1
|
Fujiwara T, Hirooka S, Yamashita S, Yagisawa F, Miyagishima SY. Development of a rapamycin-inducible protein-knockdown system in the unicellular red alga Cyanidioschyzon merolae. PLANT PHYSIOLOGY 2024; 196:77-94. [PMID: 38833589 PMCID: PMC11376382 DOI: 10.1093/plphys/kiae316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
An inducible protein-knockdown system is highly effective for investigating the functions of proteins and mechanisms essential for the survival and growth of organisms. However, this technique is not available in photosynthetic eukaryotes. The unicellular red alga Cyanidioschyzon merolae possesses a very simple cellular and genomic architecture and is genetically tractable but lacks RNA interference machinery. In this study, we developed a protein-knockdown system in this alga. The constitutive system utilizes the destabilizing activity of the FK506-binding protein 12 (FKBP12)-rapamycin-binding (FRB) domain of human target of rapamycin kinase or its derivatives to knock down target proteins. In the inducible system, rapamycin treatment induces the heterodimerization of the human FRB domain fused to the target proteins with the human FKBP fused to S-phase kinase-associated protein 1 or Cullin 1, subunits of the SCF E3 ubiquitin ligase. This results in the rapid degradation of the target proteins through the ubiquitin-proteasome pathway. With this system, we successfully degraded endogenous essential proteins such as the chloroplast division protein dynamin-related protein 5B and E2 transcription factor, a regulator of the G1/S transition, within 2 to 3 h after rapamycin administration, enabling the assessment of resulting phenotypes. This rapamycin-inducible protein-knockdown system contributes to the functional analysis of genes whose disruption leads to lethality.
Collapse
Affiliation(s)
- Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka 411-8540, Japan
| | - Shunsuke Hirooka
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Shota Yamashita
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Fumi Yagisawa
- Research Facility Center, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka 411-8540, Japan
| |
Collapse
|
2
|
Erasmus SW, Sohaib M, Revilla I, Vivar-Quintana AM, Giancoli SJ. Markers for meat provenance and authenticity with an account of its defining factors and quality characteristics - a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7027-7084. [PMID: 38545907 DOI: 10.1002/jsfa.13492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/08/2024] [Accepted: 03/28/2024] [Indexed: 05/09/2024]
Abstract
Provenance is becoming increasingly important in meat supply chains as it lends products higher perceived quality. However, its precise definition and interpretation along with its associated characteristics factors have remained somewhat elusive. This review meticulously defines meat provenance while dissecting the essential factors and associated quality attributes that constitute its essence and are subsequently employed to establish pertinent markers for provenance. Meat provenance emerges as a multi-dimensional construct stemming from the adept management of a constellation of factors relating to geographical origin, farm production system, traceability, and authenticity. Through intricate interactions, these factors unveil innate originality that not only forges a distinct reputation but also imparts a unique typicity to the meat product. Gaining insights into a meat product's provenance becomes attainable by scrutinizing its pertinent composition and organoleptic quality traits. Trace elements and stable isotopes stand out as provenance markers, forging a direct connection to both geographical origin and dietary sources. While somewhat less direct in linkage, other markers such as plant biomarkers, fatty acid composition, pH levels, flavour and aromatic compounds along with organoleptic characteristics contribute to the overall understanding of provenance. Additionally, the identification of animal species and breeds serves as key markers, particularly in the context of protected geographical indications. The study findings are useful for the various stakeholders of how the information for meat provenance can be linked with intrinsic and extrinsic factors for meat quality and protecting the integrity of the supply chain with special reference to traceability and authenticity. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Muhammad Sohaib
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Isabel Revilla
- Food Technology Area, Universidad de Salamanca, Escuela Politécnica Superior de Zamora, Zamora, Spain
| | - Ana María Vivar-Quintana
- Food Technology Area, Universidad de Salamanca, Escuela Politécnica Superior de Zamora, Zamora, Spain
| | | |
Collapse
|
3
|
Parcharidou E, Dücker R, Beffa R. Genome-wide study of glutathione transferases and their regulation in flufenacet susceptible and resistant black-grass (Alopecurus myosuroides Huds.). PEST MANAGEMENT SCIENCE 2024; 80:3035-3046. [PMID: 38323683 DOI: 10.1002/ps.8012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Glutathione transferases (GSTs) are enzymes with a wide range of functions, including herbicide detoxification. Up-regulation of GSTs and their detoxification activity enables the grass weed black-grass (Alopecurus myosuroides Huds.) to metabolize the very-long-chain fatty acid synthesis inhibitor flufenacet and other herbicides leading to multiple herbicide resistance. However, the genomic organization and regulation of GSTs genes is still poorly understood. RESULTS In this genome-wide study the location and expression of 115 GSTs were investigated using a recently published black-grass genome. Particularly, the most abundant GSTs of class tau and phi were typically clustered and often followed similar expression patterns but possessed divergent upstream regulatory regions. Similarities were found in the promoters of the most up-regulated GSTs, which are located next to each other in a cluster. The binding motif of the E2F/DP transcription factor complex in the promoter of an up-regulated GST was identical in susceptible and resistant plants, however, adjacent sequences differed. This led to a stronger binding of proteins to the motif of the susceptible plant, indicating repressor activity. CONCLUSIONS This study constitutes the first analysis dealing with the genomic investigation of GST genes found in black-grass and their transcriptional regulation. It highlights the complexity of the evolution of GSTs in black-grass, their duplication and divergence over time. The large number of GSTs allows weeds to detoxify a broad spectrum of herbicides. Ultimately, more research is needed to fully elucidate the regulatory mechanisms of GST expression. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Evlampia Parcharidou
- Division of Plant Pathology and Crop Protection, Georg-August University Göttingen, Göttingen, Germany
| | - Rebecka Dücker
- Division of Plant Pathology and Crop Protection, Georg-August University Göttingen, Göttingen, Germany
| | - Roland Beffa
- Senior Scientist Consultant, Liederbach am Taunus, Germany
| |
Collapse
|
4
|
Singh D, Banerjee G, Verma N, Sinha AK. MAP kinases may mediate regulation of the cell cycle in rice by E2F2 phosphorylation. FEBS Lett 2023; 597:2993-3009. [PMID: 37843487 DOI: 10.1002/1873-3468.14753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023]
Abstract
E2F is the key transcription factor that determines the proliferative status of cells by regulating the G1/S phase of the cell cycle. In this study, we show that in rice (Oryza sativa), OsE2F2 is a phosphorylation target of MAP kinases. The MAP kinases OsMPK3, OsMPK4, and OsMPK6 interact with and phosphorylate OsE2F2. Next, we determined the serine and threonine residues that could play a role in the phosphorylation of OsE2F2. Subsequently, our study suggests a possible link between MAP kinase-mediated OsE2F2 phosphorylation and its impact on DNA proliferation in the roots of rice seedlings. Finally, we found positive feedback regulation of OsMPK4 by OsE2F2. Therefore, our study hints at the potential impact of MAP kinase signaling on the cell cycle of rice plants.
Collapse
Affiliation(s)
- Dhanraj Singh
- National Institute of Plant Genome Research, Delhi, New Delhi, India
| | - Gopal Banerjee
- National Institute of Plant Genome Research, Delhi, New Delhi, India
| | - Neetu Verma
- National Institute of Plant Genome Research, Delhi, New Delhi, India
| | | |
Collapse
|
5
|
Ge Y, Li F, He Y, Cao Y, Guo W, Hu G, Liu J, Fu S. L-arginine stimulates the proliferation of mouse mammary epithelial cells and the development of mammary gland in pubertal mice by activating the GPRC6A/PI3K/AKT/mTOR signalling pathway. J Anim Physiol Anim Nutr (Berl) 2022; 106:1383-1395. [PMID: 35616019 DOI: 10.1111/jpn.13730] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
Abstract
Amino acids have been shown to affect the development of mammary gland (MG). However, it is unclear whether L-arginine promotes the development of pubertal MG. Therefore, our study aims to explore the effect of L-arginine on the development of MG in pubertal mice. To investigate its internal mechanism of action, we will use mouse mammary epithelial cells (mMECs) line. Whole-mount staining showed that L-arginine can promote the extension of MG duct. In vitro, 0.4 mM L-arginine could activate the G protein-coupled receptor family C, group 6, subtype A (GPRC6A)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway and increase the phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4EBP1) to promote the synthesis of cell cycle regulatory protein D1 (Cyclin D1), leading to the dissociation of the retinoblastoma tumour suppressor protein (Rb)-E2F1 transcription factor (E2F1) complex in mMECs and releasing E2F1 to promote cell proliferation. Furthermore, GPRC6A was knocked down or inhibition of the PI3K/AKT/mTOR signalling pathway with corresponding inhibitors completely abolished the arginine-induced promotion of mMECs proliferation. In vivo, it was further confirmed that 0.1% L-arginine can activate the PI3K/AKT/mTOR signalling pathway in the MG of pubertal mice. These results were able to indicate that L-arginine stimulates the development of MG in pubertal mice through the GPRC6A/PI3K/AKT/mTOR signalling pathway.
