1
|
Costanzo A, Fata F, Freda I, De Sciscio ML, Gugole E, Bulfaro G, Di Renzo M, Barbizzi L, Exertier C, Parisi G, D'Abramo M, Vallone B, Savino C, Montemiglio LC. Binding of steroid substrates reveals the key to the productive transition of the cytochrome P450 OleP. Structure 2024; 32:1465-1476.e3. [PMID: 38971159 DOI: 10.1016/j.str.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 07/08/2024]
Abstract
OleP is a bacterial cytochrome P450 involved in oleandomycin biosynthesis as it catalyzes regioselective epoxidation on macrolide intermediates. OleP has recently been reported to convert lithocholic acid (LCA) into murideoxycholic acid through a highly regioselective reaction and to unspecifically hydroxylate testosterone (TES). Since LCA and TES mainly differ by the substituent group at the C17, here we used X-ray crystallography, equilibrium binding assays, and molecular dynamics simulations to investigate the molecular basis of the diverse reactivity observed with the two steroids. We found that the differences in the structure of TES and LCA affect the capability of these molecules to directly form hydrogen bonds with N-terminal residues of OleP internal helix I. The establishment of these contacts, by promoting the bending of helix I, fosters an efficient trigger of the open-to-closed structural transition that occurs upon substrate binding to OleP and contributes to the selectivity of the subsequent monooxygenation reaction.
Collapse
Affiliation(s)
- Antonella Costanzo
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy
| | - Francesca Fata
- Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, National Research Council, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Ida Freda
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy
| | - Maria Laura De Sciscio
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Elena Gugole
- Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, National Research Council, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Giovanni Bulfaro
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy
| | - Matteo Di Renzo
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy
| | - Luca Barbizzi
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy
| | - Cécile Exertier
- Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, National Research Council, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Giacomo Parisi
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza, University of Rome, Via Antonio Scarpa, 16, 00161 Rome, Italy
| | - Marco D'Abramo
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Beatrice Vallone
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, National Research Council, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, National Research Council, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, National Research Council, P.le Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|
2
|
Davletgildeeva AT, Kuznetsov NA. Bioremediation of Polycyclic Aromatic Hydrocarbons by Means of Bacteria and Bacterial Enzymes. Microorganisms 2024; 12:1814. [PMID: 39338488 PMCID: PMC11434427 DOI: 10.3390/microorganisms12091814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread, persistent, and toxic environmental pollutants. Many anthropogenic and some natural factors contribute to the spread and accumulation of PAHs in aquatic and soil systems. The effective and environmentally friendly remediation of these chemical compounds is an important and challenging problem that has kept scientists busy over the last few decades. This review briefly summarizes data on the main sources of PAHs, their toxicity to living organisms, and physical and chemical approaches to the remediation of PAHs. The basic idea behind existing approaches to the bioremediation of PAHs is outlined with an emphasis on a detailed description of the use of bacterial strains as individual isolates, consortia, or cell-free enzymatic agents.
Collapse
Affiliation(s)
- Anastasiia T. Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Discovery and Heterologous Expression of Unspecific Peroxygenases. Catalysts 2023. [DOI: 10.3390/catal13010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Since 2004, unspecific peroxygenases, in short UPOs (EC. 1.11.2.1), have been explored. UPOs are closing a gap between P450 monooxygenases and chloroperoxidases. These enzymes are highly active biocatalysts for the selective oxyfunctionalisation of C–H, C=C and C-C bonds. UPOs are secreted fungal proteins and Komagataella phaffii (Pichia pastoris) is an ideal host for high throughput screening approaches and UPO production. Heterologous overexpression of 26 new UPOs by K. phaffii was performed in deep well plate cultivation and shake flask cultivation up to 50 mL volume. Enzymes were screened using colorimetric assays with 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,6-dimethoxyphenol (DMP), naphthalene and 5-nitro-1,3-benzodioxole (NBD) as reporter substrates. The PaDa-I (AaeUPO mutant) and HspUPO were used as benchmarks to find interesting new enzymes with complementary activity profiles as well as good producing strains. Herein we show that six UPOs from Psathyrella aberdarensis, Coprinopsis marcescibilis, Aspergillus novoparasiticus, Dendrothele bispora and Aspergillus brasiliensis are particularly active.
Collapse
|
4
|
Sun C, Zhang R, Xie C. Efficient Synthesis of (R)-(+)-Perillyl Alcohol From (R)-(+)-Limonene Using Engineered Escherichia coli Whole Cell Biocatalyst. Front Bioeng Biotechnol 2022; 10:900800. [PMID: 35547170 PMCID: PMC9084310 DOI: 10.3389/fbioe.2022.900800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
(R)-(+)-perillyl alcohol is a much valued supplemental compound with a wide range of agricultural and pharmacological characteristics. The aim of this study was to improve (R)-(+)-perillyl alcohol production using a whole-cell catalytic formula. In this study, we employed plasmids with varying copy numbers to identify an appropriate strain, strain 03. We demonstrated that low levels of alKL provided maximal biocatalyst stability. Upon determination of the optimal conditions, the (R)-(+)-perillyl alcohol yield reached 130 mg/L. For cofactor regeneration, we constructed strain 10, expressing FDH from Candida boidinii, and achieved (R)-(+)-perillyl alcohol production of 230 mg/L. As a result, 1.23 g/L (R)-(+)-perillyl alcohol was transformed in a 5 L fermenter. Our proposed method facilitates an alternative approach to the economical biosynthesis of (R)-(+)-perillyl alcohol.
Collapse
Affiliation(s)
- Chao Sun
- A State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Rubing Zhang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Rubing Zhang, ; Congxia Xie,
| | - Congxia Xie
- A State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
- *Correspondence: Rubing Zhang, ; Congxia Xie,
| |
Collapse
|
5
|
Bonczidai-Kelemen D, Sciortino G, May NV, Garribba E, Fábián I, Lihi N. Introducing the penicillamine moiety into a metallopeptide mimicking the NiSOD enzyme: electronic and kinetic effects. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01025e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel NiSOD related metallopeptide incorporates penicillamine moiety in the active center which alters both the electronic and kinetic features.
