1
|
Heel SV, Breuker K. Investigating the Intramolecular Competition of Different RNA Binding Motifs for Neomycin B by Native Top-Down Mass Spectrometry. Chempluschem 2024; 89:e202400178. [PMID: 38758051 DOI: 10.1002/cplu.202400178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/13/2024] [Indexed: 05/18/2024]
Abstract
The ongoing search for small molecule drugs that target ribonucleic acids (RNA) is complicated by a limited understanding of the principles that govern RNA-small molecule interactions. Here we have used stoichiometry-resolved native top-down mass spectrometry (MS) to study the binding of neomycin B to small model hairpin RNAs, an unstructured RNA, and a viral RNA construct. For 15-22 nt model RNAs with hairpin structure, we found that neomycin B binding to hairpin loops relies on interactions with both the nucleobases and the 2'-OH groups, and that a simple 5' or 3' overhang can introduce an additional binding motif. For a 47 nt RNA construct derived from stem IA of the human immunodeficiency virus 1 (HIV-1) rev response element (RRE) RNA, native top-down MS identified four different binding motifs, of which the purine-rich internal loop showed the highest affinity for neomycin B. Stoichiometry-resolved binding site mapping by native top-down MS allows for a new perspective on binding specificity, and has the potential to reveal unexpected principles of small molecule binding to RNA.
Collapse
Affiliation(s)
- Sarah Viola Heel
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| |
Collapse
|
2
|
Heel SV, Juen F, Bartosik K, Micura R, Kreutz C, Breuker K. Resolving the intricate binding of neomycin B to multiple binding motifs of a neomycin-sensing riboswitch aptamer by native top-down mass spectrometry and NMR spectroscopy. Nucleic Acids Res 2024; 52:4691-4701. [PMID: 38567725 PMCID: PMC11077050 DOI: 10.1093/nar/gkae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 05/09/2024] Open
Abstract
Understanding small molecule binding to RNA can be complicated by an intricate interplay between binding stoichiometry, multiple binding motifs, different occupancies of different binding motifs, and changes in the structure of the RNA under study. Here, we use native top-down mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy to experimentally resolve these factors and gain a better understanding of the interactions between neomycin B and the 40 nt aptamer domain of a neomycin-sensing riboswitch engineered in yeast. Data from collisionally activated dissociation of the 1:1, 1:2 and 1:3 RNA-neomycin B complexes identified a third binding motif C of the riboswitch in addition to the two motifs A and B found in our previous study, and provided occupancies of the different binding motifs for each complex stoichiometry. Binding of a fourth neomycin B molecule was unspecific according to both MS and NMR data. Intriguingly, all major changes in the aptamer structure can be induced by the binding of the first neomycin B molecule regardless of whether it binds to motif A or B as evidenced by stoichiometry-resolved MS data together with titration data from 1H NMR spectroscopy in the imino proton region. Specific binding of the second and third neomycin B molecules further stabilizes the riboswitch aptamer, thereby allowing for a gradual response to increasing concentrations of neomycin B, which likely leads to a fine-tuning of the cellular regulatory mechanism.
Collapse
Affiliation(s)
- Sarah Viola Heel
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Fabian Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Karolina Bartosik
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Bordeleau E, Stogios PJ, Evdokimova E, Koteva K, Savchenko A, Wright GD. Mechanistic plasticity in ApmA enables aminoglycoside promiscuity for resistance. Nat Chem Biol 2024; 20:234-242. [PMID: 37973888 DOI: 10.1038/s41589-023-01483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
The efficacy of aminoglycoside antibiotics is waning due to the acquisition of diverse resistance mechanisms by bacteria. Among the most prevalent are aminoglycoside acetyltransferases (AACs) that inactivate the antibiotics through acetyl coenzyme A-mediated modification. Most AACs are members of the GCN5 superfamily of acyltransferases which lack conserved active site residues that participate in catalysis. ApmA is the first reported AAC belonging to the left-handed β-helix superfamily. These enzymes are characterized by an essential active site histidine that acts as an active site base. Here we show that ApmA confers broad-spectrum aminoglycoside resistance with a molecular mechanism that diverges from other detoxifying left-handed β-helix superfamily enzymes and canonical GCN5 AACs. We find that the active site histidine plays different functions depending on the acetyl-accepting aminoglycoside substrate. This flexibility in the mechanism of a single enzyme underscores the plasticity of antibiotic resistance elements to co-opt protein catalysts in the evolution of drug detoxification.
Collapse
Affiliation(s)
- Emily Bordeleau
- David Braley Centre for Antibiotics Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Elena Evdokimova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Kalinka Koteva
- David Braley Centre for Antibiotics Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Center for Structural Genomics of Infectious Diseases (CSGID) University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Gerard D Wright
- David Braley Centre for Antibiotics Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
4
|
Qi L, Zhang J, Liu Q, Gao X. Ligand "switching on" fluorescence of HIV-1 RNA-templated copper nanoclusters for ligand-RNA interaction assays. Int J Biol Macromol 2024; 256:127779. [PMID: 37981280 DOI: 10.1016/j.ijbiomac.2023.127779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023]
Abstract
Ligand-RNA interaction assay provides the basis for developing new RNA-binding small molecules. In this study, fluorescent copper nanoclusters (CuNCs) were first prepared using two kinds of HIV-1 RNA targets, rev-responsive element (RRE) and transactivator response element (TAR) RNA, as new templates, and it was found that the fluorescence of the single RNA-templated CuNCs was negligible. Using neomycin as a model drug, the fluorescence could be augmented (approximately 6 times) for the neomycin/RNA-templated CuNCs. Thus, a novel method was developed for ligand-RNA interactions by observing the fluorescence changes in CuNCs prepared using RNA before and after the addition of ligands. The preparation parameters of neomycin/RNA-CuNCs were optimized. The as-prepared CuNCs were characterized using UV-vis spectroscopy, fluorescence spectroscopy, and high-resolution transmission electron microscope. Circular dichroism spectral analysis showed that RRE and TAR were inclined to form a double-stranded structure after interaction with neomycin, which was more conducive to the formation of CuNCs. The interactions of neomycin and three test drugs (amikacin, gentamicin, and tobramycin) with RNA were investigated using the proposed method, and the binding constants and number of binding sites were obtained through theoretical calculations. This study provides a novel approach for ligand-RNA interaction assays.
Collapse
Affiliation(s)
- Liang Qi
- School of Biomedical and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Jiayun Zhang
- School of Biomedical and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qiaoning Liu
- School of Biomedical and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xiang Gao
- School of Biomedical and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
5
|
Kraus L, Duchardt-Ferner E, Bräuchle E, Fürbacher S, Kelvin D, Marx H, Boussebayle A, Maurer LM, Bofill-Bosch C, Wöhnert J, Suess B. Development of a novel tobramycin dependent riboswitch. Nucleic Acids Res 2023; 51:11375-11385. [PMID: 37791877 PMCID: PMC10639043 DOI: 10.1093/nar/gkad767] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
We herein report the selection and characterization of a new riboswitch dependent on the aminoglycoside tobramycin. Its dynamic range rivals even the tetracycline dependent riboswitch to be the current best performing, synthetic riboswitch that controls translation initiation. The riboswitch was selected with RNA Capture-SELEX, a method that not only selects for binding but also for structural changes in aptamers on binding. This study demonstrates how this method can fundamentally reduce the labour required for the de novo identification of synthetic riboswitches. The initially selected riboswitch candidate harbours two distinct tobramycin binding sites with KDs of 1.1 nM and 2.4 μM, respectively, and can distinguish between tobramycin and the closely related compounds kanamycin A and B. Using detailed genetic and biochemical analyses and 1H NMR spectroscopy, the proposed secondary structure of the riboswitch was verified and the tobramycin binding sites were characterized. The two binding sites were found to be essentially non-overlapping, allowing for a separate investigation of their contribution to the activity of the riboswitch. We thereby found that only the high-affinity binding site was responsible for regulatory activity, which allowed us to engineer a riboswitch from only this site with a minimal sequence size of 33 nt and outstanding performance.
