1
|
The Chloroplast Envelope of Angiosperms Contains a Peptidoglycan Layer. Cells 2023; 12:cells12040563. [PMID: 36831230 PMCID: PMC9954125 DOI: 10.3390/cells12040563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Plastids in plants are assumed to have evolved from cyanobacteria as they have maintained several bacterial features. Recently, peptidoglycans, as bacterial cell wall components, have been shown to exist in the envelopes of moss chloroplasts. Phylogenomic comparisons of bacterial and plant genomes have raised the question of whether such structures are also part of chloroplasts in angiosperms. To address this question, we visualized canonical amino acids of peptidoglycan around chloroplasts of Arabidopsis and Nicotiana via click chemistry and fluorescence microscopy. Additional detection by different peptidoglycan-binding proteins from bacteria and animals supported this observation. Further Arabidopsis experiments with D-cycloserine and AtMurE knock-out lines, both affecting putative peptidoglycan biosynthesis, revealed a central role of this pathway in plastid genesis and division. Taken together, these results indicate that peptidoglycans are integral parts of plastids in the whole plant lineage. Elucidating their biosynthesis and further roles in the function of these organelles is yet to be achieved.
Collapse
|
2
|
Asgharzadeh P, Birkhold AI, Trivedi Z, Özdemir B, Reski R, Röhrle O. A NanoFE simulation-based surrogate machine learning model to predict mechanical functionality of protein networks from live confocal imaging. Comput Struct Biotechnol J 2020; 18:2774-2788. [PMID: 33101614 PMCID: PMC7559262 DOI: 10.1016/j.csbj.2020.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
Sub-cellular mechanics plays a crucial role in a variety of biological functions and dysfunctions. Due to the strong structure-function relationship in cytoskeletal protein networks, light can be shed on their mechanical functionality by investigating their structures. Here, we present a data-driven approach employing a combination of confocal live imaging of fluorescent tagged protein networks, in silico mechanical experiments and machine learning to investigate this relationship. Our designed image processing and nanoFE mechanical simulation framework resolves the structure and mechanical behaviour of cytoskeletal networks and the developed gradient boosting surrogate models linking network structure to its functionality. In this study, for the first time, we perform mechanical simulations of Filamentous Temperature Sensitive Z (FtsZ) complex protein networks with realistic network geometry depicting its skeletal functionality inside organelles (here, chloroplasts) of the moss Physcomitrella patens. Training on synthetically produced simulation data enables predicting the mechanical characteristics of FtsZ network purely based on its structural features (R2⩾0.93), therefore allowing to extract structural principles enabling specific mechanical traits of FtsZ, such as load bearing and resistance to buckling failure in case of large network deformation.
Collapse
Affiliation(s)
- Pouyan Asgharzadeh
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science (SC SimTech), Stuttgart, Germany
| | - Annette I Birkhold
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science (SC SimTech), Stuttgart, Germany
| | - Zubin Trivedi
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Bugra Özdemir
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany.,Cluster of Excellence livMatS @ FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, Freiburg, Germany
| | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science (SC SimTech), Stuttgart, Germany
| |
Collapse
|
3
|
Özdemir B, Asgharzadeh P, Birkhold AI, Mueller SJ, Röhrle O, Reski R. Cytological analysis and structural quantification of FtsZ1-2 and FtsZ2-1 network characteristics in Physcomitrella patens. Sci Rep 2018; 8:11165. [PMID: 30042487 PMCID: PMC6057934 DOI: 10.1038/s41598-018-29284-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/05/2018] [Indexed: 11/24/2022] Open
Abstract
Although the concept of the cytoskeleton as a cell-shape-determining scaffold is well established, it remains enigmatic how eukaryotic organelles adopt and maintain a specific morphology. The Filamentous Temperature Sensitive Z (FtsZ) protein family, an ancient tubulin, generates complex polymer networks, with striking similarity to the cytoskeleton, in the chloroplasts of the moss Physcomitrella patens. Certain members of this protein family are essential for structural integrity and shaping of chloroplasts, while others are not, illustrating the functional diversity within the FtsZ protein family. Here, we apply a combination of confocal laser scanning microscopy and a self-developed semi-automatic computational image analysis method for the quantitative characterisation and comparison of network morphologies and connectivity features for two selected, functionally dissimilar FtsZ isoforms, FtsZ1-2 and FtsZ2-1. We show that FtsZ1-2 and FtsZ2-1 networks are significantly different for 8 out of 25 structural descriptors. Therefore, our results demonstrate that different FtsZ isoforms are capable of generating polymer networks with distinctive morphological and connectivity features which might be linked to the functional differences between the two isoforms. To our knowledge, this is the first study to employ computational algorithms in the quantitative comparison of different classes of protein networks in living cells.
Collapse
Affiliation(s)
- Bugra Özdemir
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Pouyan Asgharzadeh
- Institute of Applied Mechanics, University of Stuttgart, Pfaffenwaldring 7, 70569, Stuttgart, Germany
- Stuttgart Center for Simulation Science (SimTech), University of Stuttgart, Pfaffenwaldring 5a, 70569, Stuttgart, Germany
| | - Annette I Birkhold
- Institute of Applied Mechanics, University of Stuttgart, Pfaffenwaldring 7, 70569, Stuttgart, Germany
| | - Stefanie J Mueller
- INRES - Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Oliver Röhrle
- Institute of Applied Mechanics, University of Stuttgart, Pfaffenwaldring 7, 70569, Stuttgart, Germany.
- Stuttgart Center for Simulation Science (SimTech), University of Stuttgart, Pfaffenwaldring 5a, 70569, Stuttgart, Germany.
