1
|
Increased Oxidative Stress Tolerance of a Spontaneously Occurring perR Gene Mutation in Streptococcus mutans UA159. J Bacteriol 2021; 203:JB.00535-20. [PMID: 33526613 DOI: 10.1128/jb.00535-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/29/2021] [Indexed: 01/09/2023] Open
Abstract
The ability of bacteria, such as the dental pathogen Streptococcus mutans, to coordinate a response against damage-inducing oxidants is a critical aspect of their pathogenicity. The oxidative stress regulator SpxA1 has been demonstrated to be a major player in the ability of S. mutans to withstand both disulfide and peroxide stresses. While studying spontaneously occurring variants of an S. mutans ΔspxA1 strain, we serendipitously discovered that our S. mutans UA159 host strain bore a single-nucleotide deletion within the coding region of perR, resulting in a premature truncation of the encoded protein. PerR is a metal-dependent transcriptional repressor that senses and responds to peroxide stress such that loss of PerR activity results in activation of oxidative stress responses. To determine the impact of loss of PerR regulation, we obtained a UA159 isolate bearing an intact perR copy and created a clean perR deletion mutant. Our findings indicate that loss of PerR activity results in a strain that is primed to tolerate oxidative stresses in the laboratory setting. Interestingly, RNA deep sequencing (RNA-Seq) and targeted transcriptional expression analyses reveal that PerR offers a minor contribution to the ability of S. mutans to orchestrate a transcriptional response to peroxide stress. Furthermore, we detected loss-of-function perR mutations in two other commonly used laboratory strains of S. mutans, suggesting that this may be not be an uncommon occurrence. This report serves as a cautionary tale regarding the so-called domestication of laboratory strains and advocates for the implementation of more stringent strain authentication practices.IMPORTANCE A resident of the human oral biofilm, Streptococcus mutans is one of the major bacterial pathogens associated with dental caries. This report highlights a spontaneously occurring mutation within the laboratory strain S. mutans UA159 found in the coding region of perR, a gene encoding a transcriptional repressor associated with peroxide tolerance. Though perR mutant strains of S. mutans showed a distinct growth advantage and enhanced tolerance toward H2O2, a ΔperR deletion strain showed a small number of differentially expressed genes compared to the parent strain, suggesting few direct regulatory targets. In addition to characterizing the role of PerR in S. mutans, our findings serve as a warning to laboratory researchers regarding bacterial adaptation to in vitro growth conditions.
Collapse
|
2
|
Fang J, Wan H, Zeng W, Li J, Chen J, Zhou J. Transcriptome Analysis of Gluconobacter oxydans WSH-003 Exposed to Elevated 2-Keto-L-Gulonic Acid Reveals the Responses to Osmotic and Oxidative Stress. Appl Biochem Biotechnol 2020; 193:128-141. [PMID: 32827065 DOI: 10.1007/s12010-020-03405-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/12/2020] [Indexed: 11/24/2022]
Abstract
Industrial production of 2-keto-L-gulonic acid (2-KLG), the precursor of vitamin C, is mainly achieved by a two-step fermentation process carried out by Gluconobacter oxydans, Bacillus, and Ketogulonicigenium. One of the most promising innovations that could replace this complicated two-step fermentation process is the integration of the essential genes for synthesis of 2-KLG into G. oxydans and use of it as the producer. Therefore, determining the tolerance and response of G. oxydans to 2-KLG is a priority for improving the direct production of 2-KLG in this bacterium. In this study, a global view of the gene expression of G. oxydans WSH-003 in response to 2-KLG challenge was investigated by RNA sequencing. A total of 363 genes of G. oxydans that were differentially expressed in response to 2-KLG were uncovered. The results showed that 2-KLG could lead to oxidative stress, osmotic stress, and DNA damage in G. oxydans.
Collapse
Affiliation(s)
- Jun Fang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Hui Wan
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weizhu Zeng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
3
|
In vivo mRNA profiling of uropathogenic Escherichia coli from diverse phylogroups reveals common and group-specific gene expression profiles. mBio 2014; 5:e01075-14. [PMID: 25096872 PMCID: PMC4128348 DOI: 10.1128/mbio.01075-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
mRNA profiling of pathogens during the course of human infections gives detailed information on the expression levels of relevant genes that drive pathogenicity and adaptation and at the same time allows for the delineation of phylogenetic relatedness of pathogens that cause specific diseases. In this study, we used mRNA sequencing to acquire information on the expression of Escherichia coli pathogenicity genes during urinary tract infections (UTI) in humans and to assign the UTI-associated E. coli isolates to different phylogenetic groups. Whereas the in vivo gene expression profiles of the majority of genes were conserved among 21 E. coli strains in the urine of elderly patients suffering from an acute UTI, the specific gene expression profiles of the flexible genomes was diverse and reflected phylogenetic relationships. Furthermore, genes transcribed in vivo relative to laboratory media included well-described virulence factors, small regulatory RNAs, as well as genes not previously linked to bacterial virulence. Knowledge on relevant transcriptional responses that drive pathogenicity and adaptation of isolates to the human host might lead to the introduction of a virulence typing strategy into clinical microbiology, potentially facilitating management and prevention of the disease. Urinary tract infections (UTI) are very common; at least half of all women experience UTI, most of which are caused by pathogenic Escherichia coli strains. In this study, we applied massive parallel cDNA sequencing (RNA-seq) to provide unbiased, deep, and accurate insight into the nature and the dimension of the uropathogenic E. coli gene expression profile during an acute UTI within the human host. This work was undertaken to identify key players in physiological adaptation processes and, hence, potential targets for new infection prevention and therapy interventions specifically aimed at sabotaging bacterial adaptation to the human host.
Collapse
|
4
|
Stevens RH, Moura Martins Lobo dos Santos CD, Zuanazzi D, Accioly Mattos MBD, Ferreira DF, Kachlany SC, Tinoco EM. Prophage induction in lysogenic Aggregatibacter actinomycetemcomitans cells co-cultured with human gingival fibroblasts, and its effect on leukotoxin release. Microb Pathog 2013; 54:54-9. [DOI: 10.1016/j.micpath.2012.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
|
5
|
Mukhopadhyay S, Nair S, Ghosh S. Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets. FEMS Microbiol Rev 2011; 36:463-85. [PMID: 22092372 DOI: 10.1111/j.1574-6976.2011.00302.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/31/2011] [Accepted: 08/05/2011] [Indexed: 01/12/2023] Open
Abstract
Tuberculosis (TB) remains a major health problem worldwide. Attempts to control this disease have proved difficult owing to our poor understanding of the pathobiology of Mycobacterium tuberculosis and the emergence of strains that are resistant to multiple drugs currently available for treatment. Genome-wide expression profiling has provided new insight into the transcriptome signatures of the bacterium during infection, notably of macrophages and dendritic cells. These data indicate that M. tuberculosis expresses numerous genes to evade the host immune responses, to suit its intracellular life style, and to respond to various antibiotic drugs. Among the intracellularly induced genes, several have functions in lipid metabolism, cell wall synthesis, iron uptake, oxidative stress resistance, protein secretion, or inhibition of apoptosis. Herein we review these findings and discuss possible ways to exploit the data to understand the complex etiology of TB and to find new effective drug targets.