Collapse
Affiliation(s)
- Leon Kraus
- Fachbereich Biologie, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, TU Darmstadt, 64287 Darmstadt, Germany
| | - Elke Duchardt-Ferner
- Institut für Molekulare Biowissenschaften und Zentrum für Biomolekulare Magnetische Resonanz (BMRZ), Goethe-Universität Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt, Germany
| | - Eric Bräuchle
- Fachbereich Biologie, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Simon Fürbacher
- Fachbereich Biologie, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Daniel Kelvin
- Fachbereich Biologie, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, TU Darmstadt, 64287 Darmstadt, Germany
| | - Hans Marx
- Fachbereich Biologie, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
- Institute of Microbiology and Microbial Biotechnology BOKU University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Adrien Boussebayle
- Fachbereich Biologie, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
- Interdisciplinary Nanoscience Center (iNANO), Gustav Wieds Vej 14, Aarhus University, DK-8000 Aarhus, Denmark
| | - Lisa-Marie Maurer
- Fachbereich Biologie, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, TU Darmstadt, 64287 Darmstadt, Germany
- Institut für Molekulare Biowissenschaften und Zentrum für Biomolekulare Magnetische Resonanz (BMRZ), Goethe-Universität Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt, Germany
| | - Cristina Bofill-Bosch
- Fachbereich Biologie, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Jens Wöhnert
- Institut für Molekulare Biowissenschaften und Zentrum für Biomolekulare Magnetische Resonanz (BMRZ), Goethe-Universität Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt, Germany
| | - Beatrix Suess
- Fachbereich Biologie, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, TU Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
6
|
Heel SV, Bartosik K, Juen F, Kreutz C, Micura R, Breuker K. Native Top-Down Mass Spectrometry Uncovers Two Distinct Binding Motifs of a Functional Neomycin-Sensing Riboswitch Aptamer. J Am Chem Soc 2023. [PMID: 37420313 PMCID: PMC10360057 DOI: 10.1021/jacs.3c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Understanding how ligands bind to ribonucleic acids (RNA) is important for understanding RNA recognition in biological processes and drug development. Here, we have studied neomycin B binding to neomycin-sensing riboswitch aptamer constructs by native top-down mass spectrometry (MS) using electrospray ionization (ESI) and collisionally activated dissociation (CAD). Our MS data for a 27 nt aptamer construct reveal the binding site and ligand interactions, in excellent agreement with the structure derived from nuclear magnetic resonance (NMR) studies. Strikingly, for an extended 40 nt aptamer construct, which represents the sequence with the highest regulatory factor for riboswitch function, we identified two binding motifs for neomycin B binding, one corresponding to the bulge-loop motif of the 27 nt construct and the other one in the minor groove of the lower stem, which according to the MS data are equally populated. By replacing a noncanonical with a canonical base pair in the lower stem of the 40 nt aptamer, we can reduce binding to the minor groove motif from ∼50 to ∼30%. Conversely, the introduction of a CUG/CUG motif in the lower stem shifts the binding equilibrium in favor of minor groove binding. The MS data reveal site-specific and stoichiometry-resolved information on aminoglycoside binding to RNA that is not directly accessible by other methods and underscore the role of noncanonical base pairs in RNA recognition by aminoglycosides.
Collapse
Affiliation(s)
- Sarah Viola Heel
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Karolina Bartosik
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Fabian Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Taghavi A, Baisden JT, Childs-Disney JL, Yildirim I, Disney M. Conformational dynamics of RNA G4C2 and G2C4 repeat expansions causing ALS/FTD using NMR and molecular dynamics studies. Nucleic Acids Res 2023; 51:5325-5340. [PMID: 37216594 PMCID: PMC10287959 DOI: 10.1093/nar/gkad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/15/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
G4C2 and G2C4 repeat expansions in chromosome 9 open reading frame 72 (C9orf72) are the most common cause of genetically defined amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), or c9ALS/FTD. The gene is bidirectionally transcribed, producing G4C2 repeats [r(G4C2)exp] and G2C4 repeats [r(G2C4)exp]. The c9ALS/FTD repeat expansions are highly structured, and structural studies showed that r(G4C2)exp predominantly folds into a hairpin with a periodic array of 1 × 1 G/G internal loops and a G-quadruplex. A small molecule probe revealed that r(G4C2)exp also adopts a hairpin structure with 2 × 2 GG/GG internal loops. We studied the conformational dynamics adopted by 2 × 2 GG/GG loops using temperature replica exchange molecular dynamics (T-REMD) and further characterized the structure and underlying dynamics using traditional 2D NMR techniques. These studies showed that the loop's closing base pairs influence both structure and dynamics, particularly the configuration adopted around the glycosidic bond. Interestingly, r(G2C4) repeats, which fold into an array of 2 × 2 CC/CC internal loops, are not as dynamic. Collectively, these studies emphasize the unique sensitivity of r(G4C2)exp to small changes in stacking interactions, which is not observed in r(G2C4)exp, providing important considerations for further principles in structure-based drug design.
Collapse
Affiliation(s)
- Amirhossein Taghavi
- Department of Chemistry, Scripps Research and The Herbert Wertheim UF-Scripps Institute for Biomedical Research & Innovation, 130 Scripps Way, 3A1 Jupiter, FL 33458, USA
| | - Jared T Baisden
- Department of Chemistry, Scripps Research and The Herbert Wertheim UF-Scripps Institute for Biomedical Research & Innovation, 130 Scripps Way, 3A1 Jupiter, FL 33458, USA
| | - Jessica L Childs-Disney
- Department of Chemistry, Scripps Research and The Herbert Wertheim UF-Scripps Institute for Biomedical Research & Innovation, 130 Scripps Way, 3A1 Jupiter, FL 33458, USA
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Department of Chemistry, Scripps Research and The Herbert Wertheim UF-Scripps Institute for Biomedical Research & Innovation, 130 Scripps Way, 3A1 Jupiter, FL 33458, USA
| |
Collapse
|
8
|
Díaz-Casado L, Santana AG, Gómez-Pinto I, Villacampa A, Corzana F, Jiménez-Barbero J, González C, Asensio JL. Binding-driven reactivity attenuation enables NMR identification of selective drug candidates for nucleic acid targets. Commun Chem 2022; 5:137. [PMID: 36697799 PMCID: PMC9814457 DOI: 10.1038/s42004-022-00755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/11/2022] [Indexed: 01/28/2023] Open
Abstract
NMR methods, and in particular ligand-based approaches, are among the most robust and reliable alternatives for binding detection and consequently, they have become highly popular in the context of hit identification and drug discovery. However, when dealing with DNA/RNA targets, these techniques face limitations that have precluded widespread application in medicinal chemistry. In order to expand the arsenal of spectroscopic tools for binding detection and to overcome the existing difficulties, herein we explore the scope and limitations of a strategy that makes use of a binding indicator previously unexploited by NMR: the perturbation of the ligand reactivity caused by complex formation. The obtained results indicate that ligand reactivity can be utilised to reveal association processes and identify the best binders within mixtures of significant complexity, providing a conceptually different reactivity-based alternative within NMR screening methods.
Collapse
Affiliation(s)
- Laura Díaz-Casado
- grid.419121.e0000 0004 1761 1887Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Andrés G. Santana
- grid.419121.e0000 0004 1761 1887Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Irene Gómez-Pinto
- grid.429036.a0000 0001 0805 7691Instituto de Química-Física Rocasolano (IQFR-CSIC), Madrid, 28006 Spain
| | - Alejandro Villacampa
- grid.419121.e0000 0004 1761 1887Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Francisco Corzana
- grid.119021.a0000 0001 2174 6969Dept. Química and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26005 La Rioja, Spain
| | - Jesús Jiménez-Barbero
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC-bioGUNE). Derio, 48160 Bizkaia, Spain
| | - Carlos González
- grid.429036.a0000 0001 0805 7691Instituto de Química-Física Rocasolano (IQFR-CSIC), Madrid, 28006 Spain
| | - Juan Luis Asensio
- grid.419121.e0000 0004 1761 1887Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
9
|
Neutralization of ionic interactions by dextran-based single-chain nanoparticles improves tobramycin diffusion into a mature biofilm. NPJ Biofilms Microbiomes 2022; 8:52. [PMID: 35787627 PMCID: PMC9253323 DOI: 10.1038/s41522-022-00317-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
The extracellular matrix protects biofilm cells by reducing diffusion of antimicrobials. Tobramycin is an antibiotic used extensively to treat P. aeruginosa biofilms, but it is sequestered in the biofilm periphery by the extracellular negative charge matrix and loses its efficacy significantly. Dispersal of the biofilm extracellular matrix with enzymes such as DNase I is another promising therapy that enhances antibiotic diffusion into the biofilm. Here, we combine the charge neutralization of tobramycin provided by dextran-based single-chain polymer nanoparticles (SCPNs) together with DNase I to break the biofilm matrix. Our study demonstrates that the SCPNs improve the activity of tobramycin and DNase I by neutralizing the ionic interactions that keep this antibiotic in the biofilm periphery. Moreover, the detailed effects and interactions of nanoformulations with extracellular matrix components were revealed through time-lapse imaging of the P. aeruginosa biofilms by laser scanning confocal microscopy with specific labeling of the different biofilm components.
Collapse
|
10
|
Ganser LR, Chu CC, Bogerd HP, Kelly ML, Cullen BR, Al-Hashimi HM. Probing RNA Conformational Equilibria within the Functional Cellular Context. Cell Rep 2021; 30:2472-2480.e4. [PMID: 32101729 DOI: 10.1016/j.celrep.2020.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/24/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
Low-abundance short-lived non-native conformations referred to as excited states (ESs) are increasingly observed in vitro and implicated in the folding and biological activities of regulatory RNAs. We developed an approach for assessing the relative abundance of RNA ESs within the functional cellular context. Nuclear magnetic resonance (NMR) spectroscopy was used to estimate the degree to which substitution mutations bias conformational equilibria toward the inactive ES in vitro. The cellular activity of the ES-stabilizing mutants was used as an indirect measure of the conformational equilibria within the functional cellular context. Compensatory mutations that restore the ground-state conformation were used to control for changes in sequence. Using this approach, we show that the ESs of two regulatory RNAs from HIV-1, the transactivation response element (TAR) and the Rev response element (RRE), likely form in cells with abundances comparable to those measured in vitro, and their targeted stabilization may provide an avenue for developing anti-HIV therapeutics.