Collapse
Affiliation(s)
- Yusong Ge
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Feng Li
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yuan He
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yu Cao
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Wenjin Guo
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Guiqiu Hu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Juxiong Liu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shoupeng Fu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Niacin stimulates EPH4EV mammary epithelial cell proliferation and mammary gland development in pubertal mice through activation of AKT/mTOR and ERK1/2 signaling pathways. Cell Tissue Res 2021; 384:313-324. [PMID: 33576879 DOI: 10.1007/s00441-020-03355-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/18/2020] [Indexed: 12/27/2022]
Abstract
Previous studies have shown the effects of vitamins on the development of the mammary gland. However, the role of niacin in this process has not been reported. Therefore, the aim of this study is to investigate the effects of niacin on mammary gland development in pubertal mice and to use a mouse mammary epithelial cell line to study the underlying mechanism. The results showed that niacin could activate the AKT/mTOR and ERK signaling pathways and increase phosphorylation of 4EBP1 to promote the synthesis of cell proliferation markers, leading to the dissociation of the Rb-E2F1 complex in mMECs. In addition, 0.5% niacin promoted mammary duct development, increased the expression of cyclin D1/D3 and PCNA and activated Akt/mTOR and ERK1/2 in the mammary glands of pubertal mice. These results strongly suggest that niacin stimulates mammary gland development in pubertal mice through the Akt/mTOR and ERK1/2 signaling pathways.
Collapse
|
7
|
Fambrini M, Pugliesi C. The Dynamic Genetic-Hormonal Regulatory Network Controlling the Trichome Development in Leaves. PLANTS (BASEL, SWITZERLAND) 2019; 8:E253. [PMID: 31357744 PMCID: PMC6724107 DOI: 10.3390/plants8080253] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
Abstract
Plant trichomes are outgrowths developed from an epidermal pavement cells of leaves and other organs. Trichomes (also called 'hairs') play well-recognized roles in defense against insect herbivores, forming a physical barrier that obstructs insect movement and mediating chemical defenses. In addition, trichomes can act as a mechanosensory switch, transducing mechanical stimuli (e.g., insect movement) into physiological signals, helping the plant to respond to insect attacks. Hairs can also modulate plant responses to abiotic stresses, such as water loss, an excess of light and temperature, and reflect light to protect plants against UV radiation. The structure of trichomes is species-specific and this trait is generally related to their function. These outgrowths are easily analyzed and their origin represents an outstanding subject to study epidermal cell fate and patterning in plant organs. In leaves, the developmental control of the trichomatous complement has highlighted a regulatory network based on four fundamental elements: (i) genes that activate and/or modify the normal cell cycle of epidermal pavement cells (i.e., endoreduplication cycles); (ii) transcription factors that create an activator/repressor complex with a central role in determining cell fate, initiation, and differentiation of an epidermal cell in trichomes; (iii) evidence that underlines the interplay of the aforesaid complex with different classes of phytohormones; (iv) epigenetic mechanisms involved in trichome development. Here, we reviewed the role of genes in the development of trichomes, as well as the interaction between genes and hormones. Furthermore, we reported basic studies about the regulation of the cell cycle and the complexity of trichomes. Finally, this review focused on the epigenetic factors involved in the initiation and development of hairs, mainly on leaves.
Collapse
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy.
| |
Collapse
|
8
|
Negative regulator of E2F transcription factors links cell cycle checkpoint and DNA damage repair. Proc Natl Acad Sci U S A 2018; 115:E3837-E3845. [PMID: 29610335 DOI: 10.1073/pnas.1720094115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA damage poses a serious threat to genome integrity and greatly affects growth and development. To maintain genome stability, all organisms have evolved elaborate DNA damage response mechanisms including activation of cell cycle checkpoints and DNA repair. Here, we show that the DNA repair protein SNI1, a subunit of the evolutionally conserved SMC5/6 complex, directly links these two processes in Arabidopsis SNI1 binds to the activation domains of E2F transcription factors, the key regulators of cell cycle progression, and represses their transcriptional activities. In turn, E2Fs activate the expression of SNI1, suggesting that E2Fs and SNI1 form a negative feedback loop. Genetically, overexpression of SNI1 suppresses the phenotypes of E2F-overexpressing plants, and loss of E2F function fully suppresses the sni1 mutant, indicating that SNI1 is necessary and sufficient to inhibit E2Fs. Altogether, our study revealed that SNI1 is a negative regulator of E2Fs and plays dual roles in DNA damage responses by linking cell cycle checkpoint and DNA repair.
Collapse
|
9
|
The evolutionary history of the E2F and DEL genes in Viridiplantae. Mol Phylogenet Evol 2016; 99:225-234. [PMID: 27033948 DOI: 10.1016/j.ympev.2016.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
The E2 promoter binding factor (E2F) proteins are present in almost all eukaryotic organisms and are essential to control several processes, such as the cell cycle progression, cell division, DNA replication, and apoptosis. The E2F family comprises two different types of proteins: the typical E2Fs and atypical E2Fs, which differ structurally and have specific functions. The E2F gene family was described for the first time in plants in 1999, and since then several studies have focused on the functional aspects, but the evolutionary history of this gene family is still unknown. Here, we investigated the evolutionary history of the E2F gene family in plants. Our findings suggest that E2F proteins arose early after the emergence of the eukaryotic species, while DEL proteins appear to have arisen before the metazoan and plants origin probably through a partial duplication of an ancient E2F protein. Our data also suggest that E2Fs activators and repressors appeared twice during evolution, once in the metazoan lineage and again in the embryophyte lineage.
Collapse
|
10
|
Harashima H, Sugimoto K. Integration of developmental and environmental signals into cell proliferation and differentiation through RETINOBLASTOMA-RELATED 1. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:95-103. [PMID: 26799131 DOI: 10.1016/j.pbi.2015.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 05/23/2023]
Abstract
Plants continuously form new organs during post-embryonic development, thus progression of the proliferative cell cycle and subsequent transition into differentiation must be tightly controlled by developmental and environmental cues. Recent studies have begun to uncover how cell proliferation and cell differentiation are coordinated at the molecular level through tight transcriptional regulation of cell cycle and/or developmental regulators. Accumulating evidence suggests that RETINOBLASTOMA-RELATED 1 (RBR1), the Arabidopsis homolog of the human tumor suppressor Retinoblastoma (Rb), functions as a molecular hub linking cell proliferation, differentiation, and environmental response. In this review we will discuss recent findings on cell cycle regulation, highlighting the emerging roles of RBR1 as a key integrator of internal differentiation cues and external stimuli into the cell cycle machinery.
Collapse
Affiliation(s)
- Hirofumi Harashima
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
11
|
de la Paz Sanchez M, Aceves-García P, Petrone E, Steckenborn S, Vega-León R, Álvarez-Buylla ER, Garay-Arroyo A, García-Ponce B. The impact of Polycomb group (PcG) and Trithorax group (TrxG) epigenetic factors in plant plasticity. THE NEW PHYTOLOGIST 2015; 208:684-694. [PMID: 26037337 DOI: 10.1111/nph.13486] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/25/2015] [Indexed: 06/04/2023]
Abstract
Current advances indicate that epigenetic mechanisms play important roles in the regulatory networks involved in plant developmental responses to environmental conditions. Hence, understanding the role of such components becomes crucial to understanding the mechanisms underlying the plasticity and variability of plant traits, and thus the ecology and evolution of plant development. We now know that important components of phenotypic variation may result from heritable and reversible epigenetic mechanisms without genetic alterations. The epigenetic factors Polycomb group (PcG) and Trithorax group (TrxG) are involved in developmental processes that respond to environmental signals, playing important roles in plant plasticity. In this review, we discuss current knowledge of TrxG and PcG functions in different developmental processes in response to internal and environmental cues and we also integrate the emerging evidence concerning their function in plant plasticity. Many such plastic responses rely on meristematic cell behavior, including stem cell niche maintenance, cellular reprogramming, flowering and dormancy as well as stress memory. This information will help to determine how to integrate the role of epigenetic regulation into models of gene regulatory networks, which have mostly included transcriptional interactions underlying various aspects of plant development and its plastic response to environmental conditions.
Collapse
Affiliation(s)
- Maria de la Paz Sanchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), 3er Circuito Ext Junto a J. Botánico, Ciudad Universitaria, México, DF 04510, Mexico
| | - Pamela Aceves-García
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), 3er Circuito Ext Junto a J. Botánico, Ciudad Universitaria, México, DF 04510, Mexico
| | - Emilio Petrone
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), 3er Circuito Ext Junto a J. Botánico, Ciudad Universitaria, México, DF 04510, Mexico
| | - Stefan Steckenborn
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), 3er Circuito Ext Junto a J. Botánico, Ciudad Universitaria, México, DF 04510, Mexico
| | - Rosario Vega-León
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), 3er Circuito Ext Junto a J. Botánico, Ciudad Universitaria, México, DF 04510, Mexico
| | - Elena R Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), 3er Circuito Ext Junto a J. Botánico, Ciudad Universitaria, México, DF 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), 3er Circuito Ext Junto a J. Botánico, Ciudad Universitaria, México, DF 04510, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), 3er Circuito Ext Junto a J. Botánico, Ciudad Universitaria, México, DF 04510, Mexico
| |
Collapse
|
12
|
Sun X, Ling S, Lu Z, Ouyang YD, Liu S, Yao J. OsNF-YB1, a rice endosperm-specific gene, is essential for cell proliferation in endosperm development. Gene 2014; 551:214-21. [PMID: 25178525 DOI: 10.1016/j.gene.2014.08.059] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/19/2014] [Accepted: 08/28/2014] [Indexed: 12/23/2022]
Abstract
Cell cycle regulators are crucial for normal endosperm development and seed size determination. However, how the cell cycle related genes regulate endosperm development remains unclear. In this study, we reported a rice Nuclear Factor Y (NF-Y) gene OsNF-YB1, which was also identified as an endosperm-specific gene. Transcriptional profiling and promoter analysis revealed that OsNF-YB1 was highly expressed at the early stages of rice endosperm development (5-7 DAP, days after pollination). Repression of OsNF-YB1 resulted in differential expression of the genes in cell cycle pathway, which caused abnormal seeds with defected embryo and endosperm. Basic cytological analysis demonstrated that the reduced endosperm cell numbers disintegrated with the development of those abnormal seeds in OsNF-YB1 RNAi plants. Taken together, these results suggested that the endosperm-specific gene OsNF-YB1 might be a cell cycle regulator and played a role in maintaining the endosperm cell proliferation.