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
- BIOSS - Centre for Biological Signalling Research, University of Freiburg, Schaenzlestr. 18, 79104, Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.
| |
Collapse
|
4
|
Asgharzadeh P, Özdemir B, Reski R, Röhrle O, Birkhold AI. Computational 3D imaging to quantify structural components and assembly of protein networks. Acta Biomater 2018; 69:206-217. [PMID: 29378323 DOI: 10.1016/j.actbio.2018.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/21/2017] [Accepted: 01/16/2018] [Indexed: 12/11/2022]
Abstract
Traditionally, protein structures have been described by the secondary structure architecture and fold arrangement. However, the relatively novel method of 3D confocal microscopy of fluorescent-protein-tagged networks in living cells allows resolving the detailed spatial organization of these networks. This provides new possibilities to predict network functionality, as structure and function seem to be linked at various scales. Here, we propose a quantitative approach using 3D confocal microscopy image data to describe protein networks based on their nano-structural characteristics. This analysis is constructed in four steps: (i) Segmentation of the microscopic raw data into a volume model and extraction of a spatial graph representing the protein network. (ii) Quantifying protein network gross morphology using the volume model. (iii) Quantifying protein network components using the spatial graph. (iv) Linking these two scales to obtain insights into network assembly. Here, we quantitatively describe the filamentous temperature sensitive Z protein network of the moss Physcomitrella patens and elucidate relations between network size and assembly details. Future applications will link network structure and functionality by tracking dynamic structural changes over time and comparing different states or types of networks, possibly allowing more precise identification of (mal) functions or the design of protein-engineered biomaterials for applications in regenerative medicine. STATEMENT OF SIGNIFICANCE Protein networks are highly complex and dynamic structures that play various roles in biological environments. Analyzing the detailed spatial structure of these networks may lead to new insight into biological functions and malfunctions. Here, we propose a tool set that extracts structural information at two scales of the protein network and allows therefore to address questions such as "how is the network built?" or "how networks grow?".
Collapse
|
5
|
Asgharzadeh P, Özdemir B, Müller SJ, Röhrle O, Reski R. Analysis of Physcomitrella Chloroplasts to Reveal Adaptation Principles Leading to Structural Stability at the Nano-Scale. BIOMIMETIC RESEARCH FOR ARCHITECTURE AND BUILDING CONSTRUCTION 2016. [DOI: 10.1007/978-3-319-46374-2_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Yang XY, Wang Y, Jiang WJ, Liu XL, Zhang XM, Yu HJ, Huang SW, Liu GQ. Characterization and expression profiling of cucumber kinesin genes during early fruit development: revealing the roles of kinesins in exponential cell production and enlargement in cucumber fruit. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4541-57. [PMID: 24023249 PMCID: PMC3808332 DOI: 10.1093/jxb/ert269] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rapid cell division and expansion in early fruit development are important phases for cucumber fruit yield and quality. Kinesin proteins are microtubule-based motors responsible for modulating cell division and enlargement. In this work, the candidate kinesin genes involved in rapid cell division and expansion during cucumber fruit development were investigated. The morphological and cellular changes during early fruit development were compared in four cucumber genotypes with varied fruit size. The correlation between the expression profiles of cucumber kinesin genes and cellular changes in fruit was investigated. Finally, the biochemical characteristics and subcellular localizations of three candidate kinesins were studied. The results clarified the morphological and cellular changes during early cucumber fruit development. This study found that CsKF2-CsKF6 were positively correlated with rapid cell production; CsKF1 and CsKF7 showed a strongly positive correlation with rapid cell expansion. The results also indicated that CsKF1 localized to the plasma membrane of fast-expanding fruit cells, that CsKF2 might play a role in fruit chloroplast division, and that CsKF3 is involved in the function or formation of phragmoplasts in fruit telophase cells. The results strongly suggest that specific fruit-enriched kinesins are specialized in their functions in rapid cell division and expansion during cucumber fruit development.
Collapse
Affiliation(s)
- Xue Yong Yang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * These authors contributed equally to this work
| | - Yan Wang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * These authors contributed equally to this work
| | - Wei Jie Jiang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- To whom correspondence should be addressed. E-mail: or /
| | - Xiao Ling Liu
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiao Meng Zhang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hong Jun Yu
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - San Wen Huang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Guo Qin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Breviario D, Gianì S, Morello L. Multiple tubulins: evolutionary aspects and biological implications. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:202-18. [PMID: 23662651 DOI: 10.1111/tpj.12243] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 05/05/2023]
Abstract
Plant tubulin is a dimeric protein that contributes to formation of microtubules, major intracellular structures that are involved in the control of fundamental processes such as cell division, polarity of growth, cell-wall deposition, intracellular trafficking and communications. Because it is a structural protein whose function is confined to the role of microtubule formation, tubulin may be perceived as an uninteresting gene product, but such a perception is incorrect. In fact, tubulin represents a key molecule for studying fundamental biological issues such as (i) microtubule evolution (also with reference to prokaryotic precursors and the formation of cytomotive filaments), (ii) protein structure with reference to the various biochemical features of members of the FstZ/tubulin superfamily, (iii) isoform variations contributed by the existence of multi-gene families and various kinds of post-translational modifications, (iv) anti-mitotic drug interactions and mode of action, (v) plant and cell symmetry, as determined using a series of tubulin mutants, (vi) multiple and sophisticated mechanisms of gene regulation, and (vii) intron molecular evolution. In this review, we present and discuss many of these issues, and offer an updated interpretation of the multi-tubulin hypothesis.
Collapse
Affiliation(s)
- Diego Breviario
- Istituto Biologia e Biotecnologia Agraria, Via Bassini 15, 20133 Milano, Italy.
| | | | | |
Collapse
|
8
|
Pyke KA. Divide and shape: an endosymbiont in action. PLANTA 2013; 237:381-7. [PMID: 22910876 DOI: 10.1007/s00425-012-1739-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/03/2012] [Indexed: 05/10/2023]
Abstract
The endosymbiotic evolution of the plastid within the host cell required development of a mechanism for efficient division of the plastid. Whilst a model for the mechanism of chloroplast division has been constructed, little is known of how other types of plastids divide, especially the proplastid, the progenitor of all plastid types in the cell. It has become clear that plastid shape is highly heterogeneous and dynamic, especially stromules. This article considers how such variation in morphology might be controlled and how such plastids might divide efficiently.