Collapse
Affiliation(s)
- Laura R Ganser
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Chia-Chieh Chu
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Hal P Bogerd
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, NC 27710, USA
| | - Megan L Kelly
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
11
|
Aptamers, Riboswitches, and Ribozymes in S. cerevisiae Synthetic Biology. Life (Basel) 2021; 11:life11030248. [PMID: 33802772 PMCID: PMC8002509 DOI: 10.3390/life11030248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023] Open
Abstract
Among noncoding RNA sequences, riboswitches and ribozymes have attracted the attention of the synthetic biology community as circuit components for translation regulation. When fused to aptamer sequences, ribozymes and riboswitches are enabled to interact with chemicals. Therefore, protein synthesis can be controlled at the mRNA level without the need for transcription factors. Potentially, the use of chemical-responsive ribozymes/riboswitches would drastically simplify the design of genetic circuits. In this review, we describe synthetic RNA structures that have been used so far in the yeast Saccharomyces cerevisiae. We present their interaction mode with different chemicals (e.g., theophylline and antibiotics) or proteins (such as the RNase III) and their recent employment into clustered regularly interspaced short palindromic repeats–CRISPR-associated protein 9 (CRISPR-Cas) systems. Particular attention is paid, throughout the whole paper, to their usage and performance into synthetic gene circuits.
Collapse
|
12
|
Alkhzem A, Woodman TJ, Blagbrough IS. Multinuclear Nuclear Magnetic Resonance Spectroscopy Is Used to Determine Rapidly and Accurately the Individual p K a Values of 2-Deoxystreptamine, Neamine, Neomycin, Paromomycin, and Streptomycin. ACS OMEGA 2021; 6:2824-2835. [PMID: 33553900 PMCID: PMC7860104 DOI: 10.1021/acsomega.0c05138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/21/2020] [Indexed: 05/13/2023]
Abstract
Unambiguous assignments have been made for each individual pK a value of the amino group and guanidine substituents on 2-deoxystreptamine, neamine, neomycin, paromomycin, and streptomycin by pH-titration evaluation of their 1H, 13C, and 15N (by 1H-15N heteronuclear multiple-bond correlation (HMBC) spectra) NMR chemical shifts (δXs) as the reporter nuclei. These data require minor revisions of the literature data in terms of the assignment order for neomycin and paromomycin. In situ titrations and NMR spectroscopy are shown to be a powerful combination for rapidly (minutes) obtaining each distinct pK a value of the similar amine and guanidine functional groups, which decorate aminoglycoside antibiotics.
Collapse
|
13
|
Kelly ML, Chu CC, Shi H, Ganser LR, Bogerd HP, Huynh K, Hou Y, Cullen BR, Al-Hashimi HM. Understanding the characteristics of nonspecific binding of drug-like compounds to canonical stem-loop RNAs and their implications for functional cellular assays. RNA (NEW YORK, N.Y.) 2021; 27:12-26. [PMID: 33028652 PMCID: PMC7749633 DOI: 10.1261/rna.076257.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/26/2020] [Indexed: 05/30/2023]
Abstract
Identifying small molecules that selectively bind an RNA target while discriminating against all other cellular RNAs is an important challenge in RNA-targeted drug discovery. Much effort has been directed toward identifying drug-like small molecules that minimize electrostatic and stacking interactions that lead to nonspecific binding of aminoglycosides and intercalators to many stem-loop RNAs. Many such compounds have been reported to bind RNAs and inhibit their cellular activities. However, target engagement and cellular selectivity assays are not routinely performed, and it is often unclear whether functional activity directly results from specific binding to the target RNA. Here, we examined the propensities of three drug-like compounds, previously shown to bind and inhibit the cellular activities of distinct stem-loop RNAs, to bind and inhibit the cellular activities of two unrelated HIV-1 stem-loop RNAs: the transactivation response element (TAR) and the rev response element stem IIB (RREIIB). All compounds bound TAR and RREIIB in vitro, and two inhibited TAR-dependent transactivation and RRE-dependent viral export in cell-based assays while also exhibiting off-target interactions consistent with nonspecific activity. A survey of X-ray and NMR structures of RNA-small molecule complexes revealed that aminoglycosides and drug-like molecules form hydrogen bonds with functional groups commonly accessible in canonical stem-loop RNA motifs, in contrast to ligands that specifically bind riboswitches. Our results demonstrate that drug-like molecules can nonspecifically bind stem-loop RNAs most likely through hydrogen bonding and electrostatic interactions and reinforce the importance of assaying for off-target interactions and RNA selectivity in vitro and in cells when assessing novel RNA-binders.
Collapse
Affiliation(s)
- Megan L Kelly
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Chia-Chieh Chu
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Honglue Shi
- Department of Chemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Laura R Ganser
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Hal P Bogerd
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Kelly Huynh
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yuze Hou
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Chemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
14
|
Oliver C, Mallet V, Gendron RS, Reinharz V, Hamilton W, Moitessier N, Waldispühl J. Augmented base pairing networks encode RNA-small molecule binding preferences. Nucleic Acids Res 2020; 48:7690-7699. [PMID: 32652015 PMCID: PMC7430648 DOI: 10.1093/nar/gkaa583] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/23/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
RNA-small molecule binding is a key regulatory mechanism which can stabilize 3D structures and activate molecular functions. The discovery of RNA-targeting compounds is thus a current topic of interest for novel therapies. Our work is a first attempt at bringing the scalability and generalization abilities of machine learning methods to the problem of RNA drug discovery, as well as a step towards understanding the interactions which drive binding specificity. Our tool, RNAmigos, builds and encodes a network representation of RNA structures to predict likely ligands for novel binding sites. We subject ligand predictions to virtual screening and show that we are able to place the true ligand in the 71st-73rd percentile in two decoy libraries, showing a significant improvement over several baselines, and a state of the art method. Furthermore, we observe that augmenting structural networks with non-canonical base pairing data is the only representation able to uncover a significant signal, suggesting that such interactions are a necessary source of binding specificity. We also find that pre-training with an auxiliary graph representation learning task significantly boosts performance of ligand prediction. This finding can serve as a general principle for RNA structure-function prediction when data is scarce. RNAmigos shows that RNA binding data contains structural patterns with potential for drug discovery, and provides methodological insights for possible applications to other structure-function learning tasks. The source code, data and a Web server are freely available at http://rnamigos.cs.mcgill.ca.
Collapse
Affiliation(s)
- Carlos Oliver
- School of Computer Science, McGill University, Montreal H3A 0E9, Canada
- Mila - Quebec Artificial Intelligence Institute, H2S 3S1, Canada
| | - Vincent Mallet
- Institut Pasteur, Structural Bioinformatics Unit, Paris, F-75015, France
- MINES ParisTech, PSL Research University, CBIO - Centre for Computational Biology, F-75006 Paris, France
| | | | - Vladimir Reinharz
- Department of Computer Science, Université du Québec à Montréal, Montreal H2X 3Y7, Canada
| | - William L Hamilton
- School of Computer Science, McGill University, Montreal H3A 0E9, Canada
- Mila - Quebec Artificial Intelligence Institute, H2S 3S1, Canada
| | | | - Jérôme Waldispühl
- School of Computer Science, McGill University, Montreal H3A 0E9, Canada
| |
Collapse
|
15
|
Mrugała B, Miłaczewska A, Porebski PJ, Niedzialkowska E, Guzik M, Minor W, Borowski T. A study on the structure, mechanism, and biochemistry of kanamycin B dioxygenase (KanJ)-an enzyme with a broad range of substrates. FEBS J 2020; 288:1366-1386. [PMID: 32592631 DOI: 10.1111/febs.15462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/09/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
Kanamycin A is an aminoglycoside antibiotic isolated from Streptomyces kanamyceticus and used against a wide spectrum of bacteria, including Mycobacterium tuberculosis. Biosynthesis of kanamycin involves an oxidative deamination step catalyzed by kanamycin B dioxygenase (KanJ), thereby the C2' position of kanamycin B is transformed into a keto group upon release of ammonia. Here, we present for the first time, structural models of KanJ with several ligands, which along with the results of ITC binding assays and HPLC activity tests explain substrate specificity of the enzyme. The large size of the binding pocket suggests that KanJ can accept a broad range of substrates, which was confirmed by activity tests. Specificity of the enzyme with respect to its substrate is determined by the hydrogen bond interactions between the methylamino group of the antibiotic and highly conserved Asp134 and Cys150 as well as between hydroxyl groups of the substrate and Asn120 and Gln80. Upon antibiotic binding, the C terminus loop is significantly rearranged and Gln80 and Asn120, which are directly involved in substrate recognition, change their conformations. Based on reaction energy profiles obtained by density functional theory (DFT) simulations, we propose a mechanism of ketone formation involving the reactive FeIV = O and proceeding either via OH rebound, which yields a hemiaminal intermediate or by abstraction of two hydrogen atoms, which leads to an imine species. At acidic pH, the latter involves a lower barrier than the OH rebound, whereas at basic pH, the barrier leading to an imine vanishes completely. DATABASES: Structural data are available in PDB database under the accession numbers: 6S0R, 6S0T, 6S0U, 6S0W, 6S0V, 6S0S. Diffraction images are available at the Integrated Resource for Reproducibility in Macromolecular Crystallography at http://proteindiffraction.org under DOIs: 10.18430/m36s0t, 10.18430/m36s0u, 10.18430/m36s0r, 10.18430/m36s0s, 10.18430/m36s0v, 10.18430/m36s0w. A data set collection of computational results is available in the Mendeley Data database under DOI: 10.17632/sbyzssjmp3.1 and in the ioChem-BD database under DOI: 10.19061/iochem-bd-4-18.
