1
|
Zebosi B, Vollbrecht E, Best NB. Brassinosteroid biosynthesis and signaling: Conserved and diversified functions of core genes across multiple plant species. PLANT COMMUNICATIONS 2024; 5:100982. [PMID: 38816993 DOI: 10.1016/j.xplc.2024.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Brassinosteroids (BRs) are important regulators that control myriad aspects of plant growth and development, including biotic and abiotic stress responses, such that modulating BR homeostasis and signaling presents abundant opportunities for plant breeding and crop improvement. Enzymes and other proteins involved in the biosynthesis and signaling of BRs are well understood from molecular genetics and phenotypic analysis in Arabidopsis thaliana; however, knowledge of the molecular functions of these genes in other plant species, especially cereal crop plants, is minimal. In this manuscript, we comprehensively review functional studies of BR genes in Arabidopsis, maize, rice, Setaria, Brachypodium, and soybean to identify conserved and diversified functions across plant species and to highlight cases for which additional research is in order. We performed phylogenetic analysis of gene families involved in the biosynthesis and signaling of BRs and re-analyzed publicly available transcriptomic data. Gene trees coupled with expression data provide a valuable guide to supplement future research on BRs in these important crop species, enabling researchers to identify gene-editing targets for BR-related functional studies.
Collapse
Affiliation(s)
- Brian Zebosi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Erik Vollbrecht
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA.
| | - Norman B Best
- USDA-ARS, Plant Genetics Research Unit, Columbia, MO 65201, USA.
| |
Collapse
|
2
|
Lv LX, Zhang Q, Zhao XF, Wang JX. Identification of COP9 signalosome (CSN) subunits and antiviral function analysis of CSN5 in shrimp. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109679. [PMID: 38844185 DOI: 10.1016/j.fsi.2024.109679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/01/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) typically composing of eight subunits (CSN1-8) mediates the process of deneddylation and deubiquitination. The fifth subunit of COP9 signalosome, CSN5, has special characteristics compared with the other seven subunits, and plays vital roles in the deneddylation activity and diverse cellular processes. However, the role of CSN5 in antiviral immunity is not clear. In this study, we identified 8 subunits (CSN1-8) of COP9 signalosome in shrimp Marsupenaeus japonicus. CSN1-6 were existed in all tested tissues, but CSN7-CSN8 were not detected in hepatopancreas. After WSSV challenged, the expression level of Csn1 to Csn4, and Csn6 to Csn8 were highly decreased, but the expression level of Csn5 was conspicuously increased in shrimp challenged by white spot syndrome virus (WSSV). The CSN5 was recombinantly expressed in Escherichia coli and its polyclonal antibody was prepared. The expression level of CSN5 was conspicuously increased at RNA and protein levels in the shrimp challenged by WSSV. After knockdown of Csn5 by RNA interference, the WSSV replication was obviously increased in shrimp. When injected the recombinant protein of CSN5 with the membrane penetrating peptide into shrimp, WSSV replication was inhibited and the survival rate of shrimp was significantly improved compared with control. We further analyzed the expression of antimicrobial peptides (AMPs) in Csn5-RNAi shrimp, and the results showed that the expression of several AMPs was declined significantly. These results indicate that CSN5 inhibits replication of WSSV via regulating expression of AMPs in shrimp, and the recombinant CSN5 might be used in shrimp aquaculture for the white spot syndrome disease control.
Collapse
Affiliation(s)
- Li-Xia Lv
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Qiang Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
3
|
Zhang JZ, Nguyen WH, Greenwood N, Rose JC, Ong SE, Maly DJ, Baker D. Computationally designed sensors detect endogenous Ras activity and signaling effectors at subcellular resolution. Nat Biotechnol 2024:10.1038/s41587-023-02107-w. [PMID: 38273065 DOI: 10.1038/s41587-023-02107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
The utility of genetically encoded biosensors for sensing the activity of signaling proteins has been hampered by a lack of strategies for matching sensor sensitivity to the physiological concentration range of the target. Here we used computational protein design to generate intracellular sensors of Ras activity (LOCKR-based Sensor for Ras activity (Ras-LOCKR-S)) and proximity labelers of the Ras signaling environment (LOCKR-based, Ras activity-dependent Proximity Labeler (Ras-LOCKR-PL)). These tools allow the detection of endogenous Ras activity and labeling of the surrounding environment at subcellular resolution. Using these sensors in human cancer cell lines, we identified Ras-interacting proteins in oncogenic EML4-Alk granules and found that Src-Associated in Mitosis 68-kDa (SAM68) protein specifically enhances Ras activity in the granules. The ability to subcellularly localize endogenous Ras activity should deepen our understanding of Ras function in health and disease and may suggest potential therapeutic strategies.
Collapse
Affiliation(s)
- Jason Z Zhang
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| | - William H Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Nathan Greenwood
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - John C Rose
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Dustin J Maly
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Dong J, Li Y, Cheng S, Li X, Wei N. COP9 signalosome-mediated deneddylation of CULLIN1 is necessary for SCF EBF1 assembly in Arabidopsis thaliana. Cell Rep 2024; 43:113638. [PMID: 38184853 DOI: 10.1016/j.celrep.2023.113638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
Functions of the SKP1-CUL1-F box (SCF) ubiquitin E3 ligases are essential in plants. The F box proteins (FBPs) are substrate receptors that recruit substrates and assemble an active SCF complex, but the regulatory mechanism underlying the FBPs binding to CUL1 to activate the SCF cycle is not fully understood. We show that Arabidopsis csn1-10 is defective in SCFEBF1-mediated PIF3 degradation during de-etiolation, due to impaired association of EBF1 with CUL1 in csn1-10. EBF1 preferentially associates with un-neddylated CUL1 that is deficient in csn1-10 and the EBF1-CUL1 binding is rescued by the neddylation inhibitor MLN4924. Furthermore, we identify a subset of FBPs with impaired binding to CUL1 in csn1-10, indicating their assembly to form SCF complexes may depend on COP9 signalosome (CSN)-mediated deneddylation of CUL1. This study reports that a key role of CSN-mediated CULLIN deneddylation is to gate the binding of the FBP-substrate module to CUL1, thus initiating the SCF cycle of substrate ubiquitination.