Collapse
Affiliation(s)
- Dóra Bonczidai-Kelemen
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032, Debrecen, Hungary
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Technology, 43007 Tarragona, Spain
| | - Nóra V. May
- Centre for Structural Science, Research Centre for Natural Sciences, H-1117, Budapest, Hungary
| | - Eugenio Garribba
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, I-07100 Sassari, Italy
| | - István Fábián
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032, Debrecen, Hungary
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, University of Debrecen, H-4032, Debrecen, Hungary
| | - Norbert Lihi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032, Debrecen, Hungary
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, University of Debrecen, H-4032, Debrecen, Hungary
| |
Collapse
|
6
|
Rotilio L, Swoboda A, Ebner K, Rinnofner C, Glieder A, Kroutil W, Mattevi A. Structural and biochemical studies enlighten the unspecific peroxygenase from Hypoxylon sp. EC38 as an efficient oxidative biocatalyst. ACS Catal 2021; 11:11511-11525. [PMID: 34540338 DOI: 10.1021/acscatal.1c03065] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Unspecific peroxygenases (UPO) are glycosylated fungal enzymes that can selectively oxidize C-H bonds. UPOs employ hydrogen peroxide as oxygen donor and reductant. With such an easy-to-handle co-substrate and without the need of a reducing agent, UPOs are emerging as convenient oxidative biocatalysts. Here, an unspecific peroxygenase from Hypoxylon sp. EC38 (HspUPO) was identified in an activity-based screen of six putative peroxygenase enzymes that were heterologously expressed in Pichia pastoris. The enzyme was found to tolerate selected organic solvents such as acetonitrile and acetone. HspUPO is a versatile catalyst performing various reactions, such as the oxidation of prim- and sec-alcohols, epoxidations and hydroxylations. Semi-preparative biotransformations were demonstrated for the non-enantioselective oxidation of racemic 1-phenylethanol rac -1b (TON = 13000), giving the product with 88% isolated yield, and the oxidation of indole 6a to give indigo 6b (TON = 2800) with 98% isolated yield. HspUPO features a compact and rigid three-dimensional conformation that wraps around the heme and defines a funnel-shaped tunnel that leads to the heme iron from the protein surface. The tunnel extends along a distance of about 12 Å with a fairly constant diameter in its innermost segment. Its surface comprises both hydrophobic and hydrophilic groups for dealing with small-to-medium size substrates of variable polarities. The structural investigation of several protein-ligand complexes revealed that the active site of HspUPO is accessible to molecules of varying bulkiness and polarity with minimal or no conformational changes, explaining the relatively broad substrate scope of the enzyme. With its convenient expression system, robust operational properties, relatively small size, well-defined structural features, and diverse reaction scope, HspUPO is an exploitable candidate for peroxygenase-based biocatalysis.
Collapse
Affiliation(s)
- Laura Rotilio
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Alexander Swoboda
- Austrian Centre of Industrial Biotechnology, c/o Institute of Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Katharina Ebner
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Claudia Rinnofner
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Austrian Centre of Industrial Biotechnology, c/o Institute of Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Gaz, BioTechMed Graz, Heinrichstraße 28, 8010 Graz, Austria
- Field of Excellence BioHealth-University of Graz, 8010 Graz, Austria
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
7
|
Zhang X, Hu Y, Peng W, Gao C, Xing Q, Wang B, Li A. Exploring the Potential of Cytochrome P450 CYP109B1 Catalyzed Regio-and Stereoselective Steroid Hydroxylation. Front Chem 2021; 9:649000. [PMID: 33681151 PMCID: PMC7930613 DOI: 10.3389/fchem.2021.649000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
Cytochrome P450 enzyme CYP109B1 is a versatile biocatalyst exhibiting hydroxylation activities toward various substrates. However, the regio- and stereoselective steroid hydroxylation by CYP109B1 is far less explored. In this study, the oxidizing activity of CYP109B1 is reconstituted by coupling redox pairs from different sources, or by fusing it to the reductase domain of two self-sufficient P450 enzymes P450RhF and P450BM3 to generate the fused enzyme. The recombinant Escherichia coli expressing necessary proteins are individually constructed and compared in steroid hydroxylation. The ferredoxin reductase (Fdr_0978) and ferredoxin (Fdx_1499) from Synechococcus elongates is found to be the best redox pair for CYP109B1, which gives above 99% conversion with 73% 15β selectivity for testosterone. By contrast, the rest ones and the fused enzymes show much less or negligible activity. With the aid of redox pair of Fdr_0978/Fdx_1499, CYP109B1 is used for hydroxylating different steroids. The results show that CYP109B1 displayed good to excellent activity and selectivity toward four testosterone derivatives, giving all 15β-hydroxylated steroids as main products except for 9 (10)-dehydronandrolone, for which the selectivity is shifted to 16β. While for substrates bearing bulky substitutions at C17 position, the activity is essentially lost. Finally, the origin of activity and selectivity for CYP109B1 catalyzed steroid hydroxylation is revealed by computational analysis, thus providing theoretical basis for directed evolution to further improve its catalytic properties.