Collapse
Affiliation(s)
- Beata Mrugała
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Anna Miłaczewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Przemyslaw Jerzy Porebski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Ewa Niedzialkowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
16
|
Ying L, Zhu H, Fosso MY, Garneau-Tsodikova S, Fredrick K. Modified Aminoglycosides Bind Nucleic Acids in High-Molecular-Weight Complexes. Antibiotics (Basel) 2020; 9:antibiotics9020093. [PMID: 32098020 PMCID: PMC7168264 DOI: 10.3390/antibiotics9020093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/05/2022] Open
Abstract
Aminoglycosides represent a large group of antibiotics well known for their ability to target the bacterial ribosome. In studying 6”-substituted variants of the aminoglycoside tobramycin, we serendipitously found that compounds with C12 or C14 linear alkyl substituents potently inhibit reverse transcription in vitro. Initial observations suggested specific inhibition of reverse transcriptase. However, further analysis showed that these and related compounds bind nucleic acids with high affinity, forming high-molecular weight complexes. Stable complex formation is observed with DNA or RNA in single- or double-stranded form. Given the amphiphilic nature of these aminoglycoside derivatives, they likely form micelles and/or vesicles with surface-bound nucleic acids. Hence, these compounds may be useful tools to localize nucleic acids to surfaces or deliver nucleic acids to cells or organelles.
Collapse
Affiliation(s)
- Lanqing Ying
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210-1292, USA; (L.Y.); (H.Z.)
| | - Hongkun Zhu
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210-1292, USA; (L.Y.); (H.Z.)
| | - Marina Y. Fosso
- Department of Pharmaceutical Sciences in the College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA; (M.Y.F.); (S.G.-T.)
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences in the College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA; (M.Y.F.); (S.G.-T.)
| | - Kurt Fredrick
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210-1292, USA; (L.Y.); (H.Z.)
- Correspondence: ; Tel.: +1-614-292-6679
| |
Collapse
|
17
|
Zabala-Peñafiel A, Todd D, Daneshvar H, Burchmore R. The potential of live attenuated vaccines against Cutaneous Leishmaniasis. Exp Parasitol 2020; 210:107849. [PMID: 32027892 DOI: 10.1016/j.exppara.2020.107849] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/03/2019] [Accepted: 02/01/2020] [Indexed: 12/11/2022]
Abstract
Cutaneous Leishmaniasis is a serious public health problem, typically affecting poor populations with limited access to health care. Control is largely dependent on chemotherapies that are inefficient, costly and challenging to deliver. Vaccination is an attractive and feasible alternative because long-term protection is typical in patients who recover from the disease. No human vaccine is yet approved for use, but several candidates are at various stages of testing. Live attenuated parasites, which stimulate long-term immune protection, have potential as effective vaccines, and their challenges relating to safety, formulation and delivery can be overcome. Here we review current data on the potential of live attenuated Leishmania vaccines and discuss possible routes to regulatory approval.
Collapse
Affiliation(s)
- A Zabala-Peñafiel
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - D Todd
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - H Daneshvar
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - R Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
18
|
Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria. Appl Microbiol Biotechnol 2020; 104:1955-1976. [DOI: 10.1007/s00253-020-10360-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/29/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022]
|
19
|
Ruden S, Rieder A, Chis Ster I, Schwartz T, Mikut R, Hilpert K. Synergy Pattern of Short Cationic Antimicrobial Peptides Against Multidrug-Resistant Pseudomonas aeruginosa. Front Microbiol 2019; 10:2740. [PMID: 31849888 PMCID: PMC6901909 DOI: 10.3389/fmicb.2019.02740] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022] Open
Abstract
With the rise of various multidrug-resistant (MDR) pathogenic bacteria, worldwide health care is under pressure to respond. Conventional antibiotics are failing and the development of novel classes and alternative strategies is a major priority. Antimicrobial peptides (AMPs) cannot only kill MDR bacteria, but also can be used synergistically with conventional antibiotics. We selected 30 short AMPs from different origins and measured their synergy in combination with polymyxin B, piperacillin, ceftazidime, cefepime, meropenem, imipenem, tetracycline, erythromycin, kanamycin, tobramycin, amikacin, gentamycin, and ciprofloxacin. In total, 403 unique combinations were tested against an MDR Pseudomonas aeruginosa isolate (PA910). As a measure of the synergistic effects, fractional inhibitory concentrations (FICs) were determined using microdilution assays with FICs ranges between 0.25 and 2. A high number of combinations between peptides and polymyxin B, erythromycin, and tetracycline were found to be synergistic. Novel variants of indolicidin also showed a high frequency in synergist interaction. Single amino acid substitutions within the peptides can have a very strong effect on the ability to synergize, making it possible to optimize future drugs toward synergistic interaction.
Collapse
Affiliation(s)
- Serge Ruden
- Institute of Biological Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Annika Rieder
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Irina Chis Ster
- Institute of Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Thomas Schwartz
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Kai Hilpert
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Infection and Immunity, St George's, University of London, London, United Kingdom.,Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
20
|
Zárate SG, Bastida A, Santana AG, Revuelta J. Synthesis of Ring II/III Fragment of Kanamycin: A New Minimum Structural Motif for Aminoglycoside Recognition. Antibiotics (Basel) 2019; 8:antibiotics8030109. [PMID: 31382490 PMCID: PMC6783941 DOI: 10.3390/antibiotics8030109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 11/30/2022] Open
Abstract
A novel protocol has been established to prepare the kanamycin ring II/III fragment, which has been validated as a minimum structural motif for the development of new aminoglycosides on the basis of its bactericidal activity even against resistant strains. Furthermore, its ability to act as a AAC-(6′) and APH-(3′) binder, and as a poor substrate for the ravenous ANT-(4′), makes it an excellent candidate for the design of inhibitors of these aminoglycoside modifying enzymes.
Collapse
Affiliation(s)
- Sandra G Zárate
- Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
- Facultad de Tecnología, Carrera de Ingeniería Química, Universidad Mayor, Real y Pontificia de San Francisco Xavier de Chuquisaca, Regimiento Campos 180, Casilla 60-B Sucre, Bolivia
| | - Agatha Bastida
- Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Andrés G Santana
- Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Julia Revuelta
- Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
21
|
Sengupta RN, Herschlag D. Enhancement of RNA/Ligand Association Kinetics via an Electrostatic Anchor. Biochemistry 2019; 58:2760-2768. [PMID: 31117387 PMCID: PMC6586055 DOI: 10.1021/acs.biochem.9b00231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
The diverse biological
processes mediated by RNA rest upon its
recognition of various ligands, including small molecules and nucleic
acids. Nevertheless, a recent literature survey suggests that RNA
molecular recognition of these ligands is slow, with association rate
constants orders of magnitude below the diffusional limit. Thus, we
were prompted to consider strategies for increasing RNA association
kinetics. Proteins can accelerate ligand association via electrostatic
forces, and here, using the Tetrahymena group I ribozyme,
we provide evidence that electrostatic forces can accelerate RNA/ligand
association. This RNA enzyme (E) catalyzes cleavage of an oligonucleotide
substrate (S) by an exogenous guanosine (G) cofactor. The G 2′-
and 3′-OH groups interact with an active site metal ion, termed
MC, within E·S·G, and we perturbed each of these
contacts via −NH3+ substitution. New
and prior data indicate that G(2′NH3+) and G(3′NH3+) bind as strongly as
G, suggesting that the −NH3+ substituents
of these analogues avoid repulsive interactions with MC and make alternative interactions. Unexpectedly, removal of the
adjacent −OH via −H substitution to give G(2′H,3′NH3+) and G(2′NH3+,3′H) enhanced binding, in stark contrast to the deleterious
effect of these substitutions on G binding. Pulse–chase experiments
indicate that the −NH3+ moiety of G(2′H,3′NH3+) increases the rate of G association. These results
suggest that the positively charged −NH3+ group can act as a molecular “anchor” to increase
the residence time of the encounter complex and thereby enhance productive
binding. Electrostatic anchors may provide a broadly applicable strategy
for the development of fast binding RNA ligands and RNA-targeted therapeutics.
