lateral transfer from bacteroidetes, where we predict a role in chromosome partition. This likely happened before the last eukaryotic common ancestor, pointing to potential endosymbiont contributions beyond that of the mitochondrial progenitor. Further, we show that the dramatic lineage-specific expansion of this domain in the bacteroidetes lineage primarily is linked to a functional shift related to potential recognition and preemption of genome invasive entities such as mobile elements. Remarkably, the CCDC81 clade has undergone a similar massive lineage-specific expansion within the archosaurian lineage in birds, suggesting a possible use of the HU superfamily in a similar capacity in recognition of non-self molecules even in this case.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- a National Center for Biotechnology Information , National Library of Medicine, National Institutes of Health , Bethesda , MD , USA
| | - Gurmeet Kaur
- a National Center for Biotechnology Information , National Library of Medicine, National Institutes of Health , Bethesda , MD , USA
| | - Dapeng Zhang
- a National Center for Biotechnology Information , National Library of Medicine, National Institutes of Health , Bethesda , MD , USA
| | - L Aravind
- a National Center for Biotechnology Information , National Library of Medicine, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
11
|
Lipid metabolism and potentials of biofuel and high added-value oil production in red algae. World J Microbiol Biotechnol 2017; 33:74. [DOI: 10.1007/s11274-017-2236-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
|
12
|
Sato N, Awai K. Diversity in Biosynthetic Pathways of Galactolipids in the Light of Endosymbiotic Origin of Chloroplasts. FRONTIERS IN PLANT SCIENCE 2016; 7:117. [PMID: 26904079 PMCID: PMC4742570 DOI: 10.3389/fpls.2016.00117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/22/2016] [Indexed: 05/08/2023]
Abstract
Cyanobacteria and chloroplasts perform oxygenic photosynthesis, and share a common origin. Galactolipids are present in the photosynthetic membranes of both cyanobacteria and chloroplasts, but the biosynthetic pathways of the galactolipids are significantly different in the two systems. In this minireview, we explain the history of the discovery of the cyanobacterial pathway, and present a probable scenario of the evolution of the two pathways.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of TokyoTokyo, Japan
- Japan Science and Technology Agency, CRESTTokyo, Japan
- *Correspondence: Naoki Sato,
| | - Koichiro Awai
- Japan Science and Technology Agency, CRESTTokyo, Japan
- Department of Biological Science, Faculty of Science, and Research Institute of Electronics, Shizuoka UniversityShizuoka, Japan
| |
Collapse
|
13
|
Kobayashi Y, Takusagawa M, Harada N, Fukao Y, Yamaoka S, Kohchi T, Hori K, Ohta H, Shikanai T, Nishimura Y. Eukaryotic Components Remodeled Chloroplast Nucleoid Organization during the Green Plant Evolution. Genome Biol Evol 2015; 8:1-16. [PMID: 26608058 PMCID: PMC4758235 DOI: 10.1093/gbe/evv233] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chloroplast (cp) DNA is thought to originate from the ancestral endosymbiont genome and is compacted to form nucleoprotein complexes, cp nucleoids. The structure of cp nucleoids is ubiquitously observed in diverse plants from unicellular algae to flowering plants and is believed to be a multifunctional platform for various processes, including cpDNA replication, repair/recombination, transcription, and inheritance. Despite its fundamental functions, the protein composition for cp nucleoids in flowering plants was suggested to be divergent from those of bacteria and algae, but the evolutionary process remains elusive. In this research, we aimed to reveal the evolutionary history of cp nucleoid organization by analyzing the key organisms representing the three evolutionary stages of eukaryotic phototrophs: the chlorophyte alga Chlamydomonas reinhardtii, the charophyte alga Klebsormidium flaccidum, and the most basal land plant Marchantia polymorpha. To clarify the core cp nucleoid proteins in C. reinhardtii, we performed an LC-MS/MS analysis using highly purified cp nucleoid fractions and identified a novel SAP domain-containing protein with a eukaryotic origin as a constitutive core component. Then, homologous genes for cp nucleoid proteins were searched for in C. reinhardtii, K. flaccidum, and M. polymorpha using the genome databases, and their intracellular localizations and DNA binding activities were investigated by cell biological/biochemical analyses. Based on these results, we propose a model that recurrent modification of cp nucleoid organization by eukaryotic factors originally related to chromatin organization might have been the driving force for the diversification of cp nucleoids since the early stage of green plant evolution.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-Cho, Kita-Shirakawa, Kyoto, Japan
| | - Mari Takusagawa
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-Cho, Kita-Shirakawa, Kyoto, Japan Department of Biological Science and Chemistry, Faculty of Science, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Naomi Harada
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-Cho, Kita-Shirakawa, Kyoto, Japan
| | - Yoichiro Fukao
- Plant Global Educational Project, and Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Koichi Hori
- Tokyo Institute of Technology, Graduate School of Bioscience and Biotechnology, Yokohama City, Kanagawa, Japan
| | - Hiroyuki Ohta
- Tokyo Institute of Technology, Graduate School of Bioscience and Biotechnology, Yokohama City, Kanagawa, Japan Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-Ku, Tokyo, Japan
| | - Toshiharu Shikanai
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-Cho, Kita-Shirakawa, Kyoto, Japan
| | - Yoshiki Nishimura
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-Cho, Kita-Shirakawa, Kyoto, Japan
| |
Collapse
|
14
|
Chi W, He B, Mao J, Jiang J, Zhang L. Plastid sigma factors: Their individual functions and regulation in transcription. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:770-8. [PMID: 25596450 DOI: 10.1016/j.bbabio.2015.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/02/2015] [Accepted: 01/06/2015] [Indexed: 11/18/2022]
Abstract
Sigma factors are the predominant factors involved in transcription regulation in bacteria. These factors can recruit the core RNA polymerase to promoters with specific DNA sequences and initiate gene transcription. The plastids of higher plants originating from an ancestral cyanobacterial endosymbiont also contain sigma factors that are encoded by a small family of nuclear genes. Although all plastid sigma factors contain sequences conserved in bacterial sigma factors, a considerable number of distinct traits have been acquired during evolution. The present review summarises recent advances concerning the regulation of the structure, function and activity of plastid sigma factors since their discovery nearly 40 years ago. We highlight the specialised roles and overlapping redundant functions of plastid sigma factors according to their promoter selectivity. We also focus on the mechanisms that modulate the activity of sigma factors to optimise plastid function in response to developmental cues and environmental signals. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Baoye He
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Juan Mao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jingjing Jiang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
15
|
Fujii S, Kobayashi K, Nakamura Y, Wada H. Inducible knockdown of MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE1 reveals roles of galactolipids in organelle differentiation in Arabidopsis cotyledons. PLANT PHYSIOLOGY 2014; 166:1436-49. [PMID: 25253888 PMCID: PMC4226381 DOI: 10.1104/pp.114.250050] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 09/23/2014] [Indexed: 05/18/2023]
Abstract
Monogalactosyldiacylglycerol (MGDG) is the major lipid constituent of thylakoid membranes and is essential for chloroplast biogenesis in plants. In Arabidopsis (Arabidopsis thaliana), MGDG is predominantly synthesized by inner envelope-localized MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE1 (MGD1); its knockout causes albino seedlings. Because of the lethal phenotype of the null MGD1 mutant, functional details of MGDG synthesis at seedling development have remained elusive. In this study, we used an inducible gene-suppression system to investigate the impact of MGDG synthesis on cotyledon development. We created transgenic Arabidopsis lines that express an artificial microRNA targeting MGD1 (amiR-MGD1) under the control of a dexamethasone-inducible promoter. The induction of amiR-MGD1 resulted in up to 75% suppression of MGD1 expression, although the resulting phenotypes related to chloroplast development were diverse, even within a line. The strong MGD1 suppression by continuous dexamethasone treatment caused substantial decreases in galactolipid content in cotyledons, leading to severe defects in the formation of thylakoid membranes and impaired photosynthetic electron transport. Time-course analyses of the MGD1 suppression during seedling germination revealed that MGDG synthesis at the very early germination stage is particularly important for chloroplast biogenesis. The MGD1 suppression down-regulated genes associated with the photorespiratory pathway in peroxisomes and mitochondria as well as those responsible for photosynthesis in chloroplasts and caused high expression of genes for the glyoxylate cycle. MGD1 function may link galactolipid synthesis with the coordinated transcriptional regulation of chloroplasts and other organelles during cotyledon greening.
