1
|
Nannyonjo M, Omooja J, Bugembe DL, Bbosa N, Lunkuse S, Nabirye SE, Nassolo F, Namagembe H, Abaasa A, Kazibwe A, Kaleebu P, Ssemwanga D. Next-Generation Sequencing Reveals a High Frequency of HIV-1 Minority Variants and an Expanded Drug Resistance Profile among Individuals on First-Line ART. Viruses 2024; 16:1454. [PMID: 39339930 PMCID: PMC11437406 DOI: 10.3390/v16091454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
We assessed the performance and clinical relevance of Illumina MiSeq next-generation sequencing (NGS) for HIV-1 genotyping compared with Sanger sequencing (SS). We analyzed 167 participants, 45 with virologic failure (VL ≥ 1000 copies/mL), i.e., cases, and 122 time-matched participants with virologic suppression (VL < 1000 copies/mL), i.e., controls, 12 months post-ART initiation. Major surveillance drug resistance mutations (SDRMs) detected by SS were all detectable by NGS. Among cases at 12 months, SS identified SDRMs in 32/45 (71.1%) while NGS identified SDRMs among 35/45 (77.8%), increasing the number of cases with SDRMs by 3/45 (6.7%). Participants identified with, and proportions of major SDRMs increased when NGS was used. NGS vs. SS at endpoint revealed for NNRTIs: 36/45 vs. 33/45; Y181C: 26/45 vs. 24/45; K103N: 9/45 vs. 6/45 participants with SDRMs, respectively. At baseline, NGS revealed major SDRMs in 9/45 (20%) cases without SDRMs by SS. Participant MBL/043, among the nine, the following major SDRMs existed: L90M to PIs, K65R and M184V to NRTIs, and Y181C and K103N to NNRTIs. The SDRMs among the nine increased SDRMs to NRTIs, NNRTIs, and PIs. Only 43/122 (25.7%) of participants had pre-treatment minority SDRMs. Also, 24.4% of the cases vs. 26.2 of controls had minority SDRMs (p = 0.802); minority SDRMs were not associated with virologic failure. NGS agreed with SS in HIV-1 genotyping but detected additional major SDRMs and identified more participants harboring major SDRMs, expanding the HIV DRM profile of this cohort. NGS could improve HIV genotyping to guide treatment decisions for enhancing ART efficacy, a cardinal pre-requisite in the pursuit of the UNAIDS 95-95-95 targets.
Collapse
Affiliation(s)
- Maria Nannyonjo
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
| | - Jonah Omooja
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
- Uganda Virus Research Institute, Entebbe P.O. Box 49, Uganda
| | - Daniel Lule Bugembe
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
| | - Nicholas Bbosa
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
| | - Sandra Lunkuse
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
| | - Stella Esther Nabirye
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
| | - Faridah Nassolo
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
| | - Hamidah Namagembe
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
| | - Andrew Abaasa
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
| | - Anne Kazibwe
- Department of Molecular Biology, College of Veterinary Medicine, Makerere University, Kampala P.O. Box 7072, Uganda
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
- Uganda Virus Research Institute, Entebbe P.O. Box 49, Uganda
| | - Deogratius Ssemwanga
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
- Uganda Virus Research Institute, Entebbe P.O. Box 49, Uganda
| |
Collapse
|
2
|
Detecting Selection in the HIV-1 Genome during Sexual Transmission Events. Viruses 2022; 14:v14020406. [PMID: 35215999 PMCID: PMC8876189 DOI: 10.3390/v14020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Little is known about whether and how variation in the HIV-1 genome affects its transmissibility. Assessing which genomic features of HIV-1 are under positive or negative selection during transmission is challenging, because very few virus particles are typically transmitted, and random genetic drift can dilute genetic signals in the recipient virus population. We analyzed 30 transmitter–recipient pairs from the Zurich Primary HIV Infection Study and the Swiss HIV Cohort Study using near full-length HIV-1 genomes. We developed a new statistical test to detect selection during transmission, called Selection Test in Transmission (SeTesT), based on comparing the transmitter and recipient virus population and accounting for the transmission bottleneck. We performed extensive simulations and found that sensitivity of detecting selection during transmission is limited by the strong population bottleneck of few transmitted virions. When pooling individual test results across patients, we found two candidate HIV-1 genomic features for affecting transmission, namely amino acid positions 3 and 18 of Vpu, which were significant before but not after correction for multiple testing. In summary, SeTesT provides a general framework for detecting selection based on genomic sequencing data of transmitted viruses. Our study shows that a higher number of transmitter–recipient pairs is required to improve sensitivity of detecting selection.
Collapse
|
3
|
Rindler AE, Kuster H, Neumann K, Leemann C, Braun DL, Metzner KJ, Günthard HF. A Novel High Throughput, Parallel Infection Assay for Determining the Replication Capacities of 346 Primary HIV-1 Isolates of the Zurich Primary HIV-1 Infection Study in Primary Cells. Viruses 2021; 13:404. [PMID: 33806576 PMCID: PMC8000554 DOI: 10.3390/v13030404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
HIV-1 replication capacity is an important characteristic to understand the replication competence of single variants or virus populations. It can further aid in the understanding of HIV-1 pathogenicity, disease progression, and drug resistance mutations. To effectively study RC, many assays have been established. However, there is still demand for a high throughput replication capacity assay using primary cells which is robust and reproducible. In this study, we established such an assay and validated it using 346 primary HIV-1 isolates from patients enrolled in the Zurich Primary HIV Infection study (ZPHI) and two control viruses, HIV-1 JR-CSFWT and HIV-1 JR-CSFK65R_M184V. Replication capacity was determined by measuring the viral growth on PBMCs over 10 days by longitudinally transferring cell culture supernatant to TZM-bl reporter cells. By utilizing the TZM-bl luciferase reporter assay, we determined replication capacity by measuring viral infectivity. The simplicity of the experimental setup allowed for all 346 primary HIV-1 isolates to be replicated at one time. Although the infectious input dose for each virus was normalized, a broad range of replication capacity values over 4 logs was observed. The approach was confirmed by two repeated experiments and we demonstrated that the reproducibility of the replication capacity values is statistically comparable between the two separate experiments. In summary, these results endorse our high throughput replication capacity assay as reproducible and robust and can be utilized for large scale HIV-1 replication capacity experiments in primary cells.
Collapse
Affiliation(s)
- Audrey E. Rindler
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, 8091 Zürich, Switzerland; (A.E.R.); (H.K.); (K.N.); (C.L.); (D.L.B.)
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland
- Life Sciences Graduate School, University of Zürich, 8057 Zürich, Switzerland
| | - Herbert Kuster
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, 8091 Zürich, Switzerland; (A.E.R.); (H.K.); (K.N.); (C.L.); (D.L.B.)
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland
| | - Kathrin Neumann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, 8091 Zürich, Switzerland; (A.E.R.); (H.K.); (K.N.); (C.L.); (D.L.B.)
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland
| | - Christine Leemann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, 8091 Zürich, Switzerland; (A.E.R.); (H.K.); (K.N.); (C.L.); (D.L.B.)
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland
| | - Dominique L. Braun
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, 8091 Zürich, Switzerland; (A.E.R.); (H.K.); (K.N.); (C.L.); (D.L.B.)
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland
| | - Karin J. Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, 8091 Zürich, Switzerland; (A.E.R.); (H.K.); (K.N.); (C.L.); (D.L.B.)
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland
| | - Huldrych F. Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, 8091 Zürich, Switzerland; (A.E.R.); (H.K.); (K.N.); (C.L.); (D.L.B.)
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
4
|
Silver N, Paynter M, McAllister G, Atchley M, Sayir C, Short J, Winner D, Alouani DJ, Sharkey FH, Bergefall K, Templeton K, Carrington D, Quiñones-Mateu ME. Characterization of minority HIV-1 drug resistant variants in the United Kingdom following the verification of a deep sequencing-based HIV-1 genotyping and tropism assay. AIDS Res Ther 2018; 15:18. [PMID: 30409215 PMCID: PMC6223033 DOI: 10.1186/s12981-018-0206-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The widespread global access to antiretroviral drugs has led to considerable reductions in morbidity and mortality but, unfortunately, the risk of virologic failure increases with the emergence, and potential transmission, of drug resistant viruses. Detecting and quantifying HIV-1 drug resistance has therefore become the standard of care when designing new antiretroviral regimens. The sensitivity of Sanger sequencing-based HIV-1 genotypic assays is limited by its inability to identify minority members of the quasispecies, i.e., it only detects variants present above ~ 20% of the viral population, thus, failing to detect minority variants below this threshold. It is clear that deep sequencing-based HIV-1 genotyping assays are an important step change towards accurately monitoring HIV-infected individuals. METHODS We implemented and verified a clinically validated HIV-1 genotyping assay based on deep sequencing (DEEPGEN™) in two clinical laboratories in the United Kingdom: St. George's University Hospitals Healthcare NHS Foundation Trust (London) and at NHS Lothian (Edinburgh), to characterize minority HIV-1 variants in 109 plasma samples from ART-naïve or -experienced individuals. RESULTS Although subtype B HIV-1 strains were highly prevalent (44%, 48/109), most individuals were infected with non-B subtype viruses (i.e., A1, A2, C, D, F1, G, CRF02_AG, and CRF01_AE). DEEPGEN™ was able to accurately detect drug resistance-associated mutations not identified using standard Sanger sequencing-based tests, which correlated significantly with patient's antiretroviral treatment histories. A higher proportion of minority PI-, NRTI-, and NNRTI-resistance mutations was detected in NHS Lothian patients compared to individuals from St. George's, mainly M46I/L and I50 V (associated with PIs), D67 N, K65R, L74I, M184 V/I, and K219Q (NRTIs), and L100I (NNRTIs). Interestingly, we observed an inverse correlation between intra-patient HIV-1 diversity and CD4+ T cell counts in the NHS Lothian patients. CONCLUSIONS This is the first study evaluating the transition, training, and implementation of DEEPGEN™ between three clinical laboratories in two different countries. More importantly, we were able to characterize the HIV-1 drug resistance profile (including minority variants), coreceptor tropism, subtyping, and intra-patient viral diversity in patients from the United Kingdom, providing a rigorous foundation for basing clinical decisions on highly sensitive and cost-effective deep sequencing-based HIV-1 genotyping assays in the country.