Collapse
Affiliation(s)
- Raghuvir N Sengupta
- Department of Biochemistry , Stanford University , Stanford , California 94305 , United States
| | - Daniel Herschlag
- Department of Biochemistry , Stanford University , Stanford , California 94305 , United States.,Departments of Chemical Engineering and Chemistry , Stanford University , Stanford , California 94305 , United States.,Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health) , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
22
|
Guo Q, Lan T, Chen Y, Xu Y, Peng J, Tao L, Shen X. Enhanced of antibacterial activity of antibiotic-functionalized silver nanocomposites with good biocompatibility. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:34. [PMID: 30840138 DOI: 10.1007/s10856-019-6236-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Antimicrobial resistance to traditional antibiotics leads to a serious concern for medical care owing to ineffective antibiotic therapies. This study focused on the preparation of silver nanocomposites (AgNPs@Tob&PAGA) by modifying AgNPs with tobramycin (Tob) and carbohydrate polymer of poly(2-(acrylamido) glucopyranose) (PAGA). The enhanced antibacterial activities of nanocomposites against common pathogens of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were explored. The introduction of PAGA onto silver nanocomposites improved both citocompatibility and antibacterial activity. Compared with nude Tob, AgNPs@Tob&PAGA showed more fascinating antimicrobial effect against E. coli and S. aureus with about 20-fold increase in the antibacterial activity, simultaneously no detectable resistance was observed. Consequently, the silver nanocomposite as an antimicrobial agent presents promising prospects in the treatment of bacterial infections caused by antimicrobial resistant bacteria.
Collapse
Affiliation(s)
- Qianqian Guo
- The Department of pharmaceutical Engineering (State Key Laboratory of Functions and Applications of Medicinal Plants, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, China.
| | - Tianyu Lan
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, Guizhou, 550025, China
| | - Yi Chen
- The Department of pharmaceutical Engineering (State Key Laboratory of Functions and Applications of Medicinal Plants, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Yini Xu
- The Department of pharmaceutical Engineering (State Key Laboratory of Functions and Applications of Medicinal Plants, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jianqing Peng
- The Department of pharmaceutical Engineering (State Key Laboratory of Functions and Applications of Medicinal Plants, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Ling Tao
- The Department of pharmaceutical Engineering (State Key Laboratory of Functions and Applications of Medicinal Plants, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Xiangchun Shen
- The Department of pharmaceutical Engineering (State Key Laboratory of Functions and Applications of Medicinal Plants, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
23
|
Ganser LR, Lee J, Rangadurai A, Merriman DK, Kelly ML, Kansal AD, Sathyamoorthy B, Al-Hashimi HM. High-performance virtual screening by targeting a high-resolution RNA dynamic ensemble. Nat Struct Mol Biol 2018; 25:425-434. [PMID: 29728655 PMCID: PMC5942591 DOI: 10.1038/s41594-018-0062-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
Dynamic ensembles hold great promise in advancing RNA-targeted drug discovery. Here we subjected the transactivation response element (TAR) RNA from human immunodeficiency virus type-1 to experimental high-throughput screening against ~100,000 drug-like small molecules. Results were augmented with 170 known TAR-binding molecules and used to generate sublibraries optimized for evaluating enrichment when virtually screening a dynamic ensemble of TAR determined by combining NMR spectroscopy data and molecular dynamics simulations. Ensemble-based virtual screening scores molecules with an area under the receiver operator characteristic curve of ~0.85-0.94 and with ~40-75% of all hits falling within the top 2% of scored molecules. The enrichment decreased significantly for ensembles generated from the same molecular dynamics simulations without input NMR data and for other control ensembles. The results demonstrate that experimentally determined RNA ensembles can significantly enrich libraries with true hits and that the degree of enrichment is dependent on the accuracy of the ensemble.
Collapse
Affiliation(s)
- Laura R Ganser
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Janghyun Lee
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Atul Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | | | - Megan L Kelly
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Aman D Kansal
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | | | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
24
|
Topical application of aminoglycoside antibiotics enhances host resistance to viral infections in a microbiota-independent manner. Nat Microbiol 2018; 3:611-621. [PMID: 29632368 PMCID: PMC5918160 DOI: 10.1038/s41564-018-0138-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/27/2018] [Indexed: 12/27/2022]
Abstract
Antibiotics are widely used to treat infections in humans. However, the impact of antibiotic use on host cells is understudied. Here we identify an antiviral effect of commonly used aminoglycoside antibiotics. We show that topical mucosal application of aminoglycosides prophylactically increased host resistance to a broad range of viral infections including herpes simplex viruses, influenza A virus and Zika virus. Aminoglycoside treatment also reduced viral replication in primary human cells. This antiviral activity was independent of the microbiota as aminoglycoside treatment protected germ-free mice. Microarray analysis uncovered a marked upregulation of transcripts for interferon-stimulated genes (ISGs) following aminoglycoside application. ISG induction was mediated by TLR3, and required TIR-domain-containing adapter-inducing interferon-β (TRIF), signaling adaptor, and interferon regulatory factors 3 (IRF3) and IRF7, transcription factors that promote ISG expression. XCR1+ dendritic cells, which uniquely express TLR3, were recruited to the vaginal mucosa upon aminoglycoside treatment and were required for ISG induction. These results highlight an unexpected ability of aminoglycoside antibiotics to confer broad antiviral resistance in vivo.
Collapse
|
25
|
Eubanks CS, Hargrove AE. Sensing the impact of environment on small molecule differentiation of RNA sequences. Chem Commun (Camb) 2018; 53:13363-13366. [PMID: 29199743 DOI: 10.1039/c7cc07157d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Using pattern recognition of RNA with small molecules (PRRSM) with fluorescent RNA chemosensors and aminoglycosides, we reveal the impact of changing environmental conditions on the differentiation of a range of RNA structures as well as the ability to predict different sequence/size compositions of five canonical RNA motifs.
Collapse
|
26
|
Bahamondez-Canas TF, Zhang H, Tewes F, Leal J, Smyth HDC. PEGylation of Tobramycin Improves Mucus Penetration and Antimicrobial Activity against Pseudomonas aeruginosa Biofilms in Vitro. Mol Pharm 2018. [PMID: 29514003 DOI: 10.1021/acs.molpharmaceut.8b00011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pseudomonas aeruginosa is the predominant pathogen in the persistent lung infections of cystic fibrosis (CF) patients among other diseases. One of the mechanisms of resistance of P. aeruginosa infections is the formation and presence of biofilms. Previously, we demonstrated that PEGylated-tobramycin (Tob-PEG) had superior antimicrobial activity against P. aeruginosa biofilms compared to tobramycin (Tob). The goal of this study was to optimize the method of PEGylation of Tob and assess its activity in an in vitro CF-like mucus barrier biofilm model. Tob was PEGylated using three separate chemical conjugation methods and analyzed by 1H NMR. A comparison of the Tob-PEG products from the different conjugation methods showed significant differences in the reduction of biofilm proliferation after 24 h of treatment. In the CF-like mucus barrier model, Tob-PEG was significantly better than Tob in reducing P. aeruginosa proliferation after only 5 h of treatment ( p < 0.01). Finally, Tob-PEG caused a reduction in the number of surviving P. aeruginosa biofilm colonies higher than that of Tob ( p < 0.0001). We demonstrate the significantly improved antimicrobial activity of Tob-PEG against P. aeruginosa biofilms compared to Tob using two PEGylation methods. Tob-PEG had better in vitro activity compared to that of Tob against P. aeruginosa biofilms growing in a CF-like mucus barrier model.
Collapse
Affiliation(s)
- Tania F Bahamondez-Canas
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Hairui Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Frederic Tewes
- INSERM, U1070, UFR de Médecine Pharmacie , Université de Poitiers , 86073 Poitiers Cedex 9 , France
| | - Jasmim Leal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States.,Center for Infectious Disease , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
27
|
Gleitsman KR, Sengupta RN, Herschlag D. Slow molecular recognition by RNA. RNA (NEW YORK, N.Y.) 2017; 23:1745-1753. [PMID: 28971853 PMCID: PMC5688996 DOI: 10.1261/rna.062026.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/26/2017] [Indexed: 05/28/2023]
Abstract
Molecular recognition is central to biological processes, function, and specificity. Proteins associate with ligands with a wide range of association rate constants, with maximal values matching the theoretical limit set by the rate of diffusional collision. As less is known about RNA association, we compiled association rate constants for all RNA/ligand complexes that we could find in the literature. Like proteins, RNAs exhibit a wide range of association rate constants. However, the fastest RNA association rates are considerably slower than those of the fastest protein associations and fall well below the diffusional limit. The apparently general observation of slow association with RNAs has implications for evolution and for modern-day biology. Our compilation highlights a quantitative molecular property that can contribute to biological understanding and underscores our need to develop a deeper physical understanding of molecular recognition events.
Collapse
Affiliation(s)
- Kristin R Gleitsman
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Raghuvir N Sengupta
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
- Department of Chemical Engineering and Department of Chemistry, Stanford University, Stanford, California 94305, USA
- Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford University, Stanford, California 94305, USA
| |
Collapse
|
28
|
Enhancement of lung gene delivery after aerosol: a new strategy using non-viral complexes with antibacterial properties. Biosci Rep 2017; 37:BSR20160618. [PMID: 29046368 PMCID: PMC5691145 DOI: 10.1042/bsr20160618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of obstructive pulmonary diseases, such as cystic fibrosis (CF), leads to the development of chronic infections in the respiratory tract. Thus, the symptomatic management of the disease requires, in particular, repetitive antibiotherapy. Besides these antibacterial treatments, certain pathologies, such as CF or chronic obstructive pulmonary disease (COPD), require the intake of many drugs. This simultaneous absorption may lead to undesirable drug interactions. For example, Orkambi® (lumacaftor/Ivacaftor, Vertex), a pharmacological drug employed to treat F508del patients, cannot be used with antibiotics such as rifampicin or rifabutin (rifamycin family) which are necessary to treat Mycobacteriaceae. As far as gene therapy is concerned, bacteria and/or biofilm in the airways present an additional barrier for gene transfer. Thus, aerosol administration of nanoparticles have to overcome many obstacles before allowing cellular penetration of therapeutic compounds. This review focusses on the development of aerosol formulations adapted to the respiratory tract and its multiple barriers. Then, formulations that are currently used in clinical applications are summarized depending on the active molecule delivered. Finally, we focus on new therapeutic approaches to reduce possible drug interactions by transferring the antibacterial activity to the nanocarrier while ensuring the transfection efficiency.