Collapse
Affiliation(s)
- Sho Fujii
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (S.F., K.K., H.W.);PRESTO (Y.N.) and CREST (H.W.), JST, Kawaguchi, Saitama 332-0012, Japan; andInstitute of Plant and Microbial Biology, Academia Sinica, Nankang, Tapei 11529, Taiwan (Y.N.)
| | - Koichi Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (S.F., K.K., H.W.);PRESTO (Y.N.) and CREST (H.W.), JST, Kawaguchi, Saitama 332-0012, Japan; andInstitute of Plant and Microbial Biology, Academia Sinica, Nankang, Tapei 11529, Taiwan (Y.N.)
| | - Yuki Nakamura
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (S.F., K.K., H.W.);PRESTO (Y.N.) and CREST (H.W.), JST, Kawaguchi, Saitama 332-0012, Japan; andInstitute of Plant and Microbial Biology, Academia Sinica, Nankang, Tapei 11529, Taiwan (Y.N.)
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (S.F., K.K., H.W.);PRESTO (Y.N.) and CREST (H.W.), JST, Kawaguchi, Saitama 332-0012, Japan; andInstitute of Plant and Microbial Biology, Academia Sinica, Nankang, Tapei 11529, Taiwan (Y.N.)
| |
Collapse
|
16
|
Powikrowska M, Khrouchtchova A, Martens HJ, Zygadlo-Nielsen A, Melonek J, Schulz A, Krupinska K, Rodermel S, Jensen PE. SVR4 (suppressor of variegation 4) and SVR4-like: two proteins with a role in proper organization of the chloroplast genetic machinery. PHYSIOLOGIA PLANTARUM 2014; 150:477-92. [PMID: 24111559 DOI: 10.1111/ppl.12108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 08/26/2013] [Accepted: 09/03/2013] [Indexed: 05/04/2023]
Abstract
SUPPRESSOR OF VARIEGATION 4 (SVR4, also called MRL7) and its homolog SVR4-like (also called MRL7-Like) were originally identified as important proteins for proper function of the chloroplast in Arabidopsis. Both are nuclear-encoded chloroplast-located proteins, and knockout mutants of either gene result in seedling lethality. Transmission electron microscopy analysis revealed that chloroplast development is arrested at an early developmental stage in both mutants. Accordingly, in the mutant plants severely decreased levels of photosynthetic pigments as well as subunits of the photosynthetic complexes could be detected. In absence of either of the two proteins chloroplast DNA organization was clearly affected. Immunological analysis revealed that SVR4 is a component of the transcriptionally active chromosome (TAC) from barley chloroplasts. Analyses of gene expression indicate that SVR4 and SVR4-like are required for proper function of the plastid transcriptional machinery. We propose that SVR4 and SVR4-like function as molecular chaperones ensuring proper organization of the nucleoids in chloroplasts.
Collapse
Affiliation(s)
- Marta Powikrowska
- Villum Centre of Excellence "Plant Plasticity" and Center for Synthetic Biology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Powikrowska M, Oetke S, Jensen PE, Krupinska K. Dynamic composition, shaping and organization of plastid nucleoids. FRONTIERS IN PLANT SCIENCE 2014; 5:424. [PMID: 25237313 PMCID: PMC4154389 DOI: 10.3389/fpls.2014.00424] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/08/2014] [Indexed: 05/18/2023]
Abstract
In this article recent progress on the elucidation of the dynamic composition and structure of plastid nucleoids is reviewed from a structural perspective. Plastid nucleoids are compact structures of multiple copies of different forms of ptDNA, RNA, enzymes for replication and gene expression as well as DNA binding proteins. Although early electron microscopy suggested that plastid DNA is almost free of proteins, it is now well established that the DNA in nucleoids similarly as in the nuclear chromatin is associated with basic proteins playing key roles in organization of the DNA architecture and in regulation of DNA associated enzymatic activities involved in transcription, replication, and recombination. This group of DNA binding proteins has been named plastid nucleoid associated proteins (ptNAPs). Plastid nucleoids are unique with respect to their variable number, genome copy content and dynamic distribution within different types of plastids. The mechanisms underlying the shaping and reorganization of plastid nucleoids during chloroplast development and in response to environmental conditions involve posttranslational modifications of ptNAPs, similarly to those changes known for histones in the eukaryotic chromatin, as well as changes in the repertoire of ptNAPs, as known for nucleoids of bacteria. Attachment of plastid nucleoids to membranes is proposed to be important not only for regulation of DNA availability for replication and transcription, but also for the coordination of photosynthesis and plastid gene expression.
Collapse
Affiliation(s)
- Marta Powikrowska
- Department of Plant and Environmental Sciences, VILLUM Research Centre for Plant Plasticity and Copenhagen Plant Science Centre, University of CopenhagenCopenhagen, Denmark
| | - Svenja Oetke
- Plant Cell Biology, Institute of Botany, Christian-Albrechts-University of KielKiel, Germany
| | - Poul E. Jensen
- Department of Plant and Environmental Sciences, VILLUM Research Centre for Plant Plasticity and Copenhagen Plant Science Centre, University of CopenhagenCopenhagen, Denmark
| | - Karin Krupinska
- Plant Cell Biology, Institute of Botany, Christian-Albrechts-University of KielKiel, Germany
- *Correspondence: Karin Krupinska, Plant Cell Biology, Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany e-mail:
| |
Collapse
|
18
|
Finster S, Eggert E, Zoschke R, Weihe A, Schmitz-Linneweber C. Light-dependent, plastome-wide association of the plastid-encoded RNA polymerase with chloroplast DNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:849-60. [PMID: 24118403 DOI: 10.1111/tpj.12339] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/05/2013] [Accepted: 09/25/2013] [Indexed: 05/04/2023]
Abstract
Plastid genes are transcribed by two types of RNA polymerases: a plastid-encoded eubacterial-type RNA polymerase (PEP) and nuclear-encoded phage-type RNA polymerases (NEPs). To investigate the spatio-temporal expression of PEP, we tagged its α-subunit with a hemagglutinin epitope (HA). Transplastomic tobacco plants were generated and analyzed for the distribution of the tagged polymerase in plastid sub-fractions, and associated genes were identified under various light conditions. RpoA:HA was detected as early as the 3rd day after imbibition, and was constitutively expressed in green tissue over 60 days of plant development. We found that the tagged polymerase subunit preferentially associated with the plastid membranes, and was less abundant in the soluble stroma fraction. Attachment of RpoA:HA to the membrane fraction during early seedling development was independent of DNA, but at later stages of development, DNA appears to facilitate attachment of the polymerase to membranes. To survey PEP-dependent transcription units, we probed for nucleic acids enriched in RpoA:HA precipitates using a tobacco chloroplast whole-genome tiling array. The most strongly co-enriched DNA fragments represent photosynthesis genes (e.g. psbA, psbC, psbD and rbcL), whose expression is known to be driven by PEP promoters, while NEP-dependent genes were less abundant in RpoA:HA precipitates. Additionally, we demonstrate that the association of PEP with photosynthesis-related genes was reduced during the dark period, indicating that plastome-wide PEP-DNA association is a light-dependent process.