Collapse
Affiliation(s)
- Jie Dong
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shuyang Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xuehui Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang 261325, China
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Zhou H, Sun W, Zou J. Analysis of expression profiles and prognostic value of COP9 signalosome subunits for patients with head and neck squamous cell carcinoma. Oncol Lett 2021; 22:803. [PMID: 34630710 PMCID: PMC8477071 DOI: 10.3892/ol.2021.13064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/14/2021] [Indexed: 11/25/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has been associated with poor prognosis, due to its strong invasive ability and resistance to chemotherapy. Thus, there is an urgent requirement to identify effective biomarkers for the early diagnosis and prognostic evaluation of HNSCC. COP9 signalosome (COPS) regulates numerous cancer-associated biological processes in various malignancies. The aim of the present study was to investigate the association between COPS and HNSCC. The mRNA expression profiles of COPS in HNSCC were analyzed using UALCAN, Oncomine and UCSC Xena databases. The association between overall survival time in patients with HNSCC and the COPS genes was investigated using the Kaplan-Meier plotter database. The CERES score was obtained and evaluated to determine the importance of the COPS genes for survival of the HNSCC cell lines. Functional analysis for Gene Ontology and Gene Set Enrichment Analysis (GSEA) was performed using The Database for Annotation, Visualization and Integrated Discovery and GSEA software, respectively. After knocking down COPS5 and COPS6, cell Counting Kit-8 and wound healing assays were used to detect cell growth and migration of the CAL27 and SCC25 cell lines, respectively. Among the 10 COPS genes examined, most COPS subunits were upregulated in HNSCC samples compared with that in normal tissues, except for COPS9. Increased mRNA expression level of COPS5, COPS6, COPS7B, COPS8 and COPS9 was associated with TNM stage in patients with HNSCC. High mRNA expression level of COPS2, COPS5, COPS6, COPS7A, COPS7B, COPS8 and COPS9 had prognostic significance of patients with HNSCC. Knockdown of COPS5 and COPS6 inhibited cell growth and migration of the CAL27 and SCC25 cell lines. The results from the present study suggested that COPS subunits could be potential biomarkers in patients with HNSCC. COPS5 and COPS6 were important for cell survival and migration of the HNSCC cells.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Oral and Maxillofacial Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Wei Sun
- Department of Oral and Maxillofacial Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Jiaruan Zou
- Department of Oral and Maxillofacial Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
6
|
Hou J, Cui H. CSN6: a promising target for cancer prevention and therapy. Histol Histopathol 2020; 35:645-652. [PMID: 32016946 DOI: 10.14670/hh-18-206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CSN6 has recently received increased attention as a multifunctional protein involved in protein stability. CSN6 plays an important role in controlling cellular proliferation, apoptosis and metastasis, modulating signal transduction, as well as regulating DNA damage and repair. Most studies have demonstrated that CSN6 is significantly upregulated in human malignant tumors such as cervical cancer, papillary thyroid cancer, colorectal cancer, breast cancer, lung adenocarcinoma, and glioblastoma, and its expression is usually correlated with poor prognosis. In this review, we summarize recent available findings regarding the oncogenic role of CSN6 in tumors, and provide a better understanding of CSN6 function at the molecular level and its potential therapeutic implications in combating human cancers.
Collapse
Affiliation(s)
- Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China.
| |
Collapse
|
7
|
Pan Y, Yang H, Claret FX. Emerging roles of Jab1/CSN5 in DNA damage response, DNA repair, and cancer. Cancer Biol Ther 2014; 15:256-62. [PMID: 24495954 DOI: 10.4161/cbt.27823] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Jab1/CSN5 is a multifunctional protein that plays an important role in integrin signaling, cell proliferation, apoptosis, and the regulation of genomic instability and DNA repair. Dysregulation of Jab1/CSN5 activity has been shown to contribute to oncogenesis by functionally inactivating several key negative regulatory proteins and tumor suppressors. In this review, we discuss our current understanding of the relationship between Jab1/CSN5 and DNA damage and summarize recent findings regarding opportunities for and challenges to therapeutic intervention.
Collapse
Affiliation(s)
- Yunbao Pan
- Department of Systems Biology; The University of Texas MD Anderson Cancer Center; Houston, TX USA; Department of Pathophysiology; Zhongshan School of Medicine; Sun Yat-Sen University; Guangzhou, Guangdong, PR China; Breast Tumor Center; Sun Yat-Sen Memorial Hospital; Sun Yat-Sen University; Guangzhou, Guangdong, PR China
| | - Huiling Yang
- Department of Pathophysiology; Zhongshan School of Medicine; Sun Yat-Sen University; Guangzhou, Guangdong, PR China
| | - Francois X Claret
- Department of Systems Biology; The University of Texas MD Anderson Cancer Center; Houston, TX USA; Experimental Therapeutic Academic Program and Cancer Biology Program; The University of Texas Graduate School of Biomedical Sciences at Houston; Houston, TX USA
| |
Collapse
|
8
|
Chen B, Zhao R, Su CH, Linan M, Tseng C, Phan L, Fang L, Yang HY, Yang H, Wang W, Xu X, Jiang N, Cai S, Jin F, Yeung SCJ, Lee MH. CDK inhibitor p57 (Kip2) is negatively regulated by COP9 signalosome subunit 6. Cell Cycle 2012. [PMID: 23187808 DOI: 10.4161/cc.22887] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Subunit 6 of the COP9 signalosome complex, CSN6, is known to be critical to the regulation of the MDM2-p53 axis for cell proliferation and anti-apoptosis, but its many targets remain unclear. Here we show that p57 (Kip2) is a target of CSN6, and that CSN6 is a negative regulator of p57 (Kip2) . CSN6 associates with p57 (Kip2) , and its overexpression can decrease the steady-state expression of p57 (Kip2) ; accordingly, CSN6 deficiency leads to p57 (Kip2) stabilization. Mechanistic studies show that CSN6 associates with p57 (Kip2) and Skp2, a component of the E3 ligase, which, in turn, facilitates Skp2-mediated protein ubiquitination of p57 (Kip2) . Loss of Skp2 compromised CSN6-mediated p57 (Kip2) destabilization, suggesting collaboration between Skp2 and CSN6 in degradation of p57 (Kip2) . CSN6's negative impact on p57 (Kip2) elevation translates into cell growth promotion, cell cycle deregulation and potentiated transformational activity. Significantly, univariate Kaplan-Meier analysis of tumor samples demonstrates that high CSN6 expression or low p57 expression is associated with poor overall survival. These data suggest that CSN6 is an important negative regulator of p57 (Kip2) , and that overexpression of CSN6 in many types of cancer could lead to decreased expression of p57 (Kip2) and result in promoted cancer cell growth.