Collapse
|
29
|
Abstract
Aminoglycoside antibiotics are protein synthesis inhibitors applied to treat infections caused mainly by aerobic Gram-negative bacteria. Due to their adverse side effects they are last resort antibiotics typically used to combat pathogens resistant to other drugs. Aminoglycosides target ribosomes. We describe the interactions of aminoglycoside antibiotics containing a 2-deoxystreptamine (2-DOS) ring with 16S rRNA. We review the computational studies, with a focus on molecular dynamics (MD) simulations performed on RNA models mimicking the 2-DOS aminoglycoside binding site in the small ribosomal subunit. We also briefly discuss thermodynamics of interactions of these aminoglycosides with their 16S RNA target.
Collapse
|
30
|
Bai M, Shen M, Teng Y, Sun Y, Li F, Zhang X, Xu Y, Duan Y, Du L. Enhanced therapeutic effect of Adriamycin on multidrug resistant breast cancer by the ABCG2-siRNA loaded polymeric nanoparticles assisted with ultrasound. Oncotarget 2016; 6:43779-90. [PMID: 26575421 PMCID: PMC4791266 DOI: 10.18632/oncotarget.6085] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/30/2015] [Indexed: 01/29/2023] Open
Abstract
The overexpression of the breast cancer resistance protein (ABCG2) confers resistance to Adriamycin (ADR) in breast cancer. The silencing of ABCG2 using small interfering RNA (siRNA) could be a promising approach to overcome multidrug resistance (MDR) in cancer cells. To deliver ABCG2-siRNA effectively into breast cancer cells, we used mPEG-PLGA-PLL (PEAL) nanoparticles (NPs) with ultrasound-targeted microbubble destruction (UTMD). PEAL NPs were prepared with an emulsion-solvent evaporation method. The NPs size was about 131.5 ± 6.5 nm. The siRNA stability in serum was enhanced. The intracellular ADR concentration increased after the introduction of siRNA-loaded NPs. After intravenous injection of PEAL NPs in tumor-bearing mice, the ABCG2-siRNA-loaded NPs with UTMD efficiently silenced the ABCG2 gene and enhanced the ADR susceptibility of MCF-7/ADR (ADR resistant human breast cancer cells). The siRNA-loaded NPs with UTMD + ADR showed better tumor inhibition effect and good safety in vivo. These results indicate that ADR-chemotherapy in combination with ABCG2-siRNA is an attractive strategy to treat breast cancer.
Collapse
Affiliation(s)
- Min Bai
- Department of Ultrasound, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, People's Republic of China
| | - Ming Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China
| | - Yanwei Teng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China
| | - Fan Li
- Department of Ultrasound, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, People's Republic of China
| | - Xiangyu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China
| | - Yuanyuan Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China
| | - Lianfang Du
- Department of Ultrasound, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, People's Republic of China
| |
Collapse
|
31
|
Kong B, Joshi T, Belousoff MJ, Tor Y, Graham B, Spiccia L. Neomycin B-cyclen conjugates and their Zn(II) complexes as RNA-binding agents. J Inorg Biochem 2016; 162:334-342. [DOI: 10.1016/j.jinorgbio.2015.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/09/2015] [Accepted: 11/30/2015] [Indexed: 11/26/2022]
|
32
|
Sachan A, Ilgu M, Kempema A, Kraus GA, Nilsen-Hamilton M. Specificity and Ligand Affinities of the Cocaine Aptamer: Impact of Structural Features and Physiological NaCl. Anal Chem 2016; 88:7715-23. [PMID: 27348073 DOI: 10.1021/acs.analchem.6b01633] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cocaine aptamer has been seen as a good candidate for development as a probe for cocaine in many contexts. Here, we demonstrate that the aptamer binds cocaine, norcocaine, and cocaethylene with similar affinities and aminoglycosides with similar or higher affinities in a mutually exclusive manner with cocaine. Analysis of its affinities for a series of cocaine derivatives shows that the aptamer specificity is the consequence of its interaction with all faces of the cocaine molecule. Circular dichroism spectroscopy and 2-aminopurine (2AP) fluorescence studies show no evidence of large structural rearrangement of the cocaine aptamer upon ligand binding, which is contrary to the general view of this aptamer. The aptamer's affinity for cocaine and neomycin-B decreases with the inclusion of physiological NaCl. The substitution of 2AP for A in position 6 (2AP6) of the aptamer sequence eliminated the effect of NaCl on its affinities for cocaine and analogues, but not for neomycin-B, showing a selective effect of 2AP substitution on cocaine binding. The affinity for cocaine also decreased with increasing concentrations of serum or urine, with the 2AP6 substitution blunting the effect of urine. Its low affinities for cocaine and metabolites and its ability to bind irrelevant compounds limit the opportunities for application of this aptamer in its current form as a selective and reliable sensor for cocaine. However, these studies also show that a small structural adjustment to the aptamer (2AP exchanged for adenine) can increase its specificity for cocaine in physiological NaCl relative to an off-target ligand.
Collapse
Affiliation(s)
- Ashish Sachan
- Interdepartmental Toxicology Program, ‡Department of Chemistry, §Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | - Muslum Ilgu
- Interdepartmental Toxicology Program, ‡Department of Chemistry, §Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | - Aaron Kempema
- Interdepartmental Toxicology Program, ‡Department of Chemistry, §Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | - George A Kraus
- Interdepartmental Toxicology Program, ‡Department of Chemistry, §Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | - Marit Nilsen-Hamilton
- Interdepartmental Toxicology Program, ‡Department of Chemistry, §Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| |
Collapse
|
33
|
Jiménez-Moreno E, Montalvillo-Jiménez L, Santana AG, Gómez AM, Jiménez-Osés G, Corzana F, Bastida A, Jiménez-Barbero J, Cañada FJ, Gómez-Pinto I, González C, Asensio JL. Finding the Right Candidate for the Right Position: A Fast NMR-Assisted Combinatorial Method for Optimizing Nucleic Acids Binders. J Am Chem Soc 2016; 138:6463-74. [DOI: 10.1021/jacs.6b00328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ester Jiménez-Moreno
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Andrés G. Santana
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ana M. Gómez
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Gonzalo Jiménez-Osés
- Departamento de Química y Centro de Investigación en
Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
- Institute of Biocomputation and Physics of Complex Systems
(BIFI), University of Zaragoza, BIFI-IQFR (CSIC), 50018 Zaragoza, Spain
| | - Francisco Corzana
- Departamento de Química y Centro de Investigación en
Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Agatha Bastida
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Jesús Jiménez-Barbero
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Center for Cooperative Research in Biosciences (CIC-bioGUNE), 48160 Derio, Bizkaia, Spain
- Basque Foundation for Science, Ikerbasque, 48013 Bilbao, Bizkaia, Spain
| | | | - Irene Gómez-Pinto
- Instituto de Química-Física Rocasolano (IQFR-CSIC), C/ Serrano 119, 28006 Madrid, Spain
| | - Carlos González
- Instituto de Química-Física Rocasolano (IQFR-CSIC), C/ Serrano 119, 28006 Madrid, Spain
| | - Juan Luis Asensio
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
34
|
Ariza-Mateos A, Díaz-Toledano R, Block TM, Prieto-Vega S, Birk A, Gómez J. Geneticin Stabilizes the Open Conformation of the 5' Region of Hepatitis C Virus RNA and Inhibits Viral Replication. Antimicrob Agents Chemother 2016; 60:925-35. [PMID: 26621620 PMCID: PMC4750704 DOI: 10.1128/aac.02511-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/17/2015] [Indexed: 01/10/2023] Open
Abstract
The aminoglycoside Geneticin (G418) is known to inhibit cell culture proliferation, via virus-specific mechanisms, of two different virus genera from the family Flaviviridae. Here, we tried to determine whether Geneticin can selectively alter the switching of the nucleotide 1 to 570 RNA region of hepatitis C virus (HCV) and, if so, whether this inhibits viral growth. Two structure-dependent RNases known to specifically cleave HCV RNA were tested in the presence or absence of the drug. One was the Synechocystis sp. RNase P ribozyme, which cleaves the tRNA-like domain around the AUG start codon under high-salt buffer conditions; the second was Escherichia coli RNase III, which recognizes a double-helical RNA switch element that changes the internal ribosome entry site (IRES) from a closed (C) conformation to an open (O) one. While the drug did not affect RNase P activity, it did inhibit RNase III in the micromolar range. Kinetic studies indicated that the drug favors the switch from the C to the O conformation of the IRES by stabilizing the distal double-stranded element and inhibiting further processing of the O form. We demonstrate that, because the RNA in this region is highly conserved and essential for virus survival, Geneticin inhibits HCV Jc1 NS3 expression, the release of the viral genomic RNA, and the propagation of HCV in Huh 7.5 cells. Our study highlights the crucial role of riboswitches in HCV replication and suggests the therapeutic potential of viral-RNA-targeted antivirals.