Collapse
Affiliation(s)
- Sabrina Finster
- Institut für Biologie, Humboldt-Universität Berlin, Chausseestraße 117, 10115, Berlin, Germany
| | | | | | | | | |
Collapse
|
19
|
Kobayashi K, Narise T, Sonoike K, Hashimoto H, Sato N, Kondo M, Nishimura M, Sato M, Toyooka K, Sugimoto K, Wada H, Masuda T, Ohta H. Role of galactolipid biosynthesis in coordinated development of photosynthetic complexes and thylakoid membranes during chloroplast biogenesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:250-61. [PMID: 22978702 DOI: 10.1111/tpj.12028] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 08/21/2012] [Accepted: 09/10/2012] [Indexed: 05/17/2023]
Abstract
The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the predominant lipids in thylakoid membranes and indispensable for photosynthesis. Among the three isoforms that catalyze MGDG synthesis in Arabidopsis thaliana, MGD1 is responsible for most galactolipid synthesis in chloroplasts, whereas MGD2 and MGD3 are required for DGDG accumulation during phosphate (Pi) starvation. A null mutant of Arabidopsis MGD1 (mgd1-2), which lacks both galactolipids and shows a severe defect in chloroplast biogenesis under nutrient-sufficient conditions, accumulated large amounts of DGDG, with a strong induction of MGD2/3 expression, during Pi starvation. In plastids of Pi-starved mgd1-2 leaves, biogenesis of thylakoid-like internal membranes, occasionally associated with invagination of the inner envelope, was observed, together with chlorophyll accumulation. Moreover, the mutant accumulated photosynthetic membrane proteins upon Pi starvation, indicating a compensation for MGD1 deficiency by Pi stress-induced galactolipid biosynthesis. However, photosynthetic activity in the mutant was still abolished, and light-harvesting/photosystem core complexes were improperly formed, suggesting a requirement for MGDG for proper assembly of these complexes. During Pi starvation, distribution of plastid nucleoids changed concomitantly with internal membrane biogenesis in the mgd1-2 mutant. Moreover, the reduced expression of nuclear- and plastid-encoded photosynthetic genes observed in the mgd1-2 mutant under Pi-sufficient conditions was restored after Pi starvation. In contrast, Pi starvation had no such positive effects in mutants lacking chlorophyll biosynthesis. These observations demonstrate that galactolipid biosynthesis and subsequent membrane biogenesis inside the plastid strongly influence nucleoid distribution and the expression of both plastid- and nuclear-encoded photosynthetic genes, independently of photosynthesis.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Takafumi Narise
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Yokohama, 226-8501, Midori-ku, Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Tokyo, 162-8480, Shinjuku-ku, Japan
| | - Haruki Hashimoto
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Naoki Sato
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Maki Kondo
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Mayuko Sato
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kiminori Toyooka
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Hajime Wada
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Tatsuru Masuda
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Hiroyuki Ohta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Yokohama, 226-8501, Midori-ku, Japan
| |
Collapse
|
20
|
Yagi Y, Ishizaki Y, Nakahira Y, Tozawa Y, Shiina T. Eukaryotic-type plastid nucleoid protein pTAC3 is essential for transcription by the bacterial-type plastid RNA polymerase. Proc Natl Acad Sci U S A 2012; 109:7541-6. [PMID: 22529394 PMCID: PMC3358912 DOI: 10.1073/pnas.1119403109] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plastid transcription is mediated by two distinct types of RNA polymerases (RNAPs), bacterial-type RNAP (PEP) and phage-type RNAP (NEP). Recent genomic and proteomic studies revealed that higher plants have lost most prokaryotic transcription regulators and have acquired eukaryotic-type proteins during plant evolution. However, in vivo dynamics of chloroplast RNA polymerases and eukaryotic-type plastid nucleoid proteins have not been directly characterized experimentally. Here, we examine the association of the α-subunit of PEP and eukaryotic-type protein, plastid transcriptionally active chromosome 3 (pTAC3) with transcribed regions in vivo by using chloroplast chromatin immunoprecipitation (cpChIP) assays. PEP α-subunit preferentially associates with PEP promoters of photosynthesis and rRNA genes, but not with NEP promoter regions, suggesting selective and accurate recognition of PEP promoters by PEP. The cpChIP assays further demonstrate that the peak of PEP association occurs at the promoter-proximal region and declines gradually along the transcribed region. pTAC3 is a putative DNA-binding protein that is localized to chloroplast nucleoids and is essential for PEP-dependent transcription. Density gradient and immunoprecipitation analyses of PEP revealed that pTAC3 is associated with the PEP complex. Interestingly, pTAC3 associates with the PEP complex not only during transcription initiation, but also during elongation and termination. These results suggest that pTAC3 is an essential component of the chloroplast PEP complex. In addition, we demonstrate that light-dependent chloroplast transcription is mediated by light-induced association of the PEP-pTAC3 complex with promoters. This study illustrates unique dynamics of PEP and its associated protein pTAC3 during light-dependent transcription in chloroplasts.
Collapse
Affiliation(s)
- Yusuke Yagi
- Faculty of Agriculture and
- Institute of Advanced Study, Kyushu University, Fukuoka 812-8581, Japan
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| | - Yoko Ishizaki
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| | - Yoichi Nakahira
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| | - Yuzuru Tozawa
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama 790-8577, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| |
Collapse
|
21
|
Gao ZP, Yu QB, Zhao TT, Ma Q, Chen GX, Yang ZN. A functional component of the transcriptionally active chromosome complex, Arabidopsis pTAC14, interacts with pTAC12/HEMERA and regulates plastid gene expression. PLANT PHYSIOLOGY 2011; 157:1733-45. [PMID: 22010110 PMCID: PMC3327189 DOI: 10.1104/pp.111.184762] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/14/2011] [Indexed: 05/18/2023]
Abstract
The SET domain-containing protein, pTAC14, was previously identified as a component of the transcriptionally active chromosome (TAC) complexes. Here, we investigated the function of pTAC14 in the regulation of plastid-encoded bacterial-type RNA polymerase (PEP) activity and chloroplast development. The knockout of pTAC14 led to the blockage of thylakoid formation in Arabidopsis (Arabidopsis thaliana), and ptac14 was seedling lethal. Sequence and transcriptional analysis showed that pTAC14 encodes a specific protein in plants that is located in the chloroplast associated with the thylakoid and that its expression depends on light. In addition, the transcript levels of all investigated PEP-dependent genes were clearly reduced in the ptac14-1 mutants, while the accumulation of nucleus-encoded phage-type RNA polymerase-dependent transcripts was increased, indicating an important role of pTAC14 in maintaining PEP activity. pTAC14 was found to interact with pTAC12/HEMERA, another component of TACs that is involved in phytochrome signaling. The data suggest that pTAC14 is essential for proper chloroplast development, most likely by affecting PEP activity and regulating PEP-dependent plastid gene transcription in Arabidopsis together with pTAC12.
Collapse
|
22
|
Liere K, Weihe A, Börner T. The transcription machineries of plant mitochondria and chloroplasts: Composition, function, and regulation. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1345-60. [PMID: 21316793 DOI: 10.1016/j.jplph.2011.01.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 05/04/2023]
Abstract
Although genomes of mitochondria and plastids are very small compared to those of their bacterial ancestors, the transcription machineries of these organelles are of surprising complexity. With respect to the number of different RNA polymerases per organelle, the extremes are represented on one hand by chloroplasts of eudicots which use one bacterial-type RNA polymerase and two phage-type RNA polymerases to transcribe their genes, and on the other hand by Physcomitrella possessing three mitochondrial RNA polymerases of the phage type. Transcription of genes/operons is often driven by multiple promoters in both organelles. This review describes the principle components of the transcription machineries (RNA polymerases, transcription factors, promoters) and the division of labor between the different RNA polymerases. While regulation of transcription in mitochondria seems to be only of limited importance, the plastid genes of higher plants respond to exogenous and endogenous cues rather individually by altering their transcriptional activities.
Collapse
Affiliation(s)
- Karsten Liere
- Institut für Biologie/Genetik, Humboldt-Universität zu Berlin, Chausseestrasse 117, Berlin, Germany
| | | | | |
Collapse
|
23
|
Kang YW, Lee JY, Jeon Y, Cheong GW, Kim M, Pai HS. In vivo effects of NbSiR silencing on chloroplast development in Nicotiana benthamiana. PLANT MOLECULAR BIOLOGY 2010; 72:569-83. [PMID: 20047069 DOI: 10.1007/s11103-009-9593-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 12/15/2009] [Indexed: 05/03/2023]
Abstract
Sulfite reductase (SiR) performs dual functions, acting as a sulfur assimilation enzyme and as a chloroplast (cp-) nucleoid binding protein. In this study, we examined the in vivo effects of SiR deficiency on chloroplast development in Nicotiana benthamiana. Virus-induced gene silencing of NbSiR resulted in leaf yellowing and growth retardation phenotypes, which were not rescued by cysteine supplementation. NbSiR:GFP fusion protein was targeted to chloroplasts and colocalized with cp-nucleoids. Recombinant full-length NbSiR protein and the C-terminal half of NbSiR possessed cp-DNA compaction activities in vitro, and expression of full-length NbSiR in E. coli caused condensation of genomic DNA. NbSiR silencing differentially affected expression of plastid-encoded genes, inhibiting expression of several genes more severely than others. In the later stages, depletion of NbSiR resulted in chloroplast ablation. In NbSiR-silenced plants, enlarged cp-nucleoids containing an increased amount of cp-DNA were observed in the middle of the abnormal chloroplasts, and the cp-DNAs were predominantly of subgenomic sizes based on pulse field gel electrophoresis. The abnormal chloroplasts developed prolamellar body-like cubic lipid structures in the light without accumulating NADPH:protochlorophyllide oxidoreductase proteins. Our results suggest that NbSiR plays a role in cp-nucleoid metabolism, plastid gene expression, and thylakoid membrane development.
