1
|
Synthesis of chiral piperidines from pyridinium salts via rhodium-catalysed transfer hydrogenation. Nat Catal 2022. [DOI: 10.1038/s41929-022-00857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2
|
Vespakinin-M, a natural peptide from Vespa magnifica, promotes functional recovery in stroke mice. Commun Biol 2022; 5:74. [PMID: 35058552 PMCID: PMC8776894 DOI: 10.1038/s42003-022-03024-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Acute ischemic stroke triggers complex systemic pathological responses for which the exploration of drug resources remains a challenge. Wasp venom extracted from Vespa magnifica (Smith, 1852) is most commonly used to treat rheumatoid arthritis as well as neurological disorders. Vespakinin-M (VK), a natural peptide from wasp venom, has remained largely unexplored for stroke. Herein, we first confirmed the structure, stability, toxicity and distribution of VK as well as its penetration into the blood–brain barrier. VK (150 and 300 µg/kg, i.p.) was administered to improve stroke constructed by middle cerebral artery occlusion in mice. Our results indicate that VK promote functional recovery in mice after ischemia stroke, including an improvement of neurological impairment, reduction of infarct volume, maintenance of blood-brain barrier integrity, and an obstruction of the inflammatory response and oxidative stress. In addition, VK treatment led to reduced neuroinflammation and apoptosis associated with the activation of PI3K–AKT and inhibition of IκBα–NF-κB signaling pathways. Simultaneously, we confirmed that VK can combine with bradykinin receptor 2 (B2R) as detected by molecular docking, the B2R antagonist HOE140 could counteract the neuro-protective effects of VK on stroke in mice. Overall, targeting the VK–B2R interaction can be considered as a practical strategy for stroke therapy. Zhao et al establish the structure, stability, toxicity and distribution of vespakinin-M (VK) as well as its penetration into the blood–brain barrier in mice. They go on to show that VK promotes functional recovery in mice after ischemia stroke and shed light on the potential underlying mechanisms, which together indicates the potential therapeutic value of targeting VK in stroke therapy.
Collapse
|
3
|
Binding Mode Exploration of B1 Receptor Antagonists' by the Use of Molecular Dynamics and Docking Simulation-How Different Target Engagement Can Determine Different Biological Effects. Int J Mol Sci 2020; 21:ijms21207677. [PMID: 33081372 PMCID: PMC7590058 DOI: 10.3390/ijms21207677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/24/2023] Open
Abstract
The kinin B1 receptor plays a critical role in the chronic phase of pain and inflammation. The development of B1 antagonists peaked in recent years but almost all promising molecules failed in clinical trials. Little is known about these molecules' mechanisms of action and additional information will be necessary to exploit the potential of the B1 receptor. With the aim of contributing to the available knowledge of the pharmacology of B1 receptors, we designed and characterized a novel class of allosteric non-peptidic inhibitors with peculiar binding characteristics. Here, we report the binding mode analysis and pharmacological characterization of a new allosteric B1 antagonist, DFL20656. We analyzed the binding of DFL20656 by single point mutagenesis and radioligand binding assays and we further characterized its pharmacology in terms of IC50, B1 receptor internalization and in vivo activity in comparison with different known B1 antagonists. We highlighted how different binding modes of DFL20656 and a Merck compound (compound 14) within the same molecular pocket can affect the biological and pharmacological properties of B1 inhibitors. DFL20656, by its peculiar binding mode, involving tight interactions with N114, efficiently induced B1 receptor internalization and evoked a long-lasting effect in an in vivo model of neuropathic pain. The pharmacological characterization of different B1 antagonists highlighted the effects of their binding modes on activity, receptor occupancy and internalization. Our results suggest that part of the failure of most B1 inhibitors could be ascribed to a lack of knowledge about target function and engagement.
Collapse
|
4
|
Urodilatin reverses the detrimental influence of bradykinin in acute ischemic stroke. Exp Neurol 2016; 284:1-10. [DOI: 10.1016/j.expneurol.2016.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/15/2016] [Accepted: 07/14/2016] [Indexed: 02/03/2023]
|
5
|
Rhaleb NE, Yang XP, Carretero OA. The kallikrein-kinin system as a regulator of cardiovascular and renal function. Compr Physiol 2013; 1:971-93. [PMID: 23737209 DOI: 10.1002/cphy.c100053] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autocrine, paracrine, endocrine, and neuroendocrine hormonal systems help regulate cardio-vascular and renal function. Any change in the balance among these systems may result in hypertension and target organ damage, whether the cause is genetic, environmental or a combination of the two. Endocrine and neuroendocrine vasopressor hormones such as the renin-angiotensin system (RAS), aldosterone, and catecholamines are important for regulation of blood pressure and pathogenesis of hypertension and target organ damage. While the role of vasodepressor autacoids such as kinins is not as well defined, there is increasing evidence that they are not only critical to blood pressure and renal function but may also oppose remodeling of the cardiovascular system. Here we will primarily be concerned with kinins, which are oligopeptides containing the aminoacid sequence of bradykinin. They are generated from precursors known as kininogens by enzymes such as tissue (glandular) and plasma kallikrein. Some of the effects of kinins are mediated via autacoids such as eicosanoids, nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF), and/or tissue plasminogen activator (tPA). Kinins help protect against cardiac ischemia and play an important part in preconditioning as well as the cardiovascular and renal protective effects of angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor blockers (ARB). But the role of kinins in the pathogenesis of hypertension remains controversial. A study of Utah families revealed that a dominant kallikrein gene expressed as high urinary kallikrein excretion was associated with a decreased risk of essential hypertension. Moreover, researchers have identified a restriction fragment length polymorphism (RFLP) that distinguishes the kallikrein gene family found in one strain of spontaneously hypertensive rats (SHR) from a homologous gene in normotensive Brown Norway rats, and in recombinant inbred substrains derived from these SHR and Brown Norway rats this RFLP cosegregated with an increase in blood pressure. However, humans, rats and mice with a deficiency in one or more components of the kallikrein-kinin-system (KKS) or chronic KKS blockade do not have hypertension. In the kidney, kinins are essential for proper regulation of papillary blood flow and water and sodium excretion. B2-KO mice appear to be more sensitive to the hypertensinogenic effect of salt. Kinins are involved in the acute antihypertensive effects of ACE inhibitors but not their chronic effects (save for mineralocorticoid-salt-induced hypertension). Kinins appear to play a role in the pathogenesis of inflammatory diseases such as arthritis and skin inflammation; they act on innate immunity as mediators of inflammation by promoting maturation of dendritic cells, which activate the body's adaptive immune system and thereby stimulate mechanisms that promote inflammation. On the other hand, kinins acting via NO contribute to the vascular protective effect of ACE inhibitors during neointima formation. In myocardial infarction produced by ischemia/reperfusion, kinins help reduce infarct size following preconditioning or treatment with ACE inhibitors. In heart failure secondary to infarction, the therapeutic effects of ACE inhibitors are partially mediated by kinins via release of NO, while drugs that activate the angiotensin type 2 receptor act in part via kinins and NO. Thus kinins play an important role in regulation of cardiovascular and renal function as well as many of the beneficial effects of ACE inhibitors and ARBs on target organ damage in hypertension.