Collapse
Affiliation(s)
- Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad, India.
| | | | | |
Collapse
|
6
|
Arvizu-Gómez JL, Hernández-Morales A, Pastor-Palacios G, Brieba LG, Álvarez-Morales A. Integration Host Factor (IHF) binds to the promoter region of the phtD operon involved in phaseolotoxin synthesis in P. syringae pv. phaseolicola NPS3121. BMC Microbiol 2011; 11:90. [PMID: 21542933 PMCID: PMC3112066 DOI: 10.1186/1471-2180-11-90] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/04/2011] [Indexed: 11/24/2022] Open
Abstract
Background Pseudomonas syringae pv. phaseolicola, the causal agent of halo blight disease in beans, produces a toxin known as phaseolotoxin, in whose synthesis participate a group of genes organized within the genome in a region known as the "Pht cluster". This region, which is thought to have been acquired by horizontal gene transfer, includes 5 transcriptional units, two monocistronic (argK, phtL) and three polycistronic (phtA, phtD, phtM), whose expression is temperature dependent. So far, the regulatory mechanisms involved in phaseolotoxin synthesis have not been elucidated and the only well-established fact is the requirement of low temperatures for its synthesis. In this work, we searched for regulatory proteins that could be involved in phaseolotoxin synthesis, focusing on the regulation of the phtD operon. Results In this study we identified the global regulator IHF (Integration Host Factor), which binds to the promoter region of the phtD operon, exerting a negative effect on the expression of this operon. This is the first regulatory protein identified as part of the phaseolotoxin synthesis system. Our findings suggest that the Pht cluster was similarly regulated in the ancestral cluster by IHF or similar protein, and integrated into the global regulatory mechanism of P. syringae pv. phaseolicola, after the horizontal gene transfer event by using the host IHF protein. Conclusion This study identifies the IHF protein as one element involved in the regulation of phaseolotoxin synthesis in P. syringae pv. phaseolicola NPS3121 and provides new insights into the regulatory mechanisms involved in phaseolotoxin production.
Collapse
Affiliation(s)
- Jackeline Lizzeta Arvizu-Gómez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Apdo Postal 629, CP 36821, Irapuato, Gto, México
| | | | | | | | | |
Collapse
|
7
|
Faburay B, Liu H, Peddireddi L, Ganta RR. Isolation and characterization of Ehrlichia chaffeensis RNA polymerase and its use in evaluating p28 outer membrane protein gene promoters. BMC Microbiol 2011; 11:83. [PMID: 21513529 PMCID: PMC3108270 DOI: 10.1186/1471-2180-11-83] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/22/2011] [Indexed: 11/12/2022] Open
Abstract
Background Ehrlichia chaffeensis is a tick-transmitted rickettsial pathogen responsible for an important emerging disease, human monocytic ehrlichiosis. To date how E. chaffeensis and many related tick-borne rickettsial pathogens adapt and persist in vertebrate and tick hosts remain largely unknown. In recent studies, we demonstrated significant host-specific differences in protein expression in E. chaffeensis originating from its tick and vertebrate host cells. The adaptive response of the pathogen to different host environments entails switch of gene expression regulated at the level of transcription, possibly by altering RNA polymerase activity. Results In an effort to understand the molecular basis of pathogen gene expression differences, we isolated native E. chaffeensis RNA polymerase using a heparin-agarose purification method and developed an in vitro transcription system to map promoter regions of two differentially expressed genes of the p28 outer membrane protein locus, p28-Omp14 and p28-Omp19. We also prepared a recombinant protein of E. chaffeensis σ70 homologue and used it for in vitro promoter analysis studies. The possible role of one or more proteins presents in E. chaffeensis lysates in binding to the promoter segments and on the modulation of in vitro transcription was also assessed. Conclusions Our experiments demonstrated that both the native and recombinant proteins are functional and have similar enzyme properties in driving the transcription from E. chaffeensis promoters. This is the first report of the functional characterization of E. chaffeensis RNA polymerase and in vitro mapping of the pathogen promoters using the enzyme. This study marks the beginning to broadly characterize the mechanisms controlling the transcription by Anaplasmataceae pathogens.
Collapse
Affiliation(s)
- Bonto Faburay
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
8
|
Molecular characteristics of community-associated methicillin-resistant Staphylococcus aureus strains for clinical medicine. Arch Microbiol 2010; 192:603-17. [PMID: 20544179 DOI: 10.1007/s00203-010-0594-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 03/29/2010] [Accepted: 05/28/2010] [Indexed: 10/19/2022]
Abstract
Infections caused by methicillin-resistant S. aureus strains are mainly associated with a hospital setting. However, nowadays, the MRSA infections of non-hospitalized patients are observed more frequently. In order to distinguish them from hospital-associated methicillin-resistant S. aureus (HA-MRSA) strains, given them the name of community-associated methicillin-resistant S. aureus (CA-MRSA). CA-MRSA strains most commonly cause skin infections, but may lead to more severe diseases, and consequently the patient's death. The molecular markers of CA-MRSA strains are the presence of accessory gene regulator (agr) of group I or III, staphylococcal cassette chromosome mec (SCCmec) type IV, V or VII and genes encoding for Panton-Valentine leukocidin (PVL). In addition, CA-MRSA strains show resistance to beta-lactam antibiotics. Studies on the genetic elements of CA-MRSA strains have a key role in the unambiguous identification of strains, monitoring of infections, improving the treatment, work on new antimicrobial agents and understanding the evolution of these pathogens.
Collapse
|
9
|
The orphan response regulator CovR: a globally negative modulator of virulence in Streptococcus suis serotype 2. J Bacteriol 2009; 191:2601-12. [PMID: 19181815 DOI: 10.1128/jb.01309-08] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis serotype 2 is an emerging zoonotic pathogen responsible for a wide range of life-threatening diseases in pigs and humans. However, the pathogenesis of S. suis serotype 2 infection is not well understood. In this study, we report that an orphan response regulator, CovR, globally regulates gene expression and negatively controls the virulence of S. suis 05ZYH33, a streptococcal toxic shock syndrome (STSS)-causing strain. A covR-defective (DeltacovR) mutant of 05ZYH33 displayed dramatic phenotypic changes, such as formation of longer chains, production of thicker capsules, and increased hemolytic activity. Adherence of the DeltacovR mutant to epithelial cells was greatly increased, and its resistance to phagocytosis and killing by neutrophils and monocytes was also significantly enhanced. More importantly, inactivation of covR increased the lethality of S. suis serotype 2 in experimental infection of piglets, and this phenotype was restored by covR complementation. Colonization experiments also showed that the DeltacovR mutant exhibited an increased ability to colonize susceptible tissues of piglets. The pleiotropic phenotype of the DeltacovR mutant is in full agreement with the large number of genes controlled by CovR as revealed by transcription profile analysis: 2 genes are positively regulated, and 193 are repressed, including many that encode known or putative virulence factors. These findings suggested that CovR is a global repressor in virulence regulation of STSS-causing S. suis serotype 2.