Collapse
Affiliation(s)
- Xiaocong Sun
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng Ling
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhanhua Lu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi-Dan Ouyang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shasha Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Tank JG, Pandya RV, Thaker VS. Phytohormones in regulation of the cell division and endoreduplication process in the plant cell cycle. RSC Adv 2014. [DOI: 10.1039/c3ra45367g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
14
|
Choi CM, Gray WM, Mooney S, Hellmann H. Composition, roles, and regulation of cullin-based ubiquitin e3 ligases. THE ARABIDOPSIS BOOK 2014; 12:e0175. [PMID: 25505853 PMCID: PMC4262284 DOI: 10.1199/tab.0175] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Due to their sessile nature, plants depend on flexible regulatory systems that allow them to adequately regulate developmental and physiological processes in context with environmental cues. The ubiquitin proteasome pathway, which targets a great number of proteins for degradation, is cellular tool that provides the necessary flexibility to accomplish this task. Ubiquitin E3 ligases provide the needed specificity to the pathway by selectively binding to particular substrates and facilitating their ubiquitylation. The largest group of E3 ligases known in plants is represented by CULLIN-REALLY INTERESTING NEW GENE (RING) E3 ligases (CRLs). In recent years, a great amount of knowledge has been generated to reveal the critical roles of these enzymes across all aspects of plant life. This review provides an overview of the different classes of CRLs in plants, their specific complex compositions, the variety of biological processes they control, and the regulatory steps that can affect their activities.
Collapse
Affiliation(s)
| | | | | | - Hanjo Hellmann
- Washington State University, Pullman, Washington
- Address correspondence to
| |
Collapse
|
15
|
YAMASAKI S, SHIGETO H, ASHIHARA Y, NOGUCHI N. Continuous Long-term UV-B Irradiation Reduces Division and Expansion of Epidermal Cells in True Leaves, but Accelerates Developmental Stages Such as True Leaf Unfolding and Male Flower Bud Production in Cucumber (Cucumis sativus L.) Seedlings. ACTA ACUST UNITED AC 2014. [DOI: 10.2525/ecb.52.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Zhang T, Wang X, Lu Y, Cai X, Ye Z, Zhang J. Genome-wide analysis of the cyclin gene family in tomato. Int J Mol Sci 2013; 15:120-40. [PMID: 24366066 PMCID: PMC3907801 DOI: 10.3390/ijms15010120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 11/18/2022] Open
Abstract
Cyclins play important roles in cell division and cell expansion. They also interact with cyclin-dependent kinases to control cell cycle progression in plants. Our genome-wide analysis identified 52 expressed cyclin genes in tomato. Phylogenetic analysis of the deduced amino sequences of tomato and Arabidopsis cyclin genes divided them into 10 types, A-, B-, C-, D-, H-, L-, T-, U-, SDS- and J18. Pfam analysis indicated that most tomato cyclins contain a cyclin-N domain. C-, H- and J18 types only contain a cyclin-C domain, and U-type cyclins contain another potential cyclin domain. All of the cyclin genes are distributed throughout the tomato genome except for chromosome 8, and 30 of them were found to be segmentally duplicated; they are found on the duplicate segments of chromosome 1, 2, 3, 4, 5, 6, 10, 11 and 12, suggesting that tomato cyclin genes experienced a mass of segmental duplication. Quantitative real-time polymerase chain reaction analysis indicates that the expression patterns of tomato cyclin genes were significantly different in vegetative and reproductive stages. Transcription of most cyclin genes can be enhanced or repressed by exogenous application of gibberellin, which implies that gibberellin maybe a direct regulator of cyclin genes. The study presented here may be useful as a guide for further functional research on tomato cyclins.
Collapse
Affiliation(s)
- Tingyan Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; E-Mails: (T.Z.); (X.W.); (Y.L.); (X.C.); (Z.Y.)
| | - Xin Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; E-Mails: (T.Z.); (X.W.); (Y.L.); (X.C.); (Z.Y.)
| | - Yongen Lu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; E-Mails: (T.Z.); (X.W.); (Y.L.); (X.C.); (Z.Y.)
| | - Xiaofeng Cai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; E-Mails: (T.Z.); (X.W.); (Y.L.); (X.C.); (Z.Y.)
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; E-Mails: (T.Z.); (X.W.); (Y.L.); (X.C.); (Z.Y.)
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; E-Mails: (T.Z.); (X.W.); (Y.L.); (X.C.); (Z.Y.)
| |
Collapse
|
17
|
Cheng Y, Cao L, Wang S, Li Y, Shi X, Liu H, Li L, Zhang Z, Fowke LC, Wang H, Zhou Y. Downregulation of multiple CDK inhibitor ICK/KRP genes upregulates the E2F pathway and increases cell proliferation, and organ and seed sizes in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:642-55. [PMID: 23647236 DOI: 10.1111/tpj.12228] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/22/2013] [Accepted: 04/30/2013] [Indexed: 05/03/2023]
Abstract
The ICK/KRP cyclin-dependent kinase (CDK) inhibitors are important plant cell cycle factors sharing only limited similarity with the metazoan CIP/KIP family of CDK inhibitors. Little is known about the specific functions of different ICK/KRP genes in planta. In this study, we created double and multiple mutants from five single Arabidopsis ICK/KRP T-DNA mutants, and used a set of 20 lines for the functional investigation of the important gene family. There were gradual increases in CDK activity from single to multiple mutants, indicating that ICK/KRPs act as CDK inhibitors under normal physiological conditions in plants. Whereas lower-order mutants showed no morphological phenotypes, the ick1 ick2 ick6 ick7 and ick1 ick2 ick5 ick6 ick7 mutants had a slightly altered leaf shape. The quintuple mutant had larger cotyledons, leaves, petals and seeds than the wild-type control. At the cellular level, the ICK/KRP mutants had more but smaller cells in all the organs examined. These phenotypic effects became more apparent as more ICK/KRPs were downregulated, suggesting that to a large extent ICK/KRPs function in plants redundantly in a dosage-dependent manner. Analyses also revealed increased expression of E2F-dependent genes, and elevated RBR1 as well as an increased level of phospho-RBB1 protein in the quintuple mutant. Thus, downregulation of multiple ICK/KRP genes increases CDK activity, upregulates the E2F pathway and stimulates cell proliferation, resulting in increased cell numbers, and larger organs and seeds.
Collapse
Affiliation(s)
- Yan Cheng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lu Z, Huang X, Ouyang Y, Yao J. Genome-wide identification, phylogenetic and co-expression analysis of OsSET gene family in rice. PLoS One 2013; 8:e65426. [PMID: 23762371 PMCID: PMC3676427 DOI: 10.1371/journal.pone.0065426] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/23/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND SET domain is responsible for the catalytic activity of histone lysine methyltransferases (HKMTs) during developmental process. Histone lysine methylation plays a crucial and diverse regulatory function in chromatin organization and genome function. Although several SET genes have been identified and characterized in plants, the understanding of OsSET gene family in rice is still very limited. METHODOLOGY/PRINCIPAL FINDINGS In this study, a systematic analysis was performed and revealed the presence of at least 43 SET genes in rice genome. Phylogenetic and structural analysis grouped SET proteins into five classes, and supposed that the domains out of SET domain were significant for the specific of histone lysine methylation, as well as the recognition of methylated histone lysine. Based on the global microarray, gene expression profile revealed that the transcripts of OsSET genes were accumulated differentially during vegetative and reproductive developmental stages and preferentially up or down-regulated in different tissues. Cis-elements identification, co-expression analysis and GO analysis of expression correlation of 12 OsSET genes suggested that OsSET genes might be involved in cell cycle regulation and feedback. CONCLUSIONS/SIGNIFICANCE This study will facilitate further studies on OsSET family and provide useful clues for functional validation of OsSETs.