Collapse
Affiliation(s)
- Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA.
| | | | | |
Collapse
|
6
|
Yugandar S, Misra NC, Parameshwarappa G, Panda K, Ila H. Reaction of Cyclic α-Oxoketene Dithioacetals with Methylene Isocyanides: A Novel Pyrrole Annulation–Ring-Expansion Domino Process. Org Lett 2013; 15:5250-3. [DOI: 10.1021/ol402469v] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Somaraju Yugandar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 50064, India, and Department of Chemistry, Indian Institute of Technology, Kanpur 208016, U. P., India
| | - Nimesh C. Misra
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 50064, India, and Department of Chemistry, Indian Institute of Technology, Kanpur 208016, U. P., India
| | - Gangajji Parameshwarappa
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 50064, India, and Department of Chemistry, Indian Institute of Technology, Kanpur 208016, U. P., India
| | - Kausik Panda
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 50064, India, and Department of Chemistry, Indian Institute of Technology, Kanpur 208016, U. P., India
| | - Hiriyakkanavar Ila
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 50064, India, and Department of Chemistry, Indian Institute of Technology, Kanpur 208016, U. P., India
| |
Collapse
|
7
|
Matsushita-Morita M, Nakagawa H, Tada S, Marui J, Hattori R, Suzuki S, Yamagata Y, Amano H, Ishida H, Takeuchi M, Kusumoto KI. Characterization of a (D)-stereoselective aminopeptidase (DamA) exhibiting aminolytic activity and halophilicity from Aspergillus oryzae. Appl Biochem Biotechnol 2013; 171:145-64. [PMID: 23821291 DOI: 10.1007/s12010-013-0330-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/14/2013] [Indexed: 11/28/2022]
Abstract
β-Aminopeptidases exhibit both hydrolytic and aminolytic (peptide bond formation) activities and have only been reported in bacteria. We identified a gene encoding the β-aminopeptidase homolog from a genome database of the filamentous fungus Aspergillus oryzae. The gene was overexpressed in A. oryzae, and the resulting recombinant enzyme was purified. Apart from bacterial homologs [β-Ala-para-nitroanilide (pNA)], the enzyme preferred D-Leu-pNA and D-Phe-pNA as substrates. Therefore, we designated this gene as d-stereoselective aminopeptidase A (damA). The purified recombinant DamA was estimated to be a hexamer and was composed of two subunits with molecular masses of 29.5 and 11.5 kDa, respectively. Optimal hydrolytic activity of DamA toward D-Leu-pNA was observed at 50 °C and pH 8.0. The enzyme was stable up to 60 °C and from pH 4.0-11.0. DamA also exhibited aminolytic activity, producing D-Leu-D-Leu-NH2 from D-Leu-NH2 as a substrate. In the presence of 3.0 M NaCl, the amount of pNA liberated from D-Leu-pNA by DamA was 3.1-fold higher than that in the absence of NaCl. Thus, DamA is a halophilic enzyme. The enzyme was utilized to synthesize several hetero-dipeptides containing a D-amino acid at the N-terminus as well as physiologically active peptides.
Collapse
Affiliation(s)
- Mayumi Matsushita-Morita
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dobrivojević M, Sinđić A, Edemir B, Kalweit S, Forssmann WG, Hirsch JR. Interaction between bradykinin and natriuretic peptides via RGS protein activation in HEK-293 cells. Am J Physiol Cell Physiol 2012; 303:C1260-8. [PMID: 23054060 DOI: 10.1152/ajpcell.00033.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, the interaction of natriuretic peptides (NP) and bradykinin (BK) signaling pathways was identified by measuring membrane potential (V(m)) and intracellular Ca(2+) using the patch-clamp technique and flow cytometry in HEK-293 cells. BK and NP receptor mRNA was identified using RT-PCR. BK (100 nM) depolarized cells activating bradykinin receptor type 2 (B(2)R) and Ca(2+)-dependent Cl(-) channels inhibitable by 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB; 10 μM). The BK-induced Ca(2+) signal was blocked by the B(2)R inhibitor HOE 140. [Des-Arg(9)]-bradykinin, an activator of B(1)R, had no effect on intracellular Ca(2+). NP [atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), and urodilatin] depolarized HEK-293 cells inhibiting K(+) channels. ANP, urodilatin, BNP [binding to natriuretic peptide receptor (NPR)-A] and 8-bromo-(8-Br)-cGMP inhibited the BK-induced depolarization while CNP (binding to NPR-Bi) failed to do so. The inhibitory effect on BK-triggered depolarization could be reversed by blocking PKG using the specific inhibitor KT 5823. BK-stimulated depolarization as well as Ca(2+) signaling was completely blocked by the phospholipase C (PLC) inhibitor U-73122 (10 nM). The inositol 1,4,5-trisphosphate receptor blocker 2-aminoethoxydiphenyl borate (2-APB; 50 μM) completely inhibited the BK-induced Ca(2+) signaling. UTP, another activator of the PLC-mediated Ca(2+) signaling pathway, was blocked by U-73122 as well but not by 8-Br-cGMP, indicating an intermediate regulatory step for NP via PKG in BK signaling such as regulators of G-protein signaling (RGS) proteins. When RGS proteins were inhibited by CCG-63802 in the presence of BK and 8-Br-cGMP, cells started to depolarize again. In conclusion, as natural antagonists of the B(2)R signaling pathway, NP may also positively interact in pathological conditions caused by BK.