Collapse
|
10
|
Sendi P, Johansson L, Norrby-Teglund A. Invasive Group B Streptococcal Disease in Non-pregnant Adults. Infection 2008; 36:100-11. [DOI: 10.1007/s15010-007-7251-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 09/19/2007] [Indexed: 01/22/2023]
|
11
|
Vanya Ewart K, Williams J, Richards RC, Gallant JW, Melville K, Douglas SE. The early response of Atlantic salmon (Salmo salar) macrophages exposed in vitro to Aeromonas salmonicida cultured in broth and in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:380-90. [PMID: 17825909 DOI: 10.1016/j.dci.2007.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 07/27/2007] [Accepted: 07/29/2007] [Indexed: 05/17/2023]
Abstract
Aeromonas salmonicida is a fish pathogen that causes furunculosis. Virulent strains of this bacterium are able to infect salmonid macrophages and survive within them, although mechanisms favouring intracellular survival are not completely understood. It is known that A. salmonicida cultured in vivo in the peritoneal cavity of the host undergoes changes in gene expression and surface architecture compared with cultures grown in vitro in broth. Therefore, in this study, the early macrophage responses to A. salmonicida grown in vivo and in vitro were compared. Macrophage-enriched cell preparations from head kidney of Atlantic salmon (Salmo salar) were infected in vitro in 96-well microtitre dishes and changes in gene expression during the infection process were monitored using a custom Atlantic salmon cDNA microarray. A. salmonicida cultures grown in tryptic soy broth and in peritoneal implants were used to infect the macrophages. The macrophages were harvested at 0.5, 1.0 and 2.0h after addition of the bacteria to the medium. Significant changes in gene expression were evident by microarray analysis at 2.0h post-infection in macrophages infected with broth-grown and implant-grown bacteria; however, qPCR analysis revealed earlier up-regulation of JunB and TNF-alpha in macrophages exposed to the implant-grown bacteria. Up-regulation of those genes and others is consistent with the effects of extracellular products of aeromonad bacteria on macrophages and also suggests initiation of the innate immune response.
Collapse
Affiliation(s)
- K Vanya Ewart
- Institute for Marine Biosciences, 1411 Oxford Street, Halifax, NS, Canada B3H 3Z1
| | | | | | | | | | | |
Collapse
|
12
|
White-Ziegler CA, Um S, Pérez NM, Berns AL, Malhowski AJ, Young S. Low temperature (23 °C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12. Microbiology (Reading) 2008; 154:148-166. [DOI: 10.1099/mic.0.2007/012021-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Christine A. White-Ziegler
- Department of Biological Sciences and Program in Biochemistry, Smith College, Northampton, MA 01063, USA
| | - Suzin Um
- Department of Biological Sciences and Program in Biochemistry, Smith College, Northampton, MA 01063, USA
| | - Natalie M. Pérez
- Department of Biological Sciences and Program in Biochemistry, Smith College, Northampton, MA 01063, USA
| | - Abby L. Berns
- Department of Biological Sciences and Program in Biochemistry, Smith College, Northampton, MA 01063, USA
| | - Amy J. Malhowski
- Department of Biological Sciences and Program in Biochemistry, Smith College, Northampton, MA 01063, USA
| | - Sarah Young
- Department of Biological Sciences and Program in Biochemistry, Smith College, Northampton, MA 01063, USA
| |
Collapse
|
13
|
White-Ziegler CA, Malhowski AJ, Young S. Human body temperature (37degrees C) increases the expression of iron, carbohydrate, and amino acid utilization genes in Escherichia coli K-12. J Bacteriol 2007; 189:5429-40. [PMID: 17526711 PMCID: PMC1951813 DOI: 10.1128/jb.01929-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using DNA microarrays, we identified 126 genes in Escherichia coli K-12 whose expression is increased at human body temperature (37 degrees C) compared to growth at 23 degrees C. Genes involved in the uptake and utilization of amino acids, carbohydrates, and iron dominated the list, supporting a model in which temperature serves as a host cue to increase expression of bacterial genes needed for growth. Using quantitative real-time PCR, we investigated the thermoregulatory response for representative genes in each of these three categories (hisJ, cysP, srlE, garP, fes, and cirA), along with the fimbrial gene papB. Increased expression at 37 degrees C compared to 23 degrees C was retained in both exponential and stationary phases for all of the genes and in most of the various media tested, supporting the relative importance of this cue in adapting to changing environments. Because iron acquisition is important for both growth and virulence, we analyzed the regulation of the iron utilization genes cirA and fes and found that growth in iron-depleted medium abrogated the thermoregulatory effect, with high-level expression at both temperatures, contrasting with papB thermoregulation, which was not greatly altered by limiting iron levels. A positive role for the environmental regulator H-NS was found for fes, cirA, hisJ, and srlE transcription, whereas it had a primarily negative effect on cysP and garP expression. Together, these studies indicate that temperature is a broadly used cue for regulating gene expression in E. coli and that H-NS regulates iron, carbohydrate, and amino acid utilization gene expression.
Collapse
|
14
|
Klitgaard K, Jensen TK, Angen Ø, Boye M. Measurement of bacterial gene expression in vivo by laser capture microdissection and quantitative real-time RT-PCR. J Microbiol Methods 2007; 69:414-6. [PMID: 17250913 DOI: 10.1016/j.mimet.2006.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 11/28/2006] [Accepted: 12/01/2006] [Indexed: 11/16/2022]
Abstract
Due to the relative small number of bacterial pathogens present in an infected host, exploration of pathogen gene expression in vivo is challenging. This study reports the development of a protocol for quantifying bacterial gene expression in vivo in Actinobacillus pleuropneumoniae using laser capture microdissection and real-time quantitative RT-PCR.
Collapse
Affiliation(s)
- Kirstine Klitgaard
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, DK-1790 Copenhagen V, Denmark
| | | | | | | |
Collapse
|
15
|
Geissmann T, Possedko M, Huntzinger E, Fechter P, Ehresmann C, Romby P. Regulatory RNAs as mediators of virulence gene expression in bacteria. Handb Exp Pharmacol 2006:9-43. [PMID: 16594609 DOI: 10.1007/3-540-27262-3_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Bacteria exploit functional diversity of RNAs in a wide range of regulatory mechanisms to control gene expression. In last few years, small RNA molecules have been discovered at a staggering rate in bacteria, mainly in Escherichia coli. While functions of many of these RNA molecules are still not known, several of them behave as key effectors of adaptive responses, such as environmental cue recognition, stress response, and virulence control. Most fascinating, perhaps, is the discovery that mRNAs behave as direct sensors of small molecules or of environmental cues. The astonishing diversity of RNA-dependent regulatory mechanisms is linked to the dynamic properties and versatility of the RNA structure. In this review, we relate several recent studies in different bacterial pathogens that illustrate the diverse roles of RNA to control virulence gene expression.