Collapse
Affiliation(s)
- Zhanhua Lu
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, PR China
| | - Xiaolong Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, PR China
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
19
|
Lario LD, Ramirez-Parra E, Gutierrez C, Spampinato CP, Casati P. ANTI-SILENCING FUNCTION1 proteins are involved in ultraviolet-induced DNA damage repair and are cell cycle regulated by E2F transcription factors in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:1164-77. [PMID: 23596192 PMCID: PMC3668047 DOI: 10.1104/pp.112.212837] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/16/2013] [Indexed: 05/19/2023]
Abstract
ANTI-SILENCING FUNCTION1 (ASF1) is a key histone H3/H4 chaperone that participates in a variety of DNA- and chromatin-related processes, including DNA repair, where chromatin assembly and disassembly are of primary relevance. Information concerning the role of ASF1 proteins in the post-ultraviolet (UV) response in higher plants is currently limited. In Arabidopsis (Arabidopsis thaliana), an initial analysis of in vivo localization of ASF1A and ASF1B indicates that both proteins are mainly expressed in proliferative tissues. In silico promoter analysis identified ASF1A and ASF1B as potential targets of E2F corresponds to Adenovirus E2 Binding Factor. [corrected]. These observations were experimentally validated, both in vitro, by electrophoretic mobility shift assays, and in vivo, by chromatin immunoprecipitation assays and expression analysis using transgenic plants with altered levels of different E2F transcription factors. These data suggest that ASF1A and ASF1B are regulated during cell cycle progression through E2F transcription factors. In addition, we found that ASF1A and ASF1B are associated with the UV-B-induced DNA damage response in Arabidopsis. Transcript levels of ASF1A and ASF1B were increased following UV-B treatment. Consistent with a potential role in UV-B response, RNA interference-silenced plants of both genes showed increased sensitivity to UV-B compared with wild-type plants. Finally, by coimmunoprecipitation analysis, we found that ASF1 physically interacts with amino-terminal acetylated histones H3 and H4 and with acetyltransferases of the Histone Acetyl Transferase subfamily, which are known to be involved in cell cycle control and DNA repair, among other functions. Together, we provide evidence that ASF1A and ASF1B are regulated by cell cycle progression and are involved in DNA repair after UV-B irradiation.
Collapse
|
20
|
Hirano H, Shinmyo A, Sekine M. Both negative and positive G1 cell cycle regulators undergo proteasome-dependent degradation during sucrose starvation in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2011; 6:1394-6. [PMID: 22019639 PMCID: PMC3258074 DOI: 10.4161/psb.6.9.16877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/12/2011] [Accepted: 06/14/2011] [Indexed: 05/23/2023]
Abstract
The proteasome pathway regulates many aspects of biological processes in plants, such as plant hormone signaling, light responses, the circadian clock and regulation of cell division. Key cell-cycle regulatory proteins including B-type cyclins, Cdc6, cyclin-dependent kinase inhibitors and E2Fc undergo proteasome-dependent degradation. We used the proteasome inhibitor MG132 to show that proteolysis of Arabidopsis RETINOBLASTOMA-RELATED 1 (AtRBR1) and three E2Fs is mediated by the proteasome pathway during sucrose starvation in Arabidopsis suspension MM2d cells. We found previously that estrogen-inducible RNAi-mediated downregulation of AtRBR1 leads to a higher frequency of arrest in G2 phase, instead of G1-phase arrest in the uninduced control, after sucrose starvation. Degradation of not only negative (AtRBR1 and E2Fc) but also positive (E2Fa and E2Fb) cell cycle regulators after sucrose starvation may be required for arrest in G1 phase, when cells integrate a variety of nutritional, hormonal and developmental signals to decide whether or not to commit to entry into the cell cycle.
Collapse
Affiliation(s)
- Hiroto Hirano
- Graduate School of Biological Sciences; Nara Institute of Science and Technology; Ikoma, Nara Japan
| | - Atsuhiko Shinmyo
- Graduate School of Biological Sciences; Nara Institute of Science and Technology; Ikoma, Nara Japan
| | - Masami Sekine
- Department of Bioproduction Science; Faculty of Bioresources and Environmental Sciences; Ishikawa Prefectural University; Nonoichimachi, Ishikawa Japan
| |
Collapse
|
21
|
Biggar KK, Storey KB. Perspectives in cell cycle regulation: lessons from an anoxic vertebrate. Curr Genomics 2011; 10:573-84. [PMID: 20514219 PMCID: PMC2817888 DOI: 10.2174/138920209789503905] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 08/04/2009] [Accepted: 08/06/2009] [Indexed: 01/07/2023] Open
Abstract
The ability of an animal, normally dependent on aerobic respiration, to suspend breathing and enter an anoxic state for long term survival is clearly a fascinating feat, and has been the focus of numerous biochemical studies. When anoxia tolerant turtles are faced with periods of oxygen deprivation, numerous physiological and biochemical alterations take place in order to facilitate vital reductions in ATP consumption. Such strategies include reversible post-translational modifications as well as the implementation of translation and transcription controls facilitating metabolic depression. Although it is clear that anoxic survival relies on the suppression of ATP consuming processes, the state of the cell cycle in anoxia tolerant vertebrates remain elusive. Several anoxia tolerant invertebrate and embryonic vertebrate models display cell cycle arrest when presented with anoxic stress. Despite this, the cell cycle has not yet been characterized for anoxia tolerant turtles. Understanding how vertebrates respond to anoxia can have important clinical implications. Uncontrollable cellular proliferation and hypoxic tumor progression are inescapably linked in vertebrate tissues. Consequentially, the molecular mechanisms controlling these processes have profound clinical consequences. This review article will discuss the theory of cell cycle arrest in anoxic vertebrates and more specifically, the control of the retinoblastoma pathway, the molecular markers of cell cycle arrest, the activation of checkpoint kinases, and the possibility of translational controls implemented by microRNAs.
Collapse
Affiliation(s)
- Kyle K Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | | |
Collapse
|
22
|
Hirano H, Shinmyo A, Sekine M. Arabidopsis G1 cell cycle proteins undergo proteasome-dependent degradation during sucrose starvation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:687-691. [PMID: 21444209 DOI: 10.1016/j.plaphy.2011.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 02/27/2011] [Indexed: 05/30/2023]
Abstract
Although sucrose availability is crucial for commitment to plant cell division during G1 phase, it has remained uncertain how protein levels of core cell cycle genes are regulated. We found that Arabidopsis retinoblastoma-related protein1 (AtRBR1) and three E2F proteins were degraded under limited sucrose conditions, while protein abundance increased in response to treatment with the proteasome inhibitor MG132. We conclude that Arabidopsis key cell cycle proteins are degraded in a proteasome-dependent manner during sucrose starvation in Arabidopsis suspension MM2d cells.
Collapse
Affiliation(s)
- Hiroto Hirano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0101, Japan
| | | | | |
Collapse
|
23
|
Lario LD, Ramirez-Parra E, Gutierrez C, Casati P, Spampinato CP. Regulation of plant MSH2 and MSH6 genes in the UV-B-induced DNA damage response. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2925-37. [PMID: 21307385 DOI: 10.1093/jxb/err001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Deleterious effects of UV-B radiation on DNA include the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). These lesions must be repaired to maintain the integrity of DNA and provide genetic stability. Of the several repair systems involved in the recognition and removal of UV-B-induced lesions in DNA, the focus in the present study was on the mismatch repair system (MMR). The contribution of MutSα (MSH2-MSH6) to UV-induced DNA lesion repair and cell cycle regulation was investigated. MSH2 and MSH6 genes in Arabidopsis and maize are up-regulated by UV-B, indicating that MMR may have a role in UV-B-induced DNA damage responses. Analysis of promoter sequences identified MSH6 as a target of the E2F transcription factors. Using electrophoretic mobility shift assays, MSH6 was experimentally validated as an E2F target gene, suggesting an interaction between MMR genes and the cell cycle control. Mutations in MSH2 or MSH6 caused an increased accumulation of CPDs relative to wild-type plants. In addition, msh2 mutant plants showed a different expression pattern of cell cycle marker genes after the UV-B treatment when compared with wild-type plants. Taken together, these data provide evidence that plant MutSα is involved in a UV-B-induced DNA damage response pathway.
Collapse
Affiliation(s)
- Luciana D Lario
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | | | | | | | | |
Collapse
|
24
|
Abstract
The RB1 gene is the first tumor suppressor gene identified whose mutational inactivation is the cause of a human cancer, the pediatric cancer retinoblastoma. The 25 years of research since its discovery has not only illuminated a general role for RB1 in human cancer, but also its critical importance in normal development. Understanding the molecular function of the RB1 encoded protein, pRb, is a long-standing goal that promises to inform our understanding of cancer, its relationship to normal development, and possible therapeutic strategies to combat this disease. Achieving this goal has been difficult, complicated by the complexity of pRb and related proteins. The goal of this review is to explore the hypothesis that, at its core, the molecular function of pRb is to dynamically regulate the location-specific assembly or disassembly of protein complexes on the DNA in response to the output of various signaling pathways. These protein complexes participate in a variety of molecular processes relevant to DNA including gene transcription, DNA replication, DNA repair, and mitosis. Through regulation of these processes, RB1 plays a uniquely prominent role in normal development and cancer.