Collapse
Affiliation(s)
- Ascensión Ariza-Mateos
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain CIBERehd Centro de Investigación Biomédica en RED de Enfermedades Hepáticas y Digestivas (ISCIII), Madrid, Spain
| | - Rosa Díaz-Toledano
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain CIBERehd Centro de Investigación Biomédica en RED de Enfermedades Hepáticas y Digestivas (ISCIII), Madrid, Spain
| | | | - Samuel Prieto-Vega
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain
| | - Alex Birk
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, USA
| | - Jordi Gómez
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain CIBERehd Centro de Investigación Biomédica en RED de Enfermedades Hepáticas y Digestivas (ISCIII), Madrid, Spain
| |
Collapse
|
35
|
Santana AG, Zárate SG, Asensio JL, Revuelta J, Bastida A. Selective modification of the 3''-amino group of kanamycin prevents significant loss of activity in resistant bacterial strains. Org Biomol Chem 2016; 14:516-525. [PMID: 26501183 DOI: 10.1039/c5ob01599e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aminoglycosides are highly potent, wide-spectrum bactericidals. N-1 modification of aminoglycosides has thus far been the best approach to regain bactericidal efficiency of this class of antibiotics against resistant bacterial strains. In the present study we have evaluated the effect that both, the number of modifications and their distribution on the aminoglycoside amino groups (N-1, N-3, N-6' and N-3''), have on the antibiotic activity. The modification of N-3'' in the antibiotic kanamycin A is the key towards the design of new aminoglycoside antibiotics. This derivative maintains the antibiotic activity against aminoglycoside acetyl-transferase- and nucleotidyl-transferase-expressing strains, which are two of the most prevalent modifying enzymes found in aminoglycoside resistant bacteria.
Collapse
Affiliation(s)
- Andrés G Santana
- CSIC, Department of Bioorganic Chemistry, c/Juan de la Cierva, 3, 28006-Madrid, Spain.
| | | | | | | | | |
Collapse
|
36
|
Glycoarray Technologies: Deciphering Interactions from Proteins to Live Cell Responses. MICROARRAYS 2016; 5:microarrays5010003. [PMID: 27600069 PMCID: PMC5003448 DOI: 10.3390/microarrays5010003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023]
Abstract
Microarray technologies inspired the development of carbohydrate arrays. Initially, carbohydrate array technology was hindered by the complex structures of glycans and their structural variability. The first designs of glycoarrays focused on the HTP (high throughput) study of protein-glycan binding events, and subsequently more in-depth kinetic analysis of carbohydrate-protein interactions. However, the applications have rapidly expanded and now achieve successful discrimination of selective interactions between carbohydrates and, not only proteins, but also viruses, bacteria and eukaryotic cells, and most recently even live cell responses to immobilized glycans. Combining array technology with other HTP technologies such as mass spectrometry is expected to allow even more accurate and sensitive analysis. This review provides a broad overview of established glycoarray technologies (with a special focus on glycosaminoglycan applications) and their emerging applications to the study of complex interactions between glycans and whole living cells.
Collapse
|
37
|
Liu J, Zeng C, Hogan V, Zhou S, Monwar MM, Hines JV. Identification of Spermidine Binding Site in T-box Riboswitch Antiterminator RNA. Chem Biol Drug Des 2015; 87:182-9. [PMID: 26348362 DOI: 10.1111/cbdd.12660] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/24/2015] [Accepted: 08/14/2015] [Indexed: 01/08/2023]
Abstract
The T-box transcription antitermination riboswitch controls bacterial gene expression by structurally responding to uncharged, cognate tRNA. Previous studies indicated that cofactors, such as the polyamine spermidine, might serve a specific functional role in enhancing riboswitch efficacy. As riboswitch function depends on key RNA structural changes involving the antiterminator element, the interaction of spermidine with the T-box riboswitch antiterminator element was investigated. Spermidine binds antiterminator model RNA with high affinity (micromolar Kd ) based on isothermal titration calorimetry and fluorescence-monitored binding assays. NMR titration studies, molecular modeling, and inline and enzymatic probing studies indicate that spermidine binds at the 3' portion of the highly conserved seven-nucleotide bulge in the antiterminator. Together, these results support the conclusion that spermidine binds the T-box antiterminator RNA preferentially in a location important for antiterminator function. The implications of these findings are significant both for better understanding of the T-box riboswitch mechanism and for antiterminator-targeted drug discovery efforts.
Collapse
Affiliation(s)
- Jia Liu
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Chunxi Zeng
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Vivian Hogan
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Shu Zhou
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Md Masud Monwar
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Jennifer V Hines
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
38
|
Electrostatic interactions in aminoglycoside-RNA complexes. Biophys J 2015; 108:655-65. [PMID: 25650932 DOI: 10.1016/j.bpj.2014.12.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/20/2014] [Accepted: 12/10/2014] [Indexed: 11/21/2022] Open
Abstract
Electrostatic interactions often play key roles in the recognition of small molecules by nucleic acids. An example is aminoglycoside antibiotics, which by binding to ribosomal RNA (rRNA) affect bacterial protein synthesis. These antibiotics remain one of the few valid treatments against hospital-acquired infections by Gram-negative bacteria. It is necessary to understand the amplitude of electrostatic interactions between aminoglycosides and their rRNA targets to introduce aminoglycoside modifications that would enhance their binding or to design new scaffolds. Here, we calculated the electrostatic energy of interactions and its per-ring contributions between aminoglycosides and their primary rRNA binding site. We applied either the methodology based on the exact potential multipole moment (EPMM) or classical molecular mechanics force field single-point partial charges with Coulomb formula. For EPMM, we first reconstructed the aspherical electron density of 12 aminoglycoside-RNA complexes from the atomic parameters deposited in the University at Buffalo Databank. The University at Buffalo Databank concept assumes transferability of electron density between atoms in chemically equivalent vicinities and allows reconstruction of the electron densities from experimental structural data. From the electron density, we then calculated the electrostatic energy of interaction using EPMM. Finally, we compared the two approaches. The calculated electrostatic interaction energies between various aminoglycosides and their binding sites correlate with experimentally obtained binding free energies. Based on the calculated energetic contributions of water molecules mediating the interactions between the antibiotic and rRNA, we suggest possible modifications that could enhance aminoglycoside binding affinity.
Collapse
|
39
|
Quader S, Boyd SE, Jenkins ID, Houston TA. Direct Mitsunobu monoesterification of N-protected tobramycin competes with intramolecular pyrrolidine formation in ester prodrug synthesis. Carbohydr Res 2015; 413:16-21. [DOI: 10.1016/j.carres.2015.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
|
40
|
Exploring the possibilities of capacitively coupled contactless conductivity detection in combination with liquid chromatography for the analysis of polar compounds using aminoglycosides as test case. J Pharm Biomed Anal 2015; 112:155-68. [DOI: 10.1016/j.jpba.2014.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/01/2014] [Accepted: 12/05/2014] [Indexed: 11/24/2022]
|
41
|
Shortridge MD, Varani G. Structure based approaches for targeting non-coding RNAs with small molecules. Curr Opin Struct Biol 2015; 30:79-88. [PMID: 25687935 PMCID: PMC4416997 DOI: 10.1016/j.sbi.2015.01.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 12/22/2022]
Abstract
The increasing appreciation of the central role of non-coding RNAs (miRNAs and long non-coding RNAs) in chronic and degenerative human disease makes them attractive therapeutic targets. This would not be unprecedented: the bacterial ribosomal RNA is a mainstay for antibacterial treatment, while the conservation and functional importance of viral RNA regulatory elements has long suggested they would constitute attractive targets for new antivirals. Oligonucleotide-based chemistry has obvious appeals but also considerable pharmacological limitations that are yet to be addressed satisfactorily. Recent studies identifying small molecules targeting non-coding RNAs may provide an alternative approach to oligonucleotide methods. Here we review recent work investigating new structural and chemical principles for targeting RNA with small molecules.
Collapse
Affiliation(s)
- Matthew D Shortridge
- Department of Chemistry, University of Washington, Seattle, Box 351700, Seattle 98195, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Box 351700, Seattle 98195, USA.
| |
Collapse
|
42
|
Lee HS, Dastgheyb SS, Hickok NJ, Eckmann DM, Composto RJ. Targeted release of tobramycin from a pH-responsive grafted bilayer challenged with S. aureus. Biomacromolecules 2015; 16:650-9. [PMID: 25585173 DOI: 10.1021/bm501751v] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A stimuli-responsive, controlled release bilayer for the prevention of bacterial infection on biomaterials is presented. Drug release is locally controlled by the pH-responsiveness of the bilayer, comprised of an inner poly(acrylic acid) (PAA) monolayer grafted to a biomaterial and cross-linked with an outer chitosan (CH) brush. Tobramycin (TOB) is loaded in the inner PAA in part to minimize bacteria resistance. Because biofilm formation causes a decrease in local pH, TOB is released from PAA and permeates through the CH, which is in contact with the biofilm. Antibiotic capacity is controlled by the PAA thickness, which depends on PAA brush length and the extent of cross-linking between CH and PAA at the bilayer interface. This TOB-loaded, pH-responsive bilayer exhibits significantly enhanced antibacterial activity relative to controls.