Collapse
Affiliation(s)
- Xiaodong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yun Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Chenghua Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Qiong Xing
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
8
|
Röllig R, Paul CE, Claeys-Bruno M, Duquesne K, Kara S, Alphand V. Divorce in the two-component BVMO family: the single oxygenase for enantioselective chemo-enzymatic Baeyer-Villiger oxidations. Org Biomol Chem 2021; 19:3441-3450. [PMID: 33899864 DOI: 10.1039/d1ob00015b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two-component flavoprotein monooxygenases consist of a reductase and an oxygenase enzyme. The proof of functionality of the latter without its counterpart as well as the mechanism of flavin transfer remains unanswered beyond doubt. To tackle this question, we utilized a reductase-free reaction system applying purified 2,5-diketocamphane-monooxygenase I (2,5-DKCMO), a FMN-dependent type II Baeyer-Villiger monooxygenase, and synthetic nicotinamide analogues (NCBs) as dihydropyridine derivatives for FMN reduction. This system demonstrated the stand-alone quality of the oxygenase, as well as the mechanism of FMNH2 transport by free diffusion. The efficiency of this reductase-free system strongly relies on the balance of FMN reduction and enzymatic (re)oxidation, since reduced FMN in solution causes undesired side reactions, such as hydrogen peroxide formation. Design of experiments allowed us to (i) investigate the effect of various reaction parameters, underlining the importance to balance the FMN/FMNH2 cycle, (ii) optimize the reaction system for the enzymatic Baeyer-Villiger oxidation of rac-bicyclo[3.2.0]hept-2-en-6-one, rac-camphor, and rac-norcamphor. Finally, this study not only demonstrates the reductase-independence of 2,5-DKCMO, but also revisits the terminology of two-component flavoprotein monooxygenases for this specific case.
Collapse
Affiliation(s)
- Robert Röllig
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, Marseille, France. and Aarhus University, Denmark
| | | | | | - Katia Duquesne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, Marseille, France.
| | | | - Véronique Alphand
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, Marseille, France.
| |
Collapse
|
9
|
Biotransformation of Hydroxychalcones as a Method of Obtaining Novel and Unpredictable Products Using Whole Cells of Bacteria. Catalysts 2020. [DOI: 10.3390/catal10101167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of our study was the evaluation of the biotransformation capacity of hydroxychalcones—2-hydroxy-4′-methylchalcone (1) and 4-hydroxy-4′-methylchalcone (4) using two strains of aerobic bacteria. The microbial reduction of the α,β-unsaturated bond of 2-hydroxy-4′-methylchalcone (1) in Gordonia sp. DSM 44456 and Rhodococcus sp. DSM 364 cultures resulted in isolation the 2-hydroxy-4′-methyldihydrochalcone (2) as a main product with yields of up to 35%. Additionally, both bacterial strains transformed compound 1 to the second, unexpected product of reduction and simultaneous hydroxylation at C-4 position—2,4-dihydroxy-4′-methyldihydrochalcone (3) (isolated yields 12.7–16.4%). During biotransformation of 4-hydroxy-4′-methylchalcone (4) we observed the formation of three products: reduction of C=C bond—4-hydroxy-4′-methyldihydrochalcone (5), reduction of C=C bond and carbonyl group—3-(4-hydroxyphenyl)-1-(4-methylphenyl)propan-1-ol (6) and also unpredictable 3-(4-hydroxyphenyl)-1,5-di-(4-methylphenyl)pentane-1,5-dione (7). As far as our knowledge is concerned, compounds 3, 6 and 7 have never been described in the scientific literature.
Collapse
|
10
|
Half-Preparative Scale Synthesis of (S)-1-Phenylethane-1,2-Diol as a Result of 2-Phenylethanol Hydroxylation with Aspergillus niger (IAFB 2301) Assistance. Symmetry (Basel) 2020. [DOI: 10.3390/sym12060989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aspergillus niger (IAFB 2301) was employed for bioconversions of 2-phenylethanol as an immobilized or free mycelium and also as a spore suspension. Experiments were conducted on laboratory and half-preparative scale (bioreactor New Brunswick Scientific, BioFlo Model C32). Thus, A. niger applied as free mycelium, depending on the outcome, supported formation of the mixture of 4-hydroxyphenylacetic acid and hydroxytyrosol (final concentration of 13.8 mg/L and 3.7% efficiency) or 4-hydroxyphenylacetic acid, as single product (final concentration of 140 mg/L and 18% efficiency). In case of scaling experiments conducted with flow and batch reactors, accordingly, the following results were achieved: 1. mixture of antioxidants 4-hydroxyphenylacetic acid and hydroxytyrosol formed with final concentration of 76 mg/L and 10% efficiency (simplified flow system and immobilized mycelium); 2. (S)-1-phenylethane-1,2-diol synthesized with a final concentration of 447 mg/L and 65% (1.3 L batch reactor).
Collapse
|
11
|
Sluyter G, Kleber J, Perz F, Grund B, Leuchs S, Sieberz S, Bubenheim P, Thum O, Liese A. Fermentative oxidation of butane in bubble column reactors. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Zhang X, Peng Y, Zhao J, Li Q, Yu X, Acevedo-Rocha CG, Li A. Bacterial cytochrome P450-catalyzed regio- and stereoselective steroid hydroxylation enabled by directed evolution and rational design. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-019-0290-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AbstractSteroids are the most widely marketed products by the pharmaceutical industry after antibiotics. Steroid hydroxylation is one of the most important functionalizations because their derivatives enable a higher biological activity compared to their less polar non-hydroxylated analogs. Bacterial cytochrome P450s constitute promising biocatalysts for steroid hydroxylation due to their high expression level in common workhorses like Escherichia coli. However, they often suffer from wrong or insufficient regio- and/or stereoselectivity, low activity, narrow substrate range as well as insufficient thermostability, which hampers their industrial application. Fortunately, these problems can be generally solved by protein engineering based on directed evolution and rational design. In this work, an overview of recent developments on the engineering of bacterial cytochrome P450s for steroid hydroxylation is presented.