Collapse
Affiliation(s)
- T Geissmann
- UPR 9002 CNRS, Université Louis Pasteur, Institut de Biologie Moléculaire et Cellulaire, 15 rue R. Descartes, 67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
16
|
Seed PC, Hultgren SJ. Blueprinting the regulatory response of Escherichia coli to the urinary tract. Trends Microbiol 2005; 13:246-8. [PMID: 15936653 DOI: 10.1016/j.tim.2005.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 03/10/2005] [Accepted: 03/24/2005] [Indexed: 11/23/2022]
Abstract
Recent work has shown how comparative genomic and microarray analyses can provide insights into the transcriptional state of uropathogenic Escherichia coli (UPEC) during infection. This study will serve as an important platform from which to identify virulence determinants and the principle mechanisms of adaptation to the urinary tract.
Collapse
Affiliation(s)
- Patrick C Seed
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | |
Collapse
|
17
|
Brenot A, King KY, Caparon MG. The PerR regulon in peroxide resistance and virulence of Streptococcus pyogenes. Mol Microbiol 2005; 55:221-34. [PMID: 15612930 DOI: 10.1111/j.1365-2958.2004.04370.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prior studies have shown that the catalase-deficient pathogen Streptococcus pyogenes (group A streptococcus) has a robust ability to resist oxidative stress that partially involves the transcriptional regulator PerR. However, the extent of the PerR regulon and the contribution of the members of this regulon to virulence are unknown. In this study, DNase I footprinting revealed that PerR binds specifically to a single site upstream of the promoter for the gene encoding alkyl hydroperoxide reductase (ahpC). However, analyses of transcript abundance revealed that while ahpC is regulated in response to growth phase, its regulation is independent of PerR. Instead, PerR regulates transcription of a divergent gene cluster that encodes a putative cold shock protein. The gene encoding the Dps-like peroxide resistance protein MrgA was repressed by PerR, consistent with the presence of a PerR binding site in its promoter. Phenotypic analyses of PerR-, AhpC- and MrgA- mutants revealed that while AhpC is not essential for resistance to challenge with hydrogen peroxide in vitro, AhpC does contribute to scavenging of endogenous hydrogen peroxide and is required for virulence in a murine model of infection. In contrast, a MrgA- mutant was hypersensitive to challenge with peroxide in vitro, but was fully virulent in all animal models tested. Finally, a PerR- mutant was hyper-resistant to peroxide, yet was highly attenuated for virulence in all murine models. These data demonstrate that while a mutant's capacity to resist peroxide stress did not directly correlate with its ability to cause disease, the appropriate regulation of the peroxide stress response is critical for virulence.
Collapse
Affiliation(s)
- Audrey Brenot
- Department of Molecular Microbiology, Washington University School of Medicine, Box 8230, St. Louis, MO 63110-1093, USA
| | | | | |
Collapse
|
18
|
Brettin T, Altherr MR, Du Y, Mason RM, Friedrich A, Potter L, Langford C, Keller TJ, Jens J, Howie H, Weyand NJ, Clary S, Prichard K, Wachocki S, Sodergren E, Dillard JP, Weinstock G, So M, Arvidson CG. Expression capable library for studies of Neisseria gonorrhoeae, version 1.0. BMC Microbiol 2005; 5:50. [PMID: 16137322 PMCID: PMC1236931 DOI: 10.1186/1471-2180-5-50] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 09/01/2005] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The sexually transmitted disease, gonorrhea, is a serious health problem in developed as well as in developing countries, for which treatment continues to be a challenge. The recent completion of the genome sequence of the causative agent, Neisseria gonorrhoeae, opens up an entirely new set of approaches for studying this organism and the diseases it causes. Here, we describe the initial phases of the construction of an expression-capable clone set representing the protein-coding ORFs of the gonococcal genome using a recombination-based cloning system. RESULTS The clone set thus far includes 1672 of the 2250 predicted ORFs of the N. gonorrhoeae genome, of which 1393 (83%) are sequence-validated. Included in this set are 48 of the 61 ORFs of the gonococcal genetic island of strain MS11, not present in the sequenced genome of strain FA1090. L-arabinose-inducible glutathione-S-transferase (GST)-fusions were constructed from random clones and each was shown to express a fusion protein of the predicted size following induction, demonstrating the use of the recombination cloning system. PCR amplicons of each ORF used in the cloning reactions were spotted onto glass slides to produce DNA microarrays representing 2035 genes of the gonococcal genome. Pilot experiments indicate that these arrays are suitable for the analysis of global gene expression in gonococci. CONCLUSION This archived set of Gateway entry clones will facilitate high-throughput genomic and proteomic studies of gonococcal genes using a variety of expression and analysis systems. In addition, the DNA arrays produced will allow us to generate gene expression profiles of gonococci grown in a wide variety of conditions. Together, the resources produced in this work will facilitate experiments to dissect the molecular mechanisms of gonococcal pathogenesis on a global scale, and ultimately lead to the determination of the functions of unknown genes in the genome.
Collapse
Affiliation(s)
- Thomas Brettin
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Michael R Altherr
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ying Du
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-4320, USA
| | - Roxie M Mason
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-4320, USA
| | - Alexandra Friedrich
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201-3098, USA
| | - Laura Potter
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201-3098, USA
- Leicester Warwick Medical School, University of Warwick, Coventry, UK
| | - Chris Langford
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201-3098, USA
| | - Thomas J Keller
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201-3098, USA
| | - Jason Jens
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-4320, USA
| | - Heather Howie
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201-3098, USA
| | - Nathan J Weyand
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201-3098, USA
| | - Susan Clary
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201-3098, USA
| | - Kimberly Prichard
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Susi Wachocki
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Erica Sodergren
- Human Genome Sequencing Center, Baylor College of Medicine, Houston TX 77030, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, Madison, WI 53706, USA
| | - George Weinstock
- Human Genome Sequencing Center, Baylor College of Medicine, Houston TX 77030, USA
| | - Magdalene So
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201-3098, USA
| | - Cindy Grove Arvidson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
19
|
Haine V, Sinon A, Van Steen F, Rousseau S, Dozot M, Lestrate P, Lambert C, Letesson JJ, De Bolle X. Systematic targeted mutagenesis of Brucella melitensis 16M reveals a major role for GntR regulators in the control of virulence. Infect Immun 2005; 73:5578-86. [PMID: 16113274 PMCID: PMC1231144 DOI: 10.1128/iai.73.9.5578-5586.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 03/07/2005] [Accepted: 05/10/2005] [Indexed: 11/20/2022] Open
Abstract
In order to identify transcriptional regulators involved in virulence gene control in Brucella melitensis, we generated a collection of 88 mutants in the AraC, ArsR, Crp, DeoR, GntR, IclR, LysR, MerR, RpiR, and TetR families of regulators. This collection was named LiMuR (library of mutants for regulators). We developed a method to test several mutants simultaneously in one animal in order to identify those unable to survive. This method, called the plasmid-tagged mutagenesis method, was used to test the residual virulence of mutants after 1 week in a mouse model of infection. Ten attenuated mutants, of which six and three belong to the GntR and LysR families, respectively, were identified and individually confirmed to replicate at lower rates in mice. Among these 10 mutants, only gntR10 and arsR6 are attenuated in cellular models. The LiMuR also allows simple screenings to identify regulators of a particular gene or operon. As a first example, we analyzed the expression of the virB operon in the LiMuR mutants. We carried out Western blottings of whole-cell extracts to analyze the production of VirB proteins using polyclonal antisera against VirB proteins. Four mutants produced small amounts of VirB proteins, and one mutant overexpressed VirB proteins compared to the wild-type strain. In these five mutants, reporter analysis using the virB promoter fused to lacZ showed that three mutants control virB at the transcriptional level. The LiMuR is a resource that will provide straightforward identification of regulators involved in the control of genes of interest.