Collapse
Affiliation(s)
- Kevin A Pyke
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK.
| |
Collapse
|
9
|
Velikanov GA, Levanov VY, Belova LP, Ponomareva AA, Il’ina TM. Adjustable channel for diffusion between vacuoles of next cells: Vacuolar symplast. ACTA ACUST UNITED AC 2012. [DOI: 10.1134/s2079086412040093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Benmoussa M, Hamaker BR, Huang CP, Sherman DM, Weil CF, BeMiller JN. Elucidation of maize endosperm starch granule channel proteins and evidence for plastoskeletal structures in maize endosperm amyloplasts. J Cereal Sci 2010. [DOI: 10.1016/j.jcs.2010.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Abstract
Chloroplasts are the co-evolution product of three different genetic compartments. This review compiles reports about bacteria and various photosynthetically active eukaryotes that challenge our current view on the structure of chloroplasts. It highlights their structurally dynamic nature and their differences in various groups of the Archaeplastida. Based on these reports, it argues in favor of an evolutionary view on bacterial as well as on plastid cell biology.
Collapse
Affiliation(s)
- Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany.
| |
Collapse
|
12
|
Martin A, Lang D, Hanke ST, Mueller SJ, Sarnighausen E, Vervliet-Scheebaum M, Reski R. Targeted gene knockouts reveal overlapping functions of the five Physcomitrella patens FtsZ isoforms in chloroplast division, chloroplast shaping, cell patterning, plant development, and gravity sensing. MOLECULAR PLANT 2009; 2:1359-72. [PMID: 19946616 PMCID: PMC2782794 DOI: 10.1093/mp/ssp076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 08/07/2009] [Indexed: 05/20/2023]
Abstract
Chloroplasts and bacterial cells divide by binary fission. The key protein in this constriction division is FtsZ, a self-assembling GTPase similar to eukaryotic tubulin. In prokaryotes, FtsZ is almost always encoded by a single gene, whereas plants harbor several nuclear-encoded FtsZ homologs. In seed plants, these proteins group in two families and all are exclusively imported into plastids. In contrast, the basal land plant Physcomitrella patens, a moss, encodes a third FtsZ family with one member. This protein is dually targeted to the plastids and to the cytosol. Here, we report on the targeted gene disruption of all ftsZ genes in P. patens. Subsequent analysis of single and double knockout mutants revealed a complex interaction of the different FtsZ isoforms not only in plastid division, but also in chloroplast shaping, cell patterning, plant development, and gravity sensing. These results support the concept of a plastoskeleton and its functional integration into the cytoskeleton, at least in the moss P. patens.
Collapse
Affiliation(s)
- Anja Martin
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Sebastian T. Hanke
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (bioss), University of Freiburg, Alberststr. 19, 79104 Freiburg, Germany
| | - Stefanie J.X. Mueller
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Alberststr. 19A, 79104 Freiburg, Germany
| | - Eric Sarnighausen
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Marco Vervliet-Scheebaum
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (bioss), University of Freiburg, Alberststr. 19, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Alberststr. 19A, 79104 Freiburg, Germany
| |
Collapse
|
13
|
Martin A, Lang D, Heckmann J, Zimmer AD, Vervliet-Scheebaum M, Reski R. A uniquely high number of ftsZ genes in the moss Physcomitrella patens. PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11:744-750. [PMID: 19689782 DOI: 10.1111/j.1438-8677.2008.00174.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Plant FtsZ proteins are encoded by two small nuclear gene families (FtsZ1 and FtsZ2) and are involved in chloroplast division. From the moss Physcomitrella patens, four FtsZ proteins, two in each nuclear gene family, have been characterised and described so far. In the recently sequenced P. patens genome, we have now found a fifth ftsZ gene. This novel gene has a genomic structure similar to PpftsZ1-1. According to phylogenetic analysis, the encoded protein is a member of the FtsZ1 family, while PpFtsZ1-2, together with an orthologue from Selaginella moellendorffii, forms a separate clade. Further, this new gene is expressed in different gametophytic tissues and the encoded protein forms filamentous networks in chloroplasts, is found in stromules, and acts in plastid division. Based on all these results, we have renamed the PpFtsZ proteins of family 1 and suggest the existence of a third FtsZ family. No species is known to encode more FtsZ proteins per haploid genome than P. patens.
Collapse
Affiliation(s)
- A Martin
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Vishnyakov IE, Borchsenius SN, Basovskii YI, Levitskii SA, Lazarev VN, Snigirevskaya ES, Komissarchik YY. Localization of division protein FtsZ in Mycoplasma hominis. ACTA ACUST UNITED AC 2009. [DOI: 10.1134/s1990519x09030079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Norris V, Root-Bernstein R. The eukaryotic cell originated in the integration and redistribution of hyperstructures from communities of prokaryotic cells based on molecular complementarity. Int J Mol Sci 2009; 10:2611-2632. [PMID: 19582221 PMCID: PMC2705508 DOI: 10.3390/ijms10062611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/25/2009] [Accepted: 06/03/2009] [Indexed: 11/16/2022] Open
Abstract
In the "ecosystems-first" approach to the origins of life, networks of non-covalent assemblies of molecules (composomes), rather than individual protocells, evolved under the constraints of molecular complementarity. Composomes evolved into the hyperstructures of modern bacteria. We extend the ecosystems-first approach to explain the origin of eukaryotic cells through the integration of mixed populations of bacteria. We suggest that mutualism and symbiosis resulted in cellular mergers entailing the loss of redundant hyperstructures, the uncoupling of transcription and translation, and the emergence of introns and multiple chromosomes. Molecular complementarity also facilitated integration of bacterial hyperstructures to perform cytoskeletal and movement functions.