Collapse
|
5
|
High-Resolution Sequencing of Viral Populations during Early Simian Immunodeficiency Virus Infection Reveals Evolutionary Strategies for Rapid Escape from Emerging Env-Specific Antibody Responses. J Virol 2018; 92:JVI.01574-17. [PMID: 29343575 DOI: 10.1128/jvi.01574-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/08/2018] [Indexed: 01/01/2023] Open
Abstract
Primate lentiviruses, including the human and simian immunodeficiency viruses (HIV and SIV), produce infections marked by persistent, ongoing viral replication. This occurs despite the presence of virus-specific adaptive immune responses, including antibodies targeting the viral envelope glycoprotein (Env), and evolution of antibody-escape variants is a well-documented feature of lentiviral infection. Here, we examined the evolutionary dynamics of the SIV env gene during early infection (≤29 weeks postinfection) in a cohort of four SIVmac251-infected rhesus macaques. We tracked env evolution during acute and early infection using frequent sampling and ultradeep sequencing of viral populations, capturing a transmission bottleneck and the subsequent reestablishment of Env diversity. A majority of changes in the gp120 subunit mapped to two short clusters, one in the first variable region (V1) and one in V4, while most changes in the gp41 subunit appeared in the cytoplasmic domain. Variation in V1 was dominated by short duplications and deletions of repetitive sequence, while variation in V4 was marked by short in-frame deletions and closely overlapping substitutions. The most common substitutions in both patches did not alter viral replicative fitness when tested using a highly sensitive, deep-sequencing-based competition assay. Our results, together with the observation that very similar or identical patterns of sequence evolution also occur in different macaque species infected with related but divergent strains of SIV, suggest that resistance to early, strain-specific anti-Env antibodies is the result of temporally and mutationally predictable pathways of escape that occur during the early stages of infection.IMPORTANCE The envelope glycoprotein (Env) of primate lentiviruses mediates entry by binding to host cell receptors followed by fusion of the viral membrane with the cell membrane. The exposure of Env complexes on the surface of the virion results in targeting by antibodies, leading to selection for virus escape mutations. We used the SIV/rhesus macaque model to track in vivo evolution of variation in Env during acute/early infection in animals with and without antibody responses to Env, uncovering remarkable variation in animals with antibody responses within weeks of infection. Using a deep-sequencing-based fitness assay, we found substitutions associated with antibody escape had little to no effect on inherent replicative capacity. The ability to readily propagate advantageous changes that incur little to no replicative fitness costs may be a mechanism to maintain continuous replication under constant immune selection, allowing the virus to persist for months to years in the infected host.
Collapse
|
6
|
Weber J, Gibson RM, Sácká L, Strunin D, Hodek J, Weberová J, Pávová M, Alouani DJ, Asaad R, Rodriguez B, Lederman MM, Quiñones-Mateu ME. Impaired human immunodeficiency virus type 1 replicative fitness in atypical viremic non-progressor individuals. AIDS Res Ther 2017; 14:15. [PMID: 28331526 PMCID: PMC5359922 DOI: 10.1186/s12981-017-0144-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/15/2017] [Indexed: 01/15/2023] Open
Abstract
Background Progression rates from initial HIV-1 infection to advanced AIDS vary significantly among infected individuals. A distinct subgroup of HIV-1-infected individuals—termed viremic non-progressors (VNP) or controllers—do not seem to progress to AIDS, maintaining high CD4+ T cell counts despite high levels of viremia for many years. Several studies have evaluated multiple host factors, including immune activation, trying to elucidate the atypical HIV-1 disease progression in these patients; however, limited work has been done to characterize viral factors in viremic controllers. Methods We analyzed HIV-1 isolates from three VNP individuals and compared the replicative fitness, near full-length HIV-1 genomes and intra-patient HIV-1 genetic diversity with viruses from three typical (TP) and one rapid (RP) progressor individuals. Results Viremic non-progressors and typical patients were infected for >10 years (range 10–17 years), with a mean CD4+ T-cell count of 472 cells/mm3 (442–529) and 400 cells/mm3 (126–789), respectively. VNP individuals had a less marked decline in CD4+ cells (mean −0.56, range −0.4 to −0.7 CD4+/month) than TP patients (mean −10.3, −8.2 to −13.1 CD4+/month). Interestingly, VNP individuals carried viruses with impaired replicative fitness, compared to HIV-1 isolates from the TP and RP patients (p < 0.05, 95% CI). Although analyses of the near full-length HIV-1 genomes showed no clear patterns of single-nucleotide polymorphisms (SNP) that could explain the decrease in replicative fitness, both the number of SNPs and HIV-1 population diversity correlated inversely with the replication capacity of the viruses (r = −0.956 and r = −0.878, p < 0.01, respectively). Conclusion It is likely that complex multifactorial parameters govern HIV-1 disease progression in each individual, starting with the infecting virus (phenotype, load, and quasispecies diversity) and the intrinsic ability of the host to respond to the infection. Here we analyzed a subset of viremic controller patients and demonstrated that similar to the phenomenon observed in patients with a discordant response to antiretroviral therapy (i.e., high CD4+ cell counts with detectable plasma HIV-1 RNA load), reduced viral replicative fitness seems to be linked to slow disease progression in these antiretroviral-naïve individuals. Electronic supplementary material The online version of this article (doi:10.1186/s12981-017-0144-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jan Weber
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Richard M Gibson
- 0000 0000 9149 4843grid.443867.aUniversity Hospital Translational Laboratory, University Hospitals Cleveland Medical Center, Cleveland, OH USA
| | - Lenka Sácká
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Dmytro Strunin
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jan Hodek
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jitka Weberová
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Marcela Pávová
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - David J Alouani
- 0000 0000 9149 4843grid.443867.aUniversity Hospital Translational Laboratory, University Hospitals Cleveland Medical Center, Cleveland, OH USA
| | - Robert Asaad
- 0000 0001 2164 3847grid.67105.35Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, 10900 Euclid Avenue, Cleveland, OH 44106-7288 USA
| | - Benigno Rodriguez
- 0000 0001 2164 3847grid.67105.35Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, 10900 Euclid Avenue, Cleveland, OH 44106-7288 USA
| | - Michael M Lederman
- 0000 0001 2164 3847grid.67105.35Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, 10900 Euclid Avenue, Cleveland, OH 44106-7288 USA
| | - Miguel E Quiñones-Mateu
- 0000 0000 9149 4843grid.443867.aUniversity Hospital Translational Laboratory, University Hospitals Cleveland Medical Center, Cleveland, OH USA ; 0000 0001 2164 3847grid.67105.35Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, 10900 Euclid Avenue, Cleveland, OH 44106-7288 USA ; 0000 0001 2164 3847grid.67105.35Department of Pathology, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|
7
|
Low-Frequency Drug Resistance in HIV-Infected Ugandans on Antiretroviral Treatment Is Associated with Regimen Failure. Antimicrob Agents Chemother 2016; 60:3380-97. [PMID: 27001818 DOI: 10.1128/aac.00038-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/11/2016] [Indexed: 12/27/2022] Open
Abstract
Most patients failing antiretroviral treatment in Uganda continue to fail their treatment regimen even if a dominant drug-resistant HIV-1 genotype is not detected. In a recent retrospective study, we observed that approximately 30% of HIV-infected individuals in the Joint Clinical Research Centre (Kampala, Uganda) experienced virologic failure with a susceptible HIV-1 genotype based on standard Sanger sequencing. Selection of minority drug-resistant HIV-1 variants (not detectable by Sanger sequencing) under antiretroviral therapy pressure can lead to a shift in the viral quasispecies distribution, becoming dominant members of the virus population and eventually causing treatment failure. Here, we used a novel HIV-1 genotyping assay based on deep sequencing (DeepGen) to quantify low-level drug-resistant HIV-1 variants in 33 patients failing a first-line antiretroviral treatment regimen in the absence of drug-resistant mutations, as screened by standard population-based Sanger sequencing. Using this sensitive assay, we observed that 64% (21/33) of these individuals had low-frequency (or minority) drug-resistant variants in the intrapatient HIV-1 population, which correlated with treatment failure. Moreover, the presence of these minority HIV-1 variants was associated with higher intrapatient HIV-1 diversity, suggesting a dynamic selection or fading of drug-resistant HIV-1 variants from the viral quasispecies in the presence or absence of drug pressure, respectively. This study identified low-frequency HIV drug resistance mutations by deep sequencing in Ugandan patients failing antiretroviral treatment but lacking dominant drug resistance mutations as determined by Sanger sequencing methods. We showed that these low-abundance drug-resistant viruses could have significant consequences for clinical outcomes, especially if treatment is not modified based on a susceptible HIV-1 genotype by Sanger sequencing. Therefore, we propose to make clinical decisions using more sensitive methods to detect minority HIV-1 variants.
Collapse
|
8
|
Telwatte S, Hearps AC, Johnson A, Latham CF, Moore K, Agius P, Tachedjian M, Sonza S, Sluis-Cremer N, Harrigan PR, Tachedjian G. Silent mutations at codons 65 and 66 in reverse transcriptase alleviate indel formation and restore fitness in subtype B HIV-1 containing D67N and K70R drug resistance mutations. Nucleic Acids Res 2015; 43:3256-71. [PMID: 25765644 PMCID: PMC4381058 DOI: 10.1093/nar/gkv128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/06/2015] [Indexed: 01/03/2023] Open
Abstract
Resistance to combined antiretroviral therapy (cART) in HIV-1-infected individuals is typically due to nonsynonymous mutations that change the protein sequence; however, the selection of synonymous or ‘silent’ mutations in the HIV-1 genome with cART has been reported. These silent K65K and K66K mutations in the HIV-1 reverse transcriptase (RT) occur in over 35% of drug-experienced individuals and are highly associated with the thymidine analog mutations D67N and K70R, which confer decreased susceptibility to most nucleoside and nucleotide RT inhibitors. However, the basis for selection of these silent mutations under selective drug pressure is unknown. Using Illumina next-generation sequencing, we demonstrate that the D67N/K70R substitutions in HIV-1 RT increase indel frequency by 100-fold at RT codons 65–67, consequently impairing viral fitness. Introduction of either K65K or K66K into HIV-1 containing D67N/K70R reversed the error-prone DNA synthesis at codons 65–67 in RT and improved viral replication fitness, but did not impact RT inhibitor drug susceptibility. These data provide new mechanistic insights into the role of silent mutations selected during antiretroviral therapy and have broader implications for the relevance of silent mutations in the evolution and fitness of RNA viruses.
Collapse
Affiliation(s)
- Sushama Telwatte
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Anna C Hearps
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Adam Johnson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Catherine F Latham
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Katie Moore
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Paul Agius
- Centre for Population Health, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Mary Tachedjian
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Secondo Sonza
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicolas Sluis-Cremer
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - P Richard Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z1Y6, Canada
| | - Gilda Tachedjian
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
9
|
Abstract
Fitness is a central quantity in evolutionary models of viruses. However, it remains difficult to determine viral fitness experimentally, and existing in vitro assays can be poor predictors of in vivo fitness of viral populations within their hosts. Next-generation sequencing can nowadays provide snapshots of evolving virus populations, and these data offer new opportunities for inferring viral fitness. Using the equilibrium distribution of the quasispecies model, an established model of intrahost viral evolution, we linked fitness parameters to the composition of the virus population, which can be estimated by next-generation sequencing. For inference, we developed a Bayesian Markov chain Monte Carlo method to sample from the posterior distribution of fitness values. The sampler can overcome situations where no maximum-likelihood estimator exists, and it can adaptively learn the posterior distribution of highly correlated fitness landscapes without prior knowledge of their shape. We tested our approach on simulated data and applied it to clinical human immunodeficiency virus 1 samples to estimate their fitness landscapes in vivo. The posterior fitness distributions allowed for differentiating viral haplotypes from each other, for determining neutral haplotype networks, in which no haplotype is more or less credibly fit than any other, and for detecting epistasis in fitness landscapes. Our implemented approach, called QuasiFit, is available at http://www.cbg.ethz.ch/software/quasifit.