Collapse
Affiliation(s)
- Yong-Won Kang
- Department of Biology, Yonsei University, Seoul, 120-749, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Schröter Y, Steiner S, Matthäi K, Pfannschmidt T. Analysis of oligomeric protein complexes in the chloroplast sub-proteome of nucleic acid-binding proteins from mustard reveals potential redox regulators of plastid gene expression. Proteomics 2010; 10:2191-204. [DOI: 10.1002/pmic.200900678] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Sasaki NV, Sato N. CyanoClust: comparative genome resources of cyanobacteria and plastids. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2010; 2010:bap025. [PMID: 20428314 PMCID: PMC2860898 DOI: 10.1093/database/bap025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/09/2009] [Accepted: 12/11/2009] [Indexed: 11/13/2022]
Abstract
Cyanobacteria, which perform oxygen-evolving photosynthesis as do chloroplasts of plants and algae, are one of the best-studied prokaryotic phyla and one from which many representative genomes have been sequenced. Lack of a suitable comparative genomic database has been a problem in cyanobacterial genomics because many proteins involved in physiological functions such as photosynthesis and nitrogen fixation are not catalogued in commonly used databases, such as Clusters of Orthologous Proteins (COG). CyanoClust is a database of homolog groups in cyanobacteria and plastids that are produced by the program Gclust. We have developed a web-server system for the protein homology database featuring cyanobacteria and plastids. Database URL: http://cyanoclust.c.u-tokyo.ac.jp/.
Collapse
Affiliation(s)
- Naobumi V Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | | |
Collapse
|
26
|
Steiner S, Dietzel L, Schröter Y, Fey V, Wagner R, Pfannschmidt T. The role of phosphorylation in redox regulation of photosynthesis genes psaA and psbA during photosynthetic acclimation of mustard. MOLECULAR PLANT 2009; 2:416-29. [PMID: 19825626 DOI: 10.1093/mp/ssp007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The long-term response (LTR) to light-quality gradients improves performance and survival of plants in dense stands. It involves redox-controlled transcriptional regulation of the plastome-encoded genes psaAB (encoding the P700 apoproteins of photosystem I) and psbA (encoding the D1 protein of photosystem II) and requires the action of plastid-localized kinases. To study the potential impact of phosphorylation events on plastid gene expression during the LTR, we analyzed mustard seedlings acclimated to light sources favoring either photosystem I or photosystem II. Primer extension analyses of psaA transcripts indicate that the redox regulation occurs at the principal bacterial promoters, suggesting that the plastid encoded RNA polymerase (PEP) is the target for redox signals. Chloroplast protein fractions containing PEP and other DNA-binding proteins were purified from mustard via heparin-Sepharose chromatography. The biochemical properties of these fractions were analyzed with special emphasis on promoter recognition and specificity, phosphorylation state, and kinase activity. The results demonstrate that the LTR involves the action of small DNA-binding proteins; three of them exhibit specific changes in the phosphorylation state. Auto-phosphorylation assays, in addition, exhibit large differences in the activity of endogenous kinase activities. Chloroplast run-on transcription experiments with the kinase inhibitor H7 and the reductant DTT indicate that phosphorylation events are essential for the mediation of redox signals toward psaA and psbA transcription initiation, but require the synergistic action of a thiol redox signal. The data support the idea that redox signals from the thylakoid membrane are linked to gene expression via phosphorylation events; however, this mediation appears to require a complex network of interacting proteins rather than a simple phosphorelay.
Collapse
Affiliation(s)
- Sebastian Steiner
- Junior Research Group Plant acclimation to environmental changes: Protein analysis by MS at the Institute of General Botany and Plant Physiology, Department of Plant Physiology, Friedrich-Schiller-University of Jena, Dornburger Str. 159, 07743 Jena, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Ishikawa M, Fujiwara M, Sonoike K, Sato N. Orthogenomics of photosynthetic organisms: bioinformatic and experimental analysis of chloroplast proteins of endosymbiont origin in Arabidopsis and their counterparts in Synechocystis. PLANT & CELL PHYSIOLOGY 2009; 50:773-788. [PMID: 19224954 DOI: 10.1093/pcp/pcp027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chloroplasts are descendents of a cyanobacterial endosymbiont, but many chloroplast protein genes of endosymbiont origin are encoded by the nucleus. The chloroplast-cyanobacteria relationship is a typical target of orthogenomics, an analytical method that focuses on the relationship of orthologous genes. Here, we present results of a pilot study of functional orthogenomics, combining bioinformatic and experimental analyses, to identify nuclear-encoded chloroplast proteins of endosymbiont origin (CPRENDOs). Phylogenetic profiling based on complete clustering of all proteins in 17 organisms, including eight cyanobacteria and two photosynthetic eukaryotes, was used to deduce 65 protein groups that are conserved in all oxygenic autotrophs analyzed but not in non-oxygenic organisms. With the exception of 28 well-characterized protein groups, 56 Arabidopsis proteins and 43 Synechocystis proteins in the 37 conserved homolog groups were analyzed. Green fluorescent protein (GFP) targeting experiments indicated that 54 Arabidopsis proteins were targeted to plastids. Expression of 39 Arabidopsis genes was promoted by light. Among the 40 disruptants of Synechocystis, 22 showed phenotypes related to photosynthesis. Arabidopsis mutants in 21 groups, including those reported previously, showed phenotypes. Characteristics of pulse amplitude modulation fluorescence were markedly different in corresponding mutants of Arabidopsis and Synechocystis in most cases. We conclude that phylogenetic profiling is useful in finding CPRENDOs, but the physiological functions of orthologous genes may be different in chloroplasts and cyanobacteria.
Collapse
Affiliation(s)
- Masayuki Ishikawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
28
|
Terasawa K, Sato N. Plastid localization of the PEND protein is mediated by a noncanonical transit peptide. FEBS J 2009; 276:1709-19. [PMID: 19220850 DOI: 10.1111/j.1742-4658.2009.06901.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Plastid envelope DNA-binding protein (PEND) is a DNA-binding protein with a chloroplast basic region-zipper domain at its N-terminus and a transmembrane domain at its C-terminus. The localization of PEND to the inner envelope membrane was demonstrated in a targeting experiment using isolated membranes and green fluorescent protein-tagged fusion proteins. An N-terminal sequence analysis showed that the presequence is 15 amino acids long; however, based on neural network-based prediction tools, this short peptide is not predicted to be a chloroplast-targeting sequence. In the present study we confirmed, by the digestion of intact chloroplasts, that PEND is located in the envelope membrane. We then demonstrated that the N-terminal 88-amino acid sequence is sufficient for plastid import in vitro. The transient expression of green fluorescent protein-tagged fusion proteins revealed that neither the N-terminal 29-amino acid sequence nor the 16-amino acid sequence directed green fluorescent protein to chloroplasts, but that the N-terminal 66-amino acid sequence was sufficient for correct targeting. These results suggest that targeting of PEND to the chloroplast requires both the presequence and the basic region, whereas postimport processing cleaves only the presequence. Interestingly, deletion of the presequence in the green fluorescent protein-tagged 88-amino acid construct resulted in targeting to the nucleus. This raises the possibility of plastid-to-nuclear signal transduction by the relocalization of PEND.