Collapse
Affiliation(s)
- Valérie Haine
- Unité de Recherche en Biologie Moléculaire, Facultés Universitaires Notre Dame de la Paix, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Orihuela CJ, Fogg G, DiRita VJ, Tuomanen E. Bacterial Interactions with Mucosal Epithelial Cells. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50044-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Miller JD, Neely MN. Zebrafish as a model host for streptococcal pathogenesis. Acta Trop 2004; 91:53-68. [PMID: 15158689 DOI: 10.1016/j.actatropica.2003.10.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 10/06/2003] [Indexed: 01/21/2023]
Abstract
Streptococcal pathogens continue to evade concerted efforts to determine clear-cut virulence mechanisms, although numerous genes have been implicated in pathogenesis. A single species can infect a diversity of tissues, suggesting the expression of specific virulence factors based on the local tissue environment or stage of infection. In an effort to identify the interactions that occur between the host and pathogen that lead to activation of virulence mechanisms and contribute to specific streptococcal disease states, we have developed a unique animal model, the zebrafish (Danio rerio), to characterize specific virulence mechanisms utilized within various tissues in vivo. We are using this model host to study infection by two streptococcal species that represent two forms of streptococcal disease: a natural pathogen of fish and humans, Streptococcus iniae and a human-specific pathogen, Streptococcus pyogenes. S. iniae primarily causes a fatal systemic disease in the zebrafish following intra-muscular injection, with similar pathologies to that seen in human infections caused by Streptococcus agalactiae and S. pneumoniae. While the fatal infection by S. pyogenes causes a locally spreading necrotic disease confined to the muscle with pathology similar to what is observed in a human infection of necrotizing fasciitis. By studying pathogens that are virulent for both fish and humans and that mediate disease states in the zebrafish that are identical to those found in human streptococcal infections, we will be able to identify common virulence strategies shared by a number of Gram-positive pathogens.
Collapse
Affiliation(s)
- Jesse D Miller
- Department of Immunology and Microbiology, Wayne State School of Medicine, 540 East Canfield Ave., Detroit, MI 48201, USA
| | | |
Collapse
|
22
|
Pishko EJ, Betting DJ, Hutter CS, Harvill ET. Bordetella pertussis acquires resistance to complement-mediated killing in vivo. Infect Immun 2003; 71:4936-42. [PMID: 12933835 PMCID: PMC187338 DOI: 10.1128/iai.71.9.4936-4942.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to initially colonize a host, bacteria must avoid various components of the innate immune system, one of which is complement. The genus Bordetella includes three closely related species that differ in their ability to resist complement-mediated killing. Bordetella parapertussis and Bordetella bronchiseptica resist killing in naïve serum, a characteristic that may aid in efficient respiratory tract colonization and has been attributed to expression of O antigen. Bordetella pertussis lacks O antigen and is sensitive to naïve serum in vitro, yet it also efficiently colonizes the respiratory tract. Based on these observations, we hypothesized that B. pertussis may have an alternate mechanism to resist complement in vivo. While a number of reports on serum sensitivity of the bordetellae have been published, we show here that serum concentration and growth conditions can greatly alter the observed level of sensitivity to complement and that all but one strain of B. pertussis observed were sensitive to some level of naïve serum in vitro, particularly when there was excess complement. However, B. pertussis rapidly acquires increased resistance in vivo to naïve serum that is specific to the alternative pathway. Resistance is not efficiently acquired by B. parapertussis and B. bronchiseptica mutants lacking O antigen. This B. pertussis-specific mechanism of complement resistance does not appear to be dependent on either brkA or other genes expressed specifically in the Bvg(+) phase. This in vivo acquisition of alternative pathway resistance suggests that there is a novel O antigen-independent method by which B. pertussis evades complement-mediated killing.
Collapse
Affiliation(s)
- Elizabeth J Pishko
- Department of Veterinary Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
23
|
Abstract
The ability of certain pathogens to infect multiple hosts has led to the development of genetically tractable nonvertebrate hosts to elucidate the molecular mechanisms of interactions between these pathogens and their hosts. The use of plant, insect, nematode, and protozoan hosts to study human pathogens has facilitated the elucidation of molecular nature of pathogenesis and host responses. Analyses of virulence of multihost pathogens on their respective hosts revealed that pathogens utilize many universal offensive strategies to overcome host defenses, irrespective of the evolutionary lineage of the host. Likewise, genetic dissections of the defense response of the nonvertebrate hosts have also shown that key features underlying host defense responses are highly conserved. This review summarizes how the information gained from the analysis of cross-species infections contributes to our understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Man-Wah Tan
- Department of Genetics, Stanford University School of Medicine, California 94305, USA.
