1
|
Zhang P, Wang Y, Liu X, Yuan L, Liu J, Guo R, Tian Y. Carboxyl-Modified Quantum Dots for NIR-IIb Bone Marrow Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8509-8517. [PMID: 38331726 DOI: 10.1021/acsami.3c18282] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Real-time, noninvasive, and nonradiative bone imaging can directly visualize bone health but requires bone-targeted probes with high specificity. Herein, we propose that carboxyl-rich fluorescent nanoprobes are easily absorbed by macrophages in bone marrow during circulation, enabling optical bone marrow imaging in vivo. We used PbS/CdS core-shell quantum dots with NIR-IIb (1500-1700 nm) emission as substrates to prepare the carboxyl-rich nanoprobe. In vivo NIR-IIb fluorescence imaging with the nanoprobes showed high resolution and penetration depth in bone tissues and allowed for imaging-guided fracture diagnosis. Bone tissue slices showed substantial accumulation of carboxyl nanoprobes in the bone marrow and strong colocalization with macrophages. Similar results with CdSe quantum dots and an organic nanofluorophore suggest that carboxyl surface modification is effective to achieve bone marrow targeting, providing a novel strategy for developing bone/bone marrow imaging probes.
Collapse
Affiliation(s)
- Peng Zhang
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121002, China
| | - Yuran Wang
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Xiaotong Liu
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Lishan Yuan
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Jianing Liu
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Ranran Guo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510182, China
| | - Ye Tian
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Sohrot N, Agrawal M. Advancement of Near Infrared-II Organic Dyes in Bioimaging. Cureus 2023; 15:e47617. [PMID: 38021735 PMCID: PMC10667618 DOI: 10.7759/cureus.47617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
In recent decades, small organic compounds having absorption and fluorescence emission in the second near-infrared (NIR-II, 1000-1700 nm) bio-window have attracted a lot of interest. Fluorescence bioimaging may be used by researchers and surgeons to genomically focus an array of biological areas and functions. The near-infrared-II (NIR-II) dye which has fluorescent imaging, bypasses the visible imaging striking barrier, making it a valuable tool for cancer early detection and very sensitive tumor resection. It can generate sub-cellular density scanning data directly and has been applied to biological and medical detection and therapy. This paper discusses the history and current state of theranostics and biosensing uses of NIR-II tiny organic producers depending on multiple skeletons. For biological imaging, organic dyes are extensively used as markers for near-infrared (NIR) fluorescent though the issue lies in instability and hydrophobicity for bio environment which is a major restriction for its utilization. Various conjugation with the probes is also adopted in order to increase the biosensing power and efficiency and to deduct their level of cytotoxicity. Some of these combinations are discussed in the paper including supramolecule usage, combining the probes with quantum dots, and an alloy of gold selenium. NIR-II fluorescence devices are also used in combination with confocal microscopy to study the cytological interaction of proteins. Several research papers stated using cell membrane enhancement units empowered with oxazolepyridine and coumarin compounds. As the need for bioimaging increases decade by decade these cons of using organic dyes alone are getting overlapped by compounding these dyes with materials that help in better penetration, bioavailability, and reduction in areas of toxicity.
Collapse
Affiliation(s)
- Nidhi Sohrot
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Manjusha Agrawal
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Image Decomposition Technique Based on Near-Infrared Transmission. J Imaging 2022; 8:jimaging8120322. [PMID: 36547487 PMCID: PMC9786342 DOI: 10.3390/jimaging8120322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
One way to diagnose a disease is to examine pictures of tissue thought to be affected by the disease. Near-infrared properties are subdivided into nonionizing, noninvasive, and nonradiative properties. Near-infrared also has selectivity properties for the objects it passes through. With this selectivity, the resulting attenuation coefficient value will differ depending on the type of material or wavelength. By measuring the output and input intensity values, as well as the attenuation coefficient, the thickness of a material can be measured. The thickness value can then be used to display a reconstructed image. In this study, the object studied was a phantom consisting of silicon rubber, margarine, and gelatin. The results showed that margarine materials could be decomposed from other ingredients with a wavelength of 980 nm.
Collapse
|
4
|
Mainard N, Tsiakaka O, Li S, Denoulet J, Messaoudene K, Vialle R, Feruglio S. Intraoperative Optical Monitoring of Spinal Cord Hemodynamics Using Multiwavelength Imaging System. SENSORS (BASEL, SWITZERLAND) 2022; 22:3840. [PMID: 35632249 PMCID: PMC9146887 DOI: 10.3390/s22103840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022]
Abstract
The spinal cord is a major structure of the central nervous system allowing, among other things, the transmission of afferent sensory and efferent motor information. During spinal surgery, such as scoliosis correction, this structure can be damaged, resulting in major neurological damage to the patient. To date, there is no direct way to monitor the oxygenation of the spinal cord intraoperatively to reflect its vitality. This is essential information that would allow surgeons to adapt their procedure in case of ischemic suffering of the spinal cord. We report the development of a specific device to monitor the functional status of biological tissues with high resolution. The device, operating with multiple wavelengths, uses Near-InfraRed Spectroscopy (NIRS) in combination with other additional sensors, including ElectroNeuroGraphy (ENG). In this paper, we focused primarily on aspects of the PhotoPlethysmoGram (PPG), emanating from four different light sources to show in real time and record biological signals from the spinal cord in transmission and reflection modes. This multispectral system was successfully tested in in vivo experiments on the spinal cord of a pig for specific medical applications.
Collapse
Affiliation(s)
- Nicolas Mainard
- Department of Pediatric Surgery, Jeanne-de-Flandre Hospital, CHU Lille, Avenue Eugène-Avinée, 59000 Lille, France
- Laboratoire D’Informatique de Paris 6 (LIP6), CNRS UMR7606, Sorbonne Université, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (S.L.); (J.D.); (K.M.); (S.F.)
| | - Olivier Tsiakaka
- CERVO, Biomedical Microsystems Laboratory, Université Laval, Quebec, QC G1V 0A6, Canada;
| | - Songlin Li
- Laboratoire D’Informatique de Paris 6 (LIP6), CNRS UMR7606, Sorbonne Université, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (S.L.); (J.D.); (K.M.); (S.F.)
| | - Julien Denoulet
- Laboratoire D’Informatique de Paris 6 (LIP6), CNRS UMR7606, Sorbonne Université, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (S.L.); (J.D.); (K.M.); (S.F.)
| | - Karim Messaoudene
- Laboratoire D’Informatique de Paris 6 (LIP6), CNRS UMR7606, Sorbonne Université, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (S.L.); (J.D.); (K.M.); (S.F.)
| | - Raphael Vialle
- Clinical Research Group “RIC” Robotics and Surgical Innovations, GRC-33 Sorbonne University, 26 Avenue du Dr. Arnold Netter, 75012 Paris, France;
| | - Sylvain Feruglio
- Laboratoire D’Informatique de Paris 6 (LIP6), CNRS UMR7606, Sorbonne Université, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (S.L.); (J.D.); (K.M.); (S.F.)
| |
Collapse
|
5
|
Neumann PR, Erdmann F, Holthof J, Hädrich G, Green M, Rao J, Dailey LA. Different PEG-PLGA Matrices Influence In Vivo Optical/Photoacoustic Imaging Performance and Biodistribution of NIR-Emitting π-Conjugated Polymer Contrast Agents. Adv Healthc Mater 2021; 10:e2001089. [PMID: 32864903 PMCID: PMC11469236 DOI: 10.1002/adhm.202001089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/29/2020] [Indexed: 12/15/2022]
Abstract
The π-conjugated polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b0]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) with deep-red/near-infrared (NIR) absorption and emission has been investigated as a contrast agent for in vivo optical and photoacoustic imaging. PCPDTBT is encapsulated within poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG2kDa -PLGA4kDa or PEG5kDa -PLGA55kDa ) micelles or enveloped by the phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (PEG2kDa -DPPE), to investigate the formulation effect on imaging performance, biodistribution, and biocompatibility. Nanoparticles that meet the quality requirements for parenteral administration are generated with similar physicochemical properties. Optical phantom imaging reveals that both PEG-PLGA systems exhibit a 30% higher signal-to-background ratio (SBR) than PEG2kDa -DPPE. This trend cannot be observed in a murine HeLa xenograft model following intravenous administration since dramatic differences in biodistribution are observed. PEG2kDa -PLGA4kDa systems accumulate more rapidly in the liver compared to other formulations and PEG2kDa -DPPE demonstrates a higher tumor localization. Protein content in the "hard" corona differs between formulations (PEG2kDa -DPPE < PEG2kDa -PLGA4kDa < PEG5kDa -PLGA55kDa ), although this observation alone does not explain biodistribution patterns. PEG2kDa -PLGA4kDa systems show the highest photoacoustic amplitude in a phantom, but also a lower signal in the tumor due to differences in biodistribution. This study demonstrates that formulations for conjugated polymer contrast agents can have significant impact on both imaging performance and biodistribution.
Collapse
Affiliation(s)
- Paul Robert Neumann
- Department of Pharmaceutical Technology and BiopharmaceuticsMartin‐Luther‐University Halle‐Wittenberg06120Halle (Saale)Germany
| | - Frank Erdmann
- Institute of PharmacyDepartment of PharmacologyMartin‐Luther‐University Halle‐Wittenberg06120Halle (Saale)Germany
| | - Joost Holthof
- FUJIFILM VisualsonicsJoop Geesinkweg 140Amsterdam1114 ABThe Netherlands
| | - Gabriela Hädrich
- Department of Pharmaceutical Technology and BiopharmaceuticsMartin‐Luther‐University Halle‐Wittenberg06120Halle (Saale)Germany
| | - Mark Green
- Department of PhysicsKing's College LondonLondonWC2R 2LSUK
| | - Jianghong Rao
- Department of Radiology and ChemistryStanford UniversityStanfordCA94305‐5484USA
| | - Lea Ann Dailey
- Department of Pharmaceutical Technology and BiopharmacyUniversity of ViennaVienna1090Austria
| |
Collapse
|
6
|
Santhamoorthy M, Thirupathi K, Periyasamy T, Thirumalai D, Ramkumar V, Kim SC. Ethidium bromide-bridged mesoporous silica hybrid nanocarriers for fluorescence cell imaging and drug delivery applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj03520g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report the fabrication of mesoporous organosilica hybrid nanocarriers with red-fluorescence behaviour under UV-light for pH-responsive drug delivery and red-fluorescence-based bioimaging applications in cancer therapy.