Collapse
Affiliation(s)
- Kimihiro Terasawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
29
|
Bréhélin C, Kessler F. The Plastoglobule: A Bag Full of Lipid Biochemistry Tricks†. Photochem Photobiol 2008; 84:1388-94. [DOI: 10.1111/j.1751-1097.2008.00459.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Prikryl J, Watkins KP, Friso G, van Wijk KJ, Barkan A. A member of the Whirly family is a multifunctional RNA- and DNA-binding protein that is essential for chloroplast biogenesis. Nucleic Acids Res 2008; 36:5152-65. [PMID: 18676978 PMCID: PMC2532728 DOI: 10.1093/nar/gkn492] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/14/2008] [Accepted: 07/16/2008] [Indexed: 12/01/2022] Open
Abstract
'Whirly' proteins comprise a plant-specific protein family whose members have been described as DNA-binding proteins that influence nuclear transcription and telomere maintenance, and that associate with nucleoids in chloroplasts and mitochondria. We identified the maize WHY1 ortholog among proteins that coimmunoprecipitate with CRS1, which promotes the splicing of the chloroplast atpF group II intron. ZmWHY1 localizes to the chloroplast stroma and to the thylakoid membrane, to which it is tethered by DNA. Genome-wide coimmunoprecipitation assays showed that ZmWHY1 in chloroplast extract is associated with DNA from throughout the plastid genome and with a subset of plastid RNAs that includes atpF transcripts. Furthermore, ZmWHY1 binds both RNA and DNA in vitro. A severe ZmWhy1 mutant allele conditions albino seedlings lacking plastid ribosomes; these exhibit the altered plastid RNA profile characteristic of ribosome-less plastids. Hypomorphic ZmWhy1 mutants exhibit reduced atpF intron splicing and a reduced content of plastid ribosomes; aberrant 23S rRNA metabolism in these mutants suggests that a defect in the biogenesis of the large ribosomal subunit underlies the ribosome deficiency. However, these mutants contain near normal levels of chloroplast DNA and RNAs, suggesting that ZmWHY1 is not directly required for either DNA replication or for global plastid transcription.
Collapse
Affiliation(s)
- Jana Prikryl
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97405 and Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Kenneth P. Watkins
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97405 and Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Giulia Friso
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97405 and Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Klaas J. van Wijk
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97405 and Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97405 and Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
31
|
Grabowski E, Miao Y, Mulisch M, Krupinska K. Single-stranded DNA-binding protein Whirly1 in barley leaves is located in plastids and the nucleus of the same cell. PLANT PHYSIOLOGY 2008; 147:1800-4. [PMID: 18678751 PMCID: PMC2492637 DOI: 10.1104/pp.108.122796] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 06/05/2008] [Indexed: 05/20/2023]
Affiliation(s)
- Evelyn Grabowski
- Institute of Botany , Christian-Albrechts-University of Kiel, 24098 Kiel, Germany
| | | | | | | |
Collapse
|
32
|
Ahn CS, Pai HS. Physiological function of IspE, a plastid MEP pathway gene for isoprenoid biosynthesis, in organelle biogenesis and cell morphogenesis in Nicotiana benthamiana. PLANT MOLECULAR BIOLOGY 2008; 66:503-17. [PMID: 18180879 DOI: 10.1007/s11103-007-9286-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 12/27/2007] [Indexed: 05/20/2023]
Abstract
Isoprenoid biosynthesis in plants occurs by two independent pathways: the cytosolic mevalonate (MVA) pathway and the plastidic methylerythritol phosphate (MEP) pathway. In this study, we investigated the cellular effects of depletion of IspE, a protein involved in the MEP pathway, using virus-induced gene silencing (VIGS). The IspE gene is preferentially expressed in young tissues, and induced by light and methyl jasmonate. The GFP fusion protein of IspE was targeted to chloroplasts. Reduction of IspE expression by VIGS resulted in a severe leaf yellowing phenotype. At the cellular level, depletion of IspE severely affected chloroplast development, dramatically reducing both the number and size of chloroplasts. Interestingly, mitochondrial development was also impaired, suggesting a possibility that the plastidic MEP pathway contributes to mitochondrial isoprenoid biosynthesis in leaves. A deficiency in IspE activity decreased cellular levels of the metabolites produced by the MEP pathway, such as chlorophylls and carotenoids, and stimulated expression of some of the downstream MEP pathway genes, particularly IspF and IspG. Interestingly, the IspE VIGS lines had significantly increased numbers of cells of reduced size in all leaf layers, compared with TRV control and other VIGS lines for the MEP pathway genes. The increased cell division in the IspE VIGS lines was particularly pronounced in the abaxial epidermal layer, in which the over-proliferated cells bulged out of the plane, making the surface uneven. In addition, trichome numbers dramatically increased and the stomata size varied in the affected tissues. Our results show that IspE deficiency causes novel developmental phenotypes distinct from the phenotypes of other MEP pathway mutants, indicating that IspE may have an additional role in plant development besides its role in isoprenoid biosynthesis.
Collapse
Affiliation(s)
- Chang Sook Ahn
- Department of Biology, Yonsei University, Seoul, 120-749, Korea
| | | |
Collapse
|
33
|
Sakamoto W, Miyagishima SY, Jarvis P. Chloroplast biogenesis: control of plastid development, protein import, division and inheritance. THE ARABIDOPSIS BOOK 2008; 6:e0110. [PMID: 22303235 PMCID: PMC3243408 DOI: 10.1199/tab.0110] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The chloroplast is a multi-copy cellular organelle that not only performs photosynthesis but also synthesizes amino acids, lipids and phytohormones. The plastid also responds to environmental stimuli such as gravitropism. Biogenesis of chloroplasts is initiated from proplastids in shoot meristems, and involves a series of important events. In the last decade, considerable progress has been made towards understanding various aspects of chloroplast biogenesis at the molecular level, via studies in model systems such as Arabidopsis. This review focuses on two important aspects of chloroplast biogenesis, synthesis/assembly and division/transmission. Chloroplasts originated through endosymbiosis from an ancestor of extant cyanobacteria, and thus contain their own genomes. DNA in chloroplasts is organized into complexes with proteins, and these are called nucleoids. The synthesis of chloroplast proteins is regulated at various steps. However, a majority of proteins are synthesized in the cytosol, and their proper import into chloroplast compartments is a prerequisite for chloroplast development. Fundamental aspects of plastid gene expression/regulation and chloroplast protein transport are described, together with recent proteome analyses of the organelle. Chloroplasts are not de novo synthesized, but instead are propagated from pre-existing plastids. In addition, plastids are transmitted from generation to generation with a unique mode of inheritance. Our current knowledge on the division machinery and the inheritance of plastids is described.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
- Address correspondence to
| | | | - Paul Jarvis
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
34
|
Bohne AV, Ruf S, Börner T, Bock R. Faithful transcription initiation from a mitochondrial promoter in transgenic plastids. Nucleic Acids Res 2007; 35:7256-66. [PMID: 17959651 PMCID: PMC2175370 DOI: 10.1093/nar/gkm679] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/03/2007] [Accepted: 08/19/2007] [Indexed: 12/30/2022] Open
Abstract
The transcriptional machineries of plastids and mitochondria in higher plants exhibit striking similarities. All mitochondrial genes and part of the plastid genes are transcribed by related phage-type RNA polymerases. Furthermore, the majority of mitochondrial promoters and a subset of plastid promoters show a similar structural organization. We show here that the plant mitochondrial atpA promoter is recognized by plastid RNA polymerases in vitro and in vivo. The Arabidopsis phage-type RNA polymerase RpoTp, an enzyme localized exclusively to plastids, was found to recognize the mitochondrial atpA promoter in in vitro assays suggesting the possibility that mitochondrial promoters might function as well in plastids. We have, therefore, generated transplastomic tobacco plants harboring in their chloroplast genome the atpA promoter fused to the coding region of the bacterial nptII gene. The chimeric nptII gene was found to be efficiently transcribed in chloroplasts. Mapping of the 5' ends of the nptII transcripts revealed accurate recognition of the atpA promoter by the chloroplast transcription machinery. We show further that the 5' untranslated region (UTR) of the mitochondrial atpA transcript is capable of mediating translation in chloroplasts. The functional and evolutionary implications of these findings as well as possible applications in chloroplast genome engineering are discussed.