Collapse
|
10
|
In vitro resistance selection with doravirine (MK-1439), a novel nonnucleoside reverse transcriptase inhibitor with distinct mutation development pathways. Antimicrob Agents Chemother 2014; 59:590-8. [PMID: 25385110 DOI: 10.1128/aac.04201-14] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Doravirine (DOR, formerly known as MK-1439) is a human immunodeficiency type 1 virus (HIV-1) nonnucleoside reverse transcriptase inhibitor (NNRTI) that is currently in phase 2b clinical trials. In vitro resistance selection of subtype B virus (MT4-green fluorescent protein [GFP] cells), as well as subtype A and C viruses (MT4-GFP/CCR5 cells) was conducted with DOR, rilpivirine (RPV), and efavirine (EFV) under low-multiplicity-of-infection conditions in a 96-well format. Resistance selection was performed with escalating concentrations of the NNRTIs ranging from the 95% effective concentration (1 × EC(95)) to 1,000 × EC(95) in the presence of 10% fetal bovine serum. In the resistance selection of subtype B virus with DOR, a V106A mutant virus led to two mutation pathways, followed by the emergence separately of either F227L or L234I. In the resistance selection of subtype A and C viruses, similar mutation development pathways were detected, in which a V106A or V106M mutant was also the starting virus in the pathways. Mutations that are commonly associated with RPV and EFV in clinical settings were also identified in subtype B viruses such as the E138K and K103N mutants, respectively, in this in vitro resistance selection study. The susceptibility of subtype B mutant viruses selected by DOR, RPV, and EFV to NNRTIs was evaluated. Results suggest that mutant viruses selected by DOR are susceptible to RPV and EFV and mutants selected by RPV and EFV are susceptible to DOR. When the replication capacity of the V106A mutant was compared with that of the wild-type (WT) virus, the mutant virus was 4-fold less fit than the WT virus.
Collapse
|
11
|
Gopalakrishnan S, Montazeri H, Menz S, Beerenwinkel N, Huisinga W. Estimating HIV-1 fitness characteristics from cross-sectional genotype data. PLoS Comput Biol 2014; 10:e1003886. [PMID: 25375675 PMCID: PMC4222584 DOI: 10.1371/journal.pcbi.1003886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/26/2014] [Indexed: 12/31/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy (HAART) in the management of human immunodeficiency virus (HIV)-1 infection, virological failure due to drug resistance development remains a major challenge. Resistant mutants display reduced drug susceptibilities, but in the absence of drug, they generally have a lower fitness than the wild type, owing to a mutation-incurred cost. The interaction between these fitness costs and drug resistance dictates the appearance of mutants and influences viral suppression and therapeutic success. Assessing in vivo viral fitness is a challenging task and yet one that has significant clinical relevance. Here, we present a new computational modelling approach for estimating viral fitness that relies on common sparse cross-sectional clinical data by combining statistical approaches to learn drug-specific mutational pathways and resistance factors with viral dynamics models to represent the host-virus interaction and actions of drug mechanistically. We estimate in vivo fitness characteristics of mutant genotypes for two antiretroviral drugs, the reverse transcriptase inhibitor zidovudine (ZDV) and the protease inhibitor indinavir (IDV). Well-known features of HIV-1 fitness landscapes are recovered, both in the absence and presence of drugs. We quantify the complex interplay between fitness costs and resistance by computing selective advantages for different mutants. Our approach extends naturally to multiple drugs and we illustrate this by simulating a dual therapy with ZDV and IDV to assess therapy failure. The combined statistical and dynamical modelling approach may help in dissecting the effects of fitness costs and resistance with the ultimate aim of assisting the choice of salvage therapies after treatment failure. Mutations conferring drug resistance represent major threats to the therapeutic success of highly active antiretroviral therapy (HAART) against human immunodeficiency virus (HIV)-1 infection. Viral mutants differ in their fitness and assessing viral fitness is a challenging task. In this article, we estimate drug-specific mutational pathways by learning from clinical data using statistical techniques and incorporate these into mathematical models of in vivo viral infection dynamics. This approach enables us to estimate mutant fitness characteristics. We illustrate our method by predicting fitness characteristics of mutant genotypes for two different antiretroviral therapies with the drugs zidovudine and indinavir. We recover several established features of mutant fitnesses and quantify fitness characteristics both in the absence and presence of drugs. Our model extends naturally to multiple drugs and we illustrate this by simulating a dual therapy with ZDV and IDV to assess therapy failure. Additionally, our modelling approach relies only on cross-sectional clinical data. We believe that such an approach is a highly valuable tool in assisting the choice of salvage therapies after treatment failure.
Collapse
Affiliation(s)
- Sathej Gopalakrishnan
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Graduate Research Training Program PharMetrX: Pharmacometrics & Computational Disease Modelling, Free University of Berlin and University of Potsdam, Berlin/Potsdam, Germany
| | - Hesam Montazeri
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Stephan Menz
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
- * E-mail: (NB); (WH)
| | - Wilhelm Huisinga
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
- * E-mail: (NB); (WH)
| |
Collapse
|
12
|
The route of HIV escape from immune response targeting multiple sites is determined by the cost-benefit tradeoff of escape mutations. PLoS Comput Biol 2014; 10:e1003878. [PMID: 25356981 PMCID: PMC4214571 DOI: 10.1371/journal.pcbi.1003878] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 08/21/2014] [Indexed: 12/20/2022] Open
Abstract
Cytotoxic T lymphocytes (CTL) are a major factor in the control of HIV replication. CTL arise in acute infection, causing escape mutations to spread rapidly through the population of infected cells. As a result, the virus develops partial resistance to the immune response. The factors controlling the order of mutating epitope sites are currently unknown and would provide a valuable tool for predicting conserved epitopes. In this work, we adapt a well-established mathematical model of HIV evolution under dynamical selection pressure from multiple CTL clones to include partial impairment of CTL recognition, , as well as cost to viral replication, . The process of escape is described in terms of the cost-benefit tradeoff of escape mutations and predicts a trajectory in the cost-benefit plane connecting sequentially escaped sites, which moves from high recognition loss/low fitness cost to low recognition loss/high fitness cost and has a larger slope for early escapes than for late escapes. The slope of the trajectory offers an interpretation of positive correlation between fitness costs and HLA binding impairment to HLA-A molecules and a protective subset of HLA-B molecules that was observed for clinically relevant escape mutations in the Pol gene. We estimate the value of from published experimental studies to be in the range (0.01–0.86) and show that the assumption of complete recognition loss () leads to an overestimate of mutation cost. Our analysis offers a consistent interpretation of the commonly observed pattern of escape, in which several escape mutations are observed transiently in an epitope. This non-nested pattern is a combined effect of temporal changes in selection pressure and partial recognition loss. We conclude that partial recognition loss is as important as fitness loss for predicting the order of escapes and, ultimately, for predicting conserved epitopes that can be targeted by vaccines. Like many viruses, HIV has evolved mechanisms to evade the host immune response. As early as a few weeks after infection is initiated, mutations appear in the viral genome that reduce the ability of cytotoxic T lymphocytes (CTL) to control virus replication. However, of the many mutations in the viral genome that could potentially mediate viral escape from the CTL response, a specific subset are typically observed. This suggests that some mutations either entail too high a fitness cost for the virus, or are relatively inefficient escape mutations. A successful vaccine would target the CTL response to these regions in such a way that escape would not be possible. We use a computational model of HIV infection in order to study the factors that determine whether a given escape mutation will occur, how long it will be maintained in the population, and how these changes in the viral genome will affect the CTL response. Our analysis highlights the important role of partial recognition loss conferred by a mutation in producing the complex dynamics of escape that are observed during the course of infection.
Collapse
|
13
|
Contribution of human immunodeficiency virus type 1 minority variants to reduced drug susceptibility in patients on an integrase strand transfer inhibitor-based therapy. PLoS One 2014; 9:e104512. [PMID: 25110880 PMCID: PMC4128663 DOI: 10.1371/journal.pone.0104512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/09/2014] [Indexed: 12/13/2022] Open
Abstract
The role of HIV-1 minority variants on transmission, pathogenesis, and virologic failure to antiretroviral regimens has been explored; however, most studies of low-level HIV-1 drug-resistant variants have focused in single target regions. Here we used a novel HIV-1 genotypic assay based on deep sequencing, DEEPGEN (Gibson et al 2014 Antimicrob Agents Chemother 58∶2167) to simultaneously analyze the presence of minority variants carrying mutations associated with reduced susceptibility to protease (PR), reverse transcriptase (RT), and integrase strand transfer integrase inhibitors (INSTIs), as well as HIV-1 coreceptor tropism. gag-p2/NCp7/p1/p6/pol-PR/RT/INT and env/C2V3 PCR products were obtained from twelve heavily treatment-experienced patients experiencing virologic failure while participating in a 48-week dose-ranging study of elvitegravir (GS-US-183-0105). Deep sequencing results were compared with (i) virological response to treatment, (ii) genotyping based on population sequencing, (iii) phenotyping data using PhenoSense and VIRALARTS, and (iv) HIV-1 coreceptor tropism based on the phenotypic test VERITROP. Most patients failed the antiretroviral regimen with numerous pre-existing mutations in the PR and RT, and additionally newly acquired INSTI-resistance mutations as determined by population sequencing (mean 9.4, 5.3, and 1.4 PI- RTI-, and INSTI-resistance mutations, respectively). Interestingly, since DEEPGEN allows the accurate detection of amino acid substitutions at frequencies as low as 1% of the population, a series of additional drug resistance mutations were detected by deep sequencing (mean 2.5, 1.5, and 0.9, respectively). The presence of these low-abundance HIV-1 variants was associated with drug susceptibility, replicative fitness, and coreceptor tropism determined using sensitive phenotypic assays, enhancing the overall burden of resistance to all four antiretroviral drug classes. Further longitudinal studies based on deep sequencing tests will help to clarify (i) the potential impact of minority HIV-1 drug resistant variants in response to antiretroviral therapy and (ii) the importance of the detection of HIV minority variants in the clinical practice.
Collapse
|
14
|
A virus-envelope paired competitive assay to study entry efficiency of human immunodeficiency virus type 1 in vitro. J Virol Methods 2014; 205:91-8. [PMID: 24859049 DOI: 10.1016/j.jviromet.2014.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
The efficiency of the human immunodeficiency virus type-1 (HIV-1) to enter cells is defined primarily by amino acid exchanges in the external glycoprotein gp120 and in, especially its highly variable V3 loop region. To study entry efficiency of HIV-1 a competitive viral entry assay was developed, to be comprised of infectious virus as well as soluble gp120 (sgp120) as an entry competitor. Entry of viruses using the coreceptor CXCR4 was reduced by adding CXCR4-tropic sgp120 (X4-sgp120) SF2 or LAV expressed in the baculovirus system or by adding X4-sgp120 from NL-952 and NL-V3A virus mutants produced in a HeLa-P4 cell culture expression system. Adding X4-sgp120 into a CCR5-specific infection assay revealed that X4-sgp120 enhanced the infection of CCR5-tropic virus. Furthermore, the role of the V3 loop N-glycan g15 on entry efficiency was studied using virus mutants and sgp120 with different N-glycosylation and different coreceptor usage. These experiments showed that viral entry of R5-tropic viruses lacking the N-glycan g15 within the V3 loop was inhibited by CCR5-tropic sgp120 harboring the g15 N-glycan. Altogether, the data demonstrate that HIV-1 entry efficiency can be studied easily by using sgp120 as an internal control or by using autologous or heterologous sgp120-virus pairs.