| |
Collapse
|
24
|
Tan MW. Identification of host and pathogen factors involved in virulence using Caenorhabditis elegans. Methods Enzymol 2003; 358:13-28. [PMID: 12474376 DOI: 10.1016/s0076-6879(02)58078-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Man-Wah Tan
- Departments of Genetics, and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
25
|
Burns VC, Pishko EJ, Preston A, Maskell DJ, Harvill ET. Role of Bordetella O antigen in respiratory tract infection. Infect Immun 2003; 71:86-94. [PMID: 12496152 PMCID: PMC143398 DOI: 10.1128/iai.71.1.86-94.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipopolysaccharide (LPS), as the major surface molecule of gram-negative bacteria, interacts with the host in complex ways, both inducing and protecting against aspects of inflammatory and adaptive immunity. The membrane-distal repeated carbohydrate structure of LPS, the O antigen, can prevent antibody functions and may vary as a mechanism of immune evasion. Genes of the wbm locus are required for the assembly of O antigen on the animal pathogen Bordetella bronchiseptica and the human pathogen B. parapertussis. However, the important human pathogen B. pertussis lacks these genes and a number of in vitro and in vivo characteristics associated with O antigen in other organisms. To determine the specific functions of O antigen in these closely related Bordetella subspecies, we compared wbm deletion (Deltawbm) mutants of B. bronchiseptica and B. parapertussis in a variety of assays relevant to natural respiratory tract infection. Complement was not activated or depleted by wild-type bordetellae expressing O antigen, but both Deltawbm mutants activated complement and were highly sensitive to complement-mediated killing in vitro. Although the O-antigen structures appear to be substantially similar, the two mutants differed strikingly in their defects within the respiratory tract. The B. parapertussis Deltawbm mutant was severely defective in colonization of the tracheas and lungs of mice, while the B. bronchiseptica Deltawbm mutant showed almost no defect. While in vitro characteristics such as serum resistance may be attributable to O antigen directly, the role of O antigen during infection appears to be more complex, possibly involving factors differing among the closely related bordetellae or different interactions between each one and its host.
Collapse
Affiliation(s)
- Valorie C Burns
- Department of Veterinary Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
26
|
Liaw SJ, Lai HC, Ho SW, Luh KT, Wang WB. Role of RsmA in the regulation of swarming motility and virulence factor expression in Proteus mirabilis. J Med Microbiol 2003; 52:19-28. [PMID: 12488561 DOI: 10.1099/jmm.0.05024-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Swarming by Proteus mirabilis involves differentiation of typical short vegetative rods into filamentous hyper-flagellated swarm cells that undergo cycles of rapid and co-ordinated population migration across surfaces and exhibit high levels of virulence gene expression. RsmA (repressor of secondary metabolites) and CsrA, its homologue in Escherichia coli, control many phenotypic traits, such as motility and pathogenesis in Erwinia species, glycogen biosynthesis, cell size and biofilm formation in Escherichia coli and swarming motility in Serratia marcescens. To investigate the role of RsmA in Proteus mirabilis, the rsmA gene from Proteus mirabilis (hereafter referred to as rsmA(Pm)) was cloned. RsmA(Pm) showed high sequence similarity to Escherichia coli CsrA and RsmA cloned from Erwinia carotovora subsp. carotovora, Serratia marcescens, Haemophilus influenzae and Bacillus subtilis and could complement an Escherichia coli csrA mutant in glycogen synthesis. A low-copy-number plasmid carrying rsmA(Pm) expressed from its native promoter caused suppression of swarming motility and expression of virulence factors in Proteus mirabilis. mRNA stability assays suggested that RsmA(Pm) inhibited virulence factor expression through promoting mRNA degradation. RsmA homologues cloned from Serratia marcescens and Erwinia carotovora subsp. carotovora could also inhibit swarming and virulence factor expression in Proteus mirabilis.
Collapse
Affiliation(s)
- Shwu-Jen Liaw
- School and Graduate Institute of Medical Technology1 and Graduate Institute of Microbiology3, College of Medicine, National Taiwan University, 1 Jen Ai Road, 1st Section, Taipei, Taiwan, Republic of China 2Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Hsin-Chih Lai
- School and Graduate Institute of Medical Technology1 and Graduate Institute of Microbiology3, College of Medicine, National Taiwan University, 1 Jen Ai Road, 1st Section, Taipei, Taiwan, Republic of China 2Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Shen-Wu Ho
- School and Graduate Institute of Medical Technology1 and Graduate Institute of Microbiology3, College of Medicine, National Taiwan University, 1 Jen Ai Road, 1st Section, Taipei, Taiwan, Republic of China 2Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Kwen-Tay Luh
- School and Graduate Institute of Medical Technology1 and Graduate Institute of Microbiology3, College of Medicine, National Taiwan University, 1 Jen Ai Road, 1st Section, Taipei, Taiwan, Republic of China 2Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Won-Bo Wang
- School and Graduate Institute of Medical Technology1 and Graduate Institute of Microbiology3, College of Medicine, National Taiwan University, 1 Jen Ai Road, 1st Section, Taipei, Taiwan, Republic of China 2Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
27
|
White-Ziegler CA, Black AM, Eliades SH, Young S, Porter K. The N-acetyltransferase RimJ responds to environmental stimuli to repress pap fimbrial transcription in Escherichia coli. J Bacteriol 2002; 184:4334-42. [PMID: 12142402 PMCID: PMC135235 DOI: 10.1128/jb.184.16.4334-4342.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In uropathogenic Escherichia coli, P pili (Pap) facilitate binding to host epithelial cells and subsequent colonization. Whereas P pili can be produced at 37 degrees C, the expression of these fimbriae is suppressed at 23 degrees C. Previously, insertion mutations in rimJ, a gene encoding the N-terminal acetyltransferase of ribosomal protein S5, were shown to disrupt this thermoregulatory response, allowing papBA transcription at low temperature. In this study, we created an in-frame deletion of rimJ. This deletion relieved the repressive effects not only of low temperature but also of rich (Luria-Bertani [LB]) medium and glucose on papBA transcription, indicating that RimJ modulates papBA transcription in response to multiple environmental stimuli. papI transcription was also shown to be regulated by RimJ. papBA transcription is also controlled by a phase variation mechanism. We demonstrated that the regulators necessary to establish a phase ON state--PapI, PapB, Dam, Lrp, and cyclic AMP-CAP-are still required for papBA transcription in a rimJ mutant strain. rimJ mutations increase the rate at which bacteria transition into the phase ON state, indicating that RimJ inhibits the phase OFF-->ON transition. A DeltarimJ hns651 mutant is viable on LB medium but not on minimal medium. This synthetic lethality, along with transcriptional analyses, indicates that RimJ and H-NS work through separate pathways to control papBA transcription. Mutations in rimJ do not greatly influence the transcription of the fan, daa, or fim operon, suggesting that RimJ may be a pap-specific regulator. Overexpression of rimJ under conditions repressive for papBA transcription complements the DeltarimJ mutation but has little effect on transcription under activating conditions, indicating that the ability of RimJ to regulate transcription is environmentally controlled.
Collapse
|
28
|
Waterman SR. Bacterial genomics as a potential tool for discovering new antimicrobial agents. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 1:263-9. [PMID: 12083958 DOI: 10.2165/00129785-200101040-00003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The past 30 years have witnessed the emergence of new infectious diseases as well as the re-emergence of those thought to be defeated or under control. It is likely that this threat will continue and that infectious micro-organisms will be found to be responsible for numerous diseases whose etiology had been previously unknown. Compounding this threat is the rapid evolution of drug resistance by micro-organisms that is rendering many existing antimicrobial agents obsolete. Thus, there is an urgent need for the development of new classes of antimicrobial agents and the identification of new drug targets. Over the past decade, advances in high-throughput automated DNA sequencing have delivered a wealth of genetic information in the form of whole genome sequences of microbial pathogens. Coupled with this advancement has been the development of new genetic tools and computational advances capable of selecting genes of particular interest as well as testing for the effects of candidate drugs. While no new drugs have yet been developed, further study into the application and limitations of these new approaches to the identification of novel targets will aid in overcoming the current problem of antimicrobial drug resistance.