Collapse
Affiliation(s)
- Meenalakshmi Chinnam
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | |
Collapse
|
25
|
Chen Z, Higgins JD, Hui JTL, Li J, Franklin FCH, Berger F. Retinoblastoma protein is essential for early meiotic events in Arabidopsis. EMBO J 2011; 30:744-55. [PMID: 21217641 DOI: 10.1038/emboj.2010.344] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/29/2010] [Indexed: 11/09/2022] Open
Abstract
We have analysed the role of RBR (retinoblastoma related), the Arabidopsis homologue of the tumour suppressor Retinoblastoma protein (pRb), during meiosis. We characterise the rbr-2 mutation, which causes a loss of RBR in male meiocytes. The rbr-2 plants exhibit strongly reduced fertility, while vegetative growth is generally unaffected. The reduced fertility is due to a meiotic defect that results in reduced chiasma formation and subsequent errors in chromosome disjunction. Immunolocalisation studies in wild-type meiocytes reveal that RBR is recruited as foci to the chromosomes during early prophase I in a DNA double-strand-break-dependent manner. In the absence of RBR, expression of several meiotic genes is reduced. The localisation of the recombinases AtRAD51 and AtDMC1 is normal. However, localisation of the MutS homologue AtMSH4 is compromised. Additionally, polymerisation of the synaptonemal complex protein AtZYP1 is abnormal. Together, these data indicate that loss of RBR during meiosis results in a reduction of crossover formation and an associated failure in chromosome synapsis. Our results indicate that RBR has an important role in meiosis affecting different aspects of this complex process.
Collapse
Affiliation(s)
- Zhong Chen
- Temasek Life Sciences Laboratory, Singapore
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The angiosperm female gametophyte is critical for plant reproduction. It contains the egg cell and central cell that become fertilized and give rise to the embryo and endosperm of the seed, respectively. Female gametophyte development begins early in ovule development with the formation of a diploid megaspore mother cell that undergoes meiosis. One resulting haploid megaspore then develops into the female gametophyte. Genetic and epigenetic processes mediate specification of megaspore mother cell identity and limit megaspore mother cell formation to a single cell per ovule. Auxin gradients influence female gametophyte polarity and a battery of transcription factors mediate female gametophyte cell specification and differentiation. The mature female gametophyte secretes peptides that guide the pollen tube to the embryo sac and contains protein complexes that prevent seed development before fertilization. Post-fertilization, the female gametophyte influences seed development through maternal-effect genes and by regulating parental contributions. Female gametophytes can form by an asexual process called gametophytic apomixis, which involves formation of a diploid female gametophyte and fertilization-independent development of the egg into the embryo. These functions collectively underscore the important role of the female gametophyte in seed and food production.
Collapse
Affiliation(s)
- Gary N. Drews
- Department of Biology, University of Utah, Salt Lake City, UT 84112
- Address correspondence to
| | - Anna M.G Koltunow
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Waite Campus, South Australia 5064, Australia
| |
Collapse
|
27
|
Inagaki S, Umeda M. Cell-Cycle Control and Plant Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 291:227-61. [DOI: 10.1016/b978-0-12-386035-4.00007-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Olson BJ, Oberholzer M, Li Y, Zones JM, Kohli HS, Bisova K, Fang SC, Meisenhelder J, Hunter T, Umen JG. Regulation of the Chlamydomonas cell cycle by a stable, chromatin-associated retinoblastoma tumor suppressor complex. THE PLANT CELL 2010; 22:3331-47. [PMID: 20978220 PMCID: PMC2990127 DOI: 10.1105/tpc.110.076067] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/31/2010] [Accepted: 10/09/2010] [Indexed: 05/19/2023]
Abstract
We examined the cell cycle dynamics of the retinoblastoma (RB) protein complex in the unicellular alga Chlamydomonas reinhardtii that has single homologs for each subunit-RB, E2F, and DP. We found that Chlamydomonas RB (encoded by MAT3) is a cell cycle-regulated phosphoprotein, that E2F1-DP1 can bind to a consensus E2F site, and that all three proteins interact in vivo to form a complex that can be quantitatively immunopurified. Yeast two-hybrid assays revealed the formation of a ternary complex between MAT3, DP1, and E2F1 that requires a C-terminal motif in E2F1 analogous to the RB binding domain of plant and animal E2Fs. We examined the abundance of MAT3/RB and E2F1-DP1 in highly synchronous cultures and found that they are synthesized and remain stably associated throughout the cell cycle with no detectable fraction of free E2F1-DP1. Consistent with their stable association, MAT3/RB and DP1 are constitutively nuclear, and MAT3/RB does not require DP1-E2F1 for nuclear localization. In the nucleus, MAT3/RB remains bound to chromatin throughout the cell cycle, and its chromatin binding is mediated through E2F1-DP1. Together, our data show that E2F-DP complexes can regulate the cell cycle without dissociation of their RB-related subunit and that other changes may be sufficient to convert RB-E2F-DP from a cell cycle repressor to an activator.
Collapse
Affiliation(s)
- Bradley J.S.C. Olson
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Michael Oberholzer
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Yubing Li
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - James M. Zones
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Harjivan S. Kohli
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Katerina Bisova
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Su-Chiung Fang
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Jill Meisenhelder
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - James G. Umen
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
29
|
Takahashi Y, Cong R, Sagor GHM, Niitsu M, Berberich T, Kusano T. Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana. PLANT CELL REPORTS 2010; 29:307-15. [PMID: 20532512 DOI: 10.1007/s00299-010-0817-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 12/29/2009] [Accepted: 01/07/2010] [Indexed: 05/08/2023]
Abstract
The genome of Arabidopsis thaliana contains five genes (AtPAO1 to AtPAO5) encoding polyamine oxidase (PAO) which is an enzyme responsible for polyamine catabolism. To understand the individual roles of the five AtPAOs, here we characterized their tissue-specific and space-temporal expression. AtPAO1 seems to have a specific function in flower organ. AtPAO2 was expressed in shoot meristem and root tip of seedlings, and to a higher extent in the later growth stage within restricted parts of the organs, such as shoot meristem, leaf petiole and also in anther. The expression of AtPAO3 was constitutive, but highest in flower organ. AtPAO3 promoter activity was detected in cotyledon, distal portion of root, boundary region of mature rosette leaf and in filaments of flower. AtPAO4 was expressed at higher level all over young seedlings including roots, and in the mature stage its expression was ubiquitous with rather lower level in stem. AtPAO5 expression was observed in the whole plant body throughout various growth stages. Its highest expression was in flowers, particularly in sepals, but not in petals. Furthermore, we determined the substrate specificity of AtPAO1 to AtPAO4. None of the AtPAO enzymes recognized putrescine (Put). AtPAO2 and AtPAO3 showed almost similar substrate recognition patterns in which the most preferable substrate is spermidine (Spd) followed by less specificity to other tetraamines tested. AtPAO4 seemed to be spermine (Spm)-specific. More interestingly, AtPAO1 preferred thermospermine (T-Spm) and norspermine (NorSpm) to Spm, but did not recognize Spd. Based on the results, the individual function of AtPAOs is discussed.
Collapse
Affiliation(s)
- Yoshihiro Takahashi
- Laboratory of Plant Molecular and Cellular Biology, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Hu X, Cheng X, Jiang H, Zhu S, Cheng B, Xiang Y. Genome-wide analysis of cyclins in maize (Zea mays). GENETICS AND MOLECULAR RESEARCH 2010; 9:1490-503. [PMID: 20690081 DOI: 10.4238/vol9-3gmr861] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cyclins are primary regulators of the activity of cyclin-dependent kinases and play crucial roles in cell cycle progression in eukaryotes. Although extensive studies have revealed the roles of some cyclins and underlying mechanisms in plants, relatively few cyclins have been functionally analyzed in maize. We identified 59 cyclins in the maize genome, distributed on 10 chromosomes; these were grouped into six types by phylogenetic analysis. The cyclin genes in the maize genome went through numerous tandem gene duplications on five chromosomes. However, no segmental duplications, which occur in rice, were found on maize chromosomes. This information allows us to assess the position of plant cyclin genes in terms of evolution and classification, which will be useful for functional studies of maize cyclins.
Collapse
Affiliation(s)
- X Hu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | | | | | | | | | | |
Collapse
|
31
|
Ding B, Zhu Y, Bu ZY, Shen WH, Yu Y, Dong AW. SDG714 regulates specific gene expression and consequently affects plant growth via H3K9 dimethylation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:420-430. [PMID: 20377704 DOI: 10.1111/j.1744-7909.2010.00927.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Histone lysine methylation is known to be involved in the epigenetic regulation of gene expression in all eukaryotes including plants. Here we show that the rice SDG714 is primarily responsible for dimethylation but not trimethylation on histone H3K9 in vivo. Overexpression of YFP-SDG714 in Arabidopsis significantly inhibits plant growth and this inhibition is associated with an enhanced level of H3K9 dimethylation. Our microarray results show that many genes essential for the plant growth and development were downregulated in transgenic Arabidopsis plants overexpressing YFP-SDG714. By chromatin immunoprecipitation analysis, we show that YFP-SDG714 is targeted to specific chromatin regions and dimethylate the H3K9, which is linked with heterochromatinization and the downregulation of genes. Most interestingly, when YFP-SDG714 production is stopped, the inhibited plants can partially restore their growth, suggesting that the perturbation of gene expression caused by YFP-SDG714 is revertible. Taken together, our results point to an important role of SDG714 in H3K9 dimethylation, suppression of gene expression and plant growth, and provide a potential method to regulate gene expression and plant development by an on-off switch of SDG714 expression.