Collapse
Affiliation(s)
- Vic Norris
- AMMIS Laboratory, EA 3829, University of Rouen, Mont Saint Aignan, 76821 France; E-Mail:
(V.N.)
| | - Robert Root-Bernstein
- Department of Physiology, 2174 BPS, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
16
|
Hanson MR, Sattarzadeh A. Dynamic morphology of plastids and stromules in angiosperm plants. PLANT, CELL & ENVIRONMENT 2008; 31:646-57. [PMID: 18088332 DOI: 10.1111/j.1365-3040.2007.01768.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Labelling of plastids with fluorescent proteins has revealed the diversity of their sizes and shapes in different tissues of vascular plants. Stromules, stroma-filled tubules comprising thin extensions of the stroma surrounded by the double envelope membrane, have been observed to emanate from all major types of plastid, though less common on chloroplasts. In some tissue types, stromules are highly dynamic, forming, shrinking, attaching, releasing and fragmenting. Stromule formation is negatively affected by treatment of tissue with cytoskeletal inhibitors. Plastids can be connected by stromules, through which green fluorescent protein (GFP) and fluorescently tagged chloroplast protein complexes have been observed to flow. Within the highly viscous stroma, proteins traffic by diffusion as well as by an active process of directional travel, whose mechanism is unknown. In addition to exchanging materials between plastids, stromules may also serve to increase the surface area of the envelope for import and export, reduce diffusion distance between plastids and other organelles for exchange of materials, and anchor the plastid onto attachment points for proper positioning with the plant cell. Future studies should reveal how these functions may affect plants in adapting to the challenges of a changing environment.
Collapse
Affiliation(s)
- Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853, USA.
| | | |
Collapse
|
17
|
Suppanz I, Sarnighausen E, Reski R. An integrated physiological and genetic approach to the dynamics of FtsZ targeting and organisation in a moss, Physcomitrella patens. PROTOPLASMA 2007; 232:1-9. [PMID: 18094924 DOI: 10.1007/s00709-007-0284-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 07/15/2007] [Indexed: 05/25/2023]
Abstract
Plant FtsZ (filamentous temperature-sensitive Z) proteins are regarded as descendants of prokaryotic cell division proteins. We could show previously that four FtsZ isoforms of the moss Physcomitrella patens assemble into, and interact in, distinct structures inside the chloroplasts and in the cytosol. Their organisation and localisation patterns indicate an involvement in chloroplast and cell division and in the maintenance of chloroplast shape and integrity. The cellular processes of chloroplast division and maintenance of chloroplast shape were disturbed either by application of the beta-lactam antibiotic ampicillin or by a mutation that presumably affects signal transduction of the plant hormone cytokinin. When cells of these plants were analysed microscopically, there was no indication that cytosolic functions of FtsZ proteins were affected. Furthermore, FtsZ proteins continued to build three-dimensional plastoskeleton networks, even in considerably enlarged or malformed chloroplasts. On the other hand, macrochloroplast formation promoted the localisation of FtsZ proteins in filaments that emanate from the plastids and, therefore, most likely represent stromules. Annular FtsZ structures that are regarded as essential components of the division apparatus were absent from macrochloroplasts of ampicillin-treated cells. Thus, the distribution of FtsZ proteins after inhibition of chloroplast division further strengthens our hypothesis on the functions of distinct isoforms. In addition, the results provide further insight into the regulation of protein targeting and dynamics of plastoskeletal elements.
Collapse
Affiliation(s)
- I Suppanz
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Federal Republic of Germany
| | | | | |
Collapse
|
18
|
Uniacke J, Zerges W. Photosystem II assembly and repair are differentially localized in Chlamydomonas. THE PLANT CELL 2007; 19:3640-54. [PMID: 18055604 PMCID: PMC2174875 DOI: 10.1105/tpc.107.054882] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 11/07/2007] [Accepted: 11/08/2007] [Indexed: 05/19/2023]
Abstract
Many proteins of the photosynthesis complexes are encoded by the genome of the chloroplast and synthesized by bacterium-like ribosomes within this organelle. To determine where proteins are synthesized for the de novo assembly and repair of photosystem II (PSII) in the chloroplast of Chlamydomonas reinhardtii, we used fluorescence in situ hybridization, immunofluorescence staining, and confocal microscopy. These locations were defined as having colocalized chloroplast mRNAs encoding PSII subunits and proteins of the chloroplast translation machinery specifically under conditions of PSII subunit synthesis. The results revealed that the synthesis of the D1 subunit for the repair of photodamaged PSII complexes occurs in regions of the chloroplast with thylakoids, consistent with the current model. However, for de novo PSII assembly, PSII subunit synthesis was detected in discrete regions near the pyrenoid, termed T zones (for translation zones). In two PSII assembly mutants, unassembled D1 subunits and incompletely assembled PSII complexes localized around the pyrenoid, where we propose that they mark an intermediate compartment of PSII assembly. These results reveal a novel chloroplast compartment that houses de novo PSII biogenesis and the regulated transport of newly assembled PSII complexes to thylakoid membranes throughout the chloroplast.
Collapse
Affiliation(s)
- James Uniacke
- Biology Department, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | | |
Collapse
|
19
|
Norris V, den Blaauwen T, Cabin-Flaman A, Doi RH, Harshey R, Janniere L, Jimenez-Sanchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Saier M, Skarstad K. Functional taxonomy of bacterial hyperstructures. Microbiol Mol Biol Rev 2007; 71:230-53. [PMID: 17347523 PMCID: PMC1847379 DOI: 10.1128/mmbr.00035-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The levels of organization that exist in bacteria extend from macromolecules to populations. Evidence that there is also a level of organization intermediate between the macromolecule and the bacterial cell is accumulating. This is the level of hyperstructures. Here, we review a variety of spatially extended structures, complexes, and assemblies that might be termed hyperstructures. These include ribosomal or "nucleolar" hyperstructures; transertion hyperstructures; putative phosphotransferase system and glycolytic hyperstructures; chemosignaling and flagellar hyperstructures; DNA repair hyperstructures; cytoskeletal hyperstructures based on EF-Tu, FtsZ, and MreB; and cell cycle hyperstructures responsible for DNA replication, sequestration of newly replicated origins, segregation, compaction, and division. We propose principles for classifying these hyperstructures and finally illustrate how thinking in terms of hyperstructures may lead to a different vision of the bacterial cell.