Collapse
Affiliation(s)
| | - Kokila Thirupathi
- Department of Physics, Sri Moogambigai College of Arts and science for Women, Palacode, 636808, Tamil Nadu, India
| | | | - Dinakaran Thirumalai
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Vanaraj Ramkumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38544, Republic of Korea
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38544, Republic of Korea
| |
Collapse
|
7
|
Somashekhar SP, Reddy RG, Rohit Kumar C, Ashwin KR. Prospective Study Comparing Clinical vs Indocyanine Green Fluorescence-Based Assessment of Line of Transection in Robotic Rectal Cancer Surgery-Indian Study. Indian J Surg Oncol 2020; 11:642-648. [PMID: 33299281 DOI: 10.1007/s13193-020-01207-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Anastomotic leakage continues to be the most feared postoperative complications in rectal surgery with negative impact on both short- and long-term outcomes. Fortunately, new surgical strategies have helped to offset this complication and improve surgical outcomes. Traditionally, perfusion is assessed by intraoperative visual judgment by the surgeon. These subjective methods lack predictive accuracy resulting in either excess or insufficient colonic resection. Indocyanine green (ICG) fluorescence has shown promise in identifying the adequacy of perfusion. After injection of ICG, the system projected high-resolution near-infrared real-time images of blood flow in mesentery and bowel wall. This novel imaging method is used intraoperatively for taking real-time informed decisions. We conducted a single institutional prospective study to identify the feasibility of ICG identification of vascularity of anastomotic site and its impact on the change of plan of surgical management in robotic rectal cancer surgery. Between September 2017 and April 2019, fifty patients undergoing robotic rectal cancer surgery were included in the study. The aim was to analyze the feasibility and clinical benefit of intraoperative near-infrared fluorescence imaging in determining the line of transection in comparison with the traditional method. Line of proximal transection of the bowel subjectively assessed by the surgical team was marked point B and that after ICG injection was marked point A if moved proximally and point C if moved distally. The vascular anatomy was clearly identified with no intraoperative or injection-related adverse effects. Of the 50 patients, the line of transaction remained the same in 6 patients (12%). Based on the fluorescence imaging, the surgical team opted for further proximal change of the transection line up to an "adequate" fluorescent portion in 3 patients (6%) and distally in 41 patients (82%). ICG-based infrared image-guided localization gives a real-time image of colon vascularity possibly affecting anastomotic leak. The ICG fluorescence imaging system is a simple, safe, and useful technique, performed within a short time, and it enables visual evaluation of the blood flow in the intestinal tract prior to anastomosis. Larger studies are needed before this can become the standard of care.
Collapse
Affiliation(s)
- S P Somashekhar
- Manipal Comprehensive Cancer Center, Manipal Hospital, Bangalore, 560017 India
| | | | - C Rohit Kumar
- Department of Surgical Oncology, Manipal Comprehensive Cancer Center, Manipal Hospital, Bangalore, India
| | - K R Ashwin
- Manipal Comprehensive Cancer Center, Manipal Hospital, Bangalore, 560017 India
| |
Collapse
|
8
|
Pucelik B, Sułek A, Dąbrowski JM. Bacteriochlorins and their metal complexes as NIR-absorbing photosensitizers: properties, mechanisms, and applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213340] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Shramova EI, Kotlyar AB, Lebedenko EN, Deyev SM, Proshkina GM. Near-Infrared Activated Cyanine Dyes As Agents for Photothermal Therapy and Diagnosis of Tumors. Acta Naturae 2020; 12:102-113. [PMID: 33173600 PMCID: PMC7604893 DOI: 10.32607/actanaturae.11028] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
Today, it has become apparent that innovative treatment methods, including those involving simultaneous diagnosis and therapy, are particularly in demand in modern cancer medicine. The development of nanomedicine offers new ways of increasing the therapeutic index and minimizing side effects. The development of photoactivatable dyes that are effectively absorbed in the first transparency window of biological tissues (700-900 nm) and are capable of fluorescence and heat generation has led to the emergence of phototheranostics, an approach that combines the bioimaging of deep tumors and metastases and their photothermal treatment. The creation of near-infrared (NIR) light-activated agents for sensitive fluorescence bioimaging and phototherapy is a priority in phototheranostics, because the excitation of drugs and/or diagnostic substances in the near-infrared region exhibits advantages such as deep penetration into tissues and a weak baseline level of autofluorescence. In this review, we focus on NIR-excited dyes and discuss prospects for their application in photothermal therapy and the diagnosis of cancer. Particular attention is focused on the consideration of new multifunctional nanoplatforms for phototheranostics which allow one to achieve a synergistic effect in combinatorial photothermal, photodynamic, and/or chemotherapy, with simultaneous fluorescence, acoustic, and/or magnetic resonance imaging.
Collapse
Affiliation(s)
- E. I. Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. B. Kotlyar
- Tel Aviv University, Ramat Aviv, Tel Aviv, 69978 Israel
| | - E. N. Lebedenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - S. M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- National Research Tomsk Polytechnic University, Tomsk, 634050 Russia
| | - G. M. Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
10
|
Oh G, Cho HJ, Suh S, Lee D, Kim K. Multicolor fluorescence imaging using a single RGB-IR CMOS sensor for cancer detection with smURFP-labeled probiotics. BIOMEDICAL OPTICS EXPRESS 2020; 11:2951-2963. [PMID: 32637234 PMCID: PMC7316003 DOI: 10.1364/boe.391417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 05/17/2023]
Abstract
A multicolor fluorescence imaging device was recently developed for image-guided surgery. However, conventional systems are typically bulky and function with two cameras. To overcome these issues, we developed an economical home-built fluorescence imaging device based on a single RGB-IR sensor that can acquire both color and fluorescence images simultaneously. The technical feasibility of RGB-IR imaging was verified ex vivo in chicken breast tissue using fluorescein isothiocyanate (FITC), cyanine 5 (Cy5), and indocyanine green (ICG) as fluorescent agents. The minimum sensitivities for FITC, Cy5, and ICG were 0.200 µM, 0.130 µM, and 0.065 µM, respectively. In addition, we validated the fluorescence imaging of this device in vitro during a minimally invasive procedure using smURFP-labeled probiotics, which emit a spectrum similar to that of Cy5. Our preliminary study of the ex vivo tissue suggests that Cy5 and ICG are good candidates for deep tissue imaging. In addition, the tumor-specific amplification process was visualized using cancer cells incubated with probiotics that had been labeled with a fluorescent protein. Our approach indicates the potential for in vivo screening of tumors in rodent tumor models.
Collapse
Affiliation(s)
- Gyungseok Oh
- Center for Medical Robotics, Korea Institute of Science and Technology, South Korea
| | - Hong Jun Cho
- Center for Medical Robotics, Korea Institute of Science and Technology, South Korea
- School of Mechanical Engineering, Korea University and Center for Medical Robotics, Korea Institute of Science and Technology, South Korea
| | - SeungBeum Suh
- Center for Medical Robotics, Korea Institute of Science and Technology, South Korea
| | - Deukhee Lee
- Center for Medical Robotics, Korea Institute of Science and Technology, South Korea
- University of Science and Technology (UST), South Korea the Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon, South Korea
| | - Keri Kim
- Center for Medical Robotics, Korea Institute of Science and Technology, South Korea
- University of Science and Technology (UST), South Korea the Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
11
|
Cao J, Zhu B, Zheng K, He S, Meng L, Song J, Yang H. Recent Progress in NIR-II Contrast Agent for Biological Imaging. Front Bioeng Biotechnol 2020; 7:487. [PMID: 32083067 PMCID: PMC7002322 DOI: 10.3389/fbioe.2019.00487] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022] Open
Abstract
Fluorescence imaging technology has gradually become a new and promising tool for in vivo visualization detection. Because it can provide real-time sub-cellular resolution imaging results, it can be widely used in the field of biological detection and medical detection and treatment. However, due to the limited imaging depth (1-2 mm) and self-fluorescence background of tissue emitted in the visible region (400-700 nm), it fails to reveal biological complexity in deep tissues. The traditional near infrared wavelength (NIR-I, 650-950 nm) is considered as the first biological window, because it reduces the NIR absorption and scattering from blood and water in organisms. NIR fluorescence bioimaging's penetration is larger than that of visible light. In fact, NIR-I fluorescence bioimaging is still interfered by tissue autofluorescence (background noise), and the existence of photon scattering, which limits the depth of tissue penetration. Recent experimental and simulation results show that the signal-to-noise ratio (SNR) of bioimaging can be significantly improved at the second region near infrared (NIR-II, 1,000-1,700 nm), also known as the second biological window. NIR-II bioimaging is able to explore deep-tissues information in the range of centimeter, and to obtain micron-level resolution at the millimeter depth, which surpass the performance of NIR-I fluorescence imaging. The key of fluorescence bioimaging is to achieve highly selective imaging thanks to the functional/targeting contrast agent (probe). However, the progress of NIR-II probes is very limited. To date, there are a few reports about NIR-II fluorescence probes, such as carbon nanotubes, Ag2S quantum dots, and organic small molecular dyes. In this paper, we surveyed the development of NIR-II imaging contrast agents and their application in cancer imaging, medical detection, vascular bioimaging, and cancer diagnosis. In addition, the hotspots and challenges of NIR-II bioimaging are discussed. It is expected that our findings will lay a foundation for further theoretical research and practical application of NIR-II bioimaging, as well as the inspiration of new ideas in this field.
Collapse
Affiliation(s)
- Jie Cao
- Fuzhou University Postdoctoral Research Station of Chemical Engineering and Technology, Fuzhou University, Fuzhou, China
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou, China
- Fujian Police College Judicial Expertise Center, Fuzhou, China
| | - Binling Zhu
- Fujian Police College Judicial Expertise Center, Fuzhou, China
- Department of Forensic Science, Fujian Police College, Fuzhou, China
- Engineering Research Center, Fujian Police College, Fuzhou, China
| | - Kefang Zheng
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou, China
- Fujian Police College Judicial Expertise Center, Fuzhou, China
| | - Songguo He
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou, China
- Fujian Police College Judicial Expertise Center, Fuzhou, China
| | - Liang Meng
- Department of Forensic Science, Fujian Police College, Fuzhou, China
- Engineering Research Center, Fujian Police College, Fuzhou, China
| | - Jibin Song
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Huanghao Yang
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China
| |
Collapse
|
12
|
Taghian T, Metelev VG, Zhang S, Bogdanov AA. Imaging NF-κB activity in a murine model of early stage diabetes. FASEB J 2019; 34:1198-1210. [PMID: 31914655 DOI: 10.1096/fj.201801147r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/23/2019] [Accepted: 10/08/2019] [Indexed: 11/11/2022]
Abstract
Early pro-inflammatory signaling in the endocrine pancreas involves activation of NF-κB, which is believed to be important for determining the ultimate fate of β-cells and hence progression of type 1 diabetes (T1D). Thus, early non-invasive detection of NF-κB in pancreatic islets may serve as a potential strategy for monitoring early changes in pancreatic endocrine cells eventually leading to T1D. We investigated the feasibility of optical imaging of NF-κB transcription factor activation induced by low-dose streptozocin (LD-STZ) treatment in the immunocompetent SKH1 mouse model of early stage diabetes. In this model, we showed that the levels of NF-κB may be visualized and measured by fluorescence intensity of specific near-infrared (NIR) fluorophore-labeled oligodeoxyribonucleotide duplex (ODND) probes. In addition, NF-κB activation following LD-STZ treatment was validated using immunofluorescence and transgenic animals expressing NF-κB inducible imaging reporter. We showed that LD-STZ-treated SKH1 mice had significantly higher (2-3 times, P < .01) specific NIR FI in the nuclei and cytoplasm of islets cells than in non-treated control mice and this finding was corroborated by immunoblotting and electrophoretic mobility shift assays. Finally, using semi-quantitative confocal analysis of non-fixed pancreatic islet microscopy we demonstrated that ODND probes may be used to distinguish between the islets with high levels of NF-κB transcription factor and control islet cells.