Collapse
Affiliation(s)
- Marina Dobrivojević
- Department of Physiology, School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
9
|
Bodmer-Narkevitch V, Anthony NJ, Cofre V, Jolly SM, Murphy KL, Ransom RW, Reiss DR, Tang C, Prueksaritanont T, Pettibone DJ, Bock MG, Kuduk SD. Indazole derivatives as novel bradykinin B1 receptor antagonists. Bioorg Med Chem Lett 2010; 20:7011-4. [PMID: 20971001 DOI: 10.1016/j.bmcl.2010.09.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 11/27/2022]
Abstract
A new class of indazole-derived bradykinin B(1) antagonists and their structure-activity relationships (SAR) is reported. A number of compounds were found to have low-nanomolar affinity for the human B(1) receptor and possess acceptable P-gp and pharmacokinetics properties.
Collapse
Affiliation(s)
- Vera Bodmer-Narkevitch
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu Q, Qian W, Li A, Biswas K, Chen JJ, Fotsch C, Han N, Yuan C, Arik L, Biddlecome G, Johnson E, Kumar G, Lester-Zeiner D, Ng GY, Hungate RW, Askew BC. Aryl sulfonamides containing tetralin allylic amines as potent and selective bradykinin B1 receptor antagonists. Bioorg Med Chem Lett 2010; 20:4593-7. [PMID: 20573508 DOI: 10.1016/j.bmcl.2010.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 05/28/2010] [Accepted: 06/02/2010] [Indexed: 11/17/2022]
Abstract
The bradykinin B1 receptor has been shown to mediate pain response and is rapidly induced upon injury. Blocking this receptor may provide a promising treatment for inflammation and pain. We previously reported tetralin benzyl amines as potent B1 antagonists. Here we describe the synthesis and SAR of B1 receptor antagonists with homobenzylic amines. The SAR of different linkers led to the discovery of tetralin allylic amines as potent and selective B1 receptor antagonists (hB1 IC(50)=1.3 nM for compound 16). Some of these compounds showed modest oral bioavailability in rats.
Collapse
Affiliation(s)
- Qingyian Liu
- Chemistry Research and Discovery, Amgen Inc., Thousand Oaks, CA 91320, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Novel strategies for the treatment of inflammatory hyperalgesia. Eur J Clin Pharmacol 2010; 66:429-44. [DOI: 10.1007/s00228-010-0784-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 01/11/2010] [Indexed: 12/24/2022]
|
12
|
Huszár J, Timár Z, Bogár F, Penke B, Kiss R, Szalai KK, Schmidt É, Papp A, Keserű G. Aspartic acid scaffold in bradykinin B1 antagonists. J Pept Sci 2009; 15:423-34. [DOI: 10.1002/psc.1134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
O’Shea PD, Gauvreau D, Gosselin F, Hughes G, Nadeau C, Roy A, Shultz CS. Practical Synthesis of a Potent Bradykinin B1 Antagonist via Enantioselective Hydrogenation of a Pyridyl N-Acyl Enamide. J Org Chem 2009; 74:4547-53. [DOI: 10.1021/jo802772d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul D. O’Shea
- Department of Process Research, Merck Frosst Centre for Therapeutic Research, P.O. Box 1005, Pointe-Claire-Dorval, Québec H9R 4P8, Canada, and Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
| | - Danny Gauvreau
- Department of Process Research, Merck Frosst Centre for Therapeutic Research, P.O. Box 1005, Pointe-Claire-Dorval, Québec H9R 4P8, Canada, and Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
| | - Francis Gosselin
- Department of Process Research, Merck Frosst Centre for Therapeutic Research, P.O. Box 1005, Pointe-Claire-Dorval, Québec H9R 4P8, Canada, and Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
| | - Greg Hughes
- Department of Process Research, Merck Frosst Centre for Therapeutic Research, P.O. Box 1005, Pointe-Claire-Dorval, Québec H9R 4P8, Canada, and Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
| | - Christian Nadeau
- Department of Process Research, Merck Frosst Centre for Therapeutic Research, P.O. Box 1005, Pointe-Claire-Dorval, Québec H9R 4P8, Canada, and Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
| | - Amélie Roy
- Department of Process Research, Merck Frosst Centre for Therapeutic Research, P.O. Box 1005, Pointe-Claire-Dorval, Québec H9R 4P8, Canada, and Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
| | - C. Scott Shultz
- Department of Process Research, Merck Frosst Centre for Therapeutic Research, P.O. Box 1005, Pointe-Claire-Dorval, Québec H9R 4P8, Canada, and Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
| |
Collapse
|
14
|
Chung KF. Clinical cough VI: the need for new therapies for cough: disease-specific and symptom-related antitussives. Handb Exp Pharmacol 2009:343-368. [PMID: 18825350 DOI: 10.1007/978-3-540-79842-2_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cough is a common symptom that can be self-limiting or persistent. Ideally, treatment of the underlying cause(s) of cough with specific treatments should eliminate cough. This approach may not be successful if no cause can be established or if the treatment of the cause fails. Suppression of cough may be disease-specific or symptom-related. There has been a long tradition in acute cough usually due to upper respiratory tract infections to use symptom-related antitussives. In chronic cough, suppression of cough may be achieved by disease-specific therapies, but in many patients it may be necessary to use symptomatic antitussives. The efficacy of some over-the-counter symptomatic antitussives is often no better than that of a placebo. Currently available cough suppressants include the centrally acting opioids such as morphine, codeine, pholcodeine, and dextromethorphan. Early studies reported success in reducing cough in patients with chronic bronchitis or chronic obstructive pulmonary disease (COPD); however, a carefully conducted blinded controlled study showed no effect of codeine on cough of COPD. Success with these cough suppressants may be achieved at high doses that are associated with side effects. A slow-release preparation of morphine has been shown to have some degree of efficacy, but this should be reserved for the most severe chronic cough patient, and for patients with terminal cancer who may also benefit from its analgesic effects. There are case reports of the success of centrally acting drugs such as amitriptyline, paroxetine, gabapentin, and carbamezepine in chronic cough. New agents derived from basic research such as new opioids such as nociceptin or antagonists of transient receptor potential vanniloid-1 may turn out to have antitussive effects. Efficacy of symptomatic cough suppressants must be tested in double-blind randomized trials using validated measures of cough in patients with chronic cough not responding to specific treatments. Patients with chronic cough need effective antitussives that could be used either on demand or on a long-term basis.