Collapse
Affiliation(s)
- Bo Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Xue Y, Chen J, Choi HH, Phan L, Chou PC, Zhao R, Yang H, Santiago J, Liu M, Yeung GE, Yeung SCJ, Lee MH. HER2-Akt signaling in regulating COP9 signalsome subunit 6 and p53. Cell Cycle 2012; 11:4181-90. [PMID: 23095642 DOI: 10.4161/cc.22413] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HER2/neu oncogene is frequently overexpressed in various types of cancer, and the (PI3K)-Akt signaling pathway is often activated in HER2-overexpressing cancer cells. CSN6, subunit 6 of the COP9 signalosome complex, is pivotal in regulating MDM2 to destabilize p53, but its upstream regulators remain unclear. Here we show that the HER2-Akt axis is linked to CSN6 regulation, and that Akt is a positive regulator of CSN6. Ectopic expression of Akt can increase the expression of CSN6; accordingly, Akt inhibition leads to CSN6 destabilization. Mechanistic studies show that Akt causes CSN6 phosphorylation at Ser 60, which, in turn, reduces ubiquitin-mediated protein degradation of CSN6. Significantly, Akt's positive impact on CSN6 elevation translates into p53 degradation, potentiating transformational activity and increasing DNA damage. Akt inhibition can attenuate these defects caused by CSN6. These data suggest that Akt is an important positive regulator of CSN6, and that activation of Akt in many types of cancer could lead to abnormal elevation of CSN6 and result in downregulated p53 and increased DNA damage, which promotes cancer cell growth.
Collapse
Affiliation(s)
- Yuwen Xue
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pan Y, Claret FX. Targeting Jab1/CSN5 in nasopharyngeal carcinoma. Cancer Lett 2012; 326:155-60. [PMID: 22867945 DOI: 10.1016/j.canlet.2012.07.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 12/12/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus-associated head and neck cancer that is most common in eastern Asia. Epstein-Barr virus infection, environmental factors, and genetic susceptibility play important roles in NPC pathogenesis. Jab1/CSN5 is a multifunctional protein that participates in affecting integrin signaling, controlling cell proliferation and apoptosis, and regulating genomic instability and DNA repair. Correlation of Jab1/CSN5 overexpression with poor prognosis for NPC provides evidence that it is involved in the tumorigenic process. In this review, we highlight recent advances in studies of the oncogenic role of Jab1/CSN5 in NPC and its potential as a therapeutic target for this cancer.
Collapse
Affiliation(s)
- Yunbao Pan
- Department of Systems Biology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
11
|
Widespread translational control contributes to the regulation of Arabidopsis photomorphogenesis. Mol Syst Biol 2012; 8:566. [PMID: 22252389 PMCID: PMC3296358 DOI: 10.1038/msb.2011.97] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 11/25/2011] [Indexed: 12/14/2022] Open
Abstract
Environmental light regulates and optimizes plant growth and development. Genomic profiling of polysome-associated mRNA reveals that light stimulates dramatic changes in translational regulation, which contribute more to light-induced gene expression changes than transcriptional regulation. ![]()
Translational control has a stronger impact on gene expression regulation than transcriptomic changes during photomorphogenesis in Arabidopsis. Transcriptional and translational regulations have complementary and distinct impacts on biochemical pathways and biological processes. Light-mediated translational control prefers stable and shorter mRNAs. mRNAs with TAGGGTTT in their 5′ untranslated region have higher translatability.
Environmental ‘light' has a vital role in regulating plant growth and development. Transcriptomic profiling has been widely used to examine how light regulates mRNA levels on a genome-wide scale, but the global role of translational regulation in the response to light is unknown. Through a transcriptomic comparison of steady-state and polysome-bound mRNAs, we reveal a clear impact of translational control on thousands of genes, in addition to transcriptomic changes, during photomorphogenesis. Genes encoding ribosomal protein are preferentially regulated at the translational level, which possibly contributes to the enhanced translation efficiency. We also reveal that mRNAs regulated at the translational level share characteristics of longer half-lives and shorter cDNA length, and that transcripts with a cis-element, TAGGGTTT, in their 5′ untranslated region have higher translatability. We report a previously neglected aspect of gene expression regulation during Arabidopsis photomorphogenesis. The identities and molecular signatures associated with mRNAs regulated at the translational level also offer new directions for mechanistic studies of light-triggered translational enhancement in Arabidopsis.
Collapse
|
12
|
Abstract
The constitutive photomorphogenesis 9 signalosome (COP9 or CSN) is an evolutionarily conserved multiprotein complex found in plants and animals. Because of the homology between the COP9 signalosome and the 19S lid complex of the proteosome, COP9 has been postulated to play a role in regulating the degradation of polyubiquitinated proteins. Many tumor suppressor and oncogene products are regulated by ubiquitination- and proteosome-mediated protein degradation. Therefore, it is conceivable that COP9 plays a significant role in cancer, regulating processes relevant to carcinogenesis and cancer progression (e.g., cell cycle control, signal transduction and apoptosis). In mammalian cells, it consists of eight subunits (CSN1 to CSN8). The relevance and importance of some subunits of COP9 to cancer are emerging. However, the mechanistic regulation of each subunit in cancer remains unclear. Among the CSN subunits, CSN5 and CSN6 are the only two that each contain an MPN (Mpr1p and Pad1p N-terminal) domain. The deneddylation activity of an MPN domain toward cullin-RING ubiquitin ligases (CRL) may coordinate CRL-mediated ubiquitination activity. More recent evidence shows that CSN5 and CSN6 are implicated in ubiquitin-mediated proteolysis of important mediators in carcinogenesis and cancer progression. Here, we discuss the mechanisms by which some CSN subunits are involved in cancer to provide a much needed perspective regarding COP9 in cancer research, hoping that these insights will lay the groundwork for cancer intervention.