Collapse
Affiliation(s)
- Bo Ding
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
32
|
Nieuwland J, Scofield S, Murray JAH. Control of division and differentiation of plant stem cells and their derivatives. Semin Cell Dev Biol 2009; 20:1134-42. [PMID: 19770062 DOI: 10.1016/j.semcdb.2009.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/12/2009] [Accepted: 09/14/2009] [Indexed: 01/10/2023]
Abstract
The core mechanism of the plant cell cycle is conserved with all other eukaryotes but several aspects are unique to plant cells. Key characteristics of plant development include indeterminate growth and repetitive organogenesis derived from stem cell pools and they may explain the existence of the high number of cell cycle regulators in plants. In this review, we give an overview of the plant cell cycle and its regulatory components. Furthermore, we discuss the cell cycle aspects of plant stem cell maintenance and how the cell cycle relates to cellular differentiation during development. We exemplify this transition by focusing on organ initiation in the shoot.
Collapse
Affiliation(s)
- Jeroen Nieuwland
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | | | | |
Collapse
|
33
|
The contribution of cell cycle regulation to endosperm development. ACTA ACUST UNITED AC 2009; 22:207-19. [DOI: 10.1007/s00497-009-0105-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/05/2009] [Indexed: 01/08/2023]
|
34
|
Shen WH, Xu L. Chromatin remodeling in stem cell maintenance in Arabidopsis thaliana. MOLECULAR PLANT 2009; 2:600-609. [PMID: 19825642 DOI: 10.1093/mp/ssp022] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Pluripotent stem cells are able to both self-renew and generate undifferentiated cells for the formation of new tissues and organs. In higher plants, stem cells found in the shoot apical meristem (SAM) and the root apical meristem (RAM) are origins of organogenesis occurring post-embryonically. It is important to understand how the regulation of stem cell fate is coordinated to enable the meristem to constantly generate different types of lateral organs. Much knowledge has accumulated on specific transcription factors controlling SAM and RAM activity. Here, we review recent evidences for a role of chromatin remodeling in the maintenance of stable expression states of transcription factor genes and the control of stem cell activity in Arabidopsis.
Collapse
Affiliation(s)
- Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg (UdS), 12 rue du Général Zimmer, 67084 Strasbourg Cédex, France.
| | - Lin Xu
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg (UdS), 12 rue du Général Zimmer, 67084 Strasbourg Cédex, France; National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
35
|
Proliferation and cell fate establishment during Arabidopsis male gametogenesis depends on the Retinoblastoma protein. Proc Natl Acad Sci U S A 2009; 106:7257-62. [PMID: 19359496 DOI: 10.1073/pnas.0810992106] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Retinoblastoma (Rb) protein is a conserved repressor of cell proliferation. In animals and plants, deregulation of Rb protein causes hyperproliferation and perturbs cell differentiation to various degrees. However, the primary developmental impact of the loss of Rb protein has remained unclear. In this study we investigated the direct consequences of Rb protein knockout in the Arabidopsis male germline using cytological and molecular markers. The Arabidopsis germ line derives from the unequal division of the microspore, producing a small germ cell and a large terminally differentiated vegetative cell. A single division of the germ cell produces the 2 sperm cells. We observed that the loss of Rb protein does not have a major impact on microspore division but causes limited hyperproliferation of the vegetative cell and, to a lesser degree, of the sperm cells. In addition, cell fate is perturbed in a fraction of Rb-defective vegetative cells. These defects are rescued by preventing cell proliferation arising from down-regulation of cyclin-dependent kinase A1. Our results indicate that hyperproliferation caused by the loss of Rb protein prevents or delays cell determination during plant male gametogenesis, providing further evidence for a direct link between fate determination and cell proliferation.
Collapse
|
36
|
Horvath DP, Chao WS, Suttle JC, Thimmapuram J, Anderson JV. Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics 2008; 9:536. [PMID: 19014493 PMCID: PMC2605480 DOI: 10.1186/1471-2164-9-536] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 11/12/2008] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Dormancy of buds is a critical developmental process that allows perennial plants to survive extreme seasonal variations in climate. Dormancy transitions in underground crown buds of the model herbaceous perennial weed leafy spurge were investigated using a 23 K element cDNA microarray. These data represent the first large-scale transcriptome analysis of dormancy in underground buds of an herbaceous perennial species. Crown buds collected monthly from August through December, over a five year period, were used to monitor the changes in the transcriptome during dormancy transitions. RESULTS Nearly 1,000 genes were differentially-expressed through seasonal dormancy transitions. Expected patterns of gene expression were observed for previously characterized genes and physiological processes indicated that resolution in our analysis was sufficient for identifying shifts in global gene expression. CONCLUSION Gene ontology of differentially-expressed genes suggests dormancy transitions require specific alterations in transport functions (including induction of a series of mitochondrial substrate carriers, and sugar transporters), ethylene, jasmonic acid, auxin, gibberellic acid, and abscisic acid responses, and responses to stress (primarily oxidative and cold/drought). Comparison to other dormancy microarray studies indicated that nearly half of the genes identified in our study were also differentially expressed in at least two other plant species during dormancy transitions. This comparison allowed us to identify a particular MADS-box transcription factor related to the DORMANCY ASSOCIATED MADS-BOX genes from peach and hypothesize that it may play a direct role in dormancy induction and maintenance through regulation of FLOWERING LOCUS T.
Collapse
Affiliation(s)
- David P Horvath
- Biosciences Research Laboratory, USDA-Agricultural Research Service, Fargo ND, USA
| | - Wun S Chao
- Biosciences Research Laboratory, USDA-Agricultural Research Service, Fargo ND, USA
| | - Jeffrey C Suttle
- Northern Crop Science Laboratory, USDA-Agricultural Research Service, Fargo ND, USA
| | - Jyothi Thimmapuram
- WM Keck Center for Comparative and Functional Genomics, University of Illinois, Urbana IL, USA
| | - James V Anderson
- Biosciences Research Laboratory, USDA-Agricultural Research Service, Fargo ND, USA
| |
Collapse
|
37
|
Hirano H, Harashima H, Shinmyo A, Sekine M. Arabidopsis RETINOBLASTOMA-RELATED PROTEIN 1 is involved in G1 phase cell cycle arrest caused by sucrose starvation. PLANT MOLECULAR BIOLOGY 2008; 66:259-75. [PMID: 18064404 DOI: 10.1007/s11103-007-9268-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 11/18/2007] [Indexed: 05/14/2023]
Abstract
Although sucrose availability is crucial for commitment to plant cell division during G1 phase by controlling the expression of D-type cyclins, it has remained unclear how these factors mediate entry into the cell cycle. Here we show that Arabidopsis RETINOBLASTOMA-RELATED PROTEIN 1 (AtRBR1) is involved in G1-phase cell cycle arrest caused by sucrose starvation. We generated estrogen-inducible AtRBR1 RNA interference (RNAi) Arabidopsis suspension MM2d cells, and found that downregulation of AtRBR1 leads to a higher frequency of arrest in G2 phase, instead of G1-phase arrest in the uninduced control, after sucrose starvation. Synchronization experiments confirmed that downregulation of AtRBR1 leads to a prolonged G2 phase and delayed activation of G2/M marker genes. Downregulation of AtRBR1 also stimulated the activation of E2F-regulated genes when these genes were repressed in the uninduced cells under the limited sucrose conditions. We conclude that AtRBR1 is a key effector for the ability of sucrose to modulate progression from G1 phase.
Collapse
Affiliation(s)
- Hiroto Hirano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0101, Japan
| | | | | | | |
Collapse
|
38
|
Jin YS, Seong ES, Qu GZ, Han W, Yoon BS, Wang MH. Cloning and morphological properties of Nicgl;CYCD3;1 gene in genetic tumors from interspecific hybrid of N. langsdorffii and N. glauca. JOURNAL OF PLANT PHYSIOLOGY 2007; 165:317-23. [PMID: 17566604 DOI: 10.1016/j.jplph.2006.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 12/05/2006] [Accepted: 12/11/2006] [Indexed: 05/15/2023]
Abstract
Plant genetic tumors represent neoplastic growths, which arise spontaneously in hybrid plants without apparent external induction. To understand the molecular nature of unregulated cell proliferation, a cyclin D cDNA clone encoding a cyclin D of 1104bp was isolated from a genetic tumor and designated Nicgl;CYCD3;1 gene. DNA gel blot analysis suggested that there are two copies of Nicgl;CYCD3;1 in the genetic tumors. Northern analysis showed that this gene had the highest expression level in genetic tumor compared to Nicotiana glauca, N. langsdorffii and hybrid plants. Plant morphology of hybrid plant was an intermediate between N. glauca and N. langsdorffii and was altered in the genetic tumors. The cell cycle distribution in N. glauca was G0/G1, 90.59; S, 0.60; G2/M, 8.81; in N. langsdorffii it was G 0/G1, 86.22; S, 6.90; G2/M, 6.88; in hybrid plants it was G 0/G1, 96.40; S, 1.79; G2/M, 1.81; and in genetic tumors G 0/G1, 74.70; S, 2.35; G2/M, 22.94. These data provide new insights into the molecular mechanisms underlying genetic tumor formation from interspecific hybrid between N. langsdorffii and N. glauca.