Collapse
|
13
|
Wu S, Zhou Y, Li Z. Biocatalytic selective functionalisation of alkenes via single-step and one-pot multi-step reactions. Chem Commun (Camb) 2019; 55:883-896. [PMID: 30566124 DOI: 10.1039/c8cc07828a] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alkenes are excellent starting materials for organic synthesis due to the versatile reactivity of C[double bond, length as m-dash]C bonds and the easy availability of many unfunctionalised alkenes. Direct regio- and/or enantioselective conversion of alkenes into functionalised (chiral) compounds has enormous potential for industrial applications, and thus has attracted the attention of researchers for extensive development using chemo-catalysis over the past few years. On the other hand, many enzymes have also been employed for conversion of alkenes in a highly selective and much greener manner to offer valuable products. Herein, we review recent advances in seven well-known types of biocatalytic conversion of alkenes. Remarkably, recent mechanism-guided directed evolution and enzyme cascades have enabled the development of seven novel types of single-step and one-pot multi-step functionalisation of alkenes, some of which are even unattainable via chemo-catalysis. These new reactions are particularly highlighted in this feature article. Overall, we present an ever-expanding enzyme toolbox for various alkene functionalisations inspiring further research in this fast-developing theme.
Collapse
Affiliation(s)
- Shuke Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585.
| | | | | |
Collapse
|
14
|
NAD+
Cofactor Regeneration by TMB-Mediated Horseradish-Peroxidase-Catalyzed Reactions. ChemistrySelect 2018. [DOI: 10.1002/slct.201801731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Kozłowska E, Urbaniak M, Hoc N, Grzeszczuk J, Dymarska M, Stępień Ł, Pląskowska E, Kostrzewa-Susłow E, Janeczko T. Cascade biotransformation of dehydroepiandrosterone (DHEA) by Beauveria species. Sci Rep 2018; 8:13449. [PMID: 30194436 PMCID: PMC6128828 DOI: 10.1038/s41598-018-31665-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/05/2018] [Indexed: 12/31/2022] Open
Abstract
Beauveria bassiana is an entomopathogenic fungus used as a biological control agent. It is a well-known biocatalyst for the transformation of steroid compounds. Hydroxylations at the 7α or 11α position and oxidation to D-homo lactones are described in the literature. In our study, we examined the diversity of metabolism of five different B. bassiana strains and compared them to already known pathways. According to the literature, 7α and 11α-hydroxy derivatives as well as 3β,11α-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one have been observed. Here we describe new DHEA metabolic pathways and two products not described before: 3β-hydroxy-17a-oxa-D-homo-androst-5-en-7,17-dione and 3β,11α-dihydroxyandrost-5-en-7,17-dione. We also used for the first time another species from this genus, Beauveria caledonica, for steroid transformation. DHEA was hydroxylated at the 7α, 7β and 11α positions and then reactions of oxidation and reduction leading to 3β,11α-dihydroxyandrost-5-en-7,17-dione were observed. All tested strains from the Beauveria genus effectively transformed the steroid substrate using several different enzymes, resulting in cascade transformation.
Collapse
Affiliation(s)
- Ewa Kozłowska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| | - Monika Urbaniak
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Natalia Hoc
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Jakub Grzeszczuk
- Department of Plant Protection, Division of Phytopathology and Mycology, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| | - Monika Dymarska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Elżbieta Pląskowska
- Department of Plant Protection, Division of Phytopathology and Mycology, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Tomasz Janeczko
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| |
Collapse
|
16
|
Li RJ, Xu JH, Chen Q, Zhao J, Li AT, Yu HL. Enhancing the Catalytic Performance of a CYP116B Monooxygenase by Transdomain Combination Mutagenesis. ChemCatChem 2018. [DOI: 10.1002/cctc.201800054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ren-Jie Li
- Laboratory of Biocatalysis and Synthetic Biotechnology; State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P.R. China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology; State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P.R. China
| | - Qi Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology; State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P.R. China
| | - Jing Zhao
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; Tianjin 300308 P.R. China
| | - Ai-Tao Li
- Hubei Collaborative Innovation Center for, Green Transformation of Bio-resources; Hubei Key Laboratory of Industrial Biotechnology; College of Life Sciences; Hubei University; Wuhan 430062 P.R. China
| | - Hui-Lei Yu
- Laboratory of Biocatalysis and Synthetic Biotechnology; State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P.R. China
| |
Collapse
|
17
|
Krickl S, Touraud D, Bauduin P, Zinn T, Kunz W. Enzyme activity of horseradish peroxidase in surfactant-free microemulsions. J Colloid Interface Sci 2018; 516:466-475. [DOI: 10.1016/j.jcis.2018.01.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 11/28/2022]
|
18
|
Wińska K, Grabarczyk M, Mączka W, Żarowska B, Maciejewska G, Anioł M. Antimicrobial activity of new bicyclic lactones with three or four methyl groups obtained both synthetically and biosynthetically. JOURNAL OF SAUDI CHEMICAL SOCIETY 2018. [DOI: 10.1016/j.jscs.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Affiliation(s)
- Shuke Wu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
20
|
Flavin-catalyzed redox tailoring reactions in natural product biosynthesis. Arch Biochem Biophys 2017; 632:20-27. [DOI: 10.1016/j.abb.2017.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 11/21/2022]
|
21
|
Discovery of Lysine Hydroxylases in the Clavaminic Acid Synthase-Like Superfamily for Efficient Hydroxylysine Bioproduction. Appl Environ Microbiol 2017; 83:AEM.00693-17. [PMID: 28667106 DOI: 10.1128/aem.00693-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/22/2017] [Indexed: 01/19/2023] Open
Abstract
Hydroxylation via C-H bond activation in the absence of any harmful oxidizing reagents is technically difficult in modern chemistry. In this work, we attempted to generate pharmaceutically important hydroxylysine from readily available l-lysine with l-lysine hydroxylases from diverse microorganisms. Clavaminic acid synthase-like superfamily gene mining and phylogenetic analysis led to the discovery of six biocatalysts, namely two l-lysine 3S-hydroxylases and four l-lysine 4R-hydroxylases, the latter of which partially matched known hydroxylases. Subsequent characterization of these hydroxylases revealed their capacity for regio- and stereoselective hydroxylation into either C-3 or C-4 positions of l-lysine, yielding (2S,3S)-3-hydroxylysine and (2S,4R)-4-hydroxylysine, respectively. To determine if these factors had industrial application, we performed a preparative production of both hydroxylysines under optimized conditions. For this, recombinant l-lysine hydroxylase-expressing Escherichia coli cells were used as a biocatalyst for l-lysine bioconversion. In batch-scale reactions, 531 mM (86.1 g/liter) (2S,3S)-3-hydroxylysine was produced from 600 mM l-lysine with an 89% molar conversion after a 52-h reaction, and 265 mM (43.0 g/liter) (2S,4R)-4-hydroxylysine was produced from 300 mM l-lysine with a molar conversion of 88% after 24 h. This report demonstrates the highly efficient production of hydroxylysines using lysine hydroxylases, which may contribute to future industrial bioprocess technologies.IMPORTANCE The present study identified six l-lysine hydroxylases belonging to the 2-oxoglutarate-dependent dioxygenase superfamily, although some of them overlapped with known hydroxylases. While the substrate specificity of l-lysine hydroxylases was relatively narrow, we found that (2S,3S)-3-hydroxylysine was hydroxylated by 4R-hydroxylase and (2S,5R)-5-hydroxylysine was hydroxylated by both 3S- and 4R-hydroxylases. Moreover, the l-arginine hydroxylase VioC also hydroxylated l-lysine, albeit to a lesser extent. Further, we also demonstrated the bioconversion of l-lysine into (2S,3S)-3-hydroxylysine and (2S,4R)-4-hydroxylysine on a gram scale under optimized conditions. These findings provide new insights into biocatalytic l-lysine hydroxylation and thus have a great potential for use in manufacturing bioprocesses.