Collapse
Affiliation(s)
- K F Chung
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
15
|
Kuduk SD, Chang RK, DiPardo RM, Di Marco CN, Murphy KL, Ransom RW, Reiss DR, Tang C, Prueksaritanont T, Pettibone DJ, Bock MG. Bradykinin B1 receptor antagonists: An α-hydroxy amide with an improved metabolism profile. Bioorg Med Chem Lett 2008; 18:5107-10. [DOI: 10.1016/j.bmcl.2008.07.126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 07/29/2008] [Accepted: 07/29/2008] [Indexed: 11/25/2022]
|
16
|
Novel bradykinin-1 antagonists containing a (1,2,3,4-tetrahydro-isoquinolin-1-yl)acetic acid scaffold. Eur J Med Chem 2008; 43:1552-8. [DOI: 10.1016/j.ejmech.2007.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 10/18/2007] [Accepted: 10/29/2007] [Indexed: 11/19/2022]
|
17
|
Comesse S, Sanselme M, Daïch A. New and expeditious tandem sequence aza-Michael/intramolecular nucleophilic substitution route to substituted gamma-lactams: synthesis of the tricyclic core of (+/-)-martinellines. J Org Chem 2008; 73:5566-9. [PMID: 18549283 DOI: 10.1021/jo702752w] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new and highly diastereoselective tandem reaction aza-Michael/intramolecular nucleophilic substitution is presented. This unprecedented tandem reaction between N-substituted alpha-bromoacetamides and Michael acceptors proceeds with good yields and excellent diastereoselectivity to provide the corresponding trisubstituted gamma-lactam systems. An application to the concise synthesis of the tricyclic core of (+/-)-martinelline alkaloids is also described.
Collapse
Affiliation(s)
- Sébastien Comesse
- URCOM, EA 3221, UFR des Sciences & Techniques, Université du Havre, 25 rue Philippe Lebon, BP 540, F-76058 Le Havre Cedex, France.
| | | | | |
Collapse
|
18
|
A new class of bradykinin B1 receptor antagonists with high oral bioavailability and minimal PXR activity. Bioorg Med Chem Lett 2008; 18:682-7. [PMID: 18240388 DOI: 10.1016/j.bmcl.2007.11.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design and synthesis of a novel class of human bradykinin B1 antagonists featuring difluoroethyl ether and isoxazole carboxamide moieties are disclosed. Compound 7g displayed excellent pharmacokinetic properties, efficient ex vivo receptor occupancy, and low potential for P450 induction via PXR activation.
Collapse
|
19
|
Wood MR, Schirripa KM, Kim JJ, Kuduk SD, Chang RK, Di Marco CN, DiPardo RM, Wan BL, Murphy KL, Ransom RW, Chang RS, Holahan MA, Cook JJ, Lemaire W, Mosser SD, Bednar RA, Tang C, Prueksaritanont T, Wallace AA, Mei Q, Yu J, Bohn DL, Clayton FC, Adarayn ED, Sitko GR, Leonard YM, Freidinger RM, Pettibone DJ, Bock MG. α-Hydroxy amides as a novel class of bradykinin B1 selective antagonists. Bioorg Med Chem Lett 2008; 18:716-20. [DOI: 10.1016/j.bmcl.2007.11.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 11/12/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
|
20
|
Su DS, Lim JL, Markowitz MK, Wan BL, Murphy KL, Reiss DR, Harrell CM, O'Malley SS, Ransom RW, Chang RSL, Pettibone DJ, Tang C, Prueksaritanont T, Freidinger RM, Bock MG. Potent bradykinin B1 receptor antagonists: 4-Substituted phenyl cyclohexanes. Bioorg Med Chem Lett 2007; 17:3006-9. [PMID: 17428657 DOI: 10.1016/j.bmcl.2007.03.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 03/19/2007] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
Selective bradykinin (BK) B(1) receptor antagonists have been shown to be antinociceptive in animal models and could be novel therapeutic agents for the treatment of pain and inflammation. Elucidation of the structure-activity relationships of the biphenyl moiety of the lead compound 1 provided a potent new structural class of BK B(1) receptor antagonists.
Collapse
Affiliation(s)
- Dai-Shi Su
- Department of Medicinal Chemistry, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ballet S, De Wachter R, Van Rompaey K, Tömböly C, Feytens D, Töth G, Quartara L, Cucchi P, Meini S, Tourwé D. Bradykinin analogs containing the 4-amino-2-benzazepin-3-one scaffold at the C-terminus. J Pept Sci 2007; 13:164-70. [PMID: 17266049 DOI: 10.1002/psc.827] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
High affinity peptide ligands for the bradykinin (BK) B(2) subtype receptor have been shown to adopt a beta-turn conformation of the C-terminal tetrapeptide (H-Arg(1)-Pro(2)-Pro(3)-Gly(4)-Phe(5)-Ser(6)-Pro(7)-Phe(8)-Arg(9)-OH). We investigated the replacement of the Pro(7)-Phe(8) dipeptide moiety in BK or the D-Tic(7)-Oic(8) subunit in HOE140 (H-D-Arg(0)-Arg(1)-Pro(2)-Hyp(3)-Gly(4)-Thi(5)-Ser(6)-D-Tic(7)-Oic(8)-Arg(9)-OH) by 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one templates (Aba). Binding studies to the human B(2) receptor showed a correlation between the affinities of the BK analogs and the propensity of the templates to adopt a beta-turn conformation. The L-spiro-Aba-Gly containing HOE140 analog BK10 has the best affinity, which correlates with the known turn-inducing property of this template. All the compounds did not modify basal inositolphosphate (IP) output in B(2)-expressing CHO cells up to 10 microM concentration. The antagonist properties were confirmed by the guinea pig ileum smooth muscle contractility assay. The new amino-benzazepinone (Aba) substituted BK analogs were found to be surmountable antagonists.