Collapse
Affiliation(s)
- S R Waterman
- Division of Human Immunology, Hanson Center for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, South Australia.
| |
Collapse
|
29
|
Taminiau B, Daykin M, Swift S, Boschiroli ML, Tibor A, Lestrate P, De Bolle X, O'Callaghan D, Williams P, Letesson JJ. Identification of a quorum-sensing signal molecule in the facultative intracellular pathogen Brucella melitensis. Infect Immun 2002; 70:3004-11. [PMID: 12010991 PMCID: PMC128001 DOI: 10.1128/iai.70.6.3004-3011.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2001] [Revised: 01/15/2002] [Accepted: 03/21/2002] [Indexed: 11/20/2022] Open
Abstract
Brucella melitensis is a gram-negative alpha2-proteobacterium responsible for abortion in goats and for Malta fever in humans. This facultative intracellular pathogen invades and survives within both professional and nonprofessional phagocytes. A dichloromethane extract of spent culture supernatant from B. melitensis induces bioluminescence in an Escherichia coli acyl-homoserine lactone (acyl-HSL) biosensor strain based upon the activity of the LasR protein of Pseudomonas aeruginosa. HPLC fractionation of the extract, followed by mass spectrometry, identified the major active molecule as N-dodecanoylhomoserine lactone (C12-HSL). This is the first report of the production of an acyl-HSL by an intracellular pathogen. The addition of synthetic C12-HSL to an early log phase culture of either B. melitensis or Brucella suis 1330 reduces the transcription of the virB operon, which contains virulence genes known to be required for intracellular survival. This mimics events seen during the stationary phase of growth and suggests that quorum sensing may play a role in the control of virulence in Brucella.
Collapse
Affiliation(s)
- Bernard Taminiau
- Unité de Recherche en Biologie Moléculaire (URBM), Laboratoire d'Immunologie et Microbiologie, Facultés Universitaires Notre-Dame de la Paix, 5000 Namur, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ma W, Cui Y, Liu Y, Dumenyo CK, Mukherjee A, Chatterjee AK. Molecular characterization of global regulatory RNA species that control pathogenicity factors in Erwinia amylovora and Erwinia herbicola pv. gypsophilae. J Bacteriol 2001; 183:1870-80. [PMID: 11222584 PMCID: PMC95081 DOI: 10.1128/jb.183.6.1870-1880.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
rsmB(Ecc) specifies a nontranslatable RNA regulator that controls exoprotein production and pathogenicity in soft rot-causing Erwinia carotovora subsp. carotovora. This effect of rsmB(Ecc) RNA is mediated mostly by neutralizing the function of RsmA(Ecc), an RNA-binding protein of E. carotovora subsp. carotovora, which acts as a global negative regulator. To determine the occurrence of functional homologs of rsmB(Ecc) in non-soft-rot-causing Erwinia species, we cloned the rsmB genes of E. amylovora (rsmB(Ea)) and E. herbicola pv. gypsophilae (rsmB(Ehg)). We show that rsmB(Ea) in E. amylovora positively regulates extracellular polysaccharide (EPS) production, motility, and pathogenicity. In E. herbicola pv. gypsophilae, rsmB(Ehg) elevates the levels of transcripts of a cytokinin (etz) gene and stimulates the production of EPS and yellow pigment as well as motility. RsmA(Ea) and RsmA(Ehg) have more than 93% identity to RsmA(Ecc) and, like the latter, function as negative regulators by affecting the transcript stability of the target gene. The rsmB genes reverse the negative effects of RsmA(Ea), RsmA(Ehg), and RsmA(Ecc), but the extent of reversal is highest with homologous combinations of rsm genes. These observations and findings that rsmB(Ea) and rsmB(Ehg) RNA bind RsmA(Ecc) indicate that the rsmB effect is channeled via RsmA. Additional support for this conclusion comes from the observation that the rsmB genes are much more effective as positive regulators in a RsmA(+) strain of E. carotovora subsp. carotovora than in its RsmA(-) derivative. E. herbicola pv. gypsophilae produces a 290-base rsmB transcript that is not subject to processing. By contrast, E. amylovora produces 430- and 300-base rsmB transcripts, the latter presumably derived by processing of the primary transcript as previously noted with the transcripts of rsmB(Ecc). Southern blot hybridizations revealed the presence of rsmB homologs in E. carotovora, E. chrysanthemi, E. amylovora, E. herbicola, E. stewartii and E. rhapontici, as well as in other enterobacteria such as Escherichia coli, Salmonella enterica serovar Typhimurium, Serratia marcescens, Shigella flexneri, Enterobacter aerogenes, Klebsiella pneumoniae, Yersinia enterocolitica, and Y. pseudotuberculosis. A comparison of rsmB sequences from several of these enterobacterial species revealed a highly conserved 34-mer region which is predicted to play a role in positive regulation by rsmB RNA.
Collapse
Affiliation(s)
- W Ma
- Department of Plant Microbiology and Pathology, Plant Sciences Unit, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Virulence factors of pathogenic bacteria (adhesins, toxins, invasins, protein secretion systems, iron uptake systems, and others) may be encoded by particular regions of the prokaryotic genome termed pathogenicity islands. Pathogenicity islands were first described in human pathogens of the species Escherichia coli, but have recently been found in the genomes of various pathogens of humans, animals, and plants. Pathogenicity islands comprise large genomic regions [10-200 kilobases (kb) in size] that are present on the genomes of pathogenic strains but absent from the genomes of nonpathogenic members of the same or related species. The finding that the G+C content of pathogenicity islands often differs from that of the rest of the genome, the presence of direct repeats at their ends, the association of pathogenicity islands with transfer RNA genes, the presence of integrase determinants and other mobility loci, and their genetic instability argue for the generation of pathogenicity islands by horizontal gene transfer, a process that is well known to contribute to microbial evolution. In this article we review these and other aspects of pathogenicity islands and discuss the concept that they represent a subclass of genomic islands. Genomic islands are present in the majority of genomes of pathogenic as well as nonpathogenic bacteria and may encode accessory functions which have been previously spread among bacterial populations.