Collapse
Affiliation(s)
- Ying Shan Jin
- School of Biotechnology, Kangwon National University, Chuncheon, Kangwon-do, 200-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
39
|
Kono A, Umeda-Hara C, Adachi S, Nagata N, Konomi M, Nakagawa T, Uchimiya H, Umeda M. The Arabidopsis D-type cyclin CYCD4 controls cell division in the stomatal lineage of the hypocotyl epidermis. THE PLANT CELL 2007; 19:1265-77. [PMID: 17449809 PMCID: PMC1913761 DOI: 10.1105/tpc.106.046763] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cyclin D (CYCD) plays an important role in cell cycle progression and reentry in response to external signals. Here, we demonstrate that Arabidopsis thaliana CYCD4 is associated with specific cell divisions in the hypocotyl. We observed that cycd4 T-DNA insertion mutants had a reduced number of nonprotruding cells and stomata in the hypocotyl epidermis. Conversely, CYCD4 overexpression enhanced cell division in nonprotruding cell files in the upper region of the hypocotyls, where stomata are usually formed in wild-type plants. The overproliferative cells were of stomatal lineage, which is marked by the expression of the TOO MANY MOUTHS gene, but unlike the meristemoids, most of them were not triangular. Although the phytohormone gibberellin promoted stomatal differentiation in the hypocotyl, inhibition of gibberellin biosynthesis did not prevent CYCD4 from inducing cell division. These results suggested that CYCD4 has a specialized function in the proliferation of stomatal lineage progenitors rather than in stomatal differentiation. We propose that CYCD4 controls cell division in the initial step of stomata formation in the hypocotyl.
Collapse
Affiliation(s)
- Atsushi Kono
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Vanderschuren H, Stupak M, Fütterer J, Gruissem W, Zhang P. Engineering resistance to geminiviruses--review and perspectives. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:207-20. [PMID: 17309676 DOI: 10.1111/j.1467-7652.2006.00217.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Following the conceptual development of virus resistance strategies ranging from coat protein-mediated interference of virus propagation to RNA-mediated virus gene silencing, much progress has been achieved to protect plants against RNA and DNA virus infections. Geminiviruses are a major threat to world agriculture, and breeding resistant crops against these DNA viruses is one of the major challenges faced by plant virologists and biotechnologists. In this article, we review the most recent transgene-based approaches that have been developed to achieve durable geminivirus resistance. Although most of the strategies have been tested in model plant systems, they are ready to be adopted for the protection of crop plants. Furthermore, a better understanding of geminivirus gene and protein functions, as well as the native immune system which protects plants against viruses, will allow us to develop novel tools to expand our current capacity to stabilize crop production in geminivirus epidemic zones.
Collapse
Affiliation(s)
- Hervé Vanderschuren
- Institute of Plant Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
41
|
Polit JT, Kazmierczak A. Okadaic acid (1 microM) accelerates S phase and mitosis but inhibits heterochromatin replication and metaphase anaphase transition in Vicia faba meristem cells. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:2785-97. [PMID: 17609530 DOI: 10.1093/jxb/erm148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Protein kinases and phosphatases are the foremost agents which take part in cell cycle regulation in both plants and other eukaryotes. Protein kinases are a very well examined group of proteins with respect to chemical structure and function. Nowadays protein phosphatases, including PP1 and PP2A belonging to the PSP family, are the focus of interest. Okadaic acid (OA) which is a specific inhibitor of protein phosphatase activity is widely used to study them. In the present research, the involvement of OA-sensitive phosphatases in the regulation of progression of the plant cell cycle was analysed (in planta) using Vicia faba root meristems synchronized with hydroxyurea and divided into five series. Each series was treated with 1 muM OA for 3 h for different time periods corresponding to the consecutive cell cycle phases. The results showed that in the OA-treated cells DNA replication and mitosis began earlier than in the control cells, since G(1) and G(2) phases were significantly shorter and the H1 histone kinases activity was higher. Moreover, autoradiography and morphological analyses of mitotic figures revealed that the OA-treated cells entered mitosis before the end of heterochromatin replication. An immunocytochemical search showed that earlier initiation of S phase in the OA-treated cells correlated with more abundant phosphorylation of Rb-like protein in comparison with the control cells. OA also induced significant condensation of metaphase chromosomes and blocked metaphase-anaphase transition.
Collapse
Affiliation(s)
- Justyna Teresa Polit
- Department of Cytophysiology, University of Łódź, 90-231 Łódź, ul. Pilarskiego 14, Poland.
| | | |
Collapse
|
42
|
del Pozo JC, Diaz-Trivino S, Cisneros N, Gutierrez C. The balance between cell division and endoreplication depends on E2FC-DPB, transcription factors regulated by the ubiquitin-SCFSKP2A pathway in Arabidopsis. THE PLANT CELL 2006; 18:2224-35. [PMID: 16920782 PMCID: PMC1560920 DOI: 10.1105/tpc.105.039651] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The balance between cell proliferation, cell cycle arrest, and differentiation needed to maintain the organogenetic program depends on the coordination of gene expression, posttranslational modification, and specific proteolysis of cell cycle regulators. The G1/S and G2/M transitions are critical checkpoints controlled, in part, by cyclin-dependent kinases in the retinoblastoma (RBR)/E2F/DP pathway. Arabidopsis thaliana DPB is regulated by phosphorylation and targeted to proteasome-mediated proteolysis by the SCF(SKP2A) complex. In addition, DPB interacts in vivo with E2FC, because ectopic coexpression of E2FC and DPB produces severe developmental defects. To understand E2FC/DPB heterodimer function, we analyzed the effect of reducing E2FC mRNA levels with RNA interference. The e2fc-R plants developed organs with more but smaller cells and showed increased cell cycle marker gene expression and increased proliferative activity in developing leaves, meristems, and pericycle cells. This last feature produces plants with more lateral roots, consistent with an E2FC role in restricting lateral root initiation. The e2fc-R plants also show marked reductions in ploidy levels of mature leaves. These results indicate that the transition from cell division to the endocycle is sensitive to different pathways, E2FC/DPB being one of them. Our results show that E2FC/DPB is a key factor in controlling the balance between cell proliferation and the switch to the endocycle program.
Collapse
Affiliation(s)
- Juan C del Pozo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain
| | | | | | | |
Collapse
|
43
|
Kono A, Ohno R, Umeda-Hara C, Uchimiya H, Umeda M. A distinct type of cyclin D, CYCD4;2, involved in the activation of cell division in Arabidopsis. PLANT CELL REPORTS 2006; 25:540-5. [PMID: 16408177 DOI: 10.1007/s00299-005-0075-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 09/28/2005] [Accepted: 10/02/2005] [Indexed: 05/06/2023]
Abstract
The Arabidopsis genome encodes 10 D-type cyclins (CYCD); however, their differential role in cell cycle control is not well known. Among them, CYCD4;2 is unique in the amino acid sequence; namely, it lacks the Rb-binding motif and the PEST sequence that are conserved in CYCDs. Here, we have shown that CYCD4;2 suppressed G1 cyclin mutations in yeast and formed a kinase complex with CDKA;1, an ortholog of yeast Cdc28, in insect cells. Hypocotyl explants of CYCD4;2 over-expressing plants showed faster induction of calli than wild-type explants on a medium containing lower concentration of auxin. These results suggest that CYCD4;2 has a promotive function in cell division by interacting with CDKA;1 regardless of the unusual primary sequence.
Collapse
Affiliation(s)
- Atsushi Kono
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
44
|
Hartig K, Beck E. Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:389-96. [PMID: 16807832 DOI: 10.1055/s-2006-923797] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant meristems are utilization sinks, in which cell division activity governs sink strength. However, the molecular mechanisms by which cell division activity and sink strength are adjusted to a plant's developmental program in its environmental setting are not well understood. Mitogenic hormonal as well as metabolic signals drive and modulate the cell cycle, but a coherent idea of how this is accomplished, is still missing. Auxin and cytokinins are known as endogenous mitogens whose concentrations and timing, however, can be externally affected. Although the sites and mechanisms of signal interaction in cell cycle control have not yet been unravelled, crosstalk of sugar and phytohormone signals could be localized to several biochemical levels. At the expression level of cell cycle control genes, like cyclins, Cdks, and others, synergistic but also antagonistic interactions could be demonstrated. Another level of crosstalk is that of signal generation or modulation. Cytokinins affect the activity of extracellular invertases and hexose-uptake carriers and thus impinge on an intracellular sugar signal. With tobacco BY-2 cells, a coordinated control of cell cycle activity at both regulatory levels could be shown. Comparison of the results obtained with the root cell-representing BY-2 cells with literature data from shoot tissues or green cell cultures of Arabidopsis and Chenopodium suggests opposed and tissue-specific regulatory patterns of mitogenic signals and signal crosstalk in root and shoot meristems.