Collapse
Affiliation(s)
- S Ballet
- Department of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Neuropeptides and kinins are important messengers in the nervous system and--on the basis of their anatomical localisation and the effects produced when the substances themselves are administered, to animals or to human subjects-a significant number of them have been suggested to have a role in pain and inflammation. Experiments in gene deletion (knock-out or null mutant) mice and parallel experiments with pharmacological receptor antagonists in a variety of species have strengthened the evidence that a number of peptides, notably substance P and calcitonin gene-related peptide (CGRP), and the kinins have a pathophysiological role in nociception. Clinical studies with non-peptide pharmacological antagonists are now in progress to determine if blocking the action of these peptides might have utility in the treatment of pain.
Collapse
Affiliation(s)
- R G Hill
- Merck, Sharp and Dohme Research Laboratories, Terlings Park, Harlow, Essex CM20 2QR, UK.
| | | |
Collapse
|
23
|
He Y, Mahmud H, Moningka R, Lovely CJ, Dias HR. Cyclization reactions of N-acryloyl-2-aminobenzaldehyde derivatives: formal total synthesis of martinellic acid. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.06.104] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Mattos WM, Campos MM, Fernandes ES, Richetti GP, Niero R, Yunes RA, Calixto JB. Anti-edematogenic effects of velutinol A isolated from Mandevilla velutina: evidence for a selective inhibition of kinin B1 receptor-mediated responses. ACTA ACUST UNITED AC 2006; 136:98-104. [PMID: 16764951 DOI: 10.1016/j.regpep.2006.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 03/28/2006] [Accepted: 04/28/2006] [Indexed: 11/21/2022]
Abstract
This study assesses the effects of compound velutinol A obtained from M. velutina in the rat paw edema induced by several phlogistic agents. Attempts were made to analyze how velutinol A is able to inhibit kinin B(1) receptor-mediated inflammatory responses. Velutinol A (100 nmol/paw) partially reduced (about 30%) the edema evoked by carrageenan (300 microg/paw). However, velutinol A (100 nmol/paw) failed to affect the edema induced by histamine (200 nmol/paw), substance P (30 nmol/paw), PAF (10 nmol/paw) or BK (3 nmol/paw). Interestingly, the edema caused by the selective kinin B(1) receptor agonist des-Arg(9)-BK (100 nmol/paw) in animals pre-treated with PAF or LPS was significantly inhibited by velutinol A (100 nmol/paw) (48 and 46%, respectively). A similar inhibition of des-Arg(9)-BK-induced edema after pre-treatment with PAF was obtained with the non-peptidic and selective B(1) receptor antagonist SSR 240612 (60 nmol/paw) (46%). In addition, the systemic administration of velutinol A (10 mg/kg, i.p.) or SSR 240612 (1 mg/kg, i.p.) also caused a significant reduction of des-Arg(9)-BK (100 nmol/paw)-induced edema in PAF-treated rats (51 and 43%, respectively). The results provide convincing evidence that velutinol A selectively blocks the edema responses mediated by B(1) receptor activation in vivo. This compound might represent a new non-peptidic and selective antagonist for kinin B(1) receptors.
Collapse
Affiliation(s)
- Wilian M Mattos
- Department of Pharmacology, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88049-900, Florianópolis, SC, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Kam YL, Ro JY, Kim HJ, Choo HYP. Antagonistic effects of novel non-peptide chlorobenzhydryl piperazine compounds on contractile response to bradykinin in the guinea-pig ileum. Eur J Pharmacol 2005; 523:143-50. [PMID: 16226247 DOI: 10.1016/j.ejphar.2005.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 09/08/2005] [Indexed: 11/18/2022]
Abstract
Two novel compounds, N-phenylacetyl-N'-(4-methoxybenzyl)-N''-1-(4-chlorobenzhydryl)piperazine iminodiacetic acid triamide (compound I) and N-phenylacetyl-N'-(4-methylbenzyl)-N''-1-(4-chlorobenzhydryl)piperazine iminodiacetic acid triamide (compound II), designed and synthesized as novel non-peptide bradykinin B2 receptor antagonists, were studied for their functional activities in isolated guinea-pig ileum smooth muscle. These compounds were compared with the conventional peptide bradykinin B2 receptor antagonist, icatibant (H-DArg-Arg-Pro-Hyp-Gly-Thi-Ser-dTic-Oic-Arg-OH) for their in vitro functional activities. Compounds I and II showed highly potent, time-dependent insurmountable antagonism against contractile responses to bradykinin (pKB 8.80 and 8.57, respectively) with progressive reduction of maximum effect maintaining the concentration producing half maximal-response unchanged. Otherwise, icatibant, known as a non-competitive antagonist, showed a rightward displacement of cumulative concentration-response curves to bradykinin with decrease of its maximum effect (pKB 8.73). The IC50 values of compounds I and II were 3.56 x 10(-8) and 6.30 x 10(-8) M, respectively, while that of icatibant was 5.02 x 10(-8) M. The profile of action of compounds I and II varied when contact time was prolonged from 5 to 60 min, whereas that of icatibant did not. The inhibitory effects of the newly synthesized compounds and icatibant on the contractile response to bradykinin were differently reverted by washout (icatibant < 100 min, compounds I and II > 100 min). This class of compounds containing the chlorobenzhydryl piperazine moiety is expected to be a novel non-peptide bradykinin B2 receptor antagonists.