Collapse
Affiliation(s)
- Mong-Hong Lee
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | | | | |
Collapse
|
13
|
COP9 signalosome subunit 6 stabilizes COP1, which functions as an E3 ubiquitin ligase for 14-3-3σ. Oncogene 2011; 30:4791-801. [PMID: 21625211 DOI: 10.1038/onc.2011.192] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
14-3-3σ, a gene upregulated by p53 in response to DNA damage, exists as part of a positive-feedback loop, which activates p53 and is a human cancer epithelial marker downregulated in various cancer types. 14-3-3σ levels are critical for maintaining p53 activity in response to DNA damage and regulating signal mediators such as Akt. In this study, we identify mammalian constitutive photomorphogenic 1 (COP1) as a novel E3 ubiquitin ligase for targeting 14-3-3σ through proteasomal degradation. We show for the first time that COP9 signalosome subunit 6 (CSN6) associates with COP1 and is involved in 14-3-3σ ubiquitin-mediated degradation. Mechanistic studies show that CSN6 expression leads to stabilization of COP1 through reducing COP1 self-ubiquitination and decelerating COP1's turnover rate. We also show that CSN6-mediated 14-3-3σ ubiquitination is compromised when COP1 is knocked down. Thus, CSN6 mediates 14-3-3σ ubiquitination through enhancing COP1 stability. Subsequently, we show that CSN6 causes 14-3-3σ downregulation, thereby activating Akt and promoting cell survival. Also, CSN6 overexpression leads to increased cell growth, transformation and promotes tumorigenicity. Significantly, 14-3-3σ expression can correct the abnormalities mediated by CSN6 expression. These data suggest that the CSN6-COP1 axis is involved in 14-3-3σ degradation, and that deregulation of this axis will promote cell growth and tumorigenicity.
Collapse
|
14
|
Barrero JM, Talbot MJ, White RG, Jacobsen JV, Gubler F. Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. PLANT PHYSIOLOGY 2009; 150:1006-21. [PMID: 19386806 PMCID: PMC2689963 DOI: 10.1104/pp.109.137901] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 04/17/2009] [Indexed: 05/19/2023]
Abstract
The decay of seed dormancy during after-ripening is not well understood, but elucidation of the mechanisms involved may be important for developing strategies for modifying dormancy in crop species and, for example, addressing the problem of preharvest sprouting in cereals. We have studied the germination characteristics of barley (Hordeum vulgare 'Betzes') embryos, including a description of anatomical changes in the coleorhiza and the enclosed seminal roots. The changes that occur correlate with abscisic acid (ABA) contents of embryo tissues. To understand the molecular mechanisms involved in dormancy loss, we compared the transcriptome of dormant and after-ripened barley embryos using a tissue-specific microarray approach. Our results indicate that in the coleorhiza, ABA catabolism is promoted and ABA sensitivity is reduced and that this is associated with differential regulation by after-ripening of ABA 8'-hydroxylase and of the LIPID PHOSPHATE PHOSPHATASE gene family and ABI3-INTERACTING PROTEIN2, respectively. We also identified other processes, including jasmonate responses, cell wall modification, nitrate and nitrite reduction, mRNA stability, and blue light sensitivity, that were affected by after-ripening in the coleorhiza that may be downstream of ABA signaling. Based on these results, we propose that the coleorhiza plays a major role in causing dormancy by acting as a barrier to root emergence and that after-ripening potentiates molecular changes related to ABA metabolism and sensitivity that ultimately lead to degradation of the coleorhiza, root emergence, and germination.
Collapse
Affiliation(s)
- José M Barrero
- Plant Industry, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australian Capital Territory 2601, Australia
| | | | | | | | | |
Collapse
|
15
|
Dhadi SR, Krom N, Ramakrishna W. Genome-wide comparative analysis of putative bidirectional promoters from rice, Arabidopsis and Populus. Gene 2008; 429:65-73. [PMID: 18973799 DOI: 10.1016/j.gene.2008.09.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 09/19/2008] [Accepted: 09/22/2008] [Indexed: 01/08/2023]
Abstract
A bidirectional promoter can regulate the expression of two flanking genes arranged in a divergent manner. Although reports pertaining to bidirectional promoters on a genomic scale exist in mammals, little progress has been made in plants. In the present study, we performed a computational analysis of this unique class of promoters to identify overrepresented cis-regulatory motifs from three sequenced plant genomes: rice (Oryza sativa), Arabidopsis thaliana, and Populus trichocarpa using the Plant Cis-acting Regulatory DNA Elements (PLACE) and PLANT CARE databases. We describe these overrepresented elements and their possible regulatory mechanisms. We also discuss similarities and differences with human bidirectional promoters. Furthermore, we describe in detail a few coexpressed and evolutionarily conserved divergent gene pairs and their bidirectional promoters. This study provides insights into bidirectional promoters in three plant species, thereby laying a foundation for their experimental analysis.
Collapse
Affiliation(s)
- Surendar Reddy Dhadi
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | | | | |
Collapse
|
16
|
Zhang XC, Chen J, Su CH, Yang HY, Lee MH. Roles for CSN5 in control of p53/MDM2 activities. J Cell Biochem 2008; 103:1219-30. [PMID: 17879958 DOI: 10.1002/jcb.21504] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The 5th subunit of COP9 signalosome (CSN5, also known as Jab1 or COPS5) is implicated in regulating p53 activity and is overexpressed in various tumors. However, the precise roles of CSN5 in p53 network and tumorigenesis are not well characterized. Here we show that CSN5 is a critical regulator of both p53 and MDM2. We show that curcumin, an important inhibitor of CSN-associated kinases, can downregulate not only CSN5 but also MDM2, which results in p53 stabilization. Importantly, CSN5 interacts with p53. CSN5 expression leads to p53 degradation, facilitating MDM2-mediated p53 ubiquitination, and promoting p53 nuclear export. Additionally, CSN5 expression results in stabilization of MDM2 through reducing MDM2 self-ubiquitination and decelerating turnover rate of MDM2. Significantly, we further show that CSN5 antagonizes the transcriptional activity of p53. These results demonstrate that CSN5 is a pivotal regulator for both p53 and MDM2. Our studies may pave the way for targeting CSN5 for anti-cancer drug development.
Collapse
Affiliation(s)
- Xiao-Chun Zhang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
17
|
Ehsan H, Ray WK, Phinney B, Wang X, Huber SC, Clouse SD. Interaction of Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase with a homolog of mammalian TGF-beta receptor interacting protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:251-61. [PMID: 21081278 DOI: 10.1111/j.1365-313x.2005.02448.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Brassinosteroids (BRs) regulate multiple aspects of plant growth and development and require an active BRASSINOSTEROID-INSENSITIVE 1 (BRI1) receptor serine/threonine kinase for hormone perception and signal transduction. In mammals, the transforming growth factor-beta (TGF-beta) family of polypeptides modulate numerous aspects of development and are perceived at the cell surface by a complex of type I and type II TGF-beta receptor serine/threonine kinases. TGF-beta receptor interacting protein (TRIP-1) is a cytoplasmic substrate of the TGF-beta type II receptor kinase and plays a role in TGF-beta signaling. TRIP-1 is a WD domain protein that also functions as an essential subunit of the eIF3 eukaryotic translation initiation factor in animals, yeast and plants. We previously cloned putative TRIP-1 homologs from bean and Arabidopsis and found that transgenic Arabidopsis plants expressing antisense TRIP-1 RNA exhibited a broad range of developmental defects including some morphological characteristics that resemble the phenotype of BR-deficient and -insensitive mutants. We now show that the BRI1 kinase domain phosphorylates Arabidopsis TRIP-1 on three specific sites in vitro (Thr-14, Thr-89 and either Thr-197 or Ser-198). Co-immunoprecipitation experiments using antibodies against TRIP-1, BRI1 and various fusion proteins strongly suggest that TRIP-1 and BRI1 also interact directly in vivo. These findings support a role for TRIP-1 in the molecular mechanisms of BR-regulated plant growth and development, possibly as a cytoplasmic substrate of the BRI1 receptor kinase.