Collapse
|
22
|
Lock M, Nichol T, Murrell JC, Smith TJ. Mutagenesis and expression of methane monooxygenase to alter regioselectivity with aromatic substrates. FEMS Microbiol Lett 2017; 364:3906680. [PMID: 28854685 PMCID: PMC5812538 DOI: 10.1093/femsle/fnx137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/27/2017] [Indexed: 11/13/2022] Open
Abstract
Soluble methane monooxygenase (sMMO) from methane-oxidising bacteria can oxygenate more than 100 hydrocarbons and is one of the most catalytically versatile biological oxidation catalysts. Expression of recombinant sMMO has to date not been achieved in Escherichia coli and so an alternative expression system must be used to manipulate it genetically. Here we report substantial improvements to the previously described system for mutagenesis of sMMO and expression of recombinant enzymes in a methanotroph (Methylosinus trichosporium OB3b) expression system. This system has been utilised to make a number of new mutants and to engineer sMMO to increase its catalytic precision with a specific substrate whilst increasing activity by up to 6-fold. These results are the first 'proof-of-principle' experiments illustrating the feasibility of developing sMMO-derived catalysts for diverse applications.
Collapse
Affiliation(s)
- Malcolm Lock
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Tim Nichol
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Thomas J. Smith
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
23
|
Wu S, Zhou Y, Seet D, Li Z. Regio- and Stereoselective Oxidation of Styrene Derivatives to Arylalkanoic AcidsviaOne-Pot Cascade Biotransformations. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700416] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuke Wu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456
| | - Yi Zhou
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456
| | - Daniel Seet
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456
| |
Collapse
|
24
|
Xu SH, Wang WW, Zhang C, Liu XF, Yu BY, Zhang J. Site-selective oxidation of unactivated C–H sp 3 bonds of oleanane triterpenes by Streptomyces griseus ATCC 13273. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Musumeci MA, Lozada M, Rial DV, Mac Cormack WP, Jansson JK, Sjöling S, Carroll J, Dionisi HM. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach. Mar Drugs 2017; 15:E114. [PMID: 28397770 PMCID: PMC5408260 DOI: 10.3390/md15040114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 11/16/2022] Open
Abstract
The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer-Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putative monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. This work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments.
Collapse
Affiliation(s)
- Matías A Musumeci
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos, CONICET, Puerto Madryn, Chubut U9120ACD, Argentina.
| | - Mariana Lozada
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos, CONICET, Puerto Madryn, Chubut U9120ACD, Argentina.
| | - Daniela V Rial
- Área Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531 S2002LRK Rosario, Argentina.
| | - Walter P Mac Cormack
- Instituto Antártico Argentino, Ciudad Autónoma de Buenos Aires C1010AAZ, Argentina.
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina.
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Sara Sjöling
- School of Natural Sciences and Environmental Studies, Södertörn University, 141 89 Huddinge, Sweden.
| | - JoLynn Carroll
- Akvaplan-niva, Fram-High North Research Centre for Climate and the Environment, NO-9296 Tromsø, Norway.
- ARCEx-Research Centre for Arctic Petroleum Exploration, Department of Geosciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Hebe M Dionisi
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos, CONICET, Puerto Madryn, Chubut U9120ACD, Argentina.
| |
Collapse
|
26
|
Enhancing productivity for cascade biotransformation of styrene to (S)-vicinal diol with biphasic system in hollow fiber membrane bioreactor. Appl Microbiol Biotechnol 2016; 101:1857-1868. [DOI: 10.1007/s00253-016-7954-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 11/27/2022]
|
27
|
Brummund J, Müller M, Schmitges T, Kaluzna I, Mink D, Hilterhaus L, Liese A. Process development for oxidations of hydrophobic compounds applying cytochrome P450 monooxygenases in-vitro. J Biotechnol 2016; 233:143-50. [PMID: 27396939 DOI: 10.1016/j.jbiotec.2016.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/06/2016] [Accepted: 07/06/2016] [Indexed: 11/18/2022]
Abstract
Cytochrome P450 monooxygenases are a unique family of enzymes that are able to catalyze regio- and stereospecific oxidations for a broad substrate range. However, due to limited enzyme activities and stabilities, hydrophobicity of substrates, as well as the necessity of a continuous electron and oxygen supply the implementation of P450s for industrial processes remains challenging. Aim of this study was to point out key aspects for the development of an efficient synthesis concept for cytochrome P450 catalyzed oxidations. In order to regenerate the natural cofactor NADPH, a glucose dehydrogenase was applied. The low water soluble terpene α-ionone was used as substrate for the model reaction system. The studies reveal that an addition of surfactants in combination with low volumetric amounts of co-solvent can significantly increase substrate availability and reaction rates. Furthermore, these additives facilitated a reliable sampling procedure during the process. Another key factor for the process design was the oxygen supply. Based on various investigations, a bubble-aerated stirred tank reactor in batch mode represents a promising reactor concept for P450 oxidations. Main restriction of the investigated reaction system was the low process stability of the P450 monooxygenase, characterized by maximum total turnover numbers of ∼4100molα-ionone/molP450.