Collapse
Affiliation(s)
- Yoo Lim Kam
- School of Pharmacy, Ewha Womans University, Seoul, 120-750, South Korea
| | | | | | | |
Collapse
|
26
|
Feng DM, Wai JM, Kuduk SD, Ng C, Murphy KL, Ransom RW, Reiss D, Chang RSL, Harrell CM, MacNeil T, Tang C, Prueksaritanont T, Freidinger RM, Pettibone DJ, Bock MG. 2,3-Diaminopyridine as a platform for designing structurally unique nonpeptide bradykinin B1 receptor antagonists. Bioorg Med Chem Lett 2005; 15:2385-8. [PMID: 15837330 DOI: 10.1016/j.bmcl.2005.02.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 02/25/2005] [Indexed: 10/25/2022]
Abstract
A novel class of 2,3-diaminopyridine bradykinin B1 receptor antagonists is disclosed. Structure-activity relationship studies (SARs) that led to compounds with significantly improved potency and pharmacokinetic properties relative to the lead compound are described.
Collapse
Affiliation(s)
- Dong-Mei Feng
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Leeb-Lundberg LMF, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 2005; 57:27-77. [PMID: 15734727 DOI: 10.1124/pr.57.1.2] [Citation(s) in RCA: 729] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Kinins are proinflammatory peptides that mediate numerous vascular and pain responses to tissue injury. Two pharmacologically distinct kinin receptor subtypes have been identified and characterized for these peptides, which are named B1 and B2 and belong to the rhodopsin family of G protein-coupled receptors. The B2 receptor mediates the action of bradykinin (BK) and lysyl-bradykinin (Lys-BK), the first set of bioactive kinins formed in response to injury from kininogen precursors through the actions of plasma and tissue kallikreins, whereas the B(1) receptor mediates the action of des-Arg9-BK and Lys-des-Arg9-BK, the second set of bioactive kinins formed through the actions of carboxypeptidases on BK and Lys-BK, respectively. The B2 receptor is ubiquitous and constitutively expressed, whereas the B1 receptor is expressed at a very low level in healthy tissues but induced following injury by various proinflammatory cytokines such as interleukin-1beta. Both receptors act through G alpha(q) to stimulate phospholipase C beta followed by phosphoinositide hydrolysis and intracellular free Ca2+ mobilization and through G alpha(i) to inhibit adenylate cyclase and stimulate the mitogen-activated protein kinase pathways. The use of mice lacking each receptor gene and various specific peptidic and nonpeptidic antagonists have implicated both B1 and B2 receptors as potential therapeutic targets in several pathophysiological events related to inflammation such as pain, sepsis, allergic asthma, rhinitis, and edema, as well as diabetes and cancer. This review is a comprehensive presentation of our current understanding of these receptors in terms of molecular and cell biology, physiology, pharmacology, and involvement in human disease and drug development.
Collapse
Affiliation(s)
- L M Fredrik Leeb-Lundberg
- Division of Cellular and Molecular Pharmacology, Department of Experimental Medical Science, Lund University, BMC, A12, SE-22184 Lund, Sweden.
| | | | | | | | | |
Collapse
|
29
|
Binding modes of dihydroquinoxalinones in a homology model of bradykinin receptor 1. Biochem Biophys Res Commun 2005; 331:159-66. [DOI: 10.1016/j.bbrc.2005.03.142] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Indexed: 10/25/2022]
|
30
|
|
31
|
The Kallikrein-Kinin System as a Regulator of Cardiovascular and Renal Function. Hypertension 2005. [DOI: 10.1016/b978-0-7216-0258-5.50110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Su DS, Markowitz MK, Murphy KL, Wan BL, Zrada MM, Harrell CM, O'Malley SS, Hess JF, Ransom RW, Chang RS, Wallace MA, Raab CE, Dean DC, Pettibone DJ, Freidinger RM, Bock MG. Development of an efficient and selective radioligand for bradykinin B1 receptor occupancy studies. Bioorg Med Chem Lett 2004; 14:6045-8. [PMID: 15546726 DOI: 10.1016/j.bmcl.2004.09.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 09/23/2004] [Accepted: 09/24/2004] [Indexed: 10/26/2022]
Abstract
We have developed an efficient and selective radioligand, the [35S]-radiolabeled dihydroquinoxalinone derivative, 4, for an ex vivo receptor occupancy assay in transgenic rats over-expressing the human bradykinin B1 receptor.
Collapse
Affiliation(s)
- Dai-Shi Su
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Calixto JB, Medeiros R, Fernandes ES, Ferreira J, Cabrini DA, Campos MM. Kinin B1 receptors: key G-protein-coupled receptors and their role in inflammatory and painful processes. Br J Pharmacol 2004; 143:803-18. [PMID: 15520046 PMCID: PMC1575942 DOI: 10.1038/sj.bjp.0706012] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 08/03/2004] [Accepted: 09/10/2004] [Indexed: 01/25/2023] Open
Abstract
Kinins are a family of peptides implicated in several pathophysiological events. Most of their effects are likely mediated by the activation of two G-protein-coupled receptors: B(1) and B(2). Whereas B(2) receptors are constitutive entities, B(1) receptors behave as key inducible molecules that may be upregulated under some special circumstances. In this context, several recent reports have investigated the importance of B(1) receptor activation in certain disease models. Furthermore, research on B(1) receptors in the last years has been mainly focused in determining the mechanisms and pathways involved in the process of induction. This was essentially favoured by the advances obtained in molecular biology studies, as well as in the design of selective and stable peptide and nonpeptide kinin B(1) receptor antagonists. Likewise, development of kinin B(1) receptor knockout mice greatly helped to extend the evidence about the relevance of B(1) receptors during pathological states. In the present review, we attempted to remark the main advances achieved in the last 5 years about the participation of kinin B(1) receptors in painful and inflammatory disorders. We have also aimed to point out some groups of chronic diseases, such as diabetes, arthritis, cancer or neuropathic pain, in which the strategic development of nonpeptidic oral-available and selective B(1) receptor antagonists could have a potential relevant therapeutic interest.