Collapse
Affiliation(s)
- Vic Norris
- Department of Science, University of Rouen, 76821 Mont Saint Aignan Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pyke K. Plastid biogenesis and differentiation. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0226] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Gremillon L, Kiessling J, Hause B, Decker EL, Reski R, Sarnighausen E. Filamentous temperature-sensitive Z (FtsZ) isoforms specifically interact in the chloroplasts and in the cytosol of Physcomitrella patens. THE NEW PHYTOLOGIST 2007; 176:299-310. [PMID: 17888112 DOI: 10.1111/j.1469-8137.2007.02169.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plant filamentous temperature-sensitive Z (FtsZ) proteins have been reported to be involved in biological processes related to plastids. However, the precise functions of distinct isoforms are still elusive. Here, the intracellular localization of the FtsZ1-1 isoform in a moss, Physcomitrella patens, was examined. Furthermore, the in vivo interaction behaviour of four distinct FtsZ isoforms was investigated. Localization studies of green fluorescent protein (GFP)-tagged FtsZ1-1 and fluorescence resonance energy transfer (FRET) analyses employing all dual combinations of four FtsZ isoforms were performed in transient protoplast transformation assays. FtsZ1-1 is localized to network structures inside the chloroplasts and exerts influence on plastid division. Interactions between FtsZ isoforms occur in distinct ordered structures in the chloroplasts as well as in the cytosol. The results expand the view of the involvement of Physcomitrella FtsZ proteins in chloroplast and cell division. It is concluded that duplication and diversification of ftsZ genes during plant evolution were the main prerequisites for the successful remodelling and integration of the prokaryotic FtsZ-dependent division mechanism into the cellular machineries of distinct complex processes in plants.
Collapse
Affiliation(s)
- Louis Gremillon
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Justine Kiessling
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Bettina Hause
- Leibniz Institute of Plant Biochemistry, Department of Secondary Metabolism, Weinberg 3, 06120 Halle/Saale, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Eric Sarnighausen
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
22
|
Klint J, Rasmussen U, Bergman B. FtsZ may have dual roles in the filamentous cyanobacterium Nostoc/Anabaena sp. strain PCC 7120. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:11-8. [PMID: 16603273 DOI: 10.1016/j.jplph.2005.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 08/23/2005] [Indexed: 05/08/2023]
Abstract
The cellular and subcellular localization of FtsZ, a bacterial cell division protein, were investigated in vegetative cells of the filamentous cyanobacterium Nostoc/Anabaena sp. strain PCC 7120. We show by using immunogold-transmission electron microscopy that FtsZ forms a ring structure in a filamentous cyanobacterium, similar to observations in unicellular bacteria and chloroplasts. This finding, that the FtsZ in a filamentous cyanobacterium accumulates at the growing edge of the division septa leading to the formation of the typical prokaryotic Z-ring arrangement, is novel. Moreover, an apparent cytoplasmic distribution of FtsZ occurred in vegetative cells. During the transition of vegetative cells into terminally differentiated heterocysts the cytoplasmic FtsZ levels decreased substantially. These findings suggest a conserved function of FtsZ among prokaryotes, including filamentous cyanobacteria with cell differentiation capacity, and possibly a role of FtsZ as a cytoskeletal component in the cytoplasm.
Collapse
Affiliation(s)
- Johan Klint
- Department of Botany, Stockholm University, Lilla Frescativägen 5, SE-106 91 Stockholm, Sweden.
| | | | | |
Collapse
|
23
|
Lohse S, Hause B, Hause G, Fester T. FtsZ characterization and immunolocalization in the two phases of plastid reorganization in arbuscular mycorrhizal roots of Medicago truncatula. PLANT & CELL PHYSIOLOGY 2006; 47:1124-34. [PMID: 16854943 DOI: 10.1093/pcp/pcj083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We have analyzed plastid proliferation in root cortical cells of Medicago truncatula colonized by arbuscular mycorrhizal (AM) fungi by concomitantly labeling fungal structures, root plastids, a protein involved in plastid division (FtsZ1) and a protein involved in the biosynthesis of AM-specific apocarotenoids. Antibodies directed against FtsZ1 have been generated after heterologous expression of the respective gene from M. truncatula and characterization of the gene product. Analysis of enzymatic activity and assembly experiments showed similar properties of this protein when compared with the bacterial proteins. Immunocytological experiments allowed two phases of fungal and plastid development to be clearly differentiated and plastid division to be monitored during these phases. In the early phase of arbuscule development, lens-shaped plastids, intermingled with the arbuscular branches, divide frequently. Arbuscule degradation, in contrast, is characterized by large, tubular plastids, decorated by a considerable number of FtsZ division rings.
Collapse
Affiliation(s)
- Swanhild Lohse
- Leibniz Institute of Plant Biochemistry, Department of Secondary Metabolism, Weinberg 3, D-06120 Halle (Saale), Germany
| | | | | | | |
Collapse
|
24
|
Abstract
Binary fission of many prokaryotes as well as some eukaryotic organelles depends on the FtsZ protein, which self-assembles into a membrane-associated ring structure early in the division process. FtsZ is homologous to tubulin, the building block of the microtubule cytoskeleton in eukaryotes. Recent advances in genomics and cell-imaging techniques have paved the way for the remarkable progress in our understanding of fission in bacteria and organelles.