Collapse
Affiliation(s)
- Jan Brummund
- Hamburg University of Technology, Institute of Technical Biocatalysis, Denickestr. 15, 21073 Hamburg, Germany
| | - Monika Müller
- DSM Chemical Technology R&D B.V., Urmonderbaan 22, P.O. Box 18, 6160 MD Geleen, The Netherlands
| | - Thomas Schmitges
- DSM Chemical Technology R&D B.V., Urmonderbaan 22, P.O. Box 18, 6160 MD Geleen, The Netherlands
| | - Iwona Kaluzna
- DSM Chemical Technology R&D B.V., Urmonderbaan 22, P.O. Box 18, 6160 MD Geleen, The Netherlands
| | - Daniel Mink
- DSM Chemical Technology R&D B.V., Urmonderbaan 22, P.O. Box 18, 6160 MD Geleen, The Netherlands
| | - Lutz Hilterhaus
- Hamburg University of Technology, Institute of Technical Biocatalysis, Denickestr. 15, 21073 Hamburg, Germany
| | - Andreas Liese
- Hamburg University of Technology, Institute of Technical Biocatalysis, Denickestr. 15, 21073 Hamburg, Germany.
| |
Collapse
|
28
|
Li RJ, Xu JH, Yin YC, Wirth N, Ren JM, Zeng BB, Yu HL. Rapid probing of the reactivity of P450 monooxygenases from the CYP116B subfamily using a substrate-based method. NEW J CHEM 2016. [DOI: 10.1039/c6nj00809g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four types of O-methylated substrates were designed as probes for the detection of fingerprints of Type IV P450s.
Collapse
Affiliation(s)
- Ren-Jie Li
- State Key of Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Jian-He Xu
- State Key of Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yue-Cai Yin
- State Key of Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Nicolas Wirth
- State Key of Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Jiang-Meng Ren
- Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Bu-Bing Zeng
- Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Hui-Lei Yu
- State Key of Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
29
|
Hartog AF, Wever R. Substrate Engineering and its Synthetic Utility in the Sulfation of Primary Aliphatic Alcohol Groups by a Bacterial Arylsulfotransferase. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
30
|
Production of 13S-hydroxy-9(Z)-octadecenoic acid from linoleic acid by whole recombinant cells expressing linoleate 13-hydratase from Lactobacillus acidophilus. J Biotechnol 2015; 208:1-10. [DOI: 10.1016/j.jbiotec.2015.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/20/2015] [Accepted: 05/13/2015] [Indexed: 11/15/2022]
|
31
|
Tomaszewski B, Schmid A, Buehler K. Biocatalytic Production of Catechols Using a High Pressure Tube-in-Tube Segmented Flow Microreactor. Org Process Res Dev 2014. [DOI: 10.1021/op5002116] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bartłomiej Tomaszewski
- Laboratory of Chemical Biotechnology,
Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge Straße 66, 44227 Dortmund, Germany
| | - Andreas Schmid
- Laboratory of Chemical Biotechnology,
Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge Straße 66, 44227 Dortmund, Germany
| | - Katja Buehler
- Laboratory of Chemical Biotechnology,
Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge Straße 66, 44227 Dortmund, Germany
| |
Collapse
|
32
|
Rydzik AM, Leung IKH, Kochan GT, McDonough MA, Claridge TDW, Schofield CJ. Oxygenase-catalyzed desymmetrization of N,N-dialkyl-piperidine-4-carboxylic acids. Angew Chem Int Ed Engl 2014; 53:10925-7. [PMID: 25164544 PMCID: PMC4497603 DOI: 10.1002/anie.201406125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Indexed: 12/14/2022]
Abstract
γ-Butyrobetaine hydroxylase (BBOX) is a 2-oxoglutarate dependent oxygenase that catalyzes the final hydroxylation step in the biosynthesis of carnitine. BBOX was shown to catalyze the oxidative desymmetrization of achiral N,N-dialkyl piperidine-4-carboxylates to give products with two or three stereogenic centers.