Collapse
Affiliation(s)
- Toloo Taghian
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Valeriy G Metelev
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Chemistry, Moscow State University, Moscow, Russian Federation
| | - Surong Zhang
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexei A Bogdanov
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
13
|
Yang C, Huang S, Jia T, Peng Y, Wei X, Wang M. Sub-10 nm Theranostic Unimolecular Micelles with High Tumor-Specific Accumulation, Retention, and Inhibitory Effect. ACS APPLIED BIO MATERIALS 2019; 2:4142-4153. [PMID: 35021429 DOI: 10.1021/acsabm.9b00324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Theranostic agents that integrate far-red/near-infrared fluorescence and anticancer drugs are useful for biomedical applications such as imaging-guided therapy of cancers. However, the clinical translation of previously reported theranostic agents is still limited by factors such as weak fluorescence of the imaging probe, premature and off-target release of fluorophores and drugs during blood circulation, the long-term retention in the reticuloendothelial system, and side effects of toxicity. Here, we report a new type of ultrasmall theranostic unimolecular micelles with an average diameter below 10 nm, and dual functionalities of bright fluorescence in the spectral window of 600-800 nm toward noninvasive in vivo bioimaging and covalently bound anticancer drugs for specific cancer treatment. Each unimolecular micelle is formed by an amphiphilic bottlebrush copolymer containing a fluorescent conjugated backbone of poly(fluorene-alt-(4,7-bis(hexylthien)-2,1,3-benzothiadiazole)), from which hydrophobic disulfide-linked camptothecin as an anticancer drug and hydrophilic oligo(ethylene glycol) are grafted. These ultrasmall unimolecular micelles exhibit remarkably high efficiency of accumulation and retention in tumor tissues with a tumor inhibitory rate of 50%, but little distribution in other healthy organs and tissues. Such a feature of enhanced tumor targeting and reduced toxic side effects against healthy cells and tissues is promising for future clinical translation of imaging-guided cancer therapy.
Collapse
Affiliation(s)
- Cangjie Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Shuo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Tao Jia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Yanfen Peng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Xin Wei
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Mingfeng Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
14
|
Yoshida K, Saito K, Omura M, Tamura K, Yamaguchi T. Ultrasound assessment of translation of microbubbles driven by acoustic radiation force in a channel filled with stationary fluid. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:2335. [PMID: 31672000 DOI: 10.1121/1.5128309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
In this report, a method is proposed to quantify the translation of ultrasound contrast agent (UCA) microbubbles driven by acoustic radiation for the detection of channels filled with stationary fluid. The authors subjected UCA microbubbles in a channel with diameters of 0.1 and 0.5 mm to ultrasound pulses with a center frequency of 14.4 MHz. The translational velocity of the UCA microbubbles increased with the sound pressure and pulse repetition frequency (PRF) of the transmitted ultrasound. The mean translational velocity reached 0.75 mm/s at a negative peak sound pressure of 2.76 MPa and a PRF of 2 kHz. This trend agreed with the theoretical prediction, which indicated that the translational velocity was proportional to the square of the sound pressure and the PRF. Furthermore, an experiment was carried out with a phantom that mimics tissue and found that the proposed method aided in detection of the channel, even in the case of a low contrast-echo to tissue-echo ratio. The authors expect to develop the proposed method into a technique for detecting lymph vessels.
Collapse
Affiliation(s)
- Kenji Yoshida
- Center for Frontier Medical Engineering, Chiba University, 1-3 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Katsuya Saito
- Graduate School of Science and Engineering, Chiba University, 1-3 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Masaaki Omura
- Graduate School of Science and Engineering, Chiba University, 1-3 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kazuki Tamura
- Institute for Medical Photonics Research, Hamamatsu University of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 461-3125, Japan
| | - Tadashi Yamaguchi
- Center for Frontier Medical Engineering, Chiba University, 1-3 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
15
|
Chen L, Chen D, Jiang Y, Zhang J, Yu J, DuFort CC, Hingorani SR, Zhang X, Wu C, Chiu DT. A BODIPY-Based Donor/Donor-Acceptor System: Towards Highly Efficient Long-Wavelength-Excitable Near-IR Polymer Dots with Narrow and Strong Absorption Features. Angew Chem Int Ed Engl 2019; 58:7008-7012. [PMID: 30912228 PMCID: PMC6513679 DOI: 10.1002/anie.201902077] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Indexed: 12/25/2022]
Abstract
Bright long-wavelength-excitable semiconducting polymer dots (LWE-Pdots) are highly desirable for in vivo imaging and multiplexed in vitro bioassays. LWE-Pdots have been obtained by incorporating a near-infrared (NIR) emitter into the backbone of a polymer host to develop a binary donor-acceptor (D-A) system. However, they usually suffer from severe concentration quenching and a trade-off between fluorescence quantum yield (Φf ) and absorption cross-section (σ). Herein, we describe a ternary component (D1 /D2 -A) strategy to achieve ultrabright, green laser-excitable Pdots with narrow-band NIR emission by introducing a BODIPY-based assistant polymer donor as D1 . The D1 /D2 -A Pdots possess improved Φf and σ compared to corresponding binary D2 -A Pdots. Their Φf is as high as 40.2 %, one of the most efficient NIR Pdots reported. The D1 /D2 -A Pdots show ultrahigh single-particle brightness, 83-fold brighter than Qdot 705 when excited by a 532 nm laser. When injected into mice, higher contrast in vivo tumor imaging was achieved using the ternary Pdots versus the binary D-A Pdots.
Collapse
Affiliation(s)
- Lei Chen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United Statet.
| | - Dandan Chen
- Department of Biomedical Engineering, Southern University Science and Technology, Shenzhen, Guangdong 510855, China.
| | - Yifei Jiang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United Statet.
| | - Jicheng Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United Statet.
| | - Jiangbo Yu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United Statet.
| | - Christopher C. DuFort
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Sunil R. Hingorani
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
- Department of Medicine, University of Washington, Seattle, WA, 98195, United States
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University Science and Technology, Shenzhen, Guangdong 510855, China.
| | - Daniel T. Chiu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United Statet.
| |
Collapse
|
16
|
Chen L, Chen D, Jiang Y, Zhang J, Yu J, DuFort CC, Hingorani SR, Zhang X, Wu C, Chiu DT. A BODIPY‐Based Donor/Donor–Acceptor System: Towards Highly Efficient Long‐Wavelength‐Excitable Near‐IR Polymer Dots with Narrow and Strong Absorption Features. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lei Chen
- Department of ChemistryUniversity of Washington Seattle WA 98195 USA
| | - Dandan Chen
- Department of Biomedical EngineeringSouthern University Science and Technology Shenzhen Guangdong 510855 China
| | - Yifei Jiang
- Department of ChemistryUniversity of Washington Seattle WA 98195 USA
| | - Jicheng Zhang
- Department of ChemistryUniversity of Washington Seattle WA 98195 USA
| | - Jiangbo Yu
- Department of ChemistryUniversity of Washington Seattle WA 98195 USA
| | - Christopher C. DuFort
- Clinical Research DivisionFred Hutchinson Cancer Research Center Seattle WA 98109 USA
| | - Sunil R. Hingorani
- Clinical Research DivisionFred Hutchinson Cancer Research Center Seattle WA 98109 USA
- Public Health Sciences DivisionFred Hutchinson Cancer Research Center Seattle WA 98109 USA
- Department of MedicineUniversity of Washington Seattle WA 98195 USA
| | - Xuanjun Zhang
- Faculty of Health SciencesUniversity of Macau Macau SAR 999078 China
| | - Changfeng Wu
- Department of Biomedical EngineeringSouthern University Science and Technology Shenzhen Guangdong 510855 China
| | - Daniel T. Chiu
- Department of ChemistryUniversity of Washington Seattle WA 98195 USA
| |
Collapse
|
17
|
Hien A, Pretze M, Braun F, Schäfer E, Kümmel T, Roscher M, Schock-Kusch D, Waldeck J, Müller B, Wängler C, Rädle M, Wängler B. Noncontact recognition of fluorescently labeled objects in deep tissue via a novel optical light beam arrangement. PLoS One 2018; 13:e0208236. [PMID: 30566459 PMCID: PMC6300195 DOI: 10.1371/journal.pone.0208236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/14/2018] [Indexed: 12/30/2022] Open
Abstract
To date, few optical imaging systems are available in clinical practice to perform noninvasive measurements transcutaneously. Instead, functional imaging is performed using ionizing radiation or intense magnetic fields in most cases. The applicability of fluorescence imaging (e.g., for the detection of fluorescently labeled objects, such as tumors) is limited due to the restricted tissue penetration of light and the required long exposure time. Thus, the development of highly sensitive and easily manageable instruments is necessary to broaden the utility of optical imaging. To advance these developments, an improved fluorescence imaging system was designed in this study that operates on the principle of noncontact laser-induced fluorescence and enables the detection of fluorescence from deeper tissue layers as well as real-time imaging. The high performance of the developed optical laser scanner results from the combination of specific point illumination, an intensified charge-coupled device (ICCD) detector with a novel light trap, and a filtering strategy. The suitability of the laser scanner was demonstrated in two representative applications and an in vivo evaluation. In addition, a comparison with a planar imaging system was performed. The results show that the exposure time with the developed laser scanner can be reduced to a few milliseconds during measurements with a penetration depth of up to 32 mm. Due to these short exposure times, real-time fluorescence imaging can be easily achieved. The ability to measure fluorescence from deep tissue layers enables clinically relevant applications, such as the detection of fluorescently labeled malignant tumors.