Collapse
Affiliation(s)
- Alexandra-Viola Bohne
- Institute of Biology (Genetics), Humboldt University Berlin, Chausseestrasse 117, D-10115 Berlin and Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stephanie Ruf
- Institute of Biology (Genetics), Humboldt University Berlin, Chausseestrasse 117, D-10115 Berlin and Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Thomas Börner
- Institute of Biology (Genetics), Humboldt University Berlin, Chausseestrasse 117, D-10115 Berlin and Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Institute of Biology (Genetics), Humboldt University Berlin, Chausseestrasse 117, D-10115 Berlin and Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
35
|
Takeuchi R, Kimura S, Saotome A, Sakaguchi K. Biochemical properties of a plastidial DNA polymerase of rice. PLANT MOLECULAR BIOLOGY 2007; 64:601-11. [PMID: 17522954 DOI: 10.1007/s11103-007-9179-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 04/27/2007] [Indexed: 05/04/2023]
Abstract
Plastids are organelles unique to plant cells and are responsible for photosynthesis and other metabolic functions. Despite their important cellular roles, relatively little is known about the mechanism of plastidial DNA replication and repair. Recently, we identified a novel DNA polymerase in Oryza Sativa L. (OsPOLP1, formerly termed OsPolI-like) that is homologous to prokaryotic DNA polymerase Is (PolIs), and suggested that this polymerase might be involved in plastidial DNA replication and repair. Here, we propose to rename the plant PolI homologs as DNA polymerase pi (POLP), and investigate the biochemical properties of full-length OsPOLP1. The purified OsPOLP1 elongated both DNA and RNA primer hybridized to a DNA template, and possessed a 3' exonuclease activity. Moreover, OsPOLP1 displayed high processivity and fidelity, indicating that this polymerase has the biochemical characteristics appropriate for DNA replication. We found that POLPs have two extra sequences in the polymerase domain that are absent in prokaryotic PolIs. Deletion of either insert from OsPOLP1 caused a decrease in DNA synthetic activity, processivity, and DNA binding activity. In addition, OsPOLP1 efficiently catalyzed strand displacement on nicked DNA with a 5'-deoxyribose phosphate, suggesting that this enzyme might be involved in a repair pathway similar to long-patch base excision repair. These results provide insights into the possible role of POLPs in plastidial DNA replication and repair.
Collapse
Affiliation(s)
- Ryo Takeuchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken, 278-8510, Japan.
| | | | | | | |
Collapse
|
36
|
Sato N, Moriyama T. Genomic and biochemical analysis of lipid biosynthesis in the unicellular rhodophyte Cyanidioschyzon merolae: lack of a plastidic desaturation pathway results in the coupled pathway of galactolipid synthesis. EUKARYOTIC CELL 2007; 6:1006-17. [PMID: 17416897 PMCID: PMC1951526 DOI: 10.1128/ec.00393-06] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 03/20/2007] [Indexed: 11/20/2022]
Abstract
The acyl lipids making up the plastid membranes in plants and algae are highly enriched in polyunsaturated fatty acids and are synthesized by two distinct pathways, known as the prokaryotic and eukaryotic pathways, which are located within the plastids and the endoplasmic reticulum, respectively. Here we report the results of biochemical as well as genomic analyses of lipids and fatty acids in the unicellular rhodophyte Cyanidioschyzon merolae. All of the glycerolipids usually found in photosynthetic algae were found, such as mono- and digalactosyl diacylglycerol, sulfolipid, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. However, the fatty acid composition was extremely simple. Only palmitic, stearic, oleic, and linoleic acids were found as major acids. In addition, 3-trans-hexadecanoic acid was found as a very minor component in phosphatidylglycerol. Unlike the case for most other photosynthetic eukaryotes, polyenoic fatty acids having three or more double bonds were not detected. These results suggest that polyunsaturated fatty acids are not necessary for photosynthesis in eukaryotes. Genomic analysis suggested that C. merolae lacks acyl lipid desaturases of cyanobacterial origin as well as stearoyl acyl carrier protein desaturase, both of which are major desaturases in plants and green algae. The results of labeling experiments with radioactive acetate showed that the desaturation leading to linoleic acid synthesis occurs on phosphatidylcholine located outside the plastids. Monogalactosyl diacylglycerol is therefore synthesized by the coupled pathway, using plastid-derived palmitic acid and endoplasmic reticulum-derived linoleic acid. These results highlight essential differences in lipid biosynthetic pathways between the red algae and the green lineage, which includes plants and green algae.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | | |
Collapse
|
37
|
Kato Y, Miura E, Matsushima R, Sakamoto W. White leaf sectors in yellow variegated2 are formed by viable cells with undifferentiated plastids. PLANT PHYSIOLOGY 2007; 144:952-60. [PMID: 17449646 PMCID: PMC1914179 DOI: 10.1104/pp.107.099002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The yellow variegated2 (var2) is one of the best-characterized Arabidopsis (Arabidopsis thaliana) mutants showing leaf variegation. Leaf variegation of var2 results from the loss of an ATP-dependent metalloprotease, FtsH2, which is a major component of the FtsH heterocomplex in thylakoid membranes. While the functional role of FtsH2 in protein quality control has been extensively studied, the physiological state of plastids in white tissues of the var2 is not well characterized. Here we show that the white tissue in var2 is neither the result of photobleaching nor enhanced senescence. Visualization of plastids by plastid-targeted green fluorescent protein revealed that plastids in the white sector are distinct and have undifferentiated characteristics. The plastids are also distinct in that they contain large nucleoids, a complex structure of plastid DNA and proteins, that are typically found in undifferentiated plastids. Comparative analyses of protein profiles from green and white tissues suggested that the difference was observed in the proteins related to photosynthesis but not due to proteins of other organelles. Thus, cells in the white tissue are viable and their defect is limited to plastid function. The plastid accumulates normal levels of chloroplast transcripts, whereas a substantial repression of nuclear-encoded photosynthetic genes was evident in the white sector. Based upon these results, we inferred that the white sectors in var2 are made by viable cells that have plastids arrested in thylakoid formation. A proposed model to form the variegated sector in var2 is provided.
Collapse
Affiliation(s)
- Yusuke Kato
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | | | | | | |
Collapse
|
38
|
Kodama Y, Sano H. Functional diversification of a basic helix-loop-helix protein due to alternative transcription during generation of amphidiploidy in tobacco plants. Biochem J 2007; 403:493-9. [PMID: 17288537 PMCID: PMC1876378 DOI: 10.1042/bj20070011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 02/05/2007] [Accepted: 02/08/2007] [Indexed: 12/18/2022]
Abstract
A plastid-resident basic helix-loop-helix protein, previously identified in Nicotiana tabacum and designated as NtWIN4 (N. tabacum wound-induced clone 4), has been converted from a nuclear transcription repressor into a plastid-resident regulatory factor through replacement of the DNA-binding domain with a plastid transit sequence during evolution. N. tabacum is a natural amphidiploid plant derived from Nicotiana tomentosiformis and Nicotiana sylvestris and immunoblot staining using anti-NtWIN4 antibodies identified two protein species, a 26 kDa form and a 17 kDa form, in N. sylvestris, whereas only the 17 kDa form was found in N. tabacum. The 26 kDa protein is produced when translation starts from the first AUG codon of the mRNA and is predominantly localized in the cytoplasm and nucleus, whereas the 17 kDa protein is derived from a 24 kDa precursor protein, synthesized from the second AUG codon, and localizes only to plastids. Subsequent analyses revealed that the lengths of the mRNAs vary in the two plant species. One major form lacks the first AUG, while minor populations possess variable 5'-untranslated regions prior to the first AUG codon. Translation of the two types produces the 24 kDa and 26 kDa proteins respectively. In vitro translation assays indicated that initiation frequency from the first AUG codon is higher in mRNAs from N. sylvestris than from N. tabacum. In contrast, initiation from the second AUG codon was found to be equally efficient in mRNAs from both species. These results suggest that both mRNA populations and translation efficiency changed during the amphidiploidization responsible for generation of N. tabacum. This scheme could reflect a molecular mechanism of protein evolution in plants.
Collapse
Affiliation(s)
- Yutaka Kodama
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Hiroshi Sano
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| |
Collapse
|
39
|
Sekine K, Fujiwara M, Nakayama M, Takao T, Hase T, Sato N. DNA binding and partial nucleoid localization of the chloroplast stromal enzyme ferredoxin:sulfite reductase. FEBS J 2007; 274:2054-69. [PMID: 17371503 DOI: 10.1111/j.1742-4658.2007.05748.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Sulfite reductase (SiR) is an important enzyme catalyzing the reduction of sulfite to sulfide during sulfur assimilation in plants. This enzyme is localized in plastids, including chloroplasts, and uses ferredoxin as an electron donor. Ferredoxin-dependent SiR has been found in isolated chloroplast nucleoids, but its localization in vivo or in intact plastids has not been examined. Here, we report the DNA-binding properties of SiRs from pea (PsSiR) and maize (ZmSiR) using an enzymatically active holoenzyme with prosthetic groups. PsSiR binds to both double-stranded and single-stranded DNA without significant sequence specificity. DNA binding did not affect the enzymatic activity of PsSiR, suggesting that ferredoxin and sulfite are accessible to SiR molecules within the nucleoids. Comparison of PsSiR and ZmSiR suggests that ZmSiR does indeed have DNA-binding activity, as was reported previously, but the DNA affinity and DNA-compacting ability are higher in PsSiR than in ZmSiR. The tight compaction of nucleoids by PsSiR led to severe repression of transcription activity in pea nucleoids. Indirect immunofluorescence microscopy showed that the majority of SiR molecules colocalized with nucleoids in pea chloroplasts, whereas no particular localization to nucleoids was detected in maize chloroplasts. These results suggest that SiR plays an essential role in compacting nucleoids in plastids, but that the extent of association of SiR with nucleoids varies among plant species.