Collapse
Affiliation(s)
- Hashimul Ehsan
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
This paper compares the flexibility in the nexus between phenotype and genotype in plants and animals. These taxa although considered to be fundamentally different are found to be surprisingly similar in the mechanisms used to achieve plasticity. Although non-cognitive behaviour occurs in plants, its range is limited, while morphological and developmental plasticity also occur to a considerable extent in animals. Yet both plants and animals are subject to unique constraints and thus need to find unique solutions to functional problems. A true comparison between the plant and animal phenotype would be a comparison between plants and sessile photosynthesizing colonial invertebrates. Such comparisons are lacking. However, they would provide important insights into the adaptive significance of plasticity in these groups. It is also suggested that a comparison of inflexible traits in these groups would provide an understanding of the constraints, as well as the costs and benefits,of a plastic versus non-plastic phenotype in plants and animals.
Collapse
Affiliation(s)
- Renee M Borges
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
19
|
Stephen JR, Dent KC, Finch‐Savage WE. Molecular responses of
Prunus avium
(wild cherry) embryonic axes to temperatures affecting dormancy. NEW PHYTOLOGIST 2004; 161:401-413. [PMID: 0 DOI: 10.1046/j.1469-8137.2003.00927.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- John R. Stephen
- Present address: Australian Genome Research Facility, PMB1 University of Adelaide, SA 5064, Australia
| | - Katherine C. Dent
- Plant Establishment and Vegetation Management, Horticulture Research International, Wellesbourne, Warwick CV35 9EF, UK
| | - William E. Finch‐Savage
- Plant Establishment and Vegetation Management, Horticulture Research International, Wellesbourne, Warwick CV35 9EF, UK
| |
Collapse
|
20
|
Turan K, Mibayashi M, Sugiyama K, Saito S, Numajiri A, Nagata K. Nuclear MxA proteins form a complex with influenza virus NP and inhibit the transcription of the engineered influenza virus genome. Nucleic Acids Res 2004; 32:643-52. [PMID: 14752052 PMCID: PMC373319 DOI: 10.1093/nar/gkh192] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mx proteins belong to the dynamin superfamily of high molecular weight GTPases and interfere with multiplication of a wide variety of viruses. Earlier studies show that nuclear mouse Mx1 and human MxA designed to be localized in the nucleus inhibit the transcription step of the influenza virus genome. Here we set a transient influenza virus transcription system using luciferase as a reporter gene and cells expressing the three RNA polymerase subunits, PB1, PB2 and PA, and NP. We used this reporter assay system and nuclear-localized MxA proteins to get clues for elucidating the anti-influenza virus activity of MxA. Nuclear-localized VP16-MxA and MxA-TAg NLS strongly interfered with the influenza virus transcription. Over-expression of PB2 led to a slight resumption of the transcription inhibition by nuclear MxA, whereas over-expression of PB1 and PA did not affect the MxA activity. Of interest is that the inhibitory activity of the nuclear MxA was markedly neutralized by over-expression of NP. An NP devoid of its C-terminal region, but containing the N-terminal RNA binding domain, also neutralized the VP16-MxA activity in a dose-dependent manner, whereas an NP lacking the N-terminal region did not affect the VP16-MxA activity. Further, not only VP16-MxA but also the wild-type MxA was found to interact with NP in influenza virus-infected cells. This indicates that the nuclear MxA suppresses the influenza virus transcription by interacting with not only PB2 but also NP.
Collapse
Affiliation(s)
- Kadir Turan
- University of Marmara, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Haydarpasa, Kadikoy, Istanbul 34668, Turkey
| | | | | | | | | | | |
Collapse
|
21
|
Hoareau Alves K, Bochard V, Réty S, Jalinot P. Association of the mammalian proto-oncoprotein Int-6 with the three protein complexes eIF3, COP9 signalosome and 26S proteasome. FEBS Lett 2002; 527:15-21. [PMID: 12220626 DOI: 10.1016/s0014-5793(02)03147-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mammalian Int-6 protein has been characterized as a subunit of the eIF3 translation initiation factor and also as a transforming protein when its C-terminal part is deleted. It includes a protein domain, which also exists in various subunits of eIF3, of the 26S proteasome and of the COP9 signalosome (CSN). By performing a two-hybrid screen with Int-6 as bait, we have isolated subunits belonging to all three complexes, namely eIF3-p110, Rpt4, CSN3 and CSN6. The results of transient expression experiments in COS7 cells confirmed the interaction of Int-6 with Rpt4, CSN3 and CSN6, but also showed that Int-6 is able to bind another subunit of the CSN: CSN7a. Immunoprecipitation experiments performed with the endogenous proteins showed that Int-6 binds the entire CSN, but in low amount, and also that Int-6 is associated with the 26S proteasome. Taken together these results show that the Int-6 protein can bind the three complexes with various efficiencies, possibly exerting a regulatory activity in both protein translation and degradation.
Collapse
Affiliation(s)
- Karine Hoareau Alves
- Laboratoire de Biologie Moléculaire et Cellulaire, UMR5665-Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 46, Allée d'Italie, 69364 Cedex 07, Lyon, France
| | | | | | | |
Collapse
|
22
|
Møller SG, Ingles PJ, Whitelam GC. The cell biology of phytochrome signalling. THE NEW PHYTOLOGIST 2002; 154:553-590. [PMID: 33873456 DOI: 10.1046/j.1469-8137.2002.00419.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phytochrome signal transduction has in the past often been viewed as being a nonspatially separated linear chain of events. However, through a combination of molecular, genetic and cell biological approaches, it is becoming increasingly evident that phytochrome signalling constitutes a highly ordered multidimensional network of events. The discovery that some phytochromes and signalling intermediates show light-dependent nucleo-cytoplasmic partitioning has not only led to the suggestion that early signalling events take place in the nucleus, but also that subcellular localization patterns most probably represent an important signalling control point. Moreover, detailed characterization of signalling intermediates has demonstrated that various branches of the signalling network are spatially separated and take place in different cellular compartments including the nucleus, cytosol, and chloroplasts. In addition, proteasome-mediated degradation of signalling intermediates most probably act in concert with subcellular partitioning events as an integrated checkpoint. An emerging view from this is that phytochrome signalling is separated into several subcellular organelles and that these are interconnected in order to execute accurate responses to changes in the light environment. By integrating the available data, both at the cellular and subcellular level, we should be able to construct a solid foundation for further dissection of phytochrome signal transduction in plants. Contents Summary 553 I. Introduction 554 II. Nucleus vs cytoplasm 556 III. The nucleus 562 IV. The cytoplasm 571 V. Interactions with other signalling pathways 577 VI. Conclusions and the future 582 Acknowledgements 583 References 583.