Collapse
|
15
|
Inhibitors of the Human Immunodeficiency Virus Protease. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Ibe S, Fujisaki S, Fujisaki S, Morishita T, Kaneda T. Quantitative SNP-Detection Method for Estimating HIV-1 Replicative Fitness: Application to Protease Inhibitor-Resistant Viruses. Microbiol Immunol 2013; 50:765-72. [PMID: 17053312 DOI: 10.1111/j.1348-0421.2006.tb03852.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have improved the methods for the standard competitive growth assay of human immunodeficiency virus type 1 (HIV-1). The cloning step for the mixed viral population and subsequent genotype analysis for arbitrary numbers of clones were excluded from procedures. Instead, a single nucleotide polymorphism (SNP)-detection step was devised for the determination of viral populations. The quantitative SNP-detection method can rapidly estimate the proportion of wild-type and mutant populations with high reproducibility. Consequently, this method allows manipulation of many samples within a short period. Using this new competitive growth assay, replicative fitness of drug-resistant HIV-1 containing an M46I amino acid mutation in the protease was assessed in the presence or absence of indinavir. Without indinavir, replicative fitness of wild-type HIV-1 surpassed that of M46I-mutated HIV-1, and the fraction of mutated virus was reduced to about 10% at passage #9. In contrast, the fraction of M46I-mutated virus increased to >90% at passage #5 in the presence of 26.4 nM indinavir. Almost identical results were obtained for L90M-mutated HIV-1 with or without saquinavir. HIV-1 can survive under indinavir pressure by acquiring M46I mutation, as with acquisition of the L90M mutation under saquinavir pressure. However, these mutations damage viral replicative fitness under natural conditions without any drugs. Subtle differences between wild-type and mutant viruses are thus easily detected using the improved method.
Collapse
Affiliation(s)
- Shiro Ibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center (Tokai Area Central Hospital for AIDS Treatment and Research), Sannomaru 4-1-1, Naka-ku, Nagoya, Aichi 460-0001, Japan
| | | | | | | | | |
Collapse
|
17
|
The connection domain mutation N348I in HIV-1 reverse transcriptase enhances resistance to etravirine and rilpivirine but restricts the emergence of the E138K resistance mutation by diminishing viral replication capacity. J Virol 2013; 88:1536-47. [PMID: 24227862 DOI: 10.1128/jvi.02904-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Clinical resistance to rilpivirine (RPV), a novel nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI), is associated an E-to-K mutation at position 138 (E138K) in RT together with an M184I/V mutation that confers resistance against emtricitabine (FTC), a nucleoside RT inhibitor (NRTI) that is given together with RPV in therapy. These two mutations can compensate for each other in regard to fitness deficits conferred by each mutation alone, raising the question of why E138K did not arise spontaneously in the clinic following lamivudine (3TC) use, which also selects for the M184I/V mutations. In this context, we have investigated the role of a N348I connection domain mutation that is prevalent in treatment-experienced patients. N348I confers resistance to both the NRTI zidovudine (ZDV) and the NNRTI nevirapine (NVP) and was also found to be associated with M184V and to compensate for deficits associated with the latter mutation. Now, we show that both N348I alone and N348I/M184V can prevent or delay the emergence of E138K under pressure with RPV or a related NNRTI, termed etravirine (ETR). N348I also enhanced levels of resistance conferred by E138K against RPV and ETR by 2.2- and 2.3-fold, respectively. The presence of the N348I or M184V/N348I mutation decreased the replication capacity of E138K virus, and biochemical assays confirmed that N348I, in a background of E138K, impaired RT catalytic efficiency and RNase H activity. These findings help to explain the low viral replication capacity of viruses containing the E138K/N348I mutations and how N348I delayed or prevented the emergence of E138K in patients with M184V-containing viruses.
Collapse
|
18
|
Role of the K101E substitution in HIV-1 reverse transcriptase in resistance to rilpivirine and other nonnucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 2013; 57:5649-57. [PMID: 24002090 DOI: 10.1128/aac.01536-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Resistance to the recently approved nonnucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine (RPV) commonly involves substitutions at positions E138K and K101E in HIV-1 reverse transcriptase (RT), together with an M184I substitution that is associated with resistance to coutilized emtricitabine (FTC). Previous biochemical and virological studies have shown that compensatory interactions between substitutions E138K and M184I can restore enzyme processivity and the viral replication capacity. Structural modeling studies have also shown that disruption of the salt bridge between K101 and E138 can affect RPV binding. The current study was designed to investigate the impact of K101E, alone or in combination with E138K and/or M184I, on drug susceptibility, viral replication capacity, and enzyme function. We show here that K101E can be selected in cell culture by the NNRTIs etravirine (ETR), efavirenz (EFV), and dapivirine (DPV) as well as by RPV. Recombinant RT enzymes and viruses containing K101E, but not E138K, were highly resistant to nevirapine (NVP) and delavirdine (DLV) as well as ETR and RPV, but not EFV. The addition of K101E to E138K slightly enhanced ETR and RPV resistance compared to that obtained with E138K alone but restored susceptibility to NVP and DLV. The K101E substitution can compensate for deficits in viral replication capacity and enzyme processivity associated with M184I, while M184I can compensate for the diminished efficiency of DNA polymerization associated with K101E. The coexistence of K101E and E138K does not impair either viral replication or enzyme fitness. We conclude that K101E can play a significant role in resistance to RPV.
Collapse
|
19
|
Lanxon-Cookson EC, Swain JV, Manocheewa S, Smith RA, Maust B, Kim M, Westfall D, Rolland M, Mullins JI. Factors affecting relative fitness measurements in pairwise competition assays of human immunodeficiency viruses. J Virol Methods 2013; 194:7-13. [PMID: 23933395 DOI: 10.1016/j.jviromet.2013.07.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
Abstract
Cell culture growth competition assays of human immunodeficiency virus type 1 (HIV-1) are used to estimate viral fitness and quantify the impact of mutations conferring drug resistance and immunological escape. A comprehensive study of growth competition assays was conducted and identified experimental parameters that can impact measurements of relative fitness including multiplicity of infection, viral input ratio, number, timing and interval of time points used to evaluate selective outgrowth, and the algorithm for calculating fitness values. An optimized protocol is developed here that is a multi-point growth competition assay that resolves reproducibly small differences in viral fitness. The optimized protocol uses an MOI of 0.005, a consistent ratio of mutant: parental viruses (70:30), and a multipoint [1+s 4,7] algorithm that uses data points within the logarithmic phase of viral growth for assessing fitness differences.
Collapse
Affiliation(s)
- Erinn C Lanxon-Cookson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105-8070, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Resistance mutations outside the integrase coding region have an effect on human immunodeficiency virus replicative fitness but do not affect its susceptibility to integrase strand transfer inhibitors. PLoS One 2013; 8:e65631. [PMID: 23776513 PMCID: PMC3679210 DOI: 10.1371/journal.pone.0065631] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022] Open
Abstract
Most studies describing phenotypic resistance to integrase strand transfer inhibitors have analyzed viruses carrying only patient-derived HIV-1 integrase genes (INT-recombinant viruses). However, to date, many of the patients on INSTI-based treatment regimes, such as raltegravir (RAL), elvitegravir (EVG), and dolutegravir (DTG) are infected with multidrug-resistant HIV-1 strains. Here we analyzed the effect of drug resistance mutations in Gag (p2/NCp7/p1/p6), protease (PR), reverse transcriptase (RT), and integrase (IN) coding regions on susceptibility to INSTIs and viral replicative fitness using a novel HIV-1 phenotyping assay. Initial characterization based on site-directed mutant INSTI-resistant viruses confirmed the effect of a series of INSTI mutations on reduced susceptibility to EVG and RAL and viral replicative fitness (0.6% to 99% relative to the HIV-1NL4-3 control). Two sets of recombinant viruses containing a 3,428-bp gag-p2/NCp7/p1/p6/pol-PR/RT/IN (p2-INT) or a 1,088 bp integrase (INT) patient-derived fragment were constructed from plasma samples obtained from 27 virologic failure patients participating in a 48-week dose-ranging study of elvitegravir, GS-US-183-0105. A strong correlation was observed when susceptibility to EVG and RAL was assayed using p2-INT- vs. INT-recombinant viruses (Pearson coefficient correlation 0.869 and 0.918, P<0.0001 for EVG and RAL, respectively), demonstrating that mutations in the protease and RT have limited effect on susceptibility to these INSTIs. On the other hand, the replicative fitness of viruses harboring drug resistance mutations in PR, RT, and IN was generally impaired compared to viruses carrying only INSTI-resistance mutations. Thus, in the absence of drug pressure, drug resistance mutations in the PR and RT contribute to decrease the replicative fitness of the virus already impaired by mutations in the integrase. The use of recombinant viruses containing most or all HIV-1 regions targeted by antiretroviral drugs might be essential to understand the collective effect of epistatic interactions in multidrug-resistant viruses.
Collapse
|
21
|
Abstract
The most significant advance in the medical management of HIV-1 infection has been the treatment of patients with antiviral drugs, which can suppress HIV-1 replication to undetectable levels. The discovery of HIV-1 as the causative agent of AIDS together with an ever-increasing understanding of the virus replication cycle have been instrumental in this effort by providing researchers with the knowledge and tools required to prosecute drug discovery efforts focused on targeted inhibition with specific pharmacological agents. To date, an arsenal of 24 Food and Drug Administration (FDA)-approved drugs are available for treatment of HIV-1 infections. These drugs are distributed into six distinct classes based on their molecular mechanism and resistance profiles: (1) nucleoside-analog reverse transcriptase inhibitors (NNRTIs), (2) non-nucleoside reverse transcriptase inhibitors (NNRTIs), (3) integrase inhibitors, (4) protease inhibitors (PIs), (5) fusion inhibitors, and (6) coreceptor antagonists. In this article, we will review the basic principles of antiretroviral drug therapy, the mode of drug action, and the factors leading to treatment failure (i.e., drug resistance).
Collapse
Affiliation(s)
- Eric J Arts
- Ugandan CFAR Laboratories, Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
22
|
Abstract
BACKGROUND The AIDS epidemic has spread around the world at an alarming rate. Although the first generation of HIV protease inhibitors, including indinavir, nelfinavir, saquinavir, ritonavir and amprenavir, were initially effective against HIV infection, the fast emerging resistance to these agents has been a substantial and persistent problem in the treatment of AIDS. Attempts to address the resistance issue with 'salvage therapy' consisting of high doses of multiple protease inhibitors have only been moderately successful owing to the high level of cross-resistance and toxicities associated with the protease inhibitors. OBJECTIVE To study the second generation HIV protease inhibitors against resistant virus. METHOD This review highlights new developments achieved by various organizations to address the challenge of high level resistance of current therapies since 2000. CONCLUSION All second generation protease inhibitors used in patients who experienced extensive treatment require ritonavir as a pharmacological boosting agent to increase the drug level in the plasma, but there is toxicity associated with such a practice. Accordingly, there remains a need for new protease inhibitors with improved effectiveness against the resistant viral variants. A third generation protease inhibitor will require no boosting agent while maintaining high potency against resistant virus.