Collapse
Affiliation(s)
- Andreas Hien
- Institute of Process Control and Innovative Energy Conversion, Mannheim University of Applied Sciences, Mannheim, Germany
- * E-mail:
| | - Marc Pretze
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Frank Braun
- Institute of Process Control and Innovative Energy Conversion, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Edgar Schäfer
- Institute of Process Control and Innovative Energy Conversion, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Tim Kümmel
- Institute of Process Control and Innovative Energy Conversion, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Mareike Roscher
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Daniel Schock-Kusch
- Institute of Process Control and Innovative Energy Conversion, Mannheim University of Applied Sciences, Mannheim, Germany
| | | | | | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Matthias Rädle
- Institute of Process Control and Innovative Energy Conversion, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| |
Collapse
|
18
|
Tran NHT, Trinh KTL, Lee JH, Yoon WJ, Ju H. Fluorescence Enhancement Using Bimetal Surface Plasmon-Coupled Emission from 5-Carboxyfluorescein (FAM). MICROMACHINES 2018; 9:E460. [PMID: 30424393 PMCID: PMC6187710 DOI: 10.3390/mi9090460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 02/01/2023]
Abstract
We demonstrate the enhancement of fluorescence emission from a dye, 5-carboxyfluorescein (FAM), which couples with surface plasmons at the spectral channels of excitation and emission. Experiments and calculations revealed that bimetallic (gold-silver) plasmon, as compared to the monometallic ones, allowed such coupling to be enhanced, at both the spectral channels. We achieved the maximum fluorescence enhancement level of 46.5-fold, with markedly high reproducibility (coefficient of variation ~ 0.5%) at a FAM concentration of 10 nM. We also found that higher fluorescence enhancement was more likely to be reproducible. This encourages the use of this technology for practical applications in fluorescence-based biochemical assays. Moreover, we investigated a FAM concentration-dependent enhancement of fluorescence. It was found that fluorescence enhancement decreased and saturated at above 10 nM concentration possibly due to partial photo-bleaching of FAM molecules.
Collapse
Affiliation(s)
- Nhu Hoa Thi Tran
- Department of Nano-Physics, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea.
- Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea.
| | - Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea.
| | - Jun-Ho Lee
- Laser & Opto-electronics Team, Korea Electronics Technology Institute, Seongnam-si, Gyeonggi-do 13509, Korea.
| | - Won Jung Yoon
- Department of Chemical and Bio Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea.
| | - Heongkyu Ju
- Department of Nano-Physics, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea.
- Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea.
- Neuroscience Institute, Gil Hospital, Incheon 405-760, Korea.
| |
Collapse
|
19
|
Tran NHT, Trinh KTL, Lee JH, Yoon WJ, Ju H. Reproducible Enhancement of Fluorescence by Bimetal Mediated Surface Plasmon Coupled Emission for Highly Sensitive Quantitative Diagnosis of Double-Stranded DNA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801385. [PMID: 30003662 DOI: 10.1002/smll.201801385] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/05/2018] [Indexed: 05/27/2023]
Abstract
Plasmonic enhancement of fluorescence from SYBR Green I conjugated with a double-stranded DNA (dsDNA) amplicon is demonstrated on polymerase chain reaction (PCR) products. Theoretical computation leads to use of the bimetallic (Au 2 nm-Ag 50 nm) surface plasmons due to larger local fields (higher quality factors) than monometallic (Ag or Au) ones at both dye excitation and emission wavelengths simultaneously, optimizing fluorescence enhancement with surface plasmon coupled emission (SPCE). Two kinds of reverse Kretschmann configurations are used, which favor, in signal-to-noise ratio, a fluorescence assay that uses optically dense buffer such as blood plasma. The fluorescence enhancement (12.9 fold at maximum) with remarkably high reproducibility (coefficient of variation (CV) < 1%) is experimentally demonstrated. This facilitates credible quantitation of enhanced fluorescence, however unlikely to obtain by localized surface plasmons. The plasmon-induced optical gain of 46 dB due to SPCE-active dye molecules is also estimated. The fluorescence enhancement technologies with PCR enables LOD of the dsDNA template concentration of ≈400 fg µL-1 (CV < 1%), the lowest ever reported in DNA fluorescence assay to date. SPCE also reduces photobleaching significantly. These technologies can be extended for a highly reproducible and sufficiently sensitive fluorescence assay with small volumes of analytes in multiplexed diagnostics.
Collapse
Affiliation(s)
- Nhu Hoa Thi Tran
- Department of Nano-Physics, Gachon University, Seongnam, 13120, Republic of Korea
- Gachon Bionano Research Institute, Gachon University, Seongnam, 13120, Republic of Korea
| | - Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Jun-Ho Lee
- Department of Nano-Physics, Gachon University, Seongnam, 13120, Republic of Korea
- Laser & Opto-electronics Team, Korea Electronics Technology Institute (KETI), Seongnam, 13509, Republic of Korea
| | - Won Jung Yoon
- Department of Chemical and BioEngineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Heongkyu Ju
- Department of Nano-Physics, Gachon University, Seongnam, 13120, Republic of Korea
- Gachon Bionano Research Institute, Gachon University, Seongnam, 13120, Republic of Korea
- Neuroscience Institute, Gil Hospital, Incheon, 405-760, Republic of Korea
| |
Collapse
|
20
|
Henscheid N, Clarkson E, Myers KJ, Barrett HH. Physiological random processes in precision cancer therapy. PLoS One 2018; 13:e0199823. [PMID: 29958271 PMCID: PMC6025881 DOI: 10.1371/journal.pone.0199823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023] Open
Abstract
Many different physiological processes affect the growth of malignant lesions and their response to therapy. Each of these processes is spatially and genetically heterogeneous; dynamically evolving in time; controlled by many other physiological processes, and intrinsically random and unpredictable. The objective of this paper is to show that all of these properties of cancer physiology can be treated in a unified, mathematically rigorous way via the theory of random processes. We treat each physiological process as a random function of position and time within a tumor, defining the joint statistics of such functions via the infinite-dimensional characteristic functional. The theory is illustrated by analyzing several models of drug delivery and response of a tumor to therapy. To apply the methodology to precision cancer therapy, we use maximum-likelihood estimation with Emission Computed Tomography (ECT) data to estimate unknown patient-specific physiological parameters, ultimately demonstrating how to predict the probability of tumor control for an individual patient undergoing a proposed therapeutic regimen.
Collapse
Affiliation(s)
- Nick Henscheid
- Center for Gamma-Ray Imaging, University of Arizona, Tucson, AZ, United States of America
- Program in Applied Mathematics, University of Arizona, Tucson, AZ, United States of America
| | - Eric Clarkson
- Center for Gamma-Ray Imaging, University of Arizona, Tucson, AZ, United States of America
- Program in Applied Mathematics, University of Arizona, Tucson, AZ, United States of America
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States of America
- College of Optical Sciences, University of Arizona, Tucson, AZ, United States of America
| | - Kyle J. Myers
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Harrison H. Barrett
- Center for Gamma-Ray Imaging, University of Arizona, Tucson, AZ, United States of America
- Program in Applied Mathematics, University of Arizona, Tucson, AZ, United States of America
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States of America
- College of Optical Sciences, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
21
|
|
22
|
Chen S, Cui S, Du R, Liu M, Tsai WK, Guo F, Wu Q, Zhao L, Zhang Y. Simultaneous near-infrared and green fluorescence from single conjugated polymer dots with aggregation-induced emission fluorogen for cell imaging. J Mater Chem B 2018; 6:7871-7876. [DOI: 10.1039/c8tb02346h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Highly fluorescent conjugated polymer dots with aggregation-induced emission fluorogen were applied in in vitro and in vivo cell imaging.
Collapse
Affiliation(s)
- Sitong Chen
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Shuang Cui
- School of Life Science and Technology
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Rongxin Du
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Ming Liu
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Wei-Kai Tsai
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung 80424
- P. R. China
| | - Fengyun Guo
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Qiong Wu
- School of Life Science and Technology
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Liancheng Zhao
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Yong Zhang
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| |
Collapse
|
23
|
Ishimatsu R, Shintaku H, Adachi C, Nakano K, Imato T. Electrogenerated Chemiluminescence of a BODIPY Derivative with Extended Conjugation. ChemistrySelect 2017. [DOI: 10.1002/slct.201702449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ryoichi Ishimatsu
- Department of Applied Chemistry Graduate School of Engineering Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Japan Science and Technology Agency, ERATO Adachi Molecular Exciton Engineering Projectc/oOPERA
| | - Hirosato Shintaku
- Department of Applied Chemistry Graduate School of Engineering Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Chihaya Adachi
- Department of Applied Chemistry Graduate School of Engineering Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Organic Photonics Electronics Research (OPERA) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Japan Science and Technology Agency, ERATO Adachi Molecular Exciton Engineering Projectc/oOPERA
| | - Koji Nakano
- Department of Applied Chemistry Graduate School of Engineering Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Toshihiko Imato
- Department of Applied Chemistry Graduate School of Engineering Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Japan Science and Technology Agency, ERATO Adachi Molecular Exciton Engineering Projectc/oOPERA
| |
Collapse
|
24
|
Sejdarasi L, McAuliffe KJ, Corbin BA, Trivedi ER. Synthesis and Characterization of Mixed Fluorinated Phenylthio- Subphthalocyanines. ChemistrySelect 2017. [DOI: 10.1002/slct.201701422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Leart Sejdarasi
- Department of Chemistry; Oakland University; 146 Library Dr. Rochester, MI USA
| | | | - Brooke A. Corbin
- Department of Chemistry; Oakland University; 146 Library Dr. Rochester, MI USA
| | - Evan R. Trivedi
- Department of Chemistry; Oakland University; 146 Library Dr. Rochester, MI USA
| |
Collapse
|
25
|
Park HS, Kim J, Cho MY, Lee H, Nam SH, Suh YD, Hong KS. Convenient and effective ICGylation of magnetic nanoparticles for biomedical applications. Sci Rep 2017; 7:8831. [PMID: 28821875 PMCID: PMC5562755 DOI: 10.1038/s41598-017-09627-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/27/2017] [Indexed: 01/25/2023] Open
Abstract
Nanoprobes used for biomedical applications usually require surface modifications with amphiphilic surfactants or inorganic coating materials to enhance their biocompatibility. We proposed a facile synthetic approach for the phase transfer of hydrophobic magnetic nanoparticles by the direct adherence of fluorescent probes, without any chemical modifications, for use as a magnetic resonance (MR)/near-infrared (NIR) fluorescence bimodal imaging contrast agent. Indocyanine green (ICG) was used not only as an optical component for NIR imaging, but also as a surfactant for phase transfer with no superfluous moiety: we therefore called the process "ICGylation". Cell labeling and tracking in vivo with ICGylated magnetic nanoparticles were successfully performed by MR/NIR dual-mode imaging for three days, which showed remarkable biostability without any additional surface functionalization. We expect that this novel MR/NIR contrast agent demonstrating sensitive detection and simultaneous imaging capability can be used in diverse fields, such as the imaging and tracking of immune cells to confirm immunotherapeutic efficacy. The approach used could also be applied to other kinds of nanoparticles, and it would promote the development of advanced functional multimodal nanobioprobes.