Collapse
Affiliation(s)
- Simon G Møller
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Patricia J Ingles
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Garry C Whitelam
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| |
Collapse
|
23
|
Gubler F, Chandler PM, White RG, Llewellyn DJ, Jacobsen JV. Gibberellin signaling in barley aleurone cells. Control of SLN1 and GAMYB expression. PLANT PHYSIOLOGY 2002; 129:191-200. [PMID: 12011350 PMCID: PMC155883 DOI: 10.1104/pp.010918] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2001] [Revised: 11/15/2001] [Accepted: 01/20/2002] [Indexed: 05/18/2023]
Abstract
We have previously identified GAMYB, a gibberellin (GA)-regulated transcriptional activator of alpha-amylase gene expression, in aleurone cells of barley (Hordeum vulgare). To examine the regulation of GAMYB expression, we describe the use of nuclear run-on experiments to show that GA causes a 2-fold increase in the rate of GAMYB transcription and that the effect of GA can be blocked by abscisic acid (ABA). To identify GA-signaling components that regulate GAMYB expression, we examined the role of SLN1, a negative regulator of GA signaling in barley. SLN1, which is the product of the Sln1 (Slender1) locus, is necessary for repression of GAMYB in barley aleurone cells. The activity of SLN1 in aleurone cells is regulated posttranslationally. SLN1 protein levels decline rapidly in response to GA before any increase in GAMYB levels. Green fluorescent protein-SLN1 fusion protein was targeted to the nucleus of aleurone protoplasts and disappeared in response to GA. Evidence from a dominant dwarf mutant at Sln1, and from the gse1 mutant (that affects GA "sensitivity"), indicates that GA acts by regulating SLN1 degradation and not translation. Mutation of the DELLA region of SLN1 results in increased protein stability in GA-treated layers, indicating that the DELLA region plays an important role in GA-induced degradation of SLN1. Unlike GA, ABA had no effect on SLN1 stability, confirming that ABA acts downstream of SLN1 to block GA signaling.
Collapse
Affiliation(s)
- Frank Gubler
- Commonwealth Scientific and Industrial Research Organization, Plant Industry, G.P.O. Box 1600, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | | | |
Collapse
|
24
|
Mayeur GL, Hershey JWB. Malignant transformation by the eukaryotic translation initiation factor 3 subunit p48 (eIF3e). FEBS Lett 2002; 514:49-54. [PMID: 11904180 DOI: 10.1016/s0014-5793(02)02307-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Several components of translation, e.g. eIF4E and PKR, are implicated in cancer. The e-subunit (p48) of mammalian initiation factor 3 is encoded by the Int6 gene, a common site for integration of the mouse mammary tumor virus genome, leading to the production of a truncated eukaryotic initiation factor-3e (eIF3e). Stable expression of a truncated eIF3e in NIH 3T3 cells causes malignant transformation by four criteria: foci formation; anchorage independent growth; accelerated growth; and lack of contact inhibition. Stable expression of full-length eIF3e does not cause transformation. The truncated eIF3e also inhibits the onset of apoptosis caused by serum starvation.
Collapse
Affiliation(s)
- Greg L Mayeur
- Department of Biological Chemistry, School of Medicine, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
25
|
Bech-Otschir D, Seeger M, Dubiel W. The COP9 signalosome: at the interface between signal transduction and ubiquitin-dependent proteolysis. J Cell Sci 2002; 115:467-73. [PMID: 11861754 DOI: 10.1242/jcs.115.3.467] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently the COP9 signalosome (CSN) has become a focus of interest for many researchers, because of its function at the interface between signal transduction and ubiquitin-dependent proteolysis. It is required for the proper progression of the cell cycle in Schizosaccharomyces pombe and is essential for development in plants and Drosophila. However, its function in mammalian cells remains obscure. Although the CSN shares structural similarities with the 26S proteasome lid complex (LID), its functions seem to be different from that of the LID. A variety of CSN-specific protein-protein interactions have been described in mammalian cells. However,it is currently unclear how many reflect true functions of the complex. Two activities associated with the CSN have been identified so far: a protein kinase and a deneddylase. The CSN-associated kinase phosphorylates transcription factors, which determines their stability towards the ubiquitin system. The associated deneddylase regulates the activity of specific SCF E3 ubiquitin ligases. The CSN thus appears to be a platform connecting signalling with proteolysis.
Collapse
Affiliation(s)
- Dawadschargal Bech-Otschir
- Division of Molecular Biology, Department of Surgery, Medical Faculty Charité, Humboldt University, Monbijoustrasse 2, 10117 Berlin, Germany
| | | | | |
Collapse
|
26
|
Suh GSB, Poeck B, Chouard T, Oron E, Segal D, Chamovitz DA, Zipursky SL. Drosophila JAB1/CSN5 acts in photoreceptor cells to induce glial cells. Neuron 2002; 33:35-46. [PMID: 11779478 DOI: 10.1016/s0896-6273(01)00576-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Different classes of photoreceptor neurons (R cells) in the Drosophila compound eye form connections in different optic ganglia. The R1-R6 subclass connects to the first optic ganglion, the lamina, and relies upon glial cells as intermediate targets. Conversely, R cells promote glial cell development including migration of glial cells into the target region. Here, we show that the JAB1/CSN5 subunit of the COP9 signalosome complex is expressed in R cells, accumulates in the developing optic lobe neuropil, and through the analysis of a unique set of missense mutations, is required in R cells to induce lamina glial cell migration. In these CSN5 alleles, R1-R6 targeting is disrupted. Genetic analysis of protein null alleles further revealed that the COP9 signalosome is required at an earlier stage of development for R cell differentiation.