Collapse
Affiliation(s)
- K Hartig
- Department of Plant Physiology, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.
| | | |
Collapse
|
45
|
Desvoyes B, Ramirez-Parra E, Xie Q, Chua NH, Gutierrez C. Cell type-specific role of the retinoblastoma/E2F pathway during Arabidopsis leaf development. PLANT PHYSIOLOGY 2006; 140:67-80. [PMID: 16361519 PMCID: PMC1326032 DOI: 10.1104/pp.105.071027] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 11/08/2005] [Accepted: 11/09/2005] [Indexed: 05/05/2023]
Abstract
Organogenesis in plants is almost entirely a postembryonic process. This unique feature implies a strict coupling of cell proliferation and differentiation, including cell division, arrest, cell cycle reactivation, endoreplication, and differentiation. The plant retinoblastoma-related (RBR) protein modulates the activity of E2F transcription factors to restrict cell proliferation. Arabidopsis contains a single RBR gene, and its loss of function precludes gamete formation and early development. To determine the relevance of the RBR/E2F pathway during organogenesis, outside its involvement in cell division, we have used an inducible system to inactivate RBR function and release E2F activity. Here, we have focused on leaves where cell proliferation and differentiation are temporally and developmentally regulated. Our results reveal that RBR restricts cell division early during leaf development when cell proliferation predominates, while it regulates endocycle occurrence at later stages. Moreover, shortly after leaving the cell cycle, most of leaf epidermal pavement cells retain the ability to reenter the cell cycle and proliferate, but maintain epidermal cell fate. On the contrary, mesophyll cells in the inner layers do not respond in this way to RBR loss of activity. We conclude that there exists a distinct response of different cells to RBR inactivation in terms of maintaining the balance between cell division and endoreplication during Arabidopsis (Arabidopsis thaliana) leaf development.
Collapse
Affiliation(s)
- Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
46
|
Sabelli PA, Dante RA, Leiva-Neto JT, Jung R, Gordon-Kamm WJ, Larkins BA. RBR3, a member of the retinoblastoma-related family from maize, is regulated by the RBR1/E2F pathway. Proc Natl Acad Sci U S A 2005; 102:13005-12. [PMID: 16141340 PMCID: PMC1201608 DOI: 10.1073/pnas.0506160102] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Retinoblastoma-related (RBR) proteins regulate cell division in higher eukaryotes by controlling the adenovirus E2 promoter binding factor (E2F)/dimerization partner (DP) family of transcription factors that regulate expression of many genes involved in cell-cycle progression. We identified a previously undescribed member of the maize RBR family, RBR3, which has the characteristic structure and binding activities of pocket proteins, where interaction depends on a LxCxE motif in the partner proteins and a critical cysteine within the B pocket domain. Like other RBR proteins, RBR3 appears to be regulated by phosphorylation mediated by cyclin-dependent kinases. During endosperm development, RBR3 expression is restricted to the mitotic stage preceding the onset of endoreduplication. This finding suggests a role distinct from RBR1, which is constitutively expressed. Two sites in the RBR3 promoter bind to complexes containing maize E2F1 and DP proteins. Expression of wheat dwarf virus RepA protein, which blocks RBR1 activity and stimulates cell proliferation, dramatically up-regulates RBR3, but not RBR1, RNA in embryogenic maize calli. The results indicate that RBR3 expression is controlled by RBR1 through the activity of E2F/DP and that RBR3 is the maize equivalent of mammalian p107. Furthermore, maize and related grasses might have evolved a compensatory mechanism among distinct types of RBR proteins to ensure robust control of pocket protein activity.
Collapse
Affiliation(s)
- Paolo A Sabelli
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | |
Collapse
|
47
|
Magyar Z, De Veylder L, Atanassova A, Bakó L, Inzé D, Bögre L. The role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell division. THE PLANT CELL 2005; 17:2527-41. [PMID: 16055635 PMCID: PMC1197432 DOI: 10.1105/tpc.105.033761] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 06/13/2005] [Accepted: 06/27/2005] [Indexed: 05/03/2023]
Abstract
The molecular mechanisms by which the phytohormone auxin coordinates cell division with cell growth and differentiation are largely unknown. Here, we show that in Arabidopsis thaliana E2FB, accumulation and stability are positively regulated by auxin. Coexpression of E2FB, but not of E2FA, with its dimerization partner A, stimulated cell proliferation in the absence of auxin in tobacco (Nicotiana tabacum) Bright Yellow-2 cells. E2FB regulated the entry into both S- and M-phases, the latter corresponding to the activation of a plant-specific mitotic regulator, CDKB1;1. Increased E2FB levels led to shortened cell cycle duration, elevated cell numbers, and extremely small cell sizes. In the absence of auxin, cells elongated with concomitant increase in their ploidy level, but both were strongly inhibited by E2FB. We conclude that E2FB is one of the key targets for auxin to determine whether cells proliferate or whether they exit the cell cycle, enlarge, and endoreduplicate their DNA.
Collapse
Affiliation(s)
- Zoltán Magyar
- Royal Holloway University of London, School of Biological Sciences, Egham TW20 0EX, United Kingdom
| | | | | | | | | | | |
Collapse
|
48
|
Park JA, Ahn JW, Kim YK, Kim SJ, Kim JK, Kim WT, Pai HS. Retinoblastoma protein regulates cell proliferation, differentiation, and endoreduplication in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:153-63. [PMID: 15807779 DOI: 10.1111/j.1365-313x.2005.02361.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Retinoblastoma protein (Rb) plays a key role in cell cycle control, cell differentiation, and apoptosis in animals. In this study, we used virus-induced gene silencing (VIGS) to investigate the cellular functions of Rb in higher plants. VIGS of NbRBR1, which encodes the Nicotiana benthamiana Rb homolog, resulted in growth retardation and abnormal organ development. At the cellular level, Rb suppression caused prolonged cell proliferation in tissues that are normally differentiated, which indicates that Rb is a negative regulator of plant cell division. Furthermore, differentiation of the epidermal pavement cells and trichomes was partially retarded, and stomatal clusters formed in the epidermis, likely due to uncontrolled cell division of stomata precursor cells. Rb suppression also caused extra DNA replication in endoreduplicating leaf cells, suggesting a role of Rb in the endocycle. These Rb phenotypes were accompanied by stimulated transcription of E2F and E2F-regulated S-phase genes. Thus, disruption of Rb function in plants leads to ectopic cell division in major organs that correlates with a delay in cell differentiation as well as increased endoreduplication, which indicates that Rb coordinates these processes in plant organ development.
Collapse
Affiliation(s)
- Jong-A Park
- Department of Biology, Yonsei University 134, Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Yu Y, Dong A, Shen WH. Molecular characterization of the tobacco SET domain protein NtSET1 unravels its role in histone methylation, chromatin binding, and segregation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:699-711. [PMID: 15546353 DOI: 10.1111/j.1365-313x.2004.02240.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plants contain a great number of genes encoding a distinctive class of SET domain proteins which harbor a plant-specific N-terminal part together with a C-terminal part showing highest sequence similarity to the catalytic domain of the yeast CLR4, the human SUV39H1 and G9a histone-methyltransferases (HMTases). Here we show that NtSET1, a representative member of this class from tobacco, methylated both K9 and K27 of histone H3 in vitro. Ectopic expression of NtSET1, by an inducible promoter, increased the amount of dimethylated H3K9 and induced chromosome-segregation defects in tobacco BY2 cells. Deletion analyses show that the HMTase activity, the association with specific chromatin regions and with condensed chromosomes, and the cellular effects largely depended on the C-terminal region including the SET domain of the protein. Nevertheless, the N-terminal part of NtSET1 was capable of targeting the green fluorescent protein to interphase chromatin. Finally, we show that NtSET1 bound LHP1, the Arabidopsis homolog of animal heterochromatin protein 1 (HP1), and that LHP1 co-localized with heterochromatin containing high amounts of dimethylated H3K9, suggesting a role for NtSET1 in heterochromatic function. Taken together, our results provide new insights into the molecular and global chromatin-binding activities of this particular class member of plant SET domain proteins.
Collapse
Affiliation(s)
- Yu Yu
- Institut de Biologie Molèculaire des Plantes, Centre National de la Recherche Scientifique, Université Louis Pasteur de Strasbourg (ULP), 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | |
Collapse
|
50
|
Korenjak M, Taylor-Harding B, Binné UK, Satterlee JS, Stevaux O, Aasland R, White-Cooper H, Dyson N, Brehm A. Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes. Cell 2004; 119:181-93. [PMID: 15479636 DOI: 10.1016/j.cell.2004.09.034] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 09/12/2004] [Accepted: 09/23/2004] [Indexed: 01/05/2023]
Abstract
The retinoblastoma tumor suppressor protein (pRb) regulates gene transcription by binding E2F transcription factors. pRb can recruit several repressor complexes to E2F bound promoters; however, native pRb repressor complexes have not been isolated. We have purified E2F/RBF repressor complexes from Drosophila embryo extracts and characterized their roles in E2F regulation. These complexes contain RBF, E2F, and Myb-interacting proteins that have previously been shown to control developmentally regulated patterns of DNA replication in follicle cells. The complexes localize to transcriptionally silent sites on polytene chromosomes and mediate stable repression of a specific set of E2F targets that have sex- and differentiation-specific expression patterns. Strikingly, seven of eight complex subunits are structurally and functionally related to C. elegans synMuv class B genes, which cooperate to control vulval differentiation in the worm. These results reveal an extensive evolutionary conservation of specific pRb repressor complexes that physically combine subunits with established roles in the regulation of transcription, DNA replication, and chromatin structure.
Collapse
Affiliation(s)
- Michael Korenjak
- Lehrstuhl für Molekularbiologie, Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität, München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|