Collapse
Affiliation(s)
- João B Calixto
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88049-900 Florianópolis, SC, Brazil.
| | | | | | | | | | | |
Collapse
|
34
|
Kam YL, Rhee SJ, Choo HYP. Solution-phase combinatorial synthesis of nonpeptide bradykinin antagonists. Bioorg Med Chem 2004; 12:3543-52. [PMID: 15186838 DOI: 10.1016/j.bmc.2004.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 04/26/2004] [Accepted: 04/26/2004] [Indexed: 11/23/2022]
Abstract
We describe the solution-phase combinatorial synthesis and pharmacological effect of fifty N,N(')-substituted-N"-1-(4-chlorobenzhydryl)piperazine iminodiacetic acid triamide derivatives as nonpeptide B2 antagonists. The synthesized compounds were tested for their antibradykinin activity by utilizing guinea-pig ileum smooth muscle. Most of the compounds showed antagonistic effects on bradykinin induced contraction. N-acetyl-N(')-(4-methylbenzyl)-N"-1-(4-chlorobenzhydryl)piperazine iminodiacetic acid triamide (A3B1C1) showed the 46% inhibition at 100nM.
Collapse
Affiliation(s)
- Yoo Lim Kam
- School of Pharmacy, Ewha Womans University, Seoul 120-750, South Korea
| | | | | |
Collapse
|
35
|
Miao FJP, Green P, Benowitz N, Levine JD. Vagal modulation of spinal nicotine-induced inhibition of the inflammatory response mediated by descending antinociceptive controls. Neuropharmacology 2003; 45:605-11. [PMID: 12941374 DOI: 10.1016/s0028-3908(03)00224-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Noxious stimuli activate neuroendocrine axes, inhibiting inflammation, an effect that is powerfully attenuated by ongoing activity in subdiaphragmatic vagal afferents. To evaluate whether this inhibitory effect of vagal afferent activity is mediated by descending antinociceptive control, we tested whether antagonizing descending antinociceptive controls: (i) enhances the inhibition of inflammation produced by spinal nicotine (which stimulates central terminals of nociceptors) and (ii) occludes the enhancing effect of subdiaphragmatic vagotomy, in the rat. Spinal intrathecal co-administration of the alpha-adrenergic receptor antagonist phentolamine and the non-selective opioid receptor antagonist naloxone, and acute subdiaphragmatic vagotomy each produced enhancement, with similar magnitude, of nicotine-induced inhibition of plasma extravasation, produced by the potent inflammatory mediator, bradykinin. The combination of subdiaphragmatic vagotomy and intrathecal receptor antagonists, however, produced no further enhancement compared to each treatment alone. These findings support the suggestion that activity in descending antinociceptive controls modulates noxious stimulus-induced inhibition of inflammation and the vagal modulation of noxious stimulus-induced inhibition of inflammation is mediated by descending antinociceptive controls.
Collapse
Affiliation(s)
- Frederick Jia-Pei Miao
- NIH Pain Center UCSF, University of California at San Francisco, Schools of Medicine and Dentistry, San Francisco, CA 94143-0440, USA
| | | | | | | |
Collapse
|
36
|
Heitsch H. The therapeutic potential of bradykinin B2 receptor agonists in the treatment of cardiovascular disease. Expert Opin Investig Drugs 2003; 12:759-70. [PMID: 12720488 DOI: 10.1517/13543784.12.5.759] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The nonapeptide bradykinin (BK) is a Janus-faced hormone, which exerts pathophysiological as well as pronounced beneficial physiological effects, mainly by stimulation of BK B(2) receptors. In various animal models and in humans it has been shown that the stimulation of BK B(2) receptors is not only implicated in the pathogenesis of inflammation, pain and tissue injury but also in powerful cardioprotective mechanisms. Either exogenous administration of BK or locally increased BK concentrations as a consequence of the inhibition of its metabolic breakdown by angiotensin-converting enzyme inhibitors, reveal the significant contribution of BK in powerful cardioprotective mechanisms. These are mainly triggered by the synthesis and release of the vasorelaxant, anti-hypertrophic and anti-atherosclerotic endothelial mediators nitric oxide, prostaglandins and tissue-type plasminogen activator, by ischaemic preconditioning and by an increase in insulin sensitivity. Consequently, BK B(2) receptor agonists may have important clinical value in the treatment and prevention of various cardiovascular disorders such as hypertension, ischaemic heart disease, left ventricular hypertrophy, ventricular remodelling and congestive heart failure as well as diabetic disorders by mimicking the reported beneficial effects of BK. However, none of the currently known potent and selective peptide and non-peptide agonists of BK B(2) receptors--RMP-7 (lobradamil, Cereport; Alkermes), JMV-1116 (Fournier), FR-190997 (Fujisawa) and FR-191413 (Fujisawa)--have been selected for a clinical assessment in cardiovascular indications. One major challenge of this approach is the still unanswered question of whether there is a sufficient safe therapeutic window between potential cardioprotective and pro-inflammatory effects following BK B(2) receptor agonism.
Collapse
Affiliation(s)
- Holger Heitsch
- Aventis Pharma Deutschland GmbH, DI&A LG Chemistry, Medicinal Chemistry, Industrial Park Höchst, Building G 878, 65926 Frankfurt/Main, Germany.
| |
Collapse
|
37
|
El-Bizri N, Bkaily G, Wang S, Jacques D, Regoli D, D'Orléans-Juste P, Sukarieh R. Bradykinin induced a positive chronotropic effect via stimulation of T- and L-type calcium currents in heart cells. Can J Physiol Pharmacol 2003; 81:247-58. [PMID: 12733823 DOI: 10.1139/y03-045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using Fluo-3 calcium dye confocal microscopy and spontaneously contracting embryonic chick heart cells, bradykinin (10(-10) M) was found to induce positive chronotropic effects by increasing the frequency of the transient increase of cytosolic and nuclear free Ca2+. Pretreatment of the cells with either B1 or B2 receptor antagonists (R126 and R817, respectively) completely prevented bradykinin (BK) induced positive chronotropic effects on spontaneously contracting single heart cells. Using the whole-cell voltage clamp technique and ionic substitution to separate the different ionic current species, our results showed that BK (10(-6) M) had no effect on fast Na+ inward current and delayed outward potassium current. However, both L- and T-type Ca2+ currents were found to be increased by BK in a dose-dependent manner (10(-10)-10(-7) M). The effects of BK on T- and L-type Ca2+ currents were partially blocked by the B1 receptor antagonist [Leu8]des-Arg9-BK (R592) (10(-7) M) and completely reversed by the B2 receptor antagonist D-Arg[Hyp3,D-Phe7,Leu8]BK (R-588) (10(-7) M) or pretreatment with pertussis toxin (PTX). These results demonstrate that BK induced a positive chronotropic effect via stimulation of T- and L-type Ca2+ currents in heart cells mainly via stimulation of B2 receptor coupled to PTX-sensitive G-proteins. The increase of both types of Ca2+ current by BK in heart cells may explain the positive inotropic and chronotropic effects of this hormone.