Collapse
Affiliation(s)
- Greg S B Suh
- Department of Biological Chemistry, Howard Hughes Medical Institute, The School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Levi BZ, Hashmueli S, Gleit-Kielmanowicz M, Azriel A, Meraro D. ICSBP/IRF-8 transactivation: a tale of protein-protein interaction. J Interferon Cytokine Res 2002; 22:153-60. [PMID: 11846986 DOI: 10.1089/107999002753452764] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interferon (IFN) consensus sequence binding protein (ICSBP) is a member of a family of transcription factors termed IFN regulatory factors (IRF) and is also called IRF-8. Its expression is restricted mainly to cells of the immune system, and it plays a key role in the maturation of macrophages. ICSBP exerts its activity through the formation of different DNA-binding heterocomplexes. The interacting partner dictates a specific DNA recognition sequence, thus rendering ICSBP dual transcriptional activity, that is, repression or activation. Accordingly, such DNA elements were identified at the promoter regions of target genes that manifest macrophage action. A specific module (IRF association domain [IAD]) within ICSBP and a PEST domain located on the interacting partners mediate this association. Thus, ICSBP serves as an excellent prototype, demonstrating how a small subset of transcription factors can regulate gene expression in a spatial, temporal, and delicate tuning through combinatorial protein-protein interactions on different enhanceasomes.
Collapse
Affiliation(s)
- Ben-Zion Levi
- Department of Food Engineering and Biotechnology, Technion-Israel Institute of Technology, Haifa 32,000, Israel
| | | | | | | | | |
Collapse
|
28
|
Campbell DS, Holt CE. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 2001; 32:1013-26. [PMID: 11754834 DOI: 10.1016/s0896-6273(01)00551-7] [Citation(s) in RCA: 586] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Growth cones contain mRNAs, translation machinery, and, as we report here, protein degradation machinery. We show that isolated retinal growth cones immediately lose their ability to turn in a chemotropic gradient of netrin-1 or Sema3A when translation is inhibited. Translation inhibition also prevents Sema3A-induced collapse, while LPA-induced collapse is not affected. Inhibition of proteasome function blocks responses to netrin-1 and LPA but does not affect Sema3A responses. We further demonstrate in isolated growth cones that netrin-1 and Sema3A activate translation initiation factors and stimulate a marked rise in protein synthesis within minutes, while netrin-1 and LPA elicit similar rises in ubiquitin-protein conjugates. These results suggest that guidance molecules steer axon growth by triggering rapid local changes in protein levels in growth cones.
Collapse
Affiliation(s)
- D S Campbell
- Department of Anatomy, University of Cambridge, Downing Street, CB2 3DY, Cambridge, United Kingdom
| | | |
Collapse
|
29
|
Harari-Steinberg O, Ohad I, Chamovitz DA. Dissection of the light signal transduction pathways regulating the two early light-induced protein genes in Arabidopsis. PLANT PHYSIOLOGY 2001; 127:986-997. [PMID: 11706180 DOI: 10.1104/pp.010270] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The expression of light-regulated genes in plants is controlled by different classes of photoreceptors that act through a variety of signaling molecules. During photomorphogenesis, the early light-induced protein (Elip) genes are among the first to be induced. To understand the light signal transduction pathways that regulate Elip expression, the two Elip genes, Elip1 and Elip2, in Arabidopsis were studied, taking advantage of the genetic tools available for studying light signaling in Arabidopsis. Using two independent quantitative reverse transcriptase-PCR techniques, we found that red, far-red, and blue lights positively regulate expression of the Elip genes. Phytochrome A and phytochrome B are involved in this signaling. The cryptochrome or phototropin photoreceptors are not required for blue-light induction of either Elip gene, suggesting the involvement of an additional, unidentified, blue-light receptor. Although the COP9 signalosome, a downstream regulator, is involved in dark repression of both Elips, Elip1 and Elip2 show different expression patterns in the dark. The transcription factor HY5 promotes the light induction of Elip1, but not Elip2. A defect in photosystem II activity in greening of hy5 seedlings may result from the loss of Elip1. Heat shock positively controlled Elip1 and Elip2 in a light-independent fashion. This induction is independent of HY5, indicating that heat shock and light activate transcription of the Elip genes through independent pathways.
Collapse
Affiliation(s)
- O Harari-Steinberg
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
30
|
Nordgård O, Dahle Ø, Andersen TØ, Gabrielsen OS. JAB1/CSN5 interacts with the GAL4 DNA binding domain: a note of caution about two-hybrid interactions. Biochimie 2001; 83:969-71. [PMID: 11728635 DOI: 10.1016/s0300-9084(01)01329-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Jun activation domain binding protein 1 (JAB1) was first identified as an interaction partner and coactivator of c-Jun. Subsequently, it was found to be a subunit of the COP9 signalosome (CSN) and termed CSN subunit 5 (CSN5). This complex regulates light-mediated development in plants and plays an essential role in a variety of organisms. A striking feature of JAB1/CSN5 is its reported interaction with a wide range of proteins and its modulation of their activity or stability. We applied the yeast two-hybrid system to screen for proteins interacting with the DNA-binding domain of the transcription factor c-Myb and found JAB1/CSN5 among the double-positive clones. To our surprise JAB1/CSN5 was shown to interact with the DNA-binding domain of GAL4 alone and had to be rejected as a false positive in the GAL4-based two-hybrid system. This finding emphasizes the necessity of particular caution when JAB1/CSN5 is found in two-hybrid screenings.
Collapse
Affiliation(s)
- O Nordgård
- Department of Biochemistry, University of Oslo, P.O. Box 1041 Blindern, 0316 Oslo, Norway
| | | | | | | |
Collapse
|
31
|
Kim T, Hofmann K, von Arnim AG, Chamovitz DA. PCI complexes: pretty complex interactions in diverse signaling pathways. TRENDS IN PLANT SCIENCE 2001; 6:379-386. [PMID: 11495792 DOI: 10.1016/s1360-1385(01)02015-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Three protein complexes (the proteasome regulatory lid, the COP9 signalosome and eukaryotic translation initiation factor 3) contain protein subunits with a well defined protein domain, the PCI domain. At least two (the COP9 signalosome and the lid) appear to share a common evolutionary origin. Recent advances in our understanding of the structure and function of the three complexes point to intriguing and unanticipated connections between the cellular functions performed by these three protein assemblies, especially between translation initiation and proteolytic protein degradation.