Collapse
Affiliation(s)
- William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin, Houston, Texas 77030, USA.
| |
Collapse
|
25
|
Kiessling J, Martin A, Gremillon L, Rensing SA, Nick P, Sarnighausen E, Decker EL, Reski R. Dual targeting of plastid division protein FtsZ to chloroplasts and the cytoplasm. EMBO Rep 2005; 5:889-94. [PMID: 15319781 PMCID: PMC1299139 DOI: 10.1038/sj.embor.7400238] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 07/22/2004] [Accepted: 07/28/2004] [Indexed: 11/09/2022] Open
Abstract
FtsZ is a filament-forming protein that assembles into a ring at the division site of prokaryotic cells. As FtsZ and tubulin share several biochemical and structural similarities, FtsZ is regarded as the ancestor of tubulin. Chloroplasts--the descendants of endosymbiotic bacteria within plant cells--also harbour FtsZ. In contrast to eubacteria, plants have several different FtsZ isoforms. So far, these isoforms have only been implicated with filamentous structures, rings and networks, inside chloroplasts. Here, we demonstrate that a novel FtsZ isoform in the moss Physcomitrella patens is located not only in chloroplasts but also in the cytoplasm, assembling into rings in both cell compartments. These findings comprise the first report on cytosolic localization of a eukaryotic FtsZ isoform, and indicate that this protein might connect cell and organelle division at least in moss.
Collapse
Affiliation(s)
- Justine Kiessling
- Plant Biotechnology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Anja Martin
- Plant Biotechnology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Louis Gremillon
- Plant Biotechnology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Stefan A Rensing
- Plant Biotechnology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Peter Nick
- Molecular Cell Biology, University of Karlsruhe, Kaiserstrasse 1, D-76128 Karlsruhe, Germany
| | - Eric Sarnighausen
- Plant Biotechnology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Eva L Decker
- Plant Biotechnology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
- Tel: +49 761 203 6969; Fax: +49 761 203 6967; E-mail:
| |
Collapse
|
26
|
Rensing SA, Kiessling J, Reski R, Decker EL. Diversification of ftsZ during early land plant evolution. J Mol Evol 2004; 58:154-62. [PMID: 15042335 DOI: 10.1007/s00239-003-2535-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2003] [Accepted: 08/04/2003] [Indexed: 11/29/2022]
Abstract
The plastid division proteins FtsZ are encoded by a small nuclear gene family in land plants. Although it has been shown for some of the gene products that they are imported into plastids and function in plastid division, the evolution and function of this gene family and their products remain to be unraveled. Here we present two new ftsZ genes from the moss Physcomitrella patens and compare the genomic structure of members of the two plant ftsZ gene families. Comparison of sequence features and phylogenetic analyses confirm the presence of two clusters of paralogues in land plants and demonstrate that these genes were duplicated before the divergence of mosses, ferns and seed plants.
Collapse
Affiliation(s)
- Stefan A Rensing
- University of Freiburg, Plant Biotechnology, Sonnenstr. 5, D-79104 Freiburg, Germany,
| | | | | | | |
Collapse
|
27
|
Motta MCM, Picchi GFA, Palmié-Peixoto IV, Rocha MR, de Carvalho TMU, Morgado-Diaz J, de Souza W, Goldenberg S, Fragoso SP. The Microtubule Analog Protein, FtsZ, in the Endosymbiont of Trypanosomatid Protozoa. J Eukaryot Microbiol 2004; 51:394-401. [PMID: 15352321 DOI: 10.1111/j.1550-7408.2004.tb00386.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Blastocrithidia culicis and Crithidia deanei are trypanosomatids that harbor an endosymbiotic bacterium in their cytoplasm. In prokaryotes, numerous proteins are essential for cell division, such as FtsZ, which is encoded by filament-forming temperature-sensitive (fts) genes. FtsZ is the prokaryotic homolog of eukaryotic tubulin and is present in bacteria and archaea, and has also been identified in mitochondria and chloroplasts. FtsZ plays a key role in the initiation of cytokinesis. It self-assembles into the Z ring, which establishes the division plane during septation. In this study, immunoblotting analysis using a FtsZ polyclonal antibody, revealed a 40-kDa band characteristic of FtsZ in endosymbiont fractions and in whole trypanosomatid homogenates, but not in whole cell extracts of aposymbiotic strains. Confocal microscopy and ultrastructural analysis revealed a specific and dispersed labeling over the endosymbiont. Bars and ring-like structures, which are suggestive of the presence of Z-rings, were never observed, even during the division of the symbiont. This peculiar distribution of FtsZ may represent an arrangement of cytoskeleton protein intermediate between prokaryotic and eukaryotic cells. The endosymbiont ftsz gene was completely sequenced after amplification of DNA from symbiont-bearing trypanosomatids or from pure endosymbiont fractions, using PCR and specific primers. The sequences obtained from the endosymbionts from C. deanei and B. culicis were very similar, and were most closely related to bacteria from the genus Pseudomonas.
Collapse
Affiliation(s)
- Maria Cristina M Motta
- Instituto de Biofísica Carlos Chagas Filho, Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The structural elucidation of clear but distant homologs of actin and tubulin in bacteria and GFP labeling of these proteins promises to reinvigorate the field of prokaryotic cell biology. FtsZ (the tubulin homolog) and MreB/ParM (the actin homologs) are indispensable for cellular tasks that require the cell to accurately position molecules, similar to the function of the eukaryotic cytoskeleton. FtsZ is the organizing molecule of bacterial cell division and forms a filamentous ring around the middle of the cell. Many molecules, including MinCDE, SulA, ZipA, and FtsA, assist with this process directly. Recently, genes much more similar to tubulin than to FtsZ have been identified in Verrucomicrobia. MreB forms helices underneath the inner membrane and probably defines the shape of the cell by positioning transmembrane and periplasmic cell wall-synthesizing enzymes. Currently, no interacting proteins are known for MreB and its relatives that help these proteins polymerize or depolymerize at certain times and places inside the cell. It is anticipated that MreB-interacting proteins exist in analogy to the large number of actin binding proteins in eukaryotes. ParM (a plasmid-borne actin homolog) is directly involved in pushing certain single-copy plasmids to the opposite poles by ParR/parC-assisted polymerization into double-helical filaments, much like the filaments formed by actin, F-actin. Mollicutes seem to have developed special systems for cell shape determination and motility, such as the fibril protein in Spiroplasma.