Collapse
Affiliation(s)
- Zhijian Lu
- Merck & Co., Inc., Merck Research Laboratories, Department of Medicinal Chemistry, R800-C307, PO Box 2000, Rahway, NJ 08809, USA +1 732 594 4392 ; +1 732 594 9473 ;
| |
Collapse
|
23
|
Song H, Pavlicek JW, Cai F, Bhattacharya T, Li H, Iyer SS, Bar KJ, Decker JM, Goonetilleke N, Liu MKP, Berg A, Hora B, Drinker MS, Eudailey J, Pickeral J, Moody MA, Ferrari G, McMichael A, Perelson AS, Shaw GM, Hahn BH, Haynes BF, Gao F. Impact of immune escape mutations on HIV-1 fitness in the context of the cognate transmitted/founder genome. Retrovirology 2012; 9:89. [PMID: 23110705 PMCID: PMC3496648 DOI: 10.1186/1742-4690-9-89] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 10/07/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND A modest change in HIV-1 fitness can have a significant impact on viral quasispecies evolution and viral pathogenesis, transmission and disease progression. To determine the impact of immune escape mutations selected by cytotoxic T lymphocytes (CTL) on viral fitness in the context of the cognate transmitted/founder (T/F) genome, we developed a new competitive fitness assay using molecular clones of T/F genomes lacking exogenous genetic markers and a highly sensitive and precise parallel allele-specific sequencing (PASS) method. RESULTS The T/F and mutant viruses were competed in CD4+ T-cell enriched cultures, relative proportions of viruses were assayed after repeated cell-free passage, and fitness costs were estimated by mathematical modeling. Naturally occurring HLA B57-restricted mutations involving the TW10 epitope in Gag and two epitopes in Tat/Rev and Env were assessed independently and together. Compensatory mutations which restored viral replication fitness were also assessed. A principal TW10 escape mutation, T242N, led to a 42% reduction in replication fitness but V247I and G248A mutations in the same epitope restored fitness to wild-type levels. No fitness difference was observed between the T/F and a naturally selected variant carrying the early CTL escape mutation (R355K) in Env and a reversion mutation in the Tat/Rev overlapping region. CONCLUSIONS These findings reveal a broad spectrum of fitness costs to CTL escape mutations in T/F viral genomes, similar to recent findings reported for neutralizing antibody escape mutations, and highlight the extraordinary plasticity and adaptive potential of the HIV-1 genome. Analysis of T/F genomes and their evolved progeny is a powerful approach for assessing the impact of composite mutational events on viral fitness.
Collapse
Affiliation(s)
- Hongshuo Song
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey W Pavlicek
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Fangping Cai
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Tanmoy Bhattacharya
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- The Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Hui Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shilpa S Iyer
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katharine J Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julie M Decker
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nilu Goonetilleke
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, OX3 9DS, UK
| | - Michael KP Liu
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, OX3 9DS, UK
| | - Anna Berg
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Mark S Drinker
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Josh Eudailey
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Joy Pickeral
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Andrew McMichael
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, OX3 9DS, UK
| | - Alan S Perelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Feng Gao
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
24
|
Armas Cayarga A, Perea Hernández Y, González González YJ, Dueñas Carrera S, González Pérez I, Robaina Álvarez R. Generation of HIV-1 and Internal Control Transcripts as Standards for an In-House Quantitative Competitive RT-PCR Assay to Determine HIV-1 Viral Load. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2011; 2011:964831. [PMID: 21766036 PMCID: PMC3135052 DOI: 10.4061/2011/964831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/19/2011] [Accepted: 04/27/2011] [Indexed: 11/20/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) viral load is useful for monitoring disease progression in HIV-infected individuals. We generated RNA standards of HIV-1 and internal control (IC) by in vitro transcription and evaluated its performance in a quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. HIV-1 and IC standards were obtained at high RNA concentrations, without DNA contamination. When these transcripts were included as standards in a qRT-PCR assay, it was obtained a good accuracy (±0.5 log(10) unit of the expected results) in the quantification of the HIV-1 RNA international standard and controls. The lower limit detection achieved using these standards was 511.0 IU/mL. A high correlation (r = 0.925) was obtained between the in-house qRT-PCR assay and the NucliSens easyQ HIV-1 test (bioMerieux) for HIV-1 RNA quantitation with clinical samples (N = 14). HIV-1 and IC RNA transcripts, generated in this study, proved to be useful as standards in an in-house qRT-PCR assay for determination of HIV-1 viral load.
Collapse
Affiliation(s)
- Anny Armas Cayarga
- Molecular Biology Department, Centro de InmunoEnsayo (CIE), Calle 134 y Avenida 25 Playa, Apartado Postal 6653, Ciudad de la Habana, CP 11600, Cuba
| | | | | | | | | | | |
Collapse
|
25
|
Novel method for simultaneous quantification of phenotypic resistance to maturation, protease, reverse transcriptase, and integrase HIV inhibitors based on 3'Gag(p2/p7/p1/p6)/PR/RT/INT-recombinant viruses: a useful tool in the multitarget era of antiretroviral therapy. Antimicrob Agents Chemother 2011; 55:3729-42. [PMID: 21628544 DOI: 10.1128/aac.00396-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Twenty-six antiretroviral drugs (ARVs), targeting five different steps in the life cycle of the human immunodeficiency virus type 1 (HIV-1), have been approved for the treatment of HIV-1 infection. Accordingly, HIV-1 phenotypic assays based on common cloning technology currently employ three, or possibly four, different recombinant viruses. Here, we describe a system to assess HIV-1 resistance to all drugs targeting the three viral enzymes as well as viral assembly using a single patient-derived, chimeric virus. Patient-derived p2-INT (gag-p2/NCp7/p1/p6/pol-PR/RT/IN) products were PCR amplified as a single fragment (3,428 bp) or two overlapping fragments (1,657 bp and 2,002 bp) and then recombined into a vector containing a near-full-length HIV-1 genome with the Saccharomyces cerevisiae uracil biosynthesis gene (URA3) replacing the 3,428 bp p2-INT segment (Dudley et al., Biotechniques 46:458-467, 2009). P2-INT-recombinant viruses were employed in drug susceptibility assays to test the activity of protease (PI), nucleoside/nucleotide reverse transcriptase (NRTI), nonnucleoside reverse transcriptase (NNRTI), and integrase strand-transfer (INSTI) inhibitors. Using a single standardized test (ViralARTS HIV), this new technology permits the rapid and automated quantification of phenotypic resistance for all known and candidate antiretroviral drugs targeting all viral enzymes (PR, RT, including polymerase and RNase H activities, and IN), some of the current and potential assembly inhibitors, and any drug targeting Pol or Gag precursor cleavage sites (relevant for PI and maturation inhibitors) This novel assay may be instrumental (i) in the development and clinical assessment of novel ARV drugs and (ii) to monitor patients failing prior complex treatment regimens.
Collapse
|
26
|
Dose-response curve slope is a missing dimension in the analysis of HIV-1 drug resistance. Proc Natl Acad Sci U S A 2011; 108:7613-8. [PMID: 21502494 DOI: 10.1073/pnas.1018360108] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1 drug resistance is a major clinical problem. Resistance is evaluated using in vitro assays measuring the fold change in IC(50) caused by resistance mutations. Antiretroviral drugs are used at concentrations above IC(50), however, and inhibition at clinical concentrations can only be predicted from IC(50) if the shape of the dose-response curve is also known. Curve shape is influenced by cooperative interactions and is described mathematically by the slope parameter or Hill coefficient (m). Implicit in current analysis of resistance is the assumption that mutations shift dose-response curves to the right without affecting the slope. We show here that m is altered by resistance mutations. For reverse transcriptase and fusion inhibitors, single resistance mutations affect both slope and IC(50). For protease inhibitors, single mutations primarily affect slope. For integrase inhibitors, only IC(50) is affected. Thus, there are fundamental pharmacodynamic differences in resistance to different drug classes. Instantaneous inhibitory potential (IIP), the log inhibition of single-round infectivity at clinical concentrations, takes into account both slope and IC(50), and thus provides a direct measure of the reduction in susceptibility produced by mutations and the residual activity of drugs against resistant viruses. The standard measure, fold change in IC(50), does not correlate well with changes in IIP when mutations alter slope. These results challenge a fundamental assumption underlying current analysis of HIV-1 drug resistance and suggest that a more complete understanding of how resistance mutations reduce antiviral activity requires consideration of a previously ignored parameter, the dose-response curve slope.
Collapse
|
27
|
Selhorst P, Vazquez AC, Terrazas-Aranda K, Michiels J, Vereecken K, Heyndrickx L, Weber J, Quiñones-Mateu ME, Ariën KK, Vanham G. Human immunodeficiency virus type 1 resistance or cross-resistance to nonnucleoside reverse transcriptase inhibitors currently under development as microbicides. Antimicrob Agents Chemother 2011; 55:1403-13. [PMID: 21282453 PMCID: PMC3067143 DOI: 10.1128/aac.01426-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 11/29/2010] [Accepted: 01/19/2011] [Indexed: 11/20/2022] Open
Abstract
Microbicides based on nonnucleoside reverse transcriptase inhibitors (NNRTIs) are currently being developed to protect women from HIV acquisition through sexual contact. However, the large-scale introduction of these products raises two major concerns. First, when these microbicides are used by undiagnosed HIV-positive women, they could potentially select for viral resistance, which may compromise subsequent therapeutic options. Second, NNRTI-based microbicides that are inactive against NNRTI-resistant strains might promote the selective transmission of these viruses. In order to address these concerns, drug resistance was selected in vitro by the serial passage of three viral isolates from subtypes B and C and CRF02_AG (a circulating recombinant form) in activated peripheral blood mononuclear cells (PBMCs) under conditions of increasing concentrations of three NNRTIs (i.e., TMC120, UC781, and MIV-160) that are currently being developed as candidate microbicides. TMC120 and MIV-160 displayed a high genetic barrier to resistance development, whereas resistance to UC781 emerged rapidly, similarly to efavirenz and nevirapine. Phenotypically, the selected viruses appeared to be highly cross-resistant to current first-line therapeutic NNRTIs (i.e., delavirdine, nevirapine, and efavirenz), although they retained some susceptibility to the more recently developed NNRTIs lersivirine and etravirine. The ability of UC781, TMC120, and MIV-160 to inhibit the in vitro-selected NNRTI-resistant viruses was also limited, although residual activity could be observed for the candidate microbicide NNRTI MIV-170. Interestingly, only four p2/p7/p1/p6/PR/RT/INT recombinant NNRTI-resistant viruses (i.e., TMC120-resistant VI829, EFV-resistant VI829, MIV-160-resistant VI829, and EFV-resistant MP568) showed impairments in replicative fitness. Overall, these in vitro analyses demonstrate that due to potential cross-resistance, the large-scale introduction of single-NNRTI-based microbicides should be considered with caution.
Collapse
Affiliation(s)
- Philippe Selhorst
- Department of Microbiology, Virology Unit, Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Drug susceptibility of human immunodeficiency virus type 1-derived pseudoviruses from treatment-experienced patients to protease inhibitors and reverse transcriptase inhibitors, using a modified single-round assay. J Clin Virol 2010; 50:19-25. [PMID: 20970373 DOI: 10.1016/j.jcv.2010.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 11/22/2022]
Abstract
BACKGROUND Genotypic drug resistance assay has been the only method available to provide information related to drug resistance in South Korea since 1999. Phenotypic assay is also a useful method to predict a patient's state related to antiretroviral drug resistance. However, commercial systems and methods for phenotyping have not been introduced into South Korea. OBJECTIVES To establish and apply modified phenotypic drug susceptibility assay using treatment-experienced patients' derived HIV-1 in South Korea. STUDY DESIGN The genotypic drug resistance and phenotypic drug susceptibility of two different methods, Stanford HIV Drug Resistance Database (Stanford DB) and modified phenotypic drug susceptibility assay were compared especially focused on the HIV-1 protease (PR) and reverse transcriptase (RT) sequences. RESULTS There was some discordance in comparing drug susceptibility results (a modified drug susceptibility assay) with the predicted genotypic drug resistance (Stanford DB). Phenotypic drug resistance showed the following order for pseudoviruses from treatment-experienced patients infected with HIV/AIDS: Efavirenz (EFV, 21 to 1,319-fold change), Lamivudine (3TC, 31 to >189-fold change), Indinavir sulfate (IDV, 26 to 63-fold change), Amprenavir (APV, 4 to 35-fold change) and Zidovudine (AZT, 20 to 634-fold change). For patient KRC3221, the AZT-related phenotypic drug resistance was the greatest, with 634-fold change compared with the wild type. CONCLUSIONS Application of this modified phenotypic drug susceptibility assay is expected to help in predicting drug resistance as a guideline for clinicians to obtain a combined interpretation among genotyping, phenotyping and effective clinical treatments.