Collapse
Affiliation(s)
- Hye Sun Park
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, 28119, Korea
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Jongwoo Kim
- Laboratory for Advanced Molecular Probing (LAMP), Research Center for Convergence NanoRaman Technology, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Mi Young Cho
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, 28119, Korea
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hyunseung Lee
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, 28119, Korea
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Sang Hwan Nam
- Laboratory for Advanced Molecular Probing (LAMP), Research Center for Convergence NanoRaman Technology, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Yung Doug Suh
- Laboratory for Advanced Molecular Probing (LAMP), Research Center for Convergence NanoRaman Technology, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea.
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
| | - Kwan Soo Hong
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, 28119, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea.
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
26
|
Miller JP, Habimana-Griffin L, Edwards TS, Achilefu S. Multimodal fluorescence molecular imaging for in vivo characterization of skin cancer using endogenous and exogenous fluorophores. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:66007. [PMID: 28613348 PMCID: PMC5470328 DOI: 10.1117/1.jbo.22.6.066007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Similarity of skin cancer with many benign skin pathologies requires reliable methods to detect and differentiate the different types of these lesions. Previous studies have explored the use of disparate optical techniques to identify and estimate the invasive nature of melanoma and basal cell carcinoma with varying outcomes. Here, we used a concerted approach that provides complementary information for rapid screening and characterization of tumors, focusing on squamous cell carcinoma (SCC) of the skin. Assessment of in vivo autofluorescence lifetime (FLT) imaging of endogenous fluorophores that are excitable at longer wavelengths (480 nm) than conventional NADH and FAD revealed a decrease in the short FLT component for SCC compared to normal skin, with mean values of 0.57 ± 0.026 ?? ns and 0.61 ± 0.021 ?? ns , respectively ( p = 0.004 ). Subsequent systemic administration of a near-infrared fluorescent molecular probe in SCC bearing mice, followed by the implementation of image processing methods on data acquired from two-dimensional and three-dimensional fluorescence molecular imaging, allowed us to estimate the tumor volume and depth, as well as quantify the fluorescent probe in the tumor. The result suggests the involvement of lipofuscin-like lipopigments and riboflavin in SCC metabolism and serves as a model for staging SCC.
Collapse
Affiliation(s)
- Jessica P. Miller
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, Optical Radiology Laboratory, St. Louis, Missouri, United States
- Washington University in St. Louis, Biomedical Engineering, St. Louis, Missouri, United States
| | - LeMoyne Habimana-Griffin
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, Optical Radiology Laboratory, St. Louis, Missouri, United States
- Washington University in St. Louis, Biomedical Engineering, St. Louis, Missouri, United States
| | - Tracy S. Edwards
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, Optical Radiology Laboratory, St. Louis, Missouri, United States
| | - Samuel Achilefu
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, Optical Radiology Laboratory, St. Louis, Missouri, United States
- Washington University in St. Louis, Biomedical Engineering, St. Louis, Missouri, United States
| |
Collapse
|
27
|
Nicol A, Qin W, Kwok RTK, Burkhartsmeyer JM, Zhu Z, Su H, Luo W, Lam JWY, Qian J, Wong KS, Tang BZ. Functionalized AIE nanoparticles with efficient deep-red emission, mitochondrial specificity, cancer cell selectivity and multiphoton susceptibility. Chem Sci 2017; 8:4634-4643. [PMID: 28970884 PMCID: PMC5618339 DOI: 10.1039/c7sc00908a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/10/2017] [Indexed: 12/24/2022] Open
Abstract
Multiphoton microscopy is an exciting tool for biomedical research because it can be used to image single cells in vivo due to its greater penetration depth, lower phototoxicity and higher resolution when compared to confocal laser scanning microscopy. This helps researchers understand how certain cells change over time and evaluate the efficacy of different therapies. Herein, we report a new AIE luminogen (AIEgen), abbreviated as TPE-TETRAD, with a favorable absorption and efficient deep-red emission in the solid state. TPE-TETRAD possesses a high two-photon absorption cross-section (313 MG at 830 nm) and a rich array of non-linear optical properties including aggregation-induced three-photon luminescence. Biotinylated TPE-TETRAD nanoparticles are also fabricated and applied to stain mitochondria in live cancer cells with high specificity. The purpose of this study is to characterize a novel deep-red AIEgen and fabricate biotinylated nanoparticles for applications as (1) biocompatible and photostable AIE probes for specific mitochondria imaging and (2) multiphoton imaging probes suitable for two/three-photon fluorescence microscopy.
Collapse
Affiliation(s)
- Alexander Nicol
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China .
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
| | - Wei Qin
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China .
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
| | - Ryan T K Kwok
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China .
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
| | | | - Zhenfeng Zhu
- State Key Laboratory of Modern Optical Instrumentation , Centre for Optical and Electromagnetic Research , Zhejiang Provincial Key Laboratory for Sensing Technologies , Zhejiang University , 310058 Hangzhou , China
| | - Huifang Su
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China .
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
| | - Wenwen Luo
- Guangdong Innovative Research Team , SCUT-HKUST Joint Research Laboratory , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Jacky W Y Lam
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China .
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentation , Centre for Optical and Electromagnetic Research , Zhejiang Provincial Key Laboratory for Sensing Technologies , Zhejiang University , 310058 Hangzhou , China
| | - Kam Sing Wong
- Department of Physics , HKUST , Clear Water Bay , Kowloon , Hong Kong , China
| | - Ben Zhong Tang
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China .
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Guangdong Innovative Research Team , SCUT-HKUST Joint Research Laboratory , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
28
|
Dost TL, Gressel MT, Henary M. Synthesis and Optical Properties of Pentamethine Cyanine Dyes With Carboxylic Acid Moieties. ANALYTICAL CHEMISTRY INSIGHTS 2017; 12:1177390117711938. [PMID: 28607539 PMCID: PMC5457140 DOI: 10.1177/1177390117711938] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/02/2017] [Indexed: 11/15/2022]
Abstract
Cyanine dyes possessing carboxylic acid groups have been used in many different fields of study. The acid groups can act as handles for bioconjugation or as metal chelators. Several pentamethine cyanine dyes with propionic acid handles were synthesized and their optical properties were studied to determine their usefulness as fluorescent probes. The optical properties studies performed include the absorbance and emission maxima values as well as the calculation of quantum yield and molecular brightness levels. Molecular models were also calculated to help analyze the dyes' behavior and were compared with similar dyes with varying alkyl chain lengths replacing the acid moieties.
Collapse
Affiliation(s)
- Tyler L Dost
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | | | - Maged Henary
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
29
|
Handgraaf HJM, Boonstra MC, Prevoo HAJM, Kuil J, Bordo MW, Boogerd LSF, Sibinga Mulder BG, Sier CFM, Vinkenburg-van Slooten ML, Valentijn ARPM, Burggraaf J, van de Velde CJH, Frangioni JV, Vahrmeijer AL. Real-time near-infrared fluorescence imaging using cRGD-ZW800-1 for intraoperative visualization of multiple cancer types. Oncotarget 2017; 8:21054-21066. [PMID: 28416744 PMCID: PMC5400565 DOI: 10.18632/oncotarget.15486] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/07/2017] [Indexed: 12/11/2022] Open
Abstract
Incomplete resections and damage to critical structures increase morbidity and mortality of patients with cancer. Targeted intraoperative fluorescence imaging aids surgeons by providing real-time visualization of tumors and vital structures. This study evaluated the tumor-targeted zwitterionic near-infrared fluorescent peptide cRGD-ZW800-1 as tracer for intraoperative imaging of multiple cancer types. cRGD-ZW800-1 was validated in vitro on glioblastoma (U-87 MG) and colorectal (HT-29) cell lines. Subsequently, the tracer was tested in orthotopic mouse models with HT-29, breast (MCF-7), pancreatic (BxPC-3), and oral (OSC-19) tumors. Dose-ranging studies, including doses of 0.25, 1.0, 10, and 30 nmol, in xenograft tumor models suggest an optimal dose of 10 nmol, corresponding to a human equivalent dose of 63 μg/kg, and an optimal imaging window between 2 and 24 h post-injection. The mean half-life of cRGD-ZW800-1 in blood was 25 min. Biodistribution at 4 h showed the highest fluorescence signals in tumors and kidneys. In vitro and in vivo competition experiments showed significantly lower fluorescence signals when U-87 MG cells (minus 36%, p = 0.02) or HT-29 tumor bearing mice (TBR at 4 h 3.2 ± 0.5 vs 1.8 ± 0.4, p = 0.03) were simultaneously treated with unlabeled cRGD. cRGD-ZW800-1 visualized in vivo all colorectal, breast, pancreatic, and oral tumor xenografts in mice. Screening for off-target interactions, cRGD-ZW800-1 showed only inhibition of COX-2, likely due to binding of cRGD-ZW800-1 to integrin αVβ3. Due to its recognition of various integrins, which are expressed on malignant and neoangiogenic cells, it is expected that cRGD-ZW800-1 will provide a sensitive and generic tool to visualize cancer during surgery.
Collapse
Affiliation(s)
| | - Martin C Boonstra
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Joeri Kuil
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Leonora S F Boogerd
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - A Rob P M Valentijn
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - John V Frangioni
- Curadel, LLC, Marlborough, MA, U.S.A.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, U.S.A.,Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, U.S.A
| | | |
Collapse
|
30
|
Liu J, Chen C, Ji S, Liu Q, Ding D, Zhao D, Liu B. Long wavelength excitable near-infrared fluorescent nanoparticles with aggregation-induced emission characteristics for image-guided tumor resection. Chem Sci 2017; 8:2782-2789. [PMID: 28553514 PMCID: PMC5426438 DOI: 10.1039/c6sc04384d] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/20/2017] [Indexed: 12/23/2022] Open
Abstract
Near infrared (NIR) fluorescence imaging (700-900 nm) is a promising technology in preclinical and clinical tumor diagnosis and therapy. The availability of excellent NIR fluorescent contrast agents is still the main barrier to implementing this technology. Herein, we report the design and synthesis of two series of NIR fluorescent molecules with long wavelength excitation and aggregation-induced emission (AIE) characteristics by fine-tuning their molecular structures and substituents. Further self-assembly between an amphiphilic block co-polymer and the obtained AIE molecules leads to AIE nanoparticles (AIE NPs), which have absorption maxima at 635 nm and emission maxima between 800 and 815 nm with quantum yields of up to 4.8% in aggregated states. In vitro and in vivo toxicity results demonstrate that the synthesized AIE NPs are biocompatible. Finally, the synthesized AIE NPs have been successfully used for image-guided tumor resection with a high tumor-to-normal tissue signal ratio of 7.2.