Collapse
Affiliation(s)
- Kohsuke Sekine
- Department of Molecular Biology, Faculty of Science, Saitama University, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Plastid-nucleus communication: anterograde and retrograde signalling in the development and function of plastids. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0243] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Sato N. Origin and Evolution of Plastids: Genomic View on the Unification and Diversity of Plastids. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2007. [DOI: 10.1007/978-1-4020-4061-0_4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Kodama Y, Sano H. Evolution of a basic helix-loop-helix protein from a transcriptional repressor to a plastid-resident regulatory factor: involvement in hypersensitive cell death in tobacco plants. J Biol Chem 2006; 281:35369-80. [PMID: 16966334 DOI: 10.1074/jbc.m604140200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The tobacco gene NtWIN4 (Nicotiana tabacum wound-induced clone 4) is transiently up-regulated in response not only to wounding but also to pathogen attack. NtWIN4 encodes a putative basic helix-loop-helix protein with an apparent molecular mass of 28 kDa that exhibited clear nuclear transcription repression activity in Dual-Luciferase assays. However, immunoblotting indicated the existence of a 17-kDa form of NtWIN4 localized exclusively in tobacco leaf chloroplasts. Subsequent peptide dissection analyses with green fluorescent protein fusions revealed that a polypeptide of 81 amino acids starting at position 13 from the N terminus is maximally necessary for this localization. Further fine dissection analysis strongly suggested that the protein actually begins at the second Met located at position 27, yielding a signal peptide of 67 amino acids. However, the last C-terminal 15 amino acids overlap with the conserved basic region critical for DNA binding, so NtWIN4 presumably does not function as a transcription factor in planta. Transgenic tobacco plants constitutively overexpressing NtWIN4 demonstrated mortality with abnormal features, including albinism, and transient expression upon agroinfiltration resulted in distinct necrosis with a sharp decrease in chlorophyll content, consistent with the phenomenon known as chlorosis. Transgenic RNA interference tobacco plants exhibited reduced hypersensitive cell death, showing delayed tissue necrosis upon pathogen infection. These results suggest that NtWIN4 arose by divergence, becoming a chloroplast-resident factor from a nuclear transcriptional repressor by obtaining a transit peptide sequence, and that, upon translocation, it interacts with chloroplast components to induce hypersensitive cell death through chloroplast disruption, thereby contributing to plant stress responses.
Collapse
Affiliation(s)
- Yutaka Kodama
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | | |
Collapse
|
43
|
Wagner R, Pfannschmidt T. Eukaryotic transcription factors in plastids--Bioinformatic assessment and implications for the evolution of gene expression machineries in plants. Gene 2006; 381:62-70. [PMID: 16934950 DOI: 10.1016/j.gene.2006.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 06/01/2006] [Accepted: 06/19/2006] [Indexed: 10/24/2022]
Abstract
The expression of genes in higher plant chloroplasts includes a complex transcriptional regulation which can be explained only in part with the action of the actually known components of the transcriptional machinery. This suggests the existence of still unknown important regulatory factors which influence chloroplast transcription. In order to test if such factors could exist we performed in silico analyses of Arabidopsis genes encoding putative transcription factors looking for putative N-terminal chloroplast transit peptides in the amino acid sequences. Our results suggest that 48 (and maybe up to 100) transcription factors of eukaryotic origin are likely to be imported into plastids. None of them has been described yet. This set of transcription factors highly expands the actually known regulation capacity of the chloroplast transcription machinery and provides a possible explanation for the complex initiation patterns of chloroplast transcripts. As consequence of a massive import of eukaryotic transcription factors a comprehensive reconstruction of the ancient prokaryotic gene expression machinery must be assumed resulting in a novel compatible combination of eukaryotic and prokaryotic protein components. In turn, the opposite process has been induced in the nucleus by the integration of prokaryotic components of the plastid ancestor via its loss of genes during endosymbiosis. Thus, a mutual exchange of regulatory factors, i.e. transcription factors occurred which resulted in the unique signalling network of today's plants. An evolutionary model of how this could have emerged during endosymbiosis in a timely coordinated manner is proposed.
Collapse
Affiliation(s)
- Raik Wagner
- Junior Research Group Plant acclimation to environmental changes: Protein analysis by MS, Department for Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | | |
Collapse
|
44
|
Kim YK, Lee JY, Cho HS, Lee SS, Ha HJ, Kim S, Choi D, Pai HS. Inactivation of organellar glutamyl- and seryl-tRNA synthetases leads to developmental arrest of chloroplasts and mitochondria in higher plants. J Biol Chem 2005; 280:37098-106. [PMID: 16107332 DOI: 10.1074/jbc.m504805200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are key enzymes involved in protein translation, and both cytosolic and organellar forms are present in the genomes of eukaryotes. In this study, we investigated cellular effects of depletion of organellar forms of ARS using virus-induced gene silencing (VIGS) in Nicotiana benthamiana. VIGS of NbERS and NbSRS, which encode organellar GluRS and SerRS, respectively, resulted in a severe leaf-yellowing phenotype. The NbERS and NbSRS genes were ubiquitously expressed in plant tissues, and induced in response to light. Green fluorescent protein (GFP) fusion proteins of the full-length glutamyl-tRNA synthetase (ERS) and seryl-tRNA synthetase (SRS) of Arabidopsis and GFP fusions to the N-terminal extension of these proteins were all dualtargeted to chloroplasts and mitochondria. At the cell level, depletion of NbERS and NbSRS resulted in dramatically reduced numbers of chloroplasts with reduced sizes and chlorophyll content. The numbers and/or physiology of mitochondria were also severely affected. The abnormal chloroplasts lacked most of the thylakoid membranes and appeared to be degenerating, whereas some of them showed doublet morphology, indicating defective chloroplast division. Pulse-field gel electrophoresis analyses demonstrated that chloroplast DNA in subgenomic sizes is the predominant form in the abnormal chloroplasts. Interestingly, despite severe abnormalities in chloroplasts and mitochondria, expression of many nuclear genes encoding chloroplastor mitochondria-targeted proteins, and chlorophyll biosynthesis genes remained unchanged in the ERS and SRS VIGS lines. This is the first report to analyze the effect of ARS disruption on organelle development in plants.
Collapse
Affiliation(s)
- Yu-Kyung Kim
- Laboratory of Plant Genomics, Korea Research Institute of Bioscience and Biotechnology, Taejon 305-333, Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Terasawa K, Sato N. Visualization of plastid nucleoids in situ using the PEND-GFP fusion protein. PLANT & CELL PHYSIOLOGY 2005; 46:649-60. [PMID: 15746158 DOI: 10.1093/pcp/pci070] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Plastid DNA is a circular molecule of 120-150 kbp, which is organized into a protein-DNA complex called a nucleoid. Although various plastids other than chloroplasts exist, such as etioplasts, amyloplasts and chromoplasts, it is not easy to observe plastid nucleoids within the cells of many non-green tissues. The PEND (plastid envelope DNA-binding) protein is a DNA-binding protein in the inner envelope membrane of developing chloroplasts, and a DNA-binding domain called cbZIP is present at its N-terminus. We made various PEND-green fluorescent protein (GFP) fusion proteins using the cbZIP domains from various plants, and found that they were localized in the chloroplast nucleoids in transient expression in leaf protoplasts. In stable transformants of Arabidopsis thaliana, PEND-GFP fusion proteins were also localized in the nucleoids of various plastids. We have succeeded in visualizing plastid nucleoids in various intact tissues using this stable transformant. This technique is useful in root, flower and pollen, in which it had been difficult to observe plastid nucleoids. The relative arrangement of nucleoids within a chloroplast was kept unchanged when the chloroplast moved within a cell. During the division of plastid, nucleoids formed a network structure, which made possible equal partition of nucleoids.