Collapse
Affiliation(s)
- T Kim
- Dept Botany, The University of Tennessee, Knoxville TN 37996-1100, USA
| | | | | | | |
Collapse
|
32
|
Smith CJ, Gallon JR. Living in the real world: how plants perceive their environment. THE NEW PHYTOLOGIST 2001; 151:1-6. [PMID: 33873390 DOI: 10.1046/j.1469-8137.2001.00176.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Chris J Smith
- School of Biological Sciences, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK (tel +44 1792295 378; fax +44 1792295 447 email )
| | - John R Gallon
- School of Biological Sciences, University of Wales, Swansea, Singleton Park, Swansea SA2 8PP, UK (tel +44 1792295376; fax +44 1792295447 email )
| |
Collapse
|
33
|
Affiliation(s)
- C Fankhauser
- Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|
34
|
Gilroy S, Trewavas A. Signal processing and transduction in plant cells: the end of the beginning? Nat Rev Mol Cell Biol 2001; 2:307-14. [PMID: 11283728 DOI: 10.1038/35067109] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Plants have a very different lifestyle to animals, and one might expect that unique molecules and processes would underpin plant-cell signal transduction. But, with a few notable exceptions, the list is remarkably familiar and could have been constructed from animal studies. Wherein, then, does lifestyle specificity emerge?
Collapse
|
35
|
Jiang J, Clouse SD. Expression of a plant gene with sequence similarity to animal TGF-beta receptor interacting protein is regulated by brassinosteroids and required for normal plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 26:35-45. [PMID: 11359608 DOI: 10.1046/j.1365-313x.2001.01007.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Brassinosteroids (BRs) regulate the expression of numerous genes associated with plant development, and require the activity of a Ser/Thr receptor kinase to realize their effects. In animals, the transforming growth factor-beta (TGF-beta) family of peptides acts via Ser/Thr receptor kinases to have a major impact on several pathways involved in animal development and adult homeostasis. TGF-beta receptor-interacting protein (TRIP-1) was previously shown by others to be an intracellular substrate of the TGF-beta type II receptor kinase which plays an important role in TGF-beta signaling. TRIP-1 is a WD-repeat protein that also has a dual role as an essential subunit of the eukaryotic translation initiation factor eIF3 in animals, yeast and plants, thereby revealing a putative link between a developmental signaling pathway and the control of protein translation. In yeast, expression of a TRIP-1 homolog has also been closely associated with cell proliferation and progression through the cell cycle. We report here the novel observation that transcript levels of TRIP-1 homologs in plants are regulated by BR treatment under a variety of conditions, and that transgenic plants expressing antisense TRIP-1 RNA exhibit a broad range of developmental defects, including some that resemble the phenotype of BR-deficient and -insensitive mutants. This correlative evidence suggests that a WD-domain protein with reported dual functions in vertebrates and fungi might mediate some of the molecular mechanisms underlying the regulation of plant growth and development by BRs.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antisense Elements (Genetics)
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Arabidopsis Proteins
- Blotting, Northern
- Brassinosteroids
- Cholestanols/metabolism
- Consensus Sequence
- Eukaryotic Initiation Factor-3
- Fabaceae/genetics
- Fabaceae/growth & development
- Fabaceae/metabolism
- Gene Expression Regulation, Plant
- Molecular Sequence Data
- Plant Growth Regulators/metabolism
- Plant Structures/metabolism
- Plants, Genetically Modified
- Plants, Medicinal
- Plants, Toxic
- Polymerase Chain Reaction
- Protein Structure, Tertiary
- Proteins/genetics
- Proteins/metabolism
- Receptors, Transforming Growth Factor beta/metabolism
- Repetitive Sequences, Amino Acid
- Sequence Homology, Amino Acid
- Steroids, Heterocyclic/metabolism
- Nicotiana/genetics
- Nicotiana/growth & development
- Nicotiana/metabolism
Collapse
Affiliation(s)
- J Jiang
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609, USA
| | | |
Collapse
|
36
|
Abstract
The Jun activating binding protein (JAB1) specifically stabilizes complexes of c-Jun or JunD with AP-1 sites, increasing the specificity of target gene activation by AP-1 proteins. JAB1 is also known as COP9 signalosome subunit 5 (CSN5), which is a component of the COP9 signalosome regulatory complex (CSN). Over the past year, JAB1/CSN5 has been implicated in numerous signaling pathways including those that regulate light signaling in plants, larval development in Drosophila, and integrin signaling, cell cycle control, and steroid hormone signaling in a number of systems. However, the general role of the CSN complex, and the specific role of JAB1/CSN5, still remain obscure. This review attempts to integrate the available data to help explain the role of JAB1/CSN5 and the COP9 signalosome in regulating multiple pathways (in this review, both JAB1 and CSN5 terminologies are used interchangeably, depending on the source material).
Collapse
Affiliation(s)
- D A Chamovitz
- Department of Plant Sciences, Tel Aviv University, Israel.
| | | |
Collapse
|
37
|
Yahalom A, Kim TH, Winter E, Karniol B, von Arnim AG, Chamovitz DA. Arabidopsis eIF3e (INT-6) associates with both eIF3c and the COP9 signalosome subunit CSN7. J Biol Chem 2001; 276:334-40. [PMID: 11029466 DOI: 10.1074/jbc.m006721200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Arabidopsis COP9 signalosome is a multisubunit repressor of photomorphogenesis that is conserved among eukaryotes. This complex may have a general role in development. As a step in dissecting the biochemical mode of action of the COP9 signalosome, we determined the sequence of proteins that copurify with this complex. Here we describe the association between components of the COP9 signalosome (CSN1, CSN7, and CSN8) and two subunits of eukaryotic translation initiation factor 3 (eIF3), eIF3e (p48, known also as INT-6) and eIF3c (p105). To obtain a biochemical marker for Arabidopsis eIF3, we cloned the Arabidopsis ortholog of the eIF3 subunit eIF3b (PRT1). eIF3e coimmunoprecipitated with CSN7, and eIF3c coimmunoprecipitated with eIF3e, eIF3b, CSN8, and CSN1. eIF3e directly interacted with CSN7 and eIF3c. However, eIF3e and eIF3b cofractionated by gel filtration chromatography in a complex that was larger than the COP9 signalosome. Whereas eIF3, as detected through eIF3b, localized solely to the cytoplasm, eIF3e, like CSN7, was also found in the nucleus. This suggests that eIF3e and eIF3c are probably components of multiple complexes and that eIF3e and eIF3c associate with subunits of the COP9 signalosome, even though they are not components of the COP9 signalosome core complex. This interaction may allow for translational control by the COP9 signalosome.
Collapse
Affiliation(s)
- A Yahalom
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|