Collapse
Affiliation(s)
- Hyun-Su Lee
- Department of Materials Science and Engineering and ‡Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | |
Collapse
|
43
|
Abstract
Transfer RNAs (tRNAs) are central players in the protein translation machinery and as such are prominent targets for a large number of natural and synthetic antibiotics. This review focuses on the role of tRNAs in bacterial antibiosis. We will discuss examples of antibiotics that target multiple stages in tRNA biology from tRNA biogenesis and modification, mature tRNAs, aminoacylation of tRNA as well as prevention of proper tRNA function by small molecules binding to the ribosome. Finally, the role of deacylated tRNAs in the bacterial “stringent response” mechanism that can lead to bacteria displaying antibiotic persistence phenotypes will be discussed.
Collapse
|
44
|
Li P, Parker TM, Hwang J, Deng F, Smith MD, Pellechia PJ, Sherrill CD, Shimizu KD. The CH−π Interactions of Methyl Ethers as a Model for Carbohydrate–N-Heteroarene Interactions. Org Lett 2014; 16:5064-7. [DOI: 10.1021/ol502418k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ping Li
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Trent M. Parker
- Center
for Computational Molecular Science and Technology, School of Chemistry
and Biochemistry and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jungwun Hwang
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Fengyuan Deng
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mark D. Smith
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Perry J. Pellechia
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - C. David Sherrill
- Center
for Computational Molecular Science and Technology, School of Chemistry
and Biochemistry and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ken D. Shimizu
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
45
|
Zhou ZX, Gao F, Chen X, Tian XJ, Ji LN. Selective binding and reverse transcription inhibition of single-strand poly(A) RNA by metal TMPyP complexes. Inorg Chem 2014; 53:10015-7. [PMID: 25203754 DOI: 10.1021/ic501337c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ni-, Cu-, and Zn-TMPyP are capable of binding to single-strand poly(A) RNA with high preference and affinity and inhibiting the reverse transcription of RNA by both M-MuLV and HIV-1 reverse transcriptase. With 10 nM azidothymidine, the IC50 value of M-TMPyP could be lowered to 10(-1) μM order.
Collapse
Affiliation(s)
- Zhu-Xin Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | | | | | | | | |
Collapse
|
46
|
Childs-Disney JL, Yildirim I, Park H, Lohman JR, Guan L, Tran T, Sarkar P, Schatz GC, Disney MD. Structure of the myotonic dystrophy type 2 RNA and designed small molecules that reduce toxicity. ACS Chem Biol 2014; 9:538-550. [PMID: 24341895 DOI: 10.1021/cb4007387] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Myotonic dystrophy type 2 (DM2) is an incurable neuromuscular disorder caused by a r(CCUG) expansion (r(CCUG)(exp)) that folds into an extended hairpin with periodically repeating 2×2 nucleotide internal loops (5'CCUG/3'GUCC). We designed multivalent compounds that improve DM2-associated defects using information about RNA-small molecule interactions. We also report the first crystal structure of r(CCUG) repeats refined to 2.35 Å. Structural analysis of the three 5'CCUG/3'GUCC repeat internal loops (L) reveals that the CU pairs in L1 are each stabilized by one hydrogen bond and a water-mediated hydrogen bond, while CU pairs in L2 and L3 are stabilized by two hydrogen bonds. Molecular dynamics (MD) simulations reveal that the CU pairs are dynamic and stabilized by Na(+) and water molecules. MD simulations of the binding of the small molecule to r(CCUG) repeats reveal that the lowest free energy binding mode occurs via the major groove, in which one C residue is unstacked and the cross-strand nucleotides are displaced. Moreover, we modeled the binding of our dimeric compound to two 5'CCUG/3'GUCC motifs, which shows that the scaffold on which the RNA-binding modules are displayed provides an optimal distance to span two adjacent loops.
Collapse
Affiliation(s)
| | - Ilyas Yildirim
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | | | | | | | | | - Partha Sarkar
- Department
of Neurology, University of Texas Medical Branch, 301 University
Boulevard, Galveston, Texas 77555-0539, United States
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | | |
Collapse
|
47
|
Nikolaus N, Strehlitz B. DNA-aptamers binding aminoglycoside antibiotics. SENSORS 2014; 14:3737-55. [PMID: 24566637 PMCID: PMC3958260 DOI: 10.3390/s140203737] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/20/2014] [Accepted: 01/30/2014] [Indexed: 02/05/2023]
Abstract
Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given.
Collapse
Affiliation(s)
- Nadia Nikolaus
- Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Germany.
| | - Beate Strehlitz
- Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Germany.
| |
Collapse
|
48
|
Zhanel GG, Lawson CD, Zelenitsky S, Findlay B, Schweizer F, Adam H, Walkty A, Rubinstein E, Gin AS, Hoban DJ, Lynch JP, Karlowsky JA. Comparison of the next-generation aminoglycoside plazomicin to gentamicin, tobramycin and amikacin. Expert Rev Anti Infect Ther 2014; 10:459-73. [DOI: 10.1586/eri.12.25] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Tan SYY, Chua SL, Liu Y, Høiby N, Andersen LP, Givskov M, Song Z, Yang L. Comparative genomic analysis of rapid evolution of an extreme-drug-resistant Acinetobacter baumannii clone. Genome Biol Evol 2013; 5:807-18. [PMID: 23538992 PMCID: PMC3673627 DOI: 10.1093/gbe/evt047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The emergence of extreme-drug-resistant (EDR) bacterial strains in hospital and nonhospital clinical settings is a big and growing public health threat. Understanding the antibiotic resistance mechanisms at the genomic levels can facilitate the development of next-generation agents. Here, comparative genomics has been employed to analyze the rapid evolution of an EDR Acinetobacter baumannii clone from the intensive care unit (ICU) of Rigshospitalet at Copenhagen. Two resistant A. baumannii strains, 48055 and 53264, were sequentially isolated from two individuals who had been admitted to ICU within a 1-month interval. Multilocus sequence typing indicates that these two isolates belonged to ST208. The A. baumannii 53264 strain gained colistin resistance compared with the 48055 strain and became an EDR strain. Genome sequencing indicates that A. baumannii 53264 and 48055 have almost identical genomes-61 single-nucleotide polymorphisms (SNPs) were found between them. The A. baumannii 53264 strain was assembled into 130 contigs, with a total length of 3,976,592 bp with 38.93% GC content. The A. baumannii 48055 strain was assembled into 135 contigs, with a total length of 4,049,562 bp with 39.00% GC content. Genome comparisons showed that this A. baumannii clone is classified as an International clone II strain and has 94% synteny with the A. baumannii ACICU strain. The ResFinder server identified a total of 14 antibiotic resistance genes in the A. baumannii clone. Proteomic analyses revealed that a putative porin protein was down-regulated when A. baumannii 53264 was exposed to antimicrobials, which may reduce the entry of antibiotics into the bacterial cell.
Collapse
Affiliation(s)
- Sean Yang-Yi Tan
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kamei M, Kasperski K, Fuller M, Parkinson-Lawrence EJ, Karageorgos L, Belakhov V, Baasov T, Hopwood JJ, Brooks DA. Aminoglycoside-Induced Premature Stop Codon Read-Through of Mucopolysaccharidosis Type I Patient Q70X and W402X Mutations in Cultured Cells. JIMD Rep 2013; 13:139-47. [PMID: 24193436 DOI: 10.1007/8904_2013_270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/13/2013] [Accepted: 09/25/2013] [Indexed: 12/24/2022] Open
Abstract
The premature stop codon mutations, Q70X and W402X, are the most common α-L-iduronidase gene (IDUA) mutations in mucopolysaccharidosis type I (MPS I) patients. Read-through drugs have been used to suppress premature stop codons, and this can potentially be used to treat patients who have this type of mutation. We examined the effects of aminoglycoside treatment on the IDUA mutations Q70X and W402X in cultured cells and show that 4,5-disubstituted aminoglycosides induced more read-through for the W402X mutation, while 4,6-disubstituted aminoglycosides promoted more read-through for the Q70X mutation: lividomycin (4,5-disubstituted) induced a 7.8-fold increase in α-L-iduronidase enzyme activity for the W402X mutation; NB54 (4,5-disubstituted) induced a 3.7 fold increase in the amount of α-L-iduronidase enzyme activity for the W402X mutation, but had less effect on the Q70X mutation, whereas gentamicin (4,6-disubstituted) had the reverse effect on read-through for both mutations. The predicted mRNA secondary structural changes for both mutations were markedly different, which may explain these different effects on read-through for these two premature stop codons.
Collapse
Affiliation(s)
- Makoto Kamei
- Mechanisms in Cell Biology and Diseases Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, 5001, Australia,
| | | | | | | | | | | | | | | | | |
Collapse
|