Collapse
Affiliation(s)
- Kimihiro Terasawa
- Department of Molecular Biology, Faculty of Science, Saitama University, Sakura-ku, Saitama, 338-8570 Japan
| | | |
Collapse
|
46
|
Shiina T, Tsunoyama Y, Nakahira Y, Khan MS. Plastid RNA polymerases, promoters, and transcription regulators in higher plants. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:1-68. [PMID: 16157177 DOI: 10.1016/s0074-7696(05)44001-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Plastids are semiautonomous plant organelles exhibiting their own transcription-translation systems that originated from a cyanobacteria-related endosymbiotic prokaryote. As a consequence of massive gene transfer to nuclei and gene disappearance during evolution, the extant plastid genome is a small circular DNA encoding only ca. 120 genes (less than 5% of cyanobacterial genes). Therefore, it was assumed that plastids have a simple transcription-regulatory system. Later, however, it was revealed that plastid transcription is a multistep gene regulation system and plays a crucial role in developmental and environmental regulation of plastid gene expression. Recent molecular and genetic approaches have identified several new players involved in transcriptional regulation in plastids, such as multiple RNA polymerases, plastid sigma factors, transcription regulators, nucleoid proteins, and various signaling factors. They have provided novel insights into the molecular basis of plastid transcription in higher plants. This review summarizes state-of-the-art knowledge of molecular mechanisms that regulate plastid transcription in higher plants.
Collapse
Affiliation(s)
- Takashi Shiina
- Faculty of Human Environment, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | | | | | | |
Collapse
|
47
|
Ichikawa K, Sugita M, Imaizumi T, Wada M, Aoki S. Differential expression on a daily basis of plastid sigma factor genes from the moss Physcomitrella patens. Regulatory interactions among PpSig5, the circadian clock, and blue light signaling mediated by cryptochromes. PLANT PHYSIOLOGY 2004; 136:4285-98. [PMID: 15563615 PMCID: PMC535858 DOI: 10.1104/pp.104.053033] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 10/08/2004] [Accepted: 10/11/2004] [Indexed: 05/19/2023]
Abstract
The nuclear-encoded plastid sigma factors are supposed to be a regulatory subunit of the multisubunit bacteria-type plastid RNA polymerase. We studied here whether or not three genes, PpSig1, PpSig2, and PpSig5 encoding plastid sigma factors, are controlled by the circadian clock and/or by blue light signaling in the moss Physcomitrella patens. Among the three PpSig genes, only PpSig5 was clearly controlled by the circadian clock. In contrast to the differential regulation on a daily timescale, a pulse of blue light induced the expression of all the three PpSig genes. This induction was significantly reduced in a knockout mutant that lacked the blue light photoreceptor cryptochromes PpCRY1a and PpCRY1b, indicating that PpCRY1a and/or PpCRY1b mediate the blue light signal that induces the expression of the PpSig genes. In a daily cycle of 12-h blue light/12-h dark, the timing of peak expression of PpSig5 and a chloroplast gene psbD, encoding the D2 subunit of photosystem II, advanced in the cryptochrome mutant relative to those in the wild type, suggesting the presence of regulatory interactions among the expression of PpSig5 and psbD, the circadian clock, and the blue light signaling mediated by the cryptochrome(s).
Collapse
Affiliation(s)
- Kazuhiro Ichikawa
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
48
|
da Costa e Silva O, Lorbiecke R, Garg P, Müller L, Wassmann M, Lauert P, Scanlon M, Hsia AP, Schnable PS, Krupinska K, Wienand U. The Etched1 gene of Zea mays (L.) encodes a zinc ribbon protein that belongs to the transcriptionally active chromosome (TAC) of plastids and is similar to the transcription factor TFIIS. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:923-39. [PMID: 15165185 DOI: 10.1111/j.1365-313x.2004.02094.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Etched1 (et1) is a pleiotropic, recessive mutation of maize that causes fissured and cracked mature kernels and virescent seedlings. Microscopic examinations of the et1 phenotype revealed an aberrant plastid development in mutant kernels and mutant leaves. Here, we report on the cloning of the et1 gene by transposon tagging, the localization of the gene product in chloroplasts, and its putative function in the plastid transcriptional apparatus. Several alleles of Mutator (Mu)-induced et1 mutants, the et1-reference (et1-R) mutant, and Et1 wild-type were cloned and analyzed at the molecular level. Northern analyses with wild-type plants revealed that Et1 transcripts are present in kernels, leaves, and other types of tissue, and no Et1 expression could be detected in the et1 mutants analyzed. The ET1 protein is imported by chloroplasts and has been immunologically detected in transcriptionally active chromosome (TAC) fractions derived from chloroplasts. Accordingly, the relative transcriptional activity of TAC fractions was significantly reduced in chloroplasts of et1-R plants. ET1 is the first zinc ribbon (ZR) protein shown to be targeted to plastids. With regard to its localization and its striking structural similarity to the eukaryotic transcription elongation factor TFIIS, it is feasible that ET1 functions in plastid transcription elongation by reactivation of arrested RNA polymerases.
Collapse
Affiliation(s)
- Oswaldo da Costa e Silva
- Institut für Allgemeine Botanik und Botanischer Garten, Universität Hamburg, Ohnhorststr. 18, D-22 609 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hirata N, Yonekura D, Yanagisawa S, Iba K. Possible involvement of the 5'-flanking region and the 5'UTR of plastid accD gene in NEP-dependent transcription. PLANT & CELL PHYSIOLOGY 2004; 45:176-86. [PMID: 14988488 DOI: 10.1093/pcp/pch021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In many developmentally and functionally important higher plant plastid genes, expression depends on a specific nuclear-encoded RNA polymerase (NEP). Molecular mechanisms for NEP-mediated gene expression are poorly understood. We have improved a transient expression assay based on biolistics and the dual-luciferase reporter technique, which facilitated investigations into the regulation of plastid genes in vivo. We scrutinized the 5'-flanking region and the 5'-untranslated region (5'UTR) of accD, a plastid gene encoding a subunit of the prokaryotic-type acetyl-CoA carboxylase which is transcribed exclusively by NEP. The results indicated that two AT-rich sequences, one of them containing two overlapping YRTA-like motifs, were essential for accD expression in vivo. The results also revealed that the length of the 5'UTR rather than a particular sequence element was a determinant for the level of accD expression. Because transcripts accumulated in proportion to reporter enzyme activity and protein levels, and transcript degradation rates were independent of the nature of the 5'UTR, it was unlikely that the 5'UTR acts as a translational enhancer or a stabilizer of the transcripts. Therefore, the length of 5'UTR might be a factor contributing to the efficiency of NEP-dependent transcription in plastids.
Collapse
Affiliation(s)
- Norihiro Hirata
- Department of Biology, Faculty of Sciences, Kyushu University, Hakozaki, Fukuoka, 812-8581 Japan
| | | | | | | |
Collapse
|
50
|
Sakai A, Takano H, Kuroiwa T. Organelle Nuclei in Higher Plants: Structure, Composition, Function, and Evolution. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 238:59-118. [PMID: 15364197 DOI: 10.1016/s0074-7696(04)38002-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Plant cells have two distinct types of energy-converting organelles: plastids and mitochondria. These organelles have their own DNAs and are regarded as descendants of endosymbiotic prokaryotes. The organelle DNAs associate with various proteins to form compact DNA-protein complexes, which are referred to as organelle nuclei or nucleoids. Various functions of organelle genomes, such as DNA replication and transcription, are performed within these compact structures. Fluorescence microscopy using the DNA-specific fluorochrome 4',6-diamidino-2-phenylindole has played a pivotal role in establishing the concept of "organelle nuclei." This fluorochrome has also facilitated the isolation of morphologically intact organelle nuclei, which is indispensable for understanding their structure and composition. Moreover, development of an in vitro transcription?DNA synthesis system using isolated organelle nuclei has provided us with a means of measuring and analyzing the function of organelle nuclei. In addition to these morphological and biochemical approaches, genomics has also had a great impact on our ability to investigate the components of organelle nuclei. These analyses have revealed that organelle nuclei are not a vestige of the bacterial counterpart, but rather are a complex system established through extensive interaction between organelle and cell nuclear genomes during evolution. Extensive diversion or exchange during evolution is predicted to have occurred for several important structural proteins, such as major DNA-compacting proteins, and functional proteins, such as RNA and DNA polymerases, resulting in complex mechanisms to control the function of organelle genomes. Thus, organelle nuclei represent the most dynamic front of interaction between the three genomes (cell nuclear, plastid, and mitochondrial) constituting eukaryotic plant cells.
Collapse
Affiliation(s)
- Atsushi Sakai
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | | | | |
Collapse
|