Collapse
MESH Headings
- Aniline Compounds
- Animals
- Bradykinin/pharmacology
- Bradykinin/physiology
- Bradykinin B1 Receptor Antagonists
- Bradykinin B2 Receptor Antagonists
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/physiology
- Calcium Channels, T-Type/drug effects
- Calcium Channels, T-Type/physiology
- Cells, Cultured
- Chick Embryo
- Fluorescent Dyes
- In Vitro Techniques
- Microscopy, Confocal
- Myocytes, Cardiac/metabolism
- Nifedipine/pharmacology
- Patch-Clamp Techniques
- Potassium Channels/drug effects
- Potassium Channels/physiology
- Receptor, Bradykinin B1/physiology
- Receptor, Bradykinin B2/physiology
- Sodium Channels/drug effects
- Sodium Channels/physiology
- Stimulation, Chemical
- Time Factors
- Xanthenes
Collapse
Affiliation(s)
- Nesrine El-Bizri
- Department of Anatomy and Cell Biology, 3001 12th Avenue North, University of Sherbrooke, Sherbrooke, QC J1H 5N4 Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Kunapuli P, Ransom R, Murphy KL, Pettibone D, Kerby J, Grimwood S, Zuck P, Hodder P, Lacson R, Hoffman I, Inglese J, Strulovici B. Development of an intact cell reporter gene beta-lactamase assay for G protein-coupled receptors for high-throughput screening. Anal Biochem 2003; 314:16-29. [PMID: 12633598 DOI: 10.1016/s0003-2697(02)00587-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
G protein-coupled receptors (GPCRs) are involved in a large variety of physiological disorders, and are thus important pharmaceutical drug targets. Here, we describe the development and characterization of a beta-lactamase reporter gene assay as a functional readout for the ligand-induced activation of the human bradykinin B1 receptor, expressed recombinantly in CHO cells. The beta-lactamase reporter gene assay provides high sensitivity due to the absence of endogenous beta-lactamase activity in mammalian cells. The cell-permeable fluorogenic substrate allows single-cell cloning of cells expressing functional BK1 receptors. Pharmacological characterization reveals comparable sensitivity and potency of known BK1 receptor agonists and antagonists between the beta-lactamase assay, competition-binding assay, and other direct measurements of second messengers. The beta-lactamase assay has been optimized for cell density, time of agonist stimulation, and DMSO sensitivity. This CHO-hBK1-beta-lactamase assay is well suited to automation and miniaturization required for high-throughput screening.
Collapse
Affiliation(s)
- Priya Kunapuli
- Department of Automated Biotechnology, Merck Research Laboratories, 502 Louise Lane, North Wales, PA 19454, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bock MG, Hess J, Pettibone DJ. Chapter 12. Bradykinin-1 receptor antagonists. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2003. [DOI: 10.1016/s0065-7743(03)38013-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
40
|
Abstract
Cough is an important defensive reflex of the upper airway and is also a very common symptom of respiratory disease. Cough following an upper respiratory viral infection is transient, and persistent cough is associated with a whole range of conditions, such as asthma, rhino-sinusitis and gastro-oesophageal reflux. Treatment directed at these conditions may improve the associated cough. There is often a need, however, to control cough itself whatever the cause. The most effective drugs in this class are the opioids, such as morphine, codeine or pholcodeine, but at effective doses they have side effects including drowsiness, nausea, constipation and physical dependence. Investigations into the cough reflex and into the potential mechanisms of sensitised cough reflex have uncovered several potential targets for novel drugs. New opioids apart from mu-agonists such as kappa- and delta -receptor agonists, have been developed, in addition to non-opioids such as nociceptin. Neurokinin receptor antagonists, bradykinin receptor antagonists, vanniloid receptor VR-1 antagonists may be beneficial by blocking effects of tachykinins and sensory nerve activation. Local anaesthetics, blockers of sodium-dependent channels and maxi-K Ca2+-dependent channel activators of afferent nerves are inhibitors of the cough reflex. Some of these novel agents may act centrally or peripherally or at both sites as antitussives. Large scale trials of these novel compounds have not been carried out in cough in man but there is a serious need for more effective antitussives devoid of side effects.
Collapse
Affiliation(s)
- K F Chung
- National Heart & Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK.
| |
Collapse
|
41
|
Calixto JB, Cabrini DA, Ferreira J, Campos MM. Inflammatory pain: kinins and antagonists. Curr Opin Anaesthesiol 2001; 14:519-26. [PMID: 17019140 DOI: 10.1097/00001503-200110000-00010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This short review focuses on the most recent findings in the rapidly expanding field of kinin research. Through a series of recent publications, the crucial relevance of this group of peptides as mediators of inflammatory pain is becoming increasingly evident. On the strength of this idea, kinins have been implicated as algogen peptides produced in response to noxious stimuli. The importance of kinins has been elucidated by different pharmacological and molecular approaches. Special attention has been given to studies with selective kinin antagonists, as well as to the use of receptor gene deletion technology. The gathering of results has demonstrated that both B(1) and B(2) receptors seem to exert a meaningful role during nociceptive responses, the B(1) receptor being most relevant in the chronic stages of inflammatory pain. It is hoped that new effective and useful therapeutic agents, mainly B(1) kinin selective receptor antagonists, might soon be available.
Collapse
Affiliation(s)
- J B Calixto
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88015-420 Florianópolis, Santa Catarina, Brazil.
| | | | | | | |
Collapse
|