Collapse
Affiliation(s)
- Anna M Rydzik
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Ivanhoe K H Leung
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Grazyna T Kochan
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosvelt DriveHeadington OX3 7DQ, United Kingdom
| | - Michael A McDonough
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Timothy D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| |
Collapse
|
33
|
Roh C. Characterization of a biocatalyst catalyzing biotransformation of highly branched fatty acids. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2014.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Rydzik AM, Leung IKH, Kochan GT, McDonough MA, Claridge TDW, Schofield CJ. Oxygenase-Catalyzed Desymmetrization ofN,N-Dialkyl-piperidine-4-carboxylic Acids. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Li A, Wu S, Adams JP, Snajdrova R, Li Z. Asymmetric epoxidation of alkenes and benzylic hydroxylation with P450tol monooxygenase from Rhodococcus coprophilus TC-2. Chem Commun (Camb) 2014; 50:8771-4. [DOI: 10.1039/c4cc03491k] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Schrewe M, Julsing MK, Lange K, Czarnotta E, Schmid A, Bühler B. Reaction and catalyst engineering to exploit kinetically controlled whole-cell multistep biocatalysis for terminal FAME oxyfunctionalization. Biotechnol Bioeng 2014; 111:1820-30. [DOI: 10.1002/bit.25248] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/18/2014] [Accepted: 03/24/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Manfred Schrewe
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering; TU Dortmund University; Emil-Figge-Strasse 66 Dortmund 44227 Germany
| | - Mattijs K. Julsing
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering; TU Dortmund University; Emil-Figge-Strasse 66 Dortmund 44227 Germany
| | - Kerstin Lange
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering; TU Dortmund University; Emil-Figge-Strasse 66 Dortmund 44227 Germany
| | - Eik Czarnotta
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering; TU Dortmund University; Emil-Figge-Strasse 66 Dortmund 44227 Germany
| | - Andreas Schmid
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering; TU Dortmund University; Emil-Figge-Strasse 66 Dortmund 44227 Germany
| | - Bruno Bühler
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering; TU Dortmund University; Emil-Figge-Strasse 66 Dortmund 44227 Germany
| |
Collapse
|
37
|
Lee H, Kim BG, Ahn JH. Production of bioactive hydroxyflavones by using monooxygenase from Saccharothrix espanaensis. J Biotechnol 2014; 176:11-7. [DOI: 10.1016/j.jbiotec.2014.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 12/17/2022]
|
38
|
High-cell-density cultivation of recombinant Escherichia coli, purification and characterization of a self-sufficient biosynthetic octane ω-hydroxylase. Appl Microbiol Biotechnol 2014; 98:6275-83. [PMID: 24687750 DOI: 10.1007/s00253-014-5671-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 01/07/2023]
Abstract
We have recently described the biocatalytic characterization of a self-sufficent biosynthetic alkane hydroxylase based on CYP153A13a from Alcanivorax borkumensis SK2 (thereafter A13-Red). Despite remarkable regio- and chemo-selectivity, A13-Red suffers of a difficult-to-reproduce expression and moderate operational stability. In this study, we focused our efforts on the production of A13-Red using high-cell-density cultivation (HCDC) of recombinant Escherichia coli. We achieved 455 mg (5,000 nmol) of functional enzyme per liter of culture. Tight control of cultivation parameters rendered the whole process highly reproducible compared with flask cultivations. We optimized the purification of the biocatalyst that can be performed in either two or three steps depending on the application needed to afford A13-Red up to 95 % homogeneous. We investigated different reaction conditions and found that the total turnover numbers of A13-Red during the in vitro hydroxylation of n-octane could reach up to 3,250 to produce 1-octanol (1.6 mM) over a period of 78 h.
Collapse
|
39
|
Yang Y, Liu J, Li Z. Engineering of P450pyr Hydroxylase for the Highly Regio- and Enantioselective Subterminal Hydroxylation of Alkanes. Angew Chem Int Ed Engl 2014; 53:3120-4. [DOI: 10.1002/anie.201311091] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 11/09/2022]
|
40
|
Yang Y, Liu J, Li Z. Engineering of P450pyr Hydroxylase for the Highly Regio- and Enantioselective Subterminal Hydroxylation of Alkanes. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201311091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Qu Y, Shi S, Ma Q, Kong C, Zhou H, Zhang X, Zhou J. Multistep Conversion of para-Substituted Phenols by Phenol Hydroxylase and 2,3-Dihydroxybiphenyl 1,2-Dioxygenase. Appl Biochem Biotechnol 2013; 169:2064-75. [DOI: 10.1007/s12010-013-0112-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
|
42
|
Zhu S, Qiu Z, Ni T, Zhao X, Yan S, Xing F, Zhao Y, Bai Y, Li M. Dinuclear complexes of copper and zinc with m-xylene/cyclohexane-linked bis-aspartic acids: Synthesis, characterization, dioxygen activation, and catalytic oxidation of nitrobenzene in pure aqueous solution. Dalton Trans 2013; 42:10898-911. [DOI: 10.1039/c3dt50923k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Bordeaux M, Galarneau A, Drone J. Catalytic, Mild, and Selective Oxyfunctionalization of Linear Alkanes: Current Challenges. Angew Chem Int Ed Engl 2012; 51:10712-23. [DOI: 10.1002/anie.201203280] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Indexed: 02/02/2023]
|
44
|
Bordeaux M, Galarneau A, Drone J. Katalytische, milde und selektive Oxyfunktionalisierung von linearen Alkanen: aktuelle Herausforderungen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203280] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
45
|
Kuriata-Adamusiak R, Strub D, Lochyński S. Application of microorganisms towards synthesis of chiral terpenoid derivatives. Appl Microbiol Biotechnol 2012; 95:1427-36. [PMID: 22846902 PMCID: PMC3427490 DOI: 10.1007/s00253-012-4304-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/13/2012] [Accepted: 07/13/2012] [Indexed: 11/27/2022]
Abstract
Biotransformations are a standard tool of green chemistry and thus are following the rules of sustainable development. In this article, we describe the most common types of reactions conducted by microorganisms applied towards synthesis of chiral terpenoid derivatives. Potential applications of obtained products in various areas of industry and agriculture are shown. We also describe biological activity of presented compounds. Stereoselective hydroxylation, epoxidation, Baeyer-Villiger oxidation, stereo- and enantioselective reduction of ketones, and various kinetic resolutions carried out by bacteria and fungi have been reviewed. Mechanistic considerations regarding chemical and enzymatic reactions are presented. We also briefly describe modern approaches towards enhancing desired enzymatic activity in order to apply modified biocatalysts as an efficient tool and green alternative to chemical catalysts used in industry.