Collapse
Affiliation(s)
- Jie Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117585 , Singapore .
| | - Chao Chen
- State Key Laboratory of Medicinal Chemical Biology , Key Laboratory of Bioactive Materials , Ministry of Education , College of Life Sciences , Nankai University , Tianjin 300071 , P. R. China .
| | - Shenglu Ji
- State Key Laboratory of Medicinal Chemical Biology , Key Laboratory of Bioactive Materials , Ministry of Education , College of Life Sciences , Nankai University , Tianjin 300071 , P. R. China .
| | - Qian Liu
- Department of Urology , Tianjin First Central Hospital , Tianjin 300192 , P. R. China .
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology , Key Laboratory of Bioactive Materials , Ministry of Education , College of Life Sciences , Nankai University , Tianjin 300071 , P. R. China .
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117585 , Singapore .
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117585 , Singapore .
| |
Collapse
|
31
|
Ke CS, Fang CC, Yan JY, Tseng PJ, Pyle JR, Chen CP, Lin SY, Chen J, Zhang X, Chan YH. Molecular Engineering and Design of Semiconducting Polymer Dots with Narrow-Band, Near-Infrared Emission for in Vivo Biological Imaging. ACS NANO 2017; 11:3166-3177. [PMID: 28221751 DOI: 10.1021/acsnano.7b00215] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This article describes the design and synthesis of donor-bridge-acceptor-based semiconducting polymer dots (Pdots) that exhibit narrow-band emissions, ultrahigh brightness, and large Stokes shifts in the near-infrared (NIR) region. We systematically investigated the effect of π-bridges on the fluorescence quantum yields of the donor-bridge-acceptor-based Pdots. The Pdots could be excited by a 488 or 532 nm laser and have a high fluorescence quantum yield of 33% with a Stokes shift of more than 200 nm. The emission full width at half-maximum of the Pdots can be as narrow as 29 nm, about 2.5 times narrower than that of inorganic quantum dots at the same emission wavelength region. The average per-particle brightness of the Pdots is at least 3 times larger than that of the commercially available quantum dots. The excellent biocompatibility of these Pdots was demonstrated in vivo, and their specific cellular labeling capability was also approved by different cell lines. By taking advantage of the durable brightness and remarkable stability of these NIR fluorescent Pdots, we performed in vivo microangiography imaging on living zebrafish embryos and long-term tumor monitoring on mice. We anticipate these donor-bridge-acceptor-based NIR-fluorescent Pdots with narrow-band emissions to find broad use in a variety of multiplexed biological applications.
Collapse
Affiliation(s)
- Chi-Shiang Ke
- Department of Chemistry, National Sun Yat-sen University , 70 Lien Hai Road, Kaohsiung, Taiwan 80424
| | - Chia-Chia Fang
- Department of Chemistry, National Sun Yat-sen University , 70 Lien Hai Road, Kaohsiung, Taiwan 80424
| | - Jia-Ying Yan
- Center for Nanomedicine Research, National Health Research Institutes , 35 Keyan Road, Zhunan, Taiwan 35053
| | - Po-Jung Tseng
- Department of Chemistry, National Sun Yat-sen University , 70 Lien Hai Road, Kaohsiung, Taiwan 80424
| | - Joseph R Pyle
- Department of Chemistry & Biochemistry, Ohio University , Athens, Ohio 45701, United States
| | - Chuan-Pin Chen
- Department of Chemistry, National Sun Yat-sen University , 70 Lien Hai Road, Kaohsiung, Taiwan 80424
| | - Shu-Yi Lin
- Center for Nanomedicine Research, National Health Research Institutes , 35 Keyan Road, Zhunan, Taiwan 35053
| | - Jixin Chen
- Department of Chemistry & Biochemistry, Ohio University , Athens, Ohio 45701, United States
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau , Macau SAR, China
| | - Yang-Hsiang Chan
- Department of Chemistry, National Sun Yat-sen University , 70 Lien Hai Road, Kaohsiung, Taiwan 80424
| |
Collapse
|
32
|
Pereira NAM, Laranjo M, Casalta-Lopes J, Serra AC, Piñeiro M, Pina J, Seixas de Melo JS, Senge MO, Botelho MF, Martelo L, Burrows HD, Pinho e Melo TMVD. Platinum(II) Ring-Fused Chlorins as Near-Infrared Emitting Oxygen Sensors and Photodynamic Agents. ACS Med Chem Lett 2017; 8:310-315. [PMID: 28337322 DOI: 10.1021/acsmedchemlett.6b00476] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/22/2017] [Indexed: 12/22/2022] Open
Abstract
Novel near-infrared luminescent compounds based on platinum(II) 4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine-fused chlorins are described. These compounds have high photostability and display light emission, in particular simultaneous fluorescence and phosphorescence emission in solution at room temperature, in the biologically relevant 700-850 nm red and near-infrared (NIR) spectral region, making them excellent materials for biological imaging. The simultaneous presence of fluorescence and phosphorescence emission at room temperature, with the phosphorescence strongly quenched by oxygen whereas fluorescence remains unaffected, allows these compounds to be used as ratiometric oxygen sensors in chemical and biological media. Both steady-state (fluorescence vs phosphorescence intensities) and dynamic (dependence of phosphorescence lifetimes upon oxygen concentration) luminescence approaches can be used. Photocytotoxicity studies against human melanocytic melanoma cells (A375) indicate that these compounds display potential as photosensitizers in photodynamic therapy.
Collapse
Affiliation(s)
| | - Mafalda Laranjo
- Biophysics
Unit, Faculty of Medicine of University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
- CIMAGO−Center
of Investigation in Environment, Genetics and Oncobiology, Faculty of Medicine of University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal
- CNC.IBILI
Consortium, IBILI, University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal
| | - João Casalta-Lopes
- Biophysics
Unit, Faculty of Medicine of University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
- CIMAGO−Center
of Investigation in Environment, Genetics and Oncobiology, Faculty of Medicine of University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal
- CNC.IBILI
Consortium, IBILI, University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal
| | - Arménio C. Serra
- Department
of Chemical Engineering, CEMUC, University of Coimbra, Rua Silvio
Lima Polo 2, 3030 290 Coimbra, Portugal
| | - Marta Piñeiro
- CQC,
Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - João Pina
- CQC,
Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | | | - Mathias O. Senge
- School of
Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences
Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse
Street, Dublin 2, Ireland
| | - M. Filomena Botelho
- Biophysics
Unit, Faculty of Medicine of University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Liliana Martelo
- CQC,
Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Centro
de Química-Física Molecular (CFQM), and the Institute
of Nanoscience and Nanotechnology (IN), Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Hugh D. Burrows
- CQC,
Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | | |
Collapse
|
33
|
Yang C, Wang X, Wang M, Xu K, Xu C. Robust Colloidal Nanoparticles of Pyrrolopyrrole Cyanine J-Aggregates with Bright Near-Infrared Fluorescence in Aqueous Media: From Spectral Tailoring to Bioimaging Applications. Chemistry 2017; 23:4310-4319. [PMID: 27918633 DOI: 10.1002/chem.201604741] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Indexed: 11/07/2022]
Abstract
Colloidal nanoparticles (NPs) containing near-infrared-fluorescent J-aggregates (JAGGs) of pyrrolopyrrole cyanines (PPcys) stabilized by amphiphilic block co-polymers were prepared in aqueous medium. JAGG formation can be tuned by means of the chemical structure of PPcys, the concentration of chromophores inside the polymeric NPs, and ultrasonication. The JAGG NPs exhibit a narrow emission band at 773 nm, a fluorescence quantum yield comparable to that of indocyanine green, and significantly enhanced photostability, which is ideal for long-term bioimaging.
Collapse
Affiliation(s)
- Cangjie Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Xiaochen Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Present address: National Center for Nano Science and Technology, Zhongguancun Beiyitiao, Beijing, 100190, P. R. China
| | - Mingfeng Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Keming Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
34
|
Molitoris BA, Reilly ES. Quantifying Glomerular Filtration Rates in Acute Kidney Injury: A Requirement for Translational Success. Semin Nephrol 2017; 36:31-41. [PMID: 27085733 DOI: 10.1016/j.semnephrol.2016.01.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) remains a vexing clinical problem that results in unacceptably high patient mortality, development of chronic kidney disease, and accelerated progression to end-stage kidney disease. Although clinical risks factors for developing AKI have been identified, there is no reasonable surveillance technique to definitively and rapidly diagnose and determine the extent of severity of AKI in any patient. Because patient outcomes correlate with the extent of injury, and effective therapy likely requires early intervention, the ability to rapidly diagnose and stratify patients by their level of kidney injury is paramount for translational progress. Many groups are developing and characterizing optical measurement techniques using novel minimally invasive or noninvasive techniques that can quantify kidney function independent of serum or urinary measurements. The use of both one- and two-compartment models, as well as continuous monitoring, are being developed. This review documents the need for glomerular filtration rate measurement in AKI patients and discusses the approaches being taken to deliver this overdue technique that is necessary to help propel nephrology to individualization of care and therapeutic success.
Collapse
Affiliation(s)
- Bruce A Molitoris
- Division of Nephrology, Department of Medicine, Indiana Center for Biological Microscopy, Indiana University School of Medicine, Roudebush VA, Indianapolis, Indiana; FAST BioMedical, Indianapolis, Indiana.
| | | |
Collapse
|
35
|
Long Z, Mao L, Liu M, Wan Q, Wan Y, Zhang X, Wei Y. Marrying multicomponent reactions and aggregation-induced emission (AIE): new directions for fluorescent nanoprobes. Polym Chem 2017. [DOI: 10.1039/c7py00979h] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent development and progress for fabrication and applications of aggregation-induced emission polymers through multicomponent reactions have been summarized in this review.
Collapse
Affiliation(s)
- Zi Long
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Liucheng Mao
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Meiying Liu
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Qing Wan
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Yiqun Wan
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Xiaoyong Zhang
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Yen Wei
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research
| |
Collapse
|
36
|
Multimodal Magnetic Resonance and Near-Infrared-Fluorescent Imaging of Intraperitoneal Ovarian Cancer Using a Dual-Mode-Dual-Gadolinium Liposomal Contrast Agent. Sci Rep 2016; 6:38991. [PMID: 28004770 PMCID: PMC5177955 DOI: 10.1038/srep38991] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 11/15/2016] [Indexed: 01/22/2023] Open
Abstract
The degree of tumor removal at surgery is a major factor in predicting outcome for ovarian cancer. A single multimodality agent that can be used with magnetic resonance (MR) for staging and pre-surgical planning, and with optical imaging to aid surgical removal of tumors, would present a new paradigm for ovarian cancer. We assessed whether a dual-mode, dual-Gadolinium (DM-Dual-Gd-ICG) contrast agent can be used to visualize ovarian tumors in the peritoneal cavity by multimodal MR and near infra-red imaging (NIR). Intraperitoneal ovarian tumors (Hey-A8 or OVCAR3) in mice enhanced on MR two days after intravenous DM-Dual Gd-ICG injection compared to controls (SNR, CNR, p < 0.05, n = 6). As seen on open abdomen and excised tumors views and confirmed by optical radiant efficiency measurement, Hey-A8 or OVCAR3 tumors from animals injected with DM-Dual Gd-ICG had increased fluorescence (p < 0.05, n = 6). This suggests clinical potential to localize ovarian tumors by MR for staging and surgical planning, and, by NIR at surgery for resection.