Collapse
|
29
|
Clementi M, Lazzarin A. Human immunodeficiency virus type 1 fitness and tropism: concept, quantification, and clinical relevance. Clin Microbiol Infect 2010; 16:1532-8. [DOI: 10.1111/j.1469-0691.2010.03335.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Xu HT, Oliveira M, Quan Y, Bar-Magen T, Wainberg MA. Differential impact of the HIV-1 non-nucleoside reverse transcriptase inhibitor mutations K103N and M230L on viral replication and enzyme function. J Antimicrob Chemother 2010; 65:2291-9. [DOI: 10.1093/jac/dkq338] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Delineation of the preferences and requirements of the human immunodeficiency virus type 1 dimerization initiation signal by using an in vivo cell-based selection approach. J Virol 2010; 84:6866-75. [PMID: 20410279 DOI: 10.1128/jvi.01930-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 packages two copies of RNA into one particle, and the dimerization initiation signal (DIS) in the viral RNA plays an important role in selecting the copackaged RNA partner. We analyzed the DIS sequences of the circulating HIV-1 isolates in the GenBank database and observed that, in addition to the prevalent GCGCGC, GTGCAC, and GTGCGC sequences, there are many other minor variants. To better understand the requirements for the DIS to carry out its function, we generated a plasmid library containing a subtype B HIV-1 genome with a randomized DIS, infected cells with viruses derived from the library, and monitored the emergence of variants at different time points until 100 days postinfection. We observed rapid loss of viral diversity and found that the selected variants contained palindromes in the DIS. The "wild-type" GCGCGC-containing virus was a major variant, whereas GTGCAC- and GTGCGC-containing viruses were present at low frequencies. Additionally, other 6-nucleotide (nt) palindromic sequences were selected; a major category of the selected variants contained two GC dyads in the center of the palindrome, flanked by a non-GC dyad. Surprisingly, variants with GC-rich 4-nt palindromes were sustained throughout the selection period at significant frequencies ( approximately 12 to 38%); of these, variants containing the CGCGC sequence were observed frequently, suggesting that this sequence has a selection advantage. These results revealed that multiple sequences can fulfill the function of the HIV-1 DIS. A common feature of the selected DIS sequence is a 4- or 6-nt GC-rich palindrome, although not all sequences with these characteristics were selected, suggesting the presence of other unidentified interactions.
Collapse
|
32
|
Weisser H, Altmann A, Sierra S, Incardona F, Struck D, Sönnerborg A, Kaiser R, Zazzi M, Tschochner M, Walter H, Lengauer T. Only slight impact of predicted replicative capacity for therapy response prediction. PLoS One 2010; 5:e9044. [PMID: 20140263 PMCID: PMC2815793 DOI: 10.1371/journal.pone.0009044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 01/15/2010] [Indexed: 12/23/2022] Open
Abstract
Background Replication capacity (RC) of specific HIV isolates is occasionally blamed for unexpected treatment responses. However, the role of viral RC in response to antiretroviral therapy is not yet fully understood. Materials and Methods We developed a method for predicting RC from genotype using support vector machines (SVMs) trained on about 300 genotype-RC pairs. Next, we studied the impact of predicted viral RC (pRC) on the change of viral load (VL) and CD4+ T-cell count (CD4) during the course of therapy on about 3,000 treatment change episodes (TCEs) extracted from the EuResist integrated database. Specifically, linear regression models using either treatment activity scores (TAS), the drug combination, or pRC or any combination of these covariates were trained to predict change in VL and CD4, respectively. Results The SVM models achieved a Spearman correlation (ρ) of 0.54 between measured RC and pRC. The prediction of change in VL (CD4) was best at 180 (360) days, reaching a correlation of ρ = 0.45 (ρ = 0.27). In general, pRC was inversely correlated to drug resistance at treatment start (on average ρ = −0.38). Inclusion of pRC in the linear regression models significantly improved prediction of virological response to treatment based either on the drug combination or on the TAS (t-test; p-values range from 0.0247 to 4 10−6) but not for the model using both TAS and drug combination. For predicting the change in CD4 the improvement derived from inclusion of pRC was not significant. Conclusion Viral RC could be predicted from genotype with moderate accuracy and could slightly improve prediction of virological treatment response. However, the observed improvement could simply be a consequence of the significant correlation between pRC and drug resistance.
Collapse
Affiliation(s)
- Hendrik Weisser
- Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | - André Altmann
- Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
- * E-mail:
| | - Saleta Sierra
- Institute of Virology, University of Cologne, Cologne, Germany
| | | | - Daniel Struck
- Retrovirology Laboratory, CRP-Santé, Strassen, Luxembourg
| | - Anders Sönnerborg
- Department of Medicine, Division of Infectious Diseases, Karolinska Institute, Stockholm, Sweden
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Maurizio Zazzi
- Department of Molecular Biology, University of Siena, Siena, Italy
| | - Monika Tschochner
- Institute of Clinical and Molecular Virology, University of Erlangen, Erlangen, Germany
| | - Hauke Walter
- Institute of Clinical and Molecular Virology, University of Erlangen, Erlangen, Germany
| | - Thomas Lengauer
- Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| |
Collapse
|
33
|
Paredes R, Clotet B. Clinical management of HIV-1 resistance. Antiviral Res 2009; 85:245-65. [PMID: 19808056 DOI: 10.1016/j.antiviral.2009.09.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 09/28/2009] [Accepted: 09/30/2009] [Indexed: 11/18/2022]
Abstract
Antiretroviral drug resistance is a fundamental survival strategy for the virus that stems from its vast capacity to generate diversity. With the recent availability of new ARV drugs and classes, it is now possible to prescribe fully active ART to most HIV-infected subjects and achieve viral suppression even in those with multidrug-resistant HIV. It is uncertain, however, if this scenario will endure. Given that ART must be given for life, and new compounds other than second-generation integrase inhibitors may not reach the clinic soon, all efforts must be done to avoid the development of resistance to the new agents. Here, we discuss relevant aspects for the clinical management of antiretroviral drug resistance, leaving detailed explanations of mechanisms and mutation patterns to other articles in this issue. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, vol. 85, issue 1, 2010.
Collapse
Affiliation(s)
- Roger Paredes
- Institut de Recerca de SIDA - irsiCaixa & Fundació Lluita contra SIDA, Servei de Medicina Interna, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Catalonia, Spain.
| | | |
Collapse
|
34
|
Mathematical analysis of a two strain HIV/AIDS model with antiretroviral treatment. Acta Biotheor 2009; 57:361-81. [PMID: 19357968 DOI: 10.1007/s10441-009-9080-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 03/26/2009] [Indexed: 10/20/2022]
Abstract
A two strain HIV/AIDS model with treatment which allows AIDS patients with sensitive HIV-strain to undergo amelioration is presented as a system of non-linear ordinary differential equations. The disease-free equilibrium is shown to be globally asymptotically stable when the associated epidemic threshold known as the basic reproduction number for the model is less than unity. The centre manifold theory is used to show that the sensitive HIV-strain only and resistant HIV-strain only endemic equilibria are locally asymptotically stable when the associated reproduction numbers are greater than unity. Qualitative analysis of the model including positivity, boundedness and persistence of solutions are presented. The model is numerically analysed to assess the effects of treatment with amelioration on the dynamics of a two strain HIV/AIDS model. Numerical simulations of the model show that the two strains co-exist whenever the reproduction numbers exceed unity. Further, treatment with amelioration may result in an increase in the total number of infective individuals (asymptomatic) but results in a decrease in the number of AIDS patients. Further, analysis of the reproduction numbers show that antiretroviral resistance increases with increase in antiretroviral use.
Collapse
|
35
|
Kristiansen TB, Pedersen AG, Eugen-Olsen J, Katzenstein TL, Lundgren JD. Genetic evolution of HIV in patients remaining on a stable HAART regimen despite insufficient viral suppression. ACTA ACUST UNITED AC 2009; 37:890-901. [PMID: 16308226 DOI: 10.1080/00365540500333491] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Our objective was to investigate whether steadily increasing resistance levels are inevitable in the course of a failing but unchanged Highly Active Antiretroviral Therapy (HAART) regimen. Patients having an unchanged HAART regimen and a good CD4 response (100 cells/microl above nadir) despite consistent HIV-RNA levels above 200 copies/ml were included in the study. The study period spanned at least 12 months and included 47 plasma samples from 17 patients that were sequenced and analysed with respect to evolutionary changes. At inclusion, the median CD4 count was 300 cells/ml (inter-quartile range (IQR): 231-380) and the median HIV-RNA was 2000 copies/ml (IQR: 1301-6090). Reverse transcription inhibitor (RTI) mutations increased 0.5 mutations per y (STD = 0.8 mutations per y), while major protease inhibitor (PI) resistance mutations increased at a rate of 0.2 mutations per y (STD = 0.8 mutations per y) and minor PI resistance mutations increased at a rate of 0.3 mutations per y (STD = 0.7 mutations per y). The rate at which RTI mutations accumulated decreased during the study period (p = 0.035). Interestingly, the rate of mutation accumulation was not associated with HIV-RNA level. The majority of patients kept accumulating new resistance mutations. However, 3 out of 17 patients with viral failure were caught in an apparent mutational deadlock, thus the development of additional resistance during a failing HAART is not inevitable. We hypothesize that certain patterns of mutations can cause a mutational deadlock where the evolutionary benefit of further resistance mutation is limited if the patient is kept on a stable HAART regimen.
Collapse
Affiliation(s)
- Thomas B Kristiansen
- Centre for Biological Sequence Analysis, Technical University of Denmark, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
36
|
Choi JY, Kim EJ, Rho HJ, Kim JY, Kwon OK, Lee JH, Koo MJ, Kim SS. Evaluation of the NucliSens EasyQ HIV-1 v1.1 and RealTime HIV-1 kits for quantitation of HIV-1 RNA in plasma. J Virol Methods 2009; 161:7-11. [PMID: 19576640 DOI: 10.1016/j.jviromet.2009.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 01/28/2009] [Accepted: 02/05/2009] [Indexed: 01/06/2023]
Abstract
Human immunodeficiency virus type-1 (HIV-1) RNA viral load is an important biomarker to evaluate the therapeutic efficacy of antiretroviral drugs and to monitor disease progression in HIV-infected individuals. We compared HIV-1 RNA quantitation between two different kits, the NucliSens EasyQ HIV-1 v1.1 (EasyQ, bioMérieux) and RealTime HIV-1 (RealTime, Abbott), using HIV-1 RNA quality control (QC) materials, cell-cultivated viruses, and the plasma samples of 104 patients with HIV. Correlation between the two kits for HIV RNA-1 quantitation with clinical samples was high (R=0.91). Based on results obtained with quality control standards, the reproducibility of the RealTime kit was higher than the EasyQ kit: the viral load value and coefficient of variation of each kit was 4.11+/-0.136 and 3.3% for EasyQ and 3.55+/-0.042 and 1.2% for RealTime, respectively (P<0.002). This is the first comparative analysis of the detection limit and reproducibility of two different quantitation kits using clinical plasma samples from Korean HIV-1-infected patients. It will serve a useful reference to determine correction values for each HIV-1 RNA quantitation kits and to choose an appropriate assay kit for each laboratory.