Collapse
Affiliation(s)
- Renata Kuriata-Adamusiak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50–370 Wrocław, Poland
| | - Daniel Strub
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50–370 Wrocław, Poland
| | - Stanisław Lochyński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50–370 Wrocław, Poland
- Institute of Cosmetology, Wrocław College of Physiotherapy, Kościuszki 4, 50–038 Wrocław, Poland
| |
Collapse
|
46
|
Pham SQ, Gao P, Li Z. Engineering of recombinant E. coli cells co-expressing P450pyrTM monooxygenase and glucose dehydrogenase for highly regio- and stereoselective hydroxylation of alicycles with cofactor recycling. Biotechnol Bioeng 2012; 110:363-73. [PMID: 22886996 DOI: 10.1002/bit.24632] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/20/2012] [Accepted: 07/25/2012] [Indexed: 11/07/2022]
Abstract
E. coli (P450pyrTM-GDH) with dual plasmids, pETDuet containing P450pyr triple mutant I83H/M305Q/A77S (P450pyrTM) and ferredoxin reductase (FdR) genes and pRSFDuet containing glucose dehydrogenase (GDH) and ferredoxin (Fdx) genes, was engineered to show a high activity (12.7 U g⁻¹ cdw) for the biohydroxylation of N-benzylpyrrolidine 1 and a GDH activity of 106 U g⁻¹ protein. The E. coli cells were used as efficient biocatalysts for highly regio- and stereoselective hydroxylation of alicyclic substrates at non-activated carbon atom with enhanced productivity via intracellular recycling of NAD(P)H. Hydroxylation of N-benzylpyrrolidine 1 with resting cells in the presence of glucose showed excellent regio- and stereoselectivity, giving (S)-N-benzyl-3-hydroxypyrrolidine 2 in 98% ee as the sole product in 9.8 mM. The productivity is much higher than that of the same biohydroxylation using E. coli (P450pyrTM)b without expressing GDH. E. coli (P450pyrTM-GDH) was found to be highly regio- and stereoselective for the hydroxylation of N-benzylpyrrolidin-2-one 3, improving the regioselectivity from 90% of the wild-type P450pyr to 100% and giving (S)-N-benzyl-4-hydroxylpyrrolidin-2-one 4 in 99% ee as the sole product. A high activity of 15.5 U g⁻¹ cdw was achieved and (S)-4 was obtained in 19.4 mM. E. coli (P450pyrTM-GDH) was also found to be highly regio- and stereoselective for the hydroxylation of N-benzylpiperidin-2-one 5, increasing the ee of the product (S)-N-benzyl-4-hydroxy-piperidin-2-one 6 to 94% from 33% of the wild-type P450pyr. A high activity of 15.8 U g⁻¹ cdw was obtained and (S)-6 was produced in 3.3 mM as the sole product. E. coli (P450pyrTM-GDH) represents the most productive system known thus far for P450-catalyzed hydroxylations with cofactor recycling, and the hydroxylations with E. coli (P450pyrTM-GDH) provide with simple and useful syntheses of (S)-2, (S)-4, and (S)-6 that are valuable pharmaceutical intermediates and difficult to prepare.
Collapse
Affiliation(s)
- Son Q Pham
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | | | | |
Collapse
|
47
|
Fujishiro T, Shoji O, Kawakami N, Watanabe T, Sugimoto H, Shiro Y, Watanabe Y. Chiral-Substrate-Assisted Stereoselective Epoxidation Catalyzed by H2O2-Dependent Cytochrome P450SPα. Chem Asian J 2012; 7:2286-93. [DOI: 10.1002/asia.201200250] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Indexed: 11/06/2022]
|
48
|
Narancic T, Djokic L, Kenny ST, O'Connor KE, Radulovic V, Nikodinovic-Runic J, Vasiljevic B. Metabolic versatility of Gram-positive microbial isolates from contaminated river sediments. JOURNAL OF HAZARDOUS MATERIALS 2012; 215-216:243-251. [PMID: 22421345 DOI: 10.1016/j.jhazmat.2012.02.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 05/31/2023]
Abstract
Gram-positive bacteria from river sediments affected by the proximity of a petrochemical industrial site were isolated and characterized with respect to their ability to degrade a wide range of aromatic compounds. In this study we identified metabolically diverse Gram-positive bacteria capable of growth on wide range aromatic compounds in the presence of heavy metals and with the ability to accumulate biopolymers. Thirty-four isolates that were able to use 9 or more common aromatic pollutants, such as benzene, biphenyl, naphthalene etc. as a sole source of carbon and energy included members of Bacillus, Arthrobacter, Rhodococcus, Gordonia, Streptomyces, and Staphylococcus genus. Rhodococcus sp. TN105, Gordonia sp. TN103 and Arthrobacter sp. TN221 were identified as novel strains. Nine isolates were able to grow in the presence of one or more metals (mercury, cadmium, nickel) at high concentration (100mM). Seven isolates could degrade 15 different aromatic compounds and could grow in the presence of one or more heavy metals. Two of these isolates were resistant to multiple antibiotics including erythromycin and nalidixic acid. One third of isolates could accumulate at least one biopolymer. Twelve isolates (mainly Bacillus sp. and Arthrobacter sp.) accumulated polyphosphate, 3 Bacillus sp. accumulated polyhydroxybutyrate, while 4 isolates could accumulate exopolysaccharides.
Collapse
Affiliation(s)
- Tanja Narancic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
49
|
Golub E, Freeman R, Willner I. A hemin/G-quadruplex acts as an NADH oxidase and NADH peroxidase mimicking DNAzyme. Angew Chem Int Ed Engl 2012; 50:11710-4. [PMID: 22229160 DOI: 10.1002/anie.201103853] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Eyal Golub
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
50
|
Roopesh K, Abhilash J, Haridas M, Sabu A, Isabelle PG, Roussos S, Augur C. Dioxygenase from Aspergillus fumigatusMC8: molecular modelling and in silicostudies on enzyme–substrate interactions. MOLECULAR SIMULATION 2012. [DOI: 10.1080/08927022.2011.608672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|