Collapse
|
37
|
Cai C, Cai W, Cheng J, Yang Y, Luo J. Self-guided reconstruction for time-domain fluorescence molecular lifetime tomography. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:126012. [PMID: 27999862 DOI: 10.1117/1.jbo.21.12.126012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
Fluorescence probes have distinct yields and lifetimes when located in different environments, which makes the reconstruction of fluorescence molecular lifetime tomography (FMLT) challenging. To enhance the reconstruction performance of time-domain (TD) FMLT with heterogeneous targets, a self-guided L 1 regularization projected steepest descent (SGL1PSD) algorithm is proposed. Different from other algorithms performed in time domain, SGL1PSD introduces a time-resolved strategy into fluorescence yield reconstruction. The algorithm consists of four steps. Step 1 reconstructs the initial yield map with full time gate strategy; steps 2–4 reconstruct the inverse lifetime map, the yield map, and the inverse lifetime map again with time-resolved strategy, respectively. The reconstruction result of each step is used as a priori for the reconstruction of the next step. Projected iterated Tikhonov regularization algorithm is adopted for the yield map reconstructions in steps 1 and 3 to provide a solution with iterative refinement and nonnegative constraint. The inverse lifetime map reconstructions in steps 2 and 4 are based on L 1 regularization projected steepest descent algorithm, which employ the L 1 regularization to reduce the ill-posedness of the high-dimensional nonlinear problem. Phantom experiments with heterogeneous targets at different edge-to-edge distances demonstrate that SG
Collapse
Affiliation(s)
- Chuangjian Cai
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing 100084, China
| | - Wenjuan Cai
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing 100084, China
| | - Jiaju Cheng
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing 100084, China
| | - Yuxuan Yang
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing 100084, China
| | - Jianwen Luo
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing 100084, ChinabTsinghua University, Center for Biomedical Imaging Research, Beijing 100084, China
| |
Collapse
|
38
|
Del Rosal B, Villa I, Jaque D, Sanz-Rodríguez F. In vivo autofluorescence in the biological windows: the role of pigmentation. JOURNAL OF BIOPHOTONICS 2016; 9:1059-1067. [PMID: 26576035 DOI: 10.1002/jbio.201500271] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
Small animal deep-tissue fluorescence imaging in the second Biological Window (II-BW, 1000-1350 nm) is limited by the presence of undesirable infrared-excited, infrared-emitted (900-1700 nm) autofluorescence whose origin, spectral properties and dependence on strains is still unknown. In this work, the infrared autofluorescence and laser-induced whole body heating of five different mouse strains with distinct coat colors (black, grey, agouti, white and nude) has been systematically investigated. While neither the spectral properties nor the magnitude of organ autofluorescence vary significantly between mouse strains, the coat color has been found to strongly determine both the autofluorescence intensity as well as the laser-induced whole body heating. Results included in this work reveal mouse strain as a critical parameter that has to be seriously considered in the design and performance of small animal imaging experiments based on infrared-emitting fluorescent markers.
Collapse
Affiliation(s)
- Blanca Del Rosal
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Irene Villa
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Daniel Jaque
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, 28049, Spain.
| | - Francisco Sanz-Rodríguez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
39
|
Bates AS, Patel VR. Applications of indocyanine green in robotic urology. J Robot Surg 2016; 10:357-359. [PMID: 27664142 PMCID: PMC5108821 DOI: 10.1007/s11701-016-0641-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 02/03/2023]
Abstract
Indocyanine green is a fluorescent molecule with wide ranging applications in minimally invasive urological surgery. This article explores the utility of ICG assisted intraoperative fluorescence in robotic urology.
Collapse
Affiliation(s)
- Anthony S Bates
- Department of Urology, University Hospitals of Leicester, Leicester, UK. .,University of Oxford, Oxford, UK.
| | - Vipul R Patel
- Global Robotics Institute, Florida Hospital in Celebration, Orlando, FL, USA
| |
Collapse
|
40
|
Wang J, Mi P, Lin G, Wáng YXJ, Liu G, Chen X. Imaging-guided delivery of RNAi for anticancer treatment. Adv Drug Deliv Rev 2016; 104:44-60. [PMID: 26805788 PMCID: PMC5226392 DOI: 10.1016/j.addr.2016.01.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 11/27/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
The RNA interference (RNAi) technique is a new modality for cancer therapy, and several candidates are being tested clinically. In the development of RNAi-based therapeutics, imaging methods can provide a visible and quantitative way to investigate the therapeutic effect at anatomical, cellular, and molecular level; to noninvasively trace the distribution; to and study the biological processes in preclinical and clinical stages. Their abilities are important not only for therapeutic optimization and evaluation but also for shortening of the time of drug development to market. Typically, imaging-functionalized RNAi therapeutics delivery that combines nanovehicles and imaging techniques to study and improve their biodistribution and accumulation in tumor site has been progressively integrated into anticancer drug discovery and development processes. This review presents an overview of the current status of translating the RNAi cancer therapeutics in the clinic, a brief description of the biological barriers in drug delivery, and the roles of imaging in aspects of administration route, systemic circulation, and cellular barriers for the clinical translation of RNAi cancer therapeutics, and with partial content for discussing the safety concerns. Finally, we focus on imaging-guided delivery of RNAi therapeutics in preclinical development, including the basic principles of different imaging modalities, and their advantages and limitations for biological imaging. With growing number of RNAi therapeutics entering the clinic, various imaging methods will play an important role in facilitating the translation of RNAi cancer therapeutics from bench to bedside.
Collapse
Affiliation(s)
- Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; Department of Imaging and Interventional Radiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Peng Mi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; Chemical Resources Laboratory, Polymer Chemistry Division, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China; The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Mahadevan K, Patthipati VS, Han S, Swanson RJ, Whelan EC, Osgood C, Balasubramanian R. Highly fluorescent resorcinarene cavitand nanocapsules with efficient renal clearance. NANOTECHNOLOGY 2016; 27:335101. [PMID: 27378394 DOI: 10.1088/0957-4484/27/33/335101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanomaterial based imaging approaches hold substantial promise in addressing current diagnostic and therapeutic challenges. One of the key requirements for the successful clinical translation of nanomaterials is their complete clearance from the body within a reasonable time period preferably via the renal filtration route. This article describes the synthesis of highly fluorescent, water soluble, resorcinarene cavitand nanocapsules and demonstrates their effective renal clearance in mice. The synthesis and functionalization of nanocapsules was accomplished in a one-pot operation via thiol-ene reactions without involving self-assembly, sacrificial templates or emulsions. Water soluble resorcinarene cavitand nanocapsules obtained by this approach were covalently functionalized with Alexa Fluor 750. Highly fluorescent nanocapsules with hydrodynamic diameters of 122 nm and 68 nm and extinction coefficients of 1.3 × 10(9) M(-1) cm(-1) and 1.5 × 10(8) M(-1) cm(-1) respectively were prepared by varying the reaction conditions. The in vivo biodistribution and clearance of these nanocapsules in mice followed by whole-body fluorescence imaging showed that they were both cleared renally within a few hours. Given the inherent encapsulation capabilities of nanocapsules, the renal clearance demonstrated in this work opens up new opportunities for their theranostic applications especially for targeting and treating the urinary tract.
Collapse
Affiliation(s)
- Kalpana Mahadevan
- Department of Chemistry and Biochemistry, Old Dominion University,4541 Hampton Blvd, Norfolk, VA 23529, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Zhou L, Xu D, Gao H, Zhang C, Ni F, Zhao W, Cheng D, Liu X, Han A. β-Furan-Fused bis(Difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine Fluorescent Dyes in the Visible Deep-Red Region. J Org Chem 2016; 81:7439-47. [DOI: 10.1021/acs.joc.6b01018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Lin Zhou
- Chemical
Engineering College, Qinghai University, Xining 810016, China
| | - Defang Xu
- Key
Lab of Comprehensive and Highly Efficient Utilization of Salt Lake
Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Huaizhi Gao
- Chemical
Engineering College, Qinghai University, Xining 810016, China
| | - Chao Zhang
- Chemical
Engineering College, Qinghai University, Xining 810016, China
| | - Fangfang Ni
- Chemical
Engineering College, Qinghai University, Xining 810016, China
| | - Wenqi Zhao
- Chemical
Engineering College, Qinghai University, Xining 810016, China
| | - Dandan Cheng
- Chemical
Engineering College, Qinghai University, Xining 810016, China
| | - Xingliang Liu
- Chemical
Engineering College, Qinghai University, Xining 810016, China
| | - Aixia Han
- Chemical
Engineering College, Qinghai University, Xining 810016, China
| |
Collapse
|
43
|
Venermo M, Settembre N, Albäck A, Vikatmaa P, Aho PS, Lepäntalo M, Inoue Y, Terasaki H. Pilot Assessment of the Repeatability of Indocyanine Green Fluorescence Imaging and Correlation with Traditional Foot Perfusion Assessments. Eur J Vasc Endovasc Surg 2016; 52:527-533. [PMID: 27486005 DOI: 10.1016/j.ejvs.2016.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/28/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Ankle brachial index (ABI), toe pressures (TP), and transcutaneous oxygen pressure (TcPO2) are traditionally used in the assessment of critical limb ischemia (CLI). Indocyanine green (ICG) fluorescence imaging can be used to evaluate local circulation in the foot and to evaluate the severity of ischemia. This prospective study analyzed the suitability of a fluorescence imaging system (photodynamic eye [PDE]) in CLI. MATERIAL AND METHODS Forty-one patients with CLI were included. Of the patients, 66% had diabetes and there was an ischemic tissue lesion in 70% of the limbs. ABI, toe pressures, TcPO2 and ICG-fluorescence imaging (ICG-FI) were measured in each leg. To study the repeatability of the ICG-FI, each patient underwent the study twice. After the procedure, foot circulation was measured using a time-intensity curve, where T1/2 (the time needed to achieve half of the maximum fluorescence intensity) and PDE10 (increase of the intensity during the first 10 s) were determined. A time-intensity curve was plotted using the same areas as for the TcPO2 probes (n=123). RESULTS The mean ABI was 0.43, TP 21 mmHg, TcPO2 23 mmHg, T1/2 38 s, and PDE10 19 AU. Time-intensity curves were repeatable. In a Bland-Altman scatter plot, the 95% limits of agreement of PDE10 was 9.9 AU and the corresponding value of T1/2 was 14 s. Correlation between ABI and TP was significant (R=.73, p<.001), and it was weaker in diabetic patients (R=.47, p=.048) compared with non-diabetic patients (R=.89, p=.002). Correlations between ABI and TcPO2 and TP and TcPO2 were weak (R=.37, p=.05 and R=.43, p=.037, respectively). Correlation between TcPO2 and PDE10 was strong in diabetic patients (R=.70, p=.003). CONCLUSIONS According to this pilot study, ICG-FI with PDE can be used in the assessment of blood supply in the ischemic foot.