Collapse
Affiliation(s)
- Jan Löwe
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom.
| | | | | |
Collapse
|
29
|
Rutherford G, Tanurdzic M, Hasebe M, Banks JA. A systemic gene silencing method suitable for high throughput, reverse genetic analyses of gene function in fern gametophytes. BMC PLANT BIOLOGY 2004; 4:6. [PMID: 15090074 PMCID: PMC419348 DOI: 10.1186/1471-2229-4-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 04/16/2004] [Indexed: 05/18/2023]
Abstract
BACKGROUND Ceratopteris richardii is a useful experimental system for studying gametophyte development and sexual reproduction in plants. However, few tools for cloning mutant genes or disrupting gene function exist for this species. The feasibility of systemic gene silencing as a reverse genetics tool was examined in this study. RESULTS Several DNA constructs targeting a Ceratopteris protoporphyrin IX magnesium chelatase (CrChlI) gene that is required for chlorophyll biosynthesis were each introduced into young gametophytes by biolistic delivery. Their transient expression in individual cells resulted in a colorless cell phenotype that affected most cells of the mature gametophyte, including the meristem and gametangia. The colorless phenotype was associated with a 7-fold decrease in the abundance of the endogenous transcript. While a construct designed to promote the transient expression of a CrChlI double stranded, potentially hairpin-forming RNA was found to be the most efficient in systemically silencing the endogenous gene, a plasmid containing the CrChlI cDNA insert alone was sufficient to induce silencing. Bombarded, colorless hermaphroditic gametophytes produced colorless embryos following self-fertilization, demonstrating that the silencing signal could be transmitted through gametogenesis and fertilization. Bombardment of young gametophytes with constructs targeting the Ceratopteris filamentous temperature sensitive (CrFtsZ) and uroporphyrin dehydrogenase (CrUrod) genes also produced the expected mutant phenotypes. CONCLUSION A method that induces the systemic silencing of target genes in the Ceratopteris gametophyte is described. It provides a simple, inexpensive and rapid means to test the functions of genes involved in gametophyte development, especially those involved in cellular processes common to all plants.
Collapse
Affiliation(s)
- George Rutherford
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Milos Tanurdzic
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Genetics Program, Purdue University, West Lafayette, IN 47907, USA
| | | | - Jo Ann Banks
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Genetics Program, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
30
|
Miyagishima SY, Nishida K, Kuroiwa T. An evolutionary puzzle: chloroplast and mitochondrial division rings. TRENDS IN PLANT SCIENCE 2003; 8:432-438. [PMID: 13678910 DOI: 10.1016/s1360-1385(03)00193-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Consistent with their bacterial origin, chloroplasts and primitive mitochondria retain a FtsZ ring for division. However, chloroplasts and mitochondria have lost most of the proteins required for bacterial division other than FtsZ and certain homologues of the Min proteins, but they do contain plastid and mitochondrion dividing rings, which were recently shown to be distinct from the FtsZ ring. Moreover, recent studies have revealed that rings of the eukaryote-specific dynamin-related family of GTPases regulate the division of chloroplasts and mitochondria, and these proteins emerged early in eukaryotic evolution. These findings suggest that the division of chloroplasts and primitive mitochondria involve very similar systems, consisting of an amalgamation of rings from bacteria and eukaryotes.
Collapse
Affiliation(s)
- Shin-ya Miyagishima
- Department of Life Science, College of Science, Rikkyo (St Paul's) University, 3-34-1 Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | | | | |
Collapse
|
31
|
Kwok EY, Hanson MR. Microfilaments and microtubules control the morphology and movement of non-green plastids and stromules in Nicotiana tabacum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:16-26. [PMID: 12834398 DOI: 10.1046/j.1365-313x.2003.01777.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plastid stromules are stroma-filled tubular extensions of the plastid envelope membrane. These structures, which have been observed in a number of species, allow transfer of proteins between interconnected plastids. The dramatic shape of stromules and their dynamic movement within the cell provide an opportunity to study the control of morphology and motion of plastids. Using inhibitors of actin and tubulin, we found that both microfilaments and microtubules affect the shape and motility of non-green plastids. Actin and tubulin control plastid and stromule structure by independent mechanisms, while plastid movement is promoted by microfilaments but inhibited by microtubules. The presence or absence of stromules does not affect the motility of plastids. Photobleaching experiments indicate that actin and tubulin are not necessary for the bulk of green fluorescent protein (GFP) movement between plastids via stromules.
Collapse
Affiliation(s)
- Ernest Y Kwok
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
32
|
Vicente M, Löwe J. Ring, helix, sphere and cylinder: the basic geometry of prokaryotic cell division. EMBO Rep 2003; 4:655-60. [PMID: 12835751 PMCID: PMC1326324 DOI: 10.1038/sj.embor.embor885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Accepted: 05/21/2003] [Indexed: 11/08/2022] Open
Abstract
Workshop on Manufacturing Bacteria: Design, Production and Assembly of Cell Division Components
Collapse
Affiliation(s)
- Miguel Vicente
- Centro Nacional de Biotecnología, CSIC Campus de Cantoblanco, E-28049 Madrid, Spain.