Collapse
Affiliation(s)
- Ju-yeon Choi
- Division of AIDS, Department of Immunology and Pathology, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
The human immunodeficiency virus type 1 envelope confers higher rates of replicative fitness to perinatally transmitted viruses than to nontransmitted viruses. J Virol 2008; 82:11609-18. [PMID: 18786994 DOI: 10.1128/jvi.00952-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Selection of a minor viral genotype during perinatal transmission of human Immunodeficiency virus type 1 (HIV-1) has been observed, but there is a lack of information on the correlation of the restrictive transmission with biological properties of the virus, such as replicative fitness. Recombinant viruses expressing the enhanced green fluorescent protein or the Discosoma sp. red fluorescent (DsRed2) protein carrying the V1 to V5 regions of env from seven mother-infant pairs (MIPs) infected by subtype C HIV-1 were constructed, and competition assays were carried out to compare the fitness between the transmitted and nontransmitted viruses. Flow cytometry was used to quantify the frequency of infected cells, and the replicative fitness was determined based on a calculation that takes into account replication of competing viruses in a single infection versus dual infections. Transmitted viruses from five MIPs with the mothers chronically infected showed a restrictive env genotype, and all the recombinant viruses carrying the infants' Env had higher replicative fitness than those carrying the Env from the mothers. This growth fitness is lineage specific and can be observed only within the same MIP. In contrast, in two MIPs where the mothers had undergone recent acute infection, the viral Env sequences were similar between the mothers and infants and showed no further restriction in quasispecies during perinatal transmission. The recombinant viruses carrying the Env from the infants' viruses also showed replication fitness similar to those carrying the mothers' Env proteins. Our results suggest that newly transmitted viruses from chronically infected mothers have been selected to have higher replicative fitness to favor transmission, and this advantage is conferred by the V1 to V5 region of Env of the transmitted viruses. This finding has important implications for vaccine design or development of strategies to prevent HIV-1 transmission.
Collapse
|
38
|
Clementi M. Perspectives and opportunities for novel antiviral treatments targeting virus fitness. Clin Microbiol Infect 2008; 14:629-31. [DOI: 10.1111/j.1469-0691.2007.01937.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
HIV-1 reverse transcriptase inhibitor resistance mutations and fitness: a view from the clinic and ex vivo. Virus Res 2008; 134:104-23. [PMID: 18289713 DOI: 10.1016/j.virusres.2007.12.021] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 12/27/2007] [Accepted: 12/28/2007] [Indexed: 01/04/2023]
Abstract
Genetic diversity plays a key role in human immunodeficiency virus (HIV) adaptation, providing a mechanism to escape host immune responses and develop resistance to antiretroviral drugs. This process is driven by the high-mutation rate during DNA synthesis by reverse transcriptase (RT), by the large viral populations, by rapid viral turnover, and by the high-recombination rate. Drugs targeting HIV RT are included in all regimens of highly active antiretroviral therapy (HAART), which helps to reduce the morbidity and mortality of HIV-infected patients. However, the emergence of resistant viruses is a significant obstacle to effective long-term management of HIV infection and AIDS. The increasing complexity of antiretroviral regimens has favored selection of HIV variants harboring multiple drug resistance mutations. Evolution of drug resistance is characterized by severe fitness losses when the drug is not present, which can be partially overcome by compensatory mutations or other adaptive changes that restore replication capacity. Here, we review the impact of mutations conferring resistance to nucleoside and nonnucleoside RT inhibitors on in vitro and in vivo fitness, their involvement in pathogenesis, persistence upon withdrawal of treatment, and transmission. We describe the techniques used to estimate viral fitness, the molecular mechanisms that help to improve the viral fitness of drug-resistant variants, and the clinical implications of viral fitness data, by exploring the potential relationship between plasma viral load, drug resistance, and disease progression.
Collapse
|
40
|
Garcia-Perez J, Perez-Olmeda M, Sanchez-Palomino S, Perez-Romero P, Alcami J. A new strategy based on recombinant viruses for assessing the replication capacity of HIV-1. HIV Med 2008; 9:160-71. [PMID: 18217999 DOI: 10.1111/j.1468-1293.2007.00540.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE In heavily pretreated patients, resistance mutations arise in both protease (PR) and reverse transcriptase (RT) sequences; however, the relative impact of PR and RT mutations on viral fitness cannot be evaluated with the majority of systems. To address this issue we have developed a model based on recombinant viruses (RVs) that allows the analysis of the replication capacity (RC) of viral populations in which PR and RT are cloned either in combination or separately. METHODS RVs were generated for full-length polymerase (pol) gene, PR or RT sequences from nine naïve and 14 heavily pretreated HIV-infected patients in therapeutic failure. The relative RC was assessed by comparing luciferase activity between mutant RV and wild-type (wt) isolates. RESULTS A strong decrease (>60%) in the RC of the pol RV population was observed in the 14 heavily pretreated patients as compared with the wt RVs. The analysis of PR and RT RVs from these patients showed that the decrease in RC was mainly attributable to PR sequences in three of these 14 patients and to RT sequences in seven of these patients. In the four remaining patients, PR and RT sequences independently reduced the RC of the RVs to similar extents. CONCLUSIONS Different patterns of mutations in either PR or RT have a strong impact on RC in highly experienced HIV-infected patients.
Collapse
Affiliation(s)
- J Garcia-Perez
- AIDS Immunopathology Unit, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | |
Collapse
|
41
|
Quiñones-Mateu ME, Moore-Dudley DM, Jegede O, Weber J, J Arts E. Viral drug resistance and fitness. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:257-96. [PMID: 18086415 DOI: 10.1016/s1054-3589(07)56009-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Relative replication capacity and selective advantage profiles of protease inhibitor-resistant hepatitis C virus (HCV) NS3 protease mutants in the HCV genotype 1b replicon system. Antimicrob Agents Chemother 2007; 52:1101-10. [PMID: 18086851 DOI: 10.1128/aac.01149-07] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We characterized the selective advantage profiles of a panel of hepatitis C virus (HCV) NS3 protease mutants with three HCV protease inhibitors (PIs), BILN-2061, ITMN-191, and VX-950, using a genotype 1b HCV replicon system. Selective advantage curves were generated by a novel mathematical method that factors in the degree of drug susceptibility provided by the mutation, the base-level replication capacity of the mutant in the absence of drugs, and the overall viral replication levels as a function of drug concentration. Most of the mutants showed significantly increased selective advantages over the wild-type species upon drug treatment. Each drug is associated with unique selective advantage profiles that reflect its antiviral activity and mutant susceptibility. Five mutants (R155K/Q, A156T, and D168A/V) showed significant levels of selective advantage after treatment with >10 nM ( approximately 7 times the wild-type 50% effective concentration [EC50]) of BILN-2061. R155K displayed dominant levels of selective advantage over the other mutants upon treatment with ITMN-191 over a broad range of concentrations. Upon VX-950 treatment, various mutants (A156T, A156S, R155K, T54A, V170A, V36M/R155K, and R155Q) exhibited high levels of selective advantage in different drug concentration ranges, with A156T and A156S being the dominant mutants at >3 microM ( approximately 10 times the wild-type EC50) of VX-950. This method provides more accurate estimates of the behavior of various mutants under drug pressure than replication capacity analysis. We noted that the R155K mutant shows reduced susceptibility to all three PIs and significant selective advantage, raising concern over the potential emergence of R155K as a multidrug-resistant, highly fit mutant in HCV patients treated with PIs.
Collapse
|
43
|
Anastassopoulou CG, Marozsan AJ, Matet A, Snyder AD, Arts EJ, Kuhmann SE, Moore JP. Escape of HIV-1 from a small molecule CCR5 inhibitor is not associated with a fitness loss. PLoS Pathog 2007; 3:e79. [PMID: 17542646 PMCID: PMC1885273 DOI: 10.1371/journal.ppat.0030079] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 04/18/2007] [Indexed: 11/19/2022] Open
Abstract
Fitness is a parameter used to quantify how well an organism adapts to its environment; in the present study, fitness is a measure of how well strains of human immunodeficiency virus type 1 (HIV-1) replicate in tissue culture. When HIV-1 develops resistance in vitro or in vivo to antiretroviral drugs such as reverse transcriptase or protease inhibitors, its fitness is often impaired. Here, we have investigated whether the development of resistance in vitro to a small molecule CCR5 inhibitor, AD101, has an associated fitness cost. To do this, we developed a growth-competition assay involving dual infections with molecularly cloned viruses that are essentially isogenic outside the env genes under study. Real-time TaqMan quantitative PCR (QPCR) was used to quantify each competing virus individually via probes specific to different, phenotypically silent target sequences engineered within their vif genes. Head-to-head competition assays of env clones derived from the AD101 escape mutant isolate, the inhibitor-sensitive parental virus, and a passage control virus showed that AD101 resistance was not associated with a fitness loss. This observation is consistent with the retention of the resistant phenotype when the escape mutant was cultured for a total of 20 passages in the absence of the selecting compound. Amino acid substitutions in the V3 region of gp120 that confer complete AD101 resistance cause a fitness loss when introduced into an AD101-sensitive, parental clone; however, in the resistant isolate, changes elsewhere in env that occurred prior to the substitutions within V3 appear to compensate for the adverse effect of the V3 changes on replicative capacity. These in vitro studies may have implications for the development and management of resistance to other CCR5 inhibitors that are being evaluated clinically for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Cleo G Anastassopoulou
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Andre J Marozsan
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Alexandre Matet
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Amy D Snyder
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Eric J Arts
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Shawn E Kuhmann
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail: (SEK); (JPM)
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail: (SEK); (JPM)
| |
Collapse
|
44
|
Voronin Y, Chohan B, Emerman M, Overbaugh J. Primary isolates of human immunodeficiency virus type 1 are usually dominated by the major variants found in blood. J Virol 2007; 81:10232-41. [PMID: 17652386 PMCID: PMC2045467 DOI: 10.1128/jvi.01035-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The isolation of primary strains of human immunodeficiency virus (HIV) is an invaluable tool for assessing properties of viruses replicating in HIV-infected subjects. A common method for obtaining a primary isolate is coculture of peripheral blood mononuclear cells (PBMCs) from HIV-infected subjects with PBMCs from uninfected donors. However, such in vitro expansion may disturb the composition (identities and relative proportions of constituting viral species) of the original viral population. We developed a GeneScan assay to monitor HIV populations by detecting variants that differ in the length of the V1/V2 coding region of the envelope gene. This assay was used to compare proviral DNAs from the PBMCs of eight subjects to the corresponding primary isolates. Major variants found in uncultured PBMCs usually persisted during culturing, while the minor variants frequently disappeared, resulting in a reduction in viral diversity. The outgrowth of the initial (2 to 4 days) viral population appeared to be determined by random events. However, subsequent changes in the population were deterministic, and as a result, the compositions of primary isolates from parallel cultures were often very similar. For two of three subjects studied, the source of HIV-negative PBMCs had little effect on the composition of primary isolates, while for the third subject donor-dependent effects were observed. Overall, our results show that most primary isolates accurately represent the major viruses found in a subject's blood and that rapid population-based genotyping methods are useful for detecting isolates with perturbed viral populations.