Collapse
Affiliation(s)
- J Hacker
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, D-97070 Würzburg, Germany.
| | | |
Collapse
|
32
|
Dobrikova EY, Bugrysheva J, Cabello FC. Two independent transcriptional units control the complex and simultaneous expression of the bmp paralogous chromosomal gene family in Borrelia burgdorferi. Mol Microbiol 2001; 39:370-8. [PMID: 11136458 DOI: 10.1046/j.1365-2958.2001.02220.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chromosomal paralogous gene family 36 encodes for four lipoproteins with high amino acid homology that are expressed in vivo in humans and animals and are immunogenic. Transcriptional analysis of the bmp gene cluster indicated that all four genes of this cluster are expressed in vitro and constitute two transcriptional units with a complex pattern of transcription, including alternative monocistronic and polycistronic messages. One unit consists of bmpD, whose transcription is coupled to the transcription of the ribosomal protein genes, rpsG and rpsL. The second unit includes bmpC, bmpA and bmpB. The simultaneous expression of the four bmp genes in Borrelia burgdorferi suggests that their gene products may have either different or complementary functions. Primer extension experiments identified promoters for bmpD, bmpC and bmpA, but not for bmpB. The concentration of gene-specific mRNA paralleled its promoter homology to the Escherichia coli sigma70 promoter. The linkage of bmpD expression to rpsL and rpsG suggests that the expression of this gene may be controlled by growth-related global regulation mechanisms in B. burgdorferi. These results indicate that the bmp family constitutes a good model for the investigation of complex regulation of chromosomal gene expression in this bacteria.
Collapse
Affiliation(s)
- E Y Dobrikova
- Department of Microbiology and Immunology, New York Medical College, Basic Science Building, Valhalla, NY 10595-1690, USA
| | | | | |
Collapse
|
33
|
Hautefort I, Hinton JC. Measurement of bacterial gene expression in vivo. Philos Trans R Soc Lond B Biol Sci 2000; 355:601-11. [PMID: 10874733 PMCID: PMC1692778 DOI: 10.1098/rstb.2000.0601] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The complexities of bacterial gene expression during mammalian infection cannot be addressed by in vitro experiments. We know that the infected host represents a complex and dynamic environment, which is modified during the infection process, presenting a variety of stimuli to which the pathogen must respond if it is to be successful. This response involves hundreds of ivi (in vivo-induced) genes which have recently been identified in animal and cell culture models using a variety of technologies including in vivo expression technology, differential fluorescence induction, subtractive hybridization and differential display. Proteomic analysis is beginning to be used to identify IVI proteins, and has benefited from the availability of genome sequences for increasing numbers of bacterial pathogens. The patterns of bacterial gene expression during infection remain to be investigated. Are ivi genes expressed in an organ-specific or cell-type-specific fashion? New approaches are required to answer these questions. The uses of the immunologically based in vivo antigen technology system, in situ PCR and DNA microarray analysis are considered. This review considers existing methods for examining bacterial gene expression in vivo, and describes emerging approaches that should further our understanding in the future.
Collapse
Affiliation(s)
- I Hautefort
- Institute of Food Research, Norwich Research Park, UK.
| | | |
Collapse
|
34
|
Abstract
Complete genomic sequences of microbial pathogens and hosts offer sophisticated new strategies for studying host-pathogen interactions. DNA microarrays exploit primary sequence data to measure transcript levels and detect sequence polymorphisms, for every gene, simultaneously. The design and construction of a DNA microarray for any given microbial genome are straightforward. By monitoring microbial gene expression, one can predict the functions of uncharacterized genes, probe the physiologic adaptations made under various environmental conditions, identify virulence-associated genes, and test the effects of drugs. Similarly, by using host gene microarrays, one can explore host response at the level of gene expression and provide a molecular description of the events that follow infection. Host profiling might also identify gene expression signatures unique for each pathogen, thus providing a novel tool for diagnosis, prognosis, and clinical management of infectious disease.
Collapse
|
35
|
Abstract
Two key steps control immune responses in mucosal tissues: the sampling and transepithelial transport of antigens, and their targeting into professional antigen-presenting cells in mucosa-associated lymphoid tissue. Live Salmonella bacteria use strategies that allow them to cross the epithelial barrier of the gut, to survive in antigen-presenting cells where bacterial antigens are processed and presented to the immune cells, and to express adjuvant activity that prevents induction of oral tolerance. Two Salmonella serovars have been used as vaccines or vectors, S. typhimurium in mice and S. typhi in humans. S. typhimurium causes gastroenteritis in a broad host range, including humans, while S. typhi infection is restricted to humans. Attenuated S. typhimurium has been used successfully in mice to induce systemic and mucosal responses against more than 60 heterologous antigens. This review aims to revisit S. typhimurium-based vaccination, as an alternative to S. typhi, with special emphasis on the molecular pathogenesis of S. typhimurium and the host response. We then discuss how such knowledge constitutes the basis for the rational design of novel live mucosal vaccines.
Collapse
Affiliation(s)
- J C Sirard
- Swiss Institute for Experimental Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | | | | |
Collapse
|
36
|
Brito B, Marenda M, Barberis P, Boucher C, Genin S. prhJ and hrpG, two new components of the plant signal-dependent regulatory cascade controlled by PrhA in Ralstonia solanacearum. Mol Microbiol 1999; 31:237-51. [PMID: 9987125 DOI: 10.1046/j.1365-2958.1999.01165.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
hrp gene expression in the phytopathogenic bacterium Ralstonia solanacearum GMI1000 is induced through the HrpB regulator in minimal medium and upon co-culture with plant cell suspensions. The putative outer membrane protein PrhA is specifically involved in hrp gene activation in the presence of plant cells and has been proposed to be a receptor of a plant-dependent signal transduction pathway. Here, we report on the identification of two regulatory genes, hrpG and prhJ, located at the right-hand end of the hrp gene cluster, that are required for full pathogenicity. HrpG belongs to the OmpR subclass of two-component response regulators and is homologous to HrpG, the activator of hrp genes in Xanthomonas campestris pv. vesicatoria. PrhJ is a novel hrp regulatory protein, sharing homology with the LuxR/UhpA family of transcriptional activators. As for HrpG of X. c. pv. vesicatoria, HrpG is required for hrp gene expression in minimal medium, but, in addition, we show that it also controls hrpB gene activation upon co-culture with Arabidopsis thaliana and tomato cell suspensions. In contrast, PrhJ is specifically involved in hrp gene expression in the presence of plant cells. hrpG and prhJ gene transcription is plant cell inducible through the PrhA-dependent pathway. From these results, we propose a regulatory cascade in which plant cell signal(s) sensed by PrhA are transduced to the prhJ gene, whose predicted product controls hrpG gene expression. HrpG then activates the hrpB regulatory gene, and, subsequently, the remaining hrp transcriptional units in all known inducing conditions.
Collapse
Affiliation(s)
- B Brito
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, INRA-CNRS, Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|
37
|
Relman DA, Wright A. Molecular and cellular microbiology: new tools of the trade. Curr Opin Microbiol 1998; 1:337-339. [PMID: 10066502 DOI: 10.1016/s1369-5274(98)80038-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- DA Relman
- Departments of Medicine, and Microbiology and Immunology Stanford University Stanford CA 94305-5402 USA.
| | | |
Collapse
|