Collapse
Affiliation(s)
- M Venermo
- Helsinki University Central Hospital, Helsinki, Finland.
| | - N Settembre
- Helsinki University Central Hospital, Helsinki, Finland
| | - A Albäck
- Helsinki University Central Hospital, Helsinki, Finland
| | - P Vikatmaa
- Helsinki University Central Hospital, Helsinki, Finland
| | - P-S Aho
- Helsinki University Central Hospital, Helsinki, Finland
| | - M Lepäntalo
- Helsinki University Central Hospital, Helsinki, Finland
| | - Y Inoue
- Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - H Terasaki
- Helsinki University Central Hospital, Helsinki, Finland; Tokyo Medical and Dental University Hospital, Tokyo, Japan
| |
Collapse
|
44
|
Liang L, Xie X, Loong DTB, All AH, Huang L, Liu X. Designing Upconversion Nanocrystals Capable of 745 nm Sensitization and 803 nm Emission for Deep-Tissue Imaging. Chemistry 2016; 22:10801-7. [DOI: 10.1002/chem.201602514] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Liangliang Liang
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Xiaoji Xie
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials; Jiangsu National Synergistic Innovation Center for Advanced Materials; Nanjing Tech University; Nanjing 211816 P. R. China
| | | | - Angelo Homayoun All
- Department of Orthopedic Surgery, National University of Singapore, Singapore 119228 (Singapore); Department of Biomedical Engineering; National University of Singapore; Singapore 117583 Singapore
| | - Ling Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials; Jiangsu National Synergistic Innovation Center for Advanced Materials; Nanjing Tech University; Nanjing 211816 P. R. China
| | - Xiaogang Liu
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
- Institute of Materials Research and Engineering; Agency for Science, Technology and Research; Singapore 138634 Singapore
| |
Collapse
|
45
|
Pogue BW, Gibbs SL, Chen B, Savellano M. Fluorescence Imaging in Vivo: Raster Scanned Point-Source Imaging Provides More Accurate Quantification than Broad Beam Geometries. Technol Cancer Res Treat 2016; 3:15-21. [PMID: 14750889 DOI: 10.1177/153303460400300102] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two fluorescence imaging systems were compared for their ability to quantify mean fluorescence intensity from surface-weighted imaging of tissue. A broad beam CCD camera system was compared to a point sampling system that raster scans to create the image. The effects of absorption and scattering in the background tissue volume were shown to be similar in their effect upon the signal, but the effect of the three-dimensional shape of the tissue was shown to be a significant distortion upon the signal. Spherical phantoms with Intralipid and blood for absorber and scatterer were used with a fixed concentration of aluminum phthalocyanine fluorophore to illustrate that the mean intensity observed with the broad beam system increased with size, while the mean intensity observed with the raster scanned system was not as significantly affected. Similar results were observed in vivo with mice injected with the fluorophore and imaged multiple times to observe the pharmacokinetics of the drug. The fluorescence in the tumor observed with the broad beam system was higher than that observed with the raster scanned system. Based upon the phantom and animal observations in this study, it should be concluded that using broad beam fluorescence imaging systems to quantify fluorescence in vivo may be problematic when comparing tissues with different three dimensional characteristics. In particular, the ratio of fluorescence from tumor to normal tissue can yield inaccurate results when the tumor is large. However, similar measurements with a narrow beam system that is raster scanned to create the images are not as significantly affected by the three dimensional shape of the tissue. Raster scanned imaging appears to provide a more uniform and accurate way to quantify fluorescence signals from distributed tissues in vivo.
Collapse
Affiliation(s)
- Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
Near infrared spectroscopy (NIRS) utilizes intrinsic optical absorption signals of blood, water, and lipid concentration available in the NIR window (600–1000 nm) as well as a developing array of extrinsic organic compounds to detect and localize cancer. This paper reviews optical cancer detection made possible through high tumor-tissue signal-to-noise ratio (SNR) and providing biochemical and physiological data in addition to those obtained via other methods. NIRS detects cancers in vivo through a combination of blood volume and oxygenation from measurements of oxy- and deoxy-hemoglobin giving signals of tumor angiogenesis and hypermetabolism. The Chance lab tends towards CW breast cancer systems using manually scannable detectors with calibrated low pressure tissue contact. These systems calculate angiogenesis and hypermetabolism by using a pair of wavelengths and referencing the mirror image position of the contralateral breast to achieve high ROC/AUC. Time domain and frequency domain spectroscopy were also used to study similar intrinsic breast tumor characteristics such as high blood volume. Other NIRS metrics are water-fat ratio and the optical scattering coefficient. An extrinsic FDA approved dye, ICG, has been used to measure blood pooling with extravasation, similar to Gadolinium in MRI. A key future development in NIRS will be new Molecular Beacons targeting cancers and fluorescing in the NIR window to enhance in vivo tumor-tissue ratios and to afford biochemical specificity with the potential for effective photodynamic anti-cancer therapies.
Collapse
Affiliation(s)
- S Nioka
- University of Pennsylvania, Department of Biochemistry and Biophysics, 250 Anatomy-Chemistry Bldg., Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
47
|
De Grand AM, Frangioni JV. An Operational Near-Infrared Fluorescence Imaging System Prototype for Large Animal Surgery. Technol Cancer Res Treat 2016; 2:553-62. [PMID: 14640766 DOI: 10.1177/153303460300200607] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Near-infrared (NIR) fluorescence imaging has the potential to revolutionize human cancer surgery by providing sensitive, specific, and real-time intraoperative visualization of normal and disease processes. We have previously introduced the concept of a low-cost, safe, and easy-to-use NIR fluorescence imaging system that permits the surgeon to “see” surgical anatomy and NIR fluorescence simultaneously, non-invasively, with high spatial resolution, in real-time, and without moving parts [Nakayama et al. Molecular Imaging 1, 365–377 (2002)]. In this study, we present an operational prototype designed specifically for use during large animal surgery. Such a system serves as a foundation for future clinical studies. We discuss technical considerations, and provide details of the implementation of subsystems related to excitation light, light collection, computer, and software. Using the prototype, and the clinically available NIR fluorophore indocyanine green, we demonstrate vascular imaging in 35 kg pigs. Cancer-specific applications of this imaging system include image-guided cancer resection with real-time assessment of surgical margins, image-guided sentinel lymph node mapping, intraoperative mapping of tumor and normal vasculature, image-guided avoidance of critical structures such as nerves, and intraoperative detection of occult metastases in the surgical field. Taken together, this study describes an optical imaging system engineered for eventual translation to the clinic.
Collapse
Affiliation(s)
- A M De Grand
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, SL-B05, 330 Brookline Avenue, Boston, MA 02215, USA
| | | |
Collapse
|
48
|
Yang C, Liu H, Zhang Y, Xu Z, Wang X, Cao B, Wang M. Hydrophobic-Sheath Segregated Macromolecular Fluorophores: Colloidal Nanoparticles of Polycaprolactone-Grafted Conjugated Polymers with Bright Far-Red/Near-Infrared Emission for Biological Imaging. Biomacromolecules 2016; 17:1673-83. [PMID: 27010718 DOI: 10.1021/acs.biomac.6b00092] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article describes molecular design, synthesis and characterization of colloidal nanoparticles containing polycaprolactone-grafted conjugated polymers that exhibit strong far red/near-infrared (FR/NIR) fluorescence for bioimaging. Specifically, we synthesized two kinds of conjugated polymer bottle brushes (PFTB(out)-g-PCL and PFTB(in)-g-PCL) with different positions of the hexyl groups on the thiophene rings. A synthetic amphiphilic block copolymer PCL-b-POEGMA was employed as surfactants to encapsulate PFTB-g-PCL polymers into colloidal nanoparticles (denoted as "nanoREDs") in aqueous media. The chain length of the PCL side chains in PFTB-g-PCL played a critical role in determining the fluorescence properties in both bulk solid states and the colloidal nanoparticles. Compared to semiconducting polymer dots (Pdots) composed of PFTB(out) without grafted PCL, nanoRED(out) showed at least four times higher fluorescence quantum yield (∼20%) and a broader emission band centered at 635 nm. We further demonstrated the application of this new class of nanoREDs for effective labeling of L929 cells and HeLa cancer cells with good biocompatibility. This strategy of hydrophobic-sheath segregated macromolecular fluorophores is expected to be applicable to a broad range of conjugated polymers with tunable optical properties for applications such as bioimaging.
Collapse
Affiliation(s)
- Cangjie Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| | - Hui Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| | | | - Zhigang Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| | - Xiaochen Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| | | | - Mingfeng Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| |
Collapse
|
49
|
Cui TF, Zhang J, Jiang XD, Su YJ, Sun CL, Zhao JL. Synthesis dibromo substituted BOPHY dye for the singlet oxygen generation. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2015.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
50
|
Saban R. Angiogenic factors, bladder neuroplasticity and interstitial cystitis-new pathobiological insights. Transl Androl Urol 2016; 4:555-62. [PMID: 26816854 PMCID: PMC4708555 DOI: 10.3978/j.issn.2223-4683.2015.08.05] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is essential for normal embryonic development, and maintenance of adult vascular function. Originally described as a vascular permeability factor, VEGF alters tight cell junctions and contributes to maintenance of bladder permeability. VEGF and its receptors are not only expressed in bladder blood vessels but also in apical cells and intramural ganglia. VEGF receptors are fundamentally altered by inflammation and bladder diseases such as interstitial cystitis (IC). Experimental results indicate that VEGF exerts direct effects on bladder nerve density and function. Regardless of the etiology or initiating cause for IC, it is hypothesized that the urinary bladder responds to injury by increasing the production of VEGF that acts initially as a survival mechanism. However, VEGF also has the capacity to increase vascular permeability leading to glomerulations, edema, and inflammation. Moreover, due to elevated numbers of VEGF receptors in the urothelium, the increased levels of VEGF further increase bladder permeability and establish a vicioCus cycle of disease pathophysiology.
Collapse
Affiliation(s)
- Ricardo Saban
- 1 University Anhembi Morumbi, S.Paulo, SP 03164-000, Brazil ; 2 Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|