Collapse
Affiliation(s)
- Yegor Voronin
- Division of Human Biology, Mail Stop C2-023, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109-1024, USA
| | | | | | | |
Collapse
|
45
|
Lalonde MS, Troyer RM, Syed AR, Bulime S, Demers K, Bajunirwe F, Arts EJ. Sensitive oligonucleotide ligation assay for low-level detection of nevirapine resistance mutations in human immunodeficiency virus type 1 quasispecies. J Clin Microbiol 2007; 45:2604-15. [PMID: 17567789 PMCID: PMC1951259 DOI: 10.1128/jcm.00431-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study has adapted the oligonucleotide ligation assay (OLA) to probe for low-level nevirapine (NVP) resistance mutations K103N and Y181C in the human immunodeficiency virus type 1 (HIV-1) population of infected mother-infant pairs from Uganda. When NVP is used to prevent perinatal transmission, NVP-resistant HIV-1 clones may be rapidly selected due to a low barrier for mutation and a relatively high level of fitness (compared to that of other drug-resistant HIV-1 clones). Monitoring for even a low frequency of NVP resistance mutations may help predict the success of subsequent treatment or warrant the use of another regimen to prevent transmission in a subsequent pregnancy. The standard OLA was optimized by using nonstandard bases in oligonucleotides to allow promiscuous base pairing and accommodate significant HIV-1 heterogeneity. Radiolabeled as opposed to fluorescently tagged oligonucleotides increased the sensitivity, whereas alteration of the template, oligonucleotides, salt, and thermostable DNA ligase concentrations increased the specificity for the detection of minority codons. This modified OLA is now capable of detecting mutants with the K103N or the Y181C mutation present in an HIV-1 population at a frequency of approximately 0.4% and is at least 10- to 30-fold more sensitive than the original protocol. A cohort of 19 Ugandan mothers who received NVP treatment perinatally were sampled 6 weeks postdelivery. Ten of 19 HIV-1 DNA samples extracted from peripheral blood mononuclear cells had a detectable K103N (0.5 to 44%) or Y181C (0.8 to 92.5%) mutation, but only one plasma HIV-1 RNA sample had a viral population with the Y181C mutation. These findings suggest that OLA is a robust, sensitive, and specific method for the detection of low-frequency drug resistance mutations in an intrapatient HIV-1 population.
Collapse
Affiliation(s)
- Matthew S Lalonde
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Novella IS, Ebendick-Corpus BE, Zárate S, Miller EL. Emergence of mammalian cell-adapted vesicular stomatitis virus from persistent infections of insect vector cells. J Virol 2007; 81:6664-8. [PMID: 17428845 PMCID: PMC1900099 DOI: 10.1128/jvi.02365-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 04/02/2007] [Indexed: 11/20/2022] Open
Abstract
Arboviruses (arthropod-borne viruses) represent quintessential generalists, with the ability to infect and perform well in multiple hosts. However, antagonistic pleiotropy imposed a cost during the adaptation to persistent replication of vesicular stomatitis virus in sand fly cells and resulted in strains that initially replicated poorly in hamster cells, even when the virus was allowed to replicate periodically in the latter. Once a debilitated strain started replicating continuously in mammalian cells, fitness increased significantly. Fitness recovery did not entail back mutations or compensatory mutations, but instead, we observed the replacement of persistence-adapted genomes by mammalian cell-adapted strains with a full set of new, unrelated sequence changes. These mammalian cell-adapted genomes were present at low frequencies in the populations with a history of persistence for up to a year and quickly became dominant during mammalian infection, but coexistence was not stable in the long term. Periodic acute replication in mammalian cells likely contributed to extending the survival of minority genomes, but these genomes were also found in strictly persistent populations.
Collapse
Affiliation(s)
- Isabel S Novella
- Department of Medical Microbiology and Immunology, Medical University of Ohio, 3055 Arlington Ave., Toledo, OH 43614, USA.
| | | | | | | |
Collapse
|
47
|
Tschochner M, Schwingel E, Thein C, Wittmann S, Paatz C, Walter H. Superiority of infectivity-based over particle-based methods for quantitation of drug resistant HIV-1 as inocula for cell cultures. J Virol Methods 2006; 141:87-96. [PMID: 17196267 DOI: 10.1016/j.jviromet.2006.11.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 11/24/2006] [Accepted: 11/28/2006] [Indexed: 10/01/2022]
Abstract
Performance of phenotypic assays and replication capacity assays require normalization of virus input. Therefore, quantitation of HIV-1 in supernatants to inoculate cell cultures is an important step. Since the gold standard for the determination of infectivity, the tissue culture infectious dose 50% (TCID50) is time-consuming, several other methods are in use. This study evaluated methods for the quantitation of drug resistant viruses in cell culture supernatants. The compared methods were based on the detection of viral structural components like genomic RNA or p24 antigen (CA-p24) (particle-based), the determination of reverse transcriptase (RT) activity, and methods based on the detection of viral infectivity like LTR-induced beta-galactosidase (beta-gal) activity and the TCID50 (infectivity-based). Significant correlations were observed between beta-gal activity and TCID50, and between CA-p24 and viral RNA. RT activity did not correlate with any other method. However, RT activity correlated significantly with infectivity when non-resistant subtype-B isolates were analyzed. In contrast to viral infectivity, CA-p24 exhibited a long half life and accumulated in cell culture, resulting in decreasing ratios of infectious virions to CA-p24 over time. As a consequence, relative replication capacities of drug resistant viruses were only determined reliably if the input virus was normalized according to infectivity. In conclusion, RT activity seems to be feasible for non-resistant subtype-B viruses but may be of limited use for non-B subtypes and for drug resistant viruses. Methods determining infectivity are most suitable for quantitation of cell culture inocula, whereas particle-based assays are more appropriate for quantitation of virus production during an experiment.
Collapse
Affiliation(s)
- Monika Tschochner
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, D-91054 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Issues in the design of trials comparing management strategies for heavily pretreated patients. Curr Opin HIV AIDS 2006; 1:476-81. [PMID: 19372849 DOI: 10.1097/01.coh.0000247388.00862.bb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Strategies for the optimal management of heavily pretreated patients with multiple drug resistance mutations in whom viral suppression is not possible are not well defined. Trials of strategic management approaches (as opposed to testing the effect of one specific drug) in this area have been mainly limited to evaluating treatment interruptions, testing the benefits of multidrug ('mega-highly active antiretroviral therapy') regimens, and evaluating the use of resistance test data for choosing new regimens. RECENT FINDINGS Treatment interruption before the start of a new regimen has been found to be detrimental, in terms of the risk of clinical disease, compared with no interruption. Mega-highly active antiretroviral therapy has not yet convincingly been shown to improve overall outcomes. The use of genotypic resistance testing has been shown to be useful when constructing a new regimen. SUMMARY Several challenges exist in designing future strategic trials in this area. These include the formulation of suitable new strategies which are generalizable across specific drugs and drug classes, the choice of suitable and feasible endpoints, and the incorporation of sufficient flexibility (so that patients are not too constrained to commit to entry) without compromising the ability to answer the question.
Collapse
|
49
|
Chin BS, Choi J, Nam JG, Kee MK, Suh SD, Choi JY, Chu C, Kim SS. Inverse relationship between viral load and genotypic resistance mutations in Korean patients with primary HIV type 1 infections. AIDS Res Hum Retroviruses 2006; 22:1142-7. [PMID: 17147501 DOI: 10.1089/aid.2006.22.1142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The transmission of antiretroviral-resistant HIV-1 strains is associated with suboptimal virological responses to initial antiretroviral therapy. However, certain types of resistance mutations are known to be associated with decreased viral fitness, which confers a lower replication capacity than that of the wild-type virus in the absence of antiretroviral drugs. Therefore, we evaluated the relationship between antiretroviral resistance mutations and viral replication in the primary HIV-1 infection (PHI) period. From January 2002 to March 2005, 52 PHI patients were identified in the Republic of Korea. HIV-1 RNA genotyping was performed, and the resistance mutation score was obtained from the HIV Drug Resistance Database of Stanford University. We defined the sum of the average resistance mutation scores (SARMS) for each antiretroviral drug class as a measure of the degree of resistance of any specific strain. The overall mean SARMS was 2.00 +/- 2.74, and the annual mean did not change significantly during the study period. No critical resistance mutation gene was identified in the study group. The SARMS showed a weak negative correlation with the viral load log10 during PHI, but without statistical significance (r = -0.274, p = 0.051). But the mean SARMS of patients with a viral load exceeding 100,000 copies/ml was significantly lower than that of patients with a viral load of less than 100,000 copies/ml (p = 0.03). Evaluation of the potency of antiretroviral resistance revealed a weak negative correlation with viral replication in the PHI period. This could be one reason why the transmission of resistant strains in PHI patients is not increasing significantly despite the widespread use of highly active antiretroviral therapy (HAART).
Collapse
Affiliation(s)
- Bum Sik Chin
- Division of AIDS, Center for Immunology and Pathology, National Institute of Health, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Weber J, Weberova J, Carobene M, Mirza M, Martinez-Picado J, Kazanjian P, Quiñones-Mateu ME. Use of a novel assay based on intact recombinant viruses expressing green (EGFP) or red (DsRed2) fluorescent proteins to examine the contribution of pol and env genes to overall HIV-1 replicative fitness. J Virol Methods 2006; 136:102-17. [PMID: 16690137 DOI: 10.1016/j.jviromet.2006.04.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/31/2006] [Accepted: 04/04/2006] [Indexed: 12/21/2022]
Abstract
Multiple studies have described a reduction in the replicative fitness of HIV-1 isolates harboring mutations that confer resistance to antiretroviral drugs. Contradictory results, however, have been obtained depending on the methodology used in each study (Quinones-Mateu, M.E., Arts, E.J., 2002. Fitness of drug resistant HIV-I: methodology and clinical implications. Drug Resist. Update 5, 224-233), affecting our understanding of the potential relationship of viral replicative fitness with HIV-1 disease. It has been demonstrated previously that both pol and env genes play a major role in HIV-1 replicative fitness of clinical isolates. Therefore, measuring clinically relevant replicative fitness using recombinant viruses where a single mutation and/or viral gene have been introduced does not seem like a reasonable approach in this era of multi-target antiretroviral therapy. A novel method was developed to measure HIV-1 replicative fitness based on recombinant viruses expressing the enhanced green fluorescent (EGFP) or the Discosoma sp. red fluorescent (DsRed2) proteins in a HIV-1NL4-3 backbone. Contrary to previous designs to analyze HIV-1 fitness, these replication competent viruses were created in an intact viral genetic background (without deleting or affecting the expression of any viral gene). This new system was used to evaluate the contribution of drug-resistance mutations in the pol and env genes to overall viral replicative fitness (in the presence and absence of drug pressure) using direct growth competition experiments. Mutations in pol showed a stronger effect on HIV-1 replicative fitness than mutations in the env gene associated with resistance to enfuvirtide, corroborating the plasticity of the later gene to accept mutations and the sensibility of the protease and reverse transcriptase enzymes to drug-associated primary mutations. In conclusion, a new protocol was used to measure HIV-1 replicative fitness in either the presence or absence of antiretroviral drugs, which may be used as a high-throughput assay to help us understand the clinical significance of viral fitness.
Collapse
Affiliation(s)
- Jan Weber
- Department of Molecular Genetics, Section of Virology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|