| | | |
Collapse
|
33
|
|
34
|
Hunding A, Ebersbach G, Gerdes K. A mechanism for ParB-dependent waves of ParA, a protein related to DNA segregation during cell division in prokaryotes. J Mol Biol 2003; 329:35-43. [PMID: 12742016 DOI: 10.1016/s0022-2836(03)00401-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prokaryotic plasmids encode partitioning (par) loci involved in segregation of DNA to daughter cells at cell division. A functional fusion protein consisting of Walker-type ParA ATPase and green fluorescent protein (Gfp) oscillates back and forth within nucleoid regions with a wave period of about 20 minutes. A model is discussed which is based on cooperative non-specific binding of ParA to the nucleoid, and local ParB initiated generation of ParA oligomer degradation products, which act autocatalytically on the degradation reaction. The model yields self-initiated spontaneous pattern formation, based on Turing's mechanism, and these patterns are destroyed by the degradation products, only to initiate a new pattern at the opposite nucleoid region. A recurrent wave thus emerges. This may be a particular example of a more general class of pattern forming mechanisms, based on protein oligomerization upon a template (membranes, DNA a.o.) with resulting enhanced NTPase function in the oligomer state, which may bring the oligomer into an unstable internal state. An effector initializes destabilization of the oligomer to yield degradation products, which act as seeds for further degradation in an autocatalytic process. We discuss this mechanism in relation to recent models for MinDE oscillations in E.coli and to microtubule degradation in mitosis. The study points to an ancestral role for the presented pattern types in generating bipolarity in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Axel Hunding
- Chemistry Laboratory III, Department of Chemistry C116, H. C. Ørsted Institute, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark.
| | | | | |
Collapse
|
35
|
Wang D, Kong D, Wang Y, Hu Y, He Y, Sun J. Isolation of two plastid division ftsZ genes from Chlamydomonas reinhardtii and its evolutionary implication for the role of FtsZ in plastid division. JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:1115-1116. [PMID: 12598582 DOI: 10.1093/jxb/erg117] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In order to elucidate the origin of the plastid division gene ftsZ in green plant lineage, and to understand the significance of this divergence for the function of FtsZ proteins in plants, two full-length cDNAs (accession numbers AF449446 and AB084236) were isolated from Chlamydomonas reinhardtii, a base species of green plant lineage. A phylogenetic analysis based on amino acid sequences of eukaryotic FtsZs reveals that an ancient duplication of the ftsZ gene occurred after the endosymbiotic event. The ancient duplication implies that two ftsZ families might play an indispensable role at the early endosymbiotic stage.
Collapse
Affiliation(s)
- Dong Wang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | | | | | | | | | | |
Collapse
|
36
|
Balmer Y, Koller A, del Val G, Manieri W, Schürmann P, Buchanan BB. Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc Natl Acad Sci U S A 2003; 100:370-5. [PMID: 12509500 PMCID: PMC140980 DOI: 10.1073/pnas.232703799] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2002] [Indexed: 01/13/2023] Open
Abstract
Thioredoxins are small multifunctional redox active proteins widely if not universally distributed among living organisms. In chloroplasts, two types of thioredoxins (f and m) coexist and play central roles in regulating enzyme activity. Reduction of thioredoxins in chloroplasts is catalyzed by an iron-sulfur disulfide enzyme, ferredoxin-thioredoxin reductase, that receives photosynthetic electrons from ferredoxin, thereby providing a link between light and enzyme activity. Chloroplast thioredoxins function in the regulation of the Calvin cycle and associated processes. However, the relatively small number of known thioredoxin-linked proteins (about 16) raised the possibility that others remain to be identified. To pursue this opportunity, we have mutated thioredoxins f and m, such that the buried cysteine of the active disulfide has been replaced by serine or alanine, and bound them to affinity columns to trap target proteins of chloroplast stroma. The covalently linked proteins were eluted with DTT, separated on gels, and identified by mass spectrometry. This approach led to the identification of 15 potential targets that function in 10 chloroplast processes not known to be thioredoxin linked. Included are proteins that seem to function in plastid-to-nucleus signaling and in a previously unrecognized type of oxidative regulation. Approximately two-thirds of these targets contained conserved cysteines. We also identified 11 previously unknown and 9 confirmed target proteins that are members of pathways known to be regulated by thioredoxin. In contrast to results with individual enzyme assays, specificity for thioredoxin f or m was not observed on affinity chromatography.
Collapse
Affiliation(s)
- Yves Balmer
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley 94720, USA
| | | | | | | | | | | |
Collapse
|
37
|
Fulgosi H, Gerdes L, Westphal S, Glockmann C, Soll J. Cell and chloroplast division requires ARTEMIS. Proc Natl Acad Sci U S A 2002; 99:11501-6. [PMID: 12169665 PMCID: PMC123285 DOI: 10.1073/pnas.172032599] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2002] [Indexed: 11/18/2022] Open
Abstract
Chloroplasts are endosymbiotic organelles of cyanobacterial origin. It seems reasonable to assume that cell division and organelle division still share general principles, as shown for the FtsZ proteins. However, further components involved in this process are largely unknown. Here we describe ARTEMIS, a nuclear-encoded protein of chloroplast inner envelope membranes that is required for organelle division. ARTEMIS consists of three distinct modules: an N-terminal receptor-like region, a centrally positioned glycine-rich stretch containing a nucleoside triphosphate-binding site, and a C-terminal YidC/Oxa1p/Alb3 protein translocase-like domain. Analysis of Arabidopsis En-1 transposon mutants as well as ARTEMIS antisense plants revealed chloroplasts arrested in the late stages of division. Chloroplasts showed clearly separated and distinct multiple thylakoid systems, whereas the final organelle fission remained unaccomplished. Inactivation of a cyanobacterial gene with sequence similarity to the YidC/Oxa1p/Alb3-like domain of ARTEMIS resulted in aberrant cell division, which could be rescued by the Arabidopsis protein. ARTEMIS represents a so-far-unrecognized link between prokaryotic cell fission and chloroplast division.
Collapse
Affiliation(s)
- Hrvoje Fulgosi
- Botanisches Institut der Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany.
| | | | | | | | | |
Collapse
|