1
|
Thanneeru S, Duay SS, Jin L, Fu Y, Angeles-Boza AM, He J. Single Chain Polymeric Nanoparticles to Promote Selective Hydroxylation Reactions of Phenol Catalyzed by Copper. ACS Macro Lett 2017; 6:652-656. [PMID: 35650866 DOI: 10.1021/acsmacrolett.7b00300] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-containing single chain polymeric nanoparticles (SCPNs) can be used as synthetic mimics of metalloenzymes. Currently, the role of the folded polymer backbones on the activity and selectivity of metal sites is not clear. Herein, we report our findings on how polymeric frameworks modulate the coordination of Cu sites and the catalytic activity/selectivity of Cu-containing SCPNs mimicking monophenol hydroxylation reactions. Imidazole-functionalized copolymers of poly(methyl methacrylate-co-3-imidazolyl-2-hydroxy propyl methacrylate) were used for intramolecular Cu-imidazole binding that triggered the self-folding of polymers. Polymer chains imposed steric hindrance which yielded unsaturated Cu sites with an average coordination number of 3.3. Cu-containing SCPNs showed a high selectivity for the hydroxylation reaction of phenol to catechol, >80%, with a turnover frequency of >870 h-1 at 60 °C. The selectivity was largely influenced by the flexibility of the folded polymer backbone where a more flexible polymer backbone allows the cooperative catalysis of two Cu sites. The second coordination sphere provided by the folded polymer that has been less studied is therefore critical in the design of active mimics of metalloenzymes.
Collapse
Affiliation(s)
- Srinivas Thanneeru
- Department of Chemistry, and ‡Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Lei Jin
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Youjun Fu
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jie He
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
2
|
Zeolite-Y encapsulated metal complexes of cobalt(II) as catalyst for the hydroxylation of phenol. REACTION KINETICS MECHANISMS AND CATALYSIS 2016. [DOI: 10.1007/s11144-016-1072-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Huang Z, Askari MS, Esguerra KVN, Dai TY, Kwon O, Ottenwaelder X, Lumb JP. A bio-inspired synthesis of oxindoles by catalytic aerobic dual C-H functionalization of phenols. Chem Sci 2015; 7:358-369. [PMID: 29861988 PMCID: PMC5952266 DOI: 10.1039/c5sc02395e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/05/2015] [Indexed: 11/30/2022] Open
Abstract
We report a bio-inspired approach to the synthesis of oxindoles, which couples the energetic requirements of dehydrogenative C–N bond formation to the reduction of oxygen.
Nitrogen-containing heterocycles are fundamentally important to the function of pharmaceuticals, agrochemicals and materials. Herein, we report a bio-inspired approach to the synthesis of oxindoles, which couples the energetic requirements of dehydrogenative C–N bond formation to the reduction of molecular oxygen (O2). Our method is inspired by the biosynthesis of melanin pigments (melanogenesis), but diverges from the biosynthetic polymerization. Mechanistic analysis reveals the involvement of CuII-semiquinone radical intermediates, which enable dehydrogenative carbon–heteroatom bond formation that avoids a catechol/quinone redox couple. This mitagates the deleterious polarity reversal that results from phenolic dearomatization, and enables a high-yielding phenolic C–H functionalization under catalytic aerobic conditions. Our work highlights the broad synthetic utility and efficiency of forming C–N bonds via a catalytic aerobic dearomatization of phenols, which is currently an underdeveloped transformation.
Collapse
Affiliation(s)
- Zheng Huang
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada .
| | - Mohammad S Askari
- Department of Chemistry and Biochemistry , Concordia University , Montreal , QC H4B 1R6 , Canada .
| | | | - Tian-Yang Dai
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada .
| | - Ohhyeon Kwon
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada .
| | - Xavier Ottenwaelder
- Department of Chemistry and Biochemistry , Concordia University , Montreal , QC H4B 1R6 , Canada .
| | - Jean-Philip Lumb
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada .
| |
Collapse
|
4
|
Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Aerobic copper-catalyzed organic reactions. Chem Rev 2013; 113:6234-458. [PMID: 23786461 PMCID: PMC3818381 DOI: 10.1021/cr300527g] [Citation(s) in RCA: 1238] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Scott E. Allen
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ryan R. Walvoord
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rosaura Padilla-Salinas
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marisa C. Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
5
|
Murahashi SI, Miyaguchi N, Noda S, Naota T, Fujii A, Inubushi Y, Komiya N. Ruthenium-Catalyzed Oxidative Dearomatization of Phenols to 4-(tert-Butylperoxy)cyclohexadienones: Synthesis of 2-Substituted Quinones from p-Substituted Phenols. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100740] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Rolff M, Schottenheim J, Decker H, Tuczek F. Copper–O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme. Chem Soc Rev 2011; 40:4077-98. [DOI: 10.1039/c0cs00202j] [Citation(s) in RCA: 359] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Boussalah N, Touzani R, Bouabdallah I, Kadiri SE, Ghalem S. Synthesis, structure and catalytic properties of tripodal amino-acid derivatized pyrazole-based ligands. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcata.2009.02.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Xiao R, Su XY, Xie RG. The complexes of multiimidazole with copper(I) display tyrosinase activity. CHINESE CHEM LETT 2007. [DOI: 10.1016/j.cclet.2007.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
da Silva GFZ, Ming LJ. Alzheimer's disease related copper(II)- beta-amyloid peptide exhibits phenol monooxygenase and catechol oxidase activities. Angew Chem Int Ed Engl 2006; 44:5501-4. [PMID: 16052638 DOI: 10.1002/anie.200501013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Giordano F Z da Silva
- Department of Chemistry and Institute for Biomolecular Science, University of South Florida, 4202 E. Fowler Avenue, SCA400, Tampa, FL 33620-5250, USA
| | | |
Collapse
|
10
|
da Silva GFZ, Ming LJ. Alzheimer's Disease Related Copper(II)- β-Amyloid Peptide Exhibits Phenol Monooxygenase and Catechol Oxidase Activities. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200501013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Affiliation(s)
- Elizabeth A Lewis
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
12
|
Zen JM, Chung HH, Yang HH, Chiu MH, Sue JW. Photoelectrocatalytic Oxidation of o-Phenols on Copper-Plated Screen-Printed Electrodes. Anal Chem 2003; 75:7020-5. [PMID: 14670066 DOI: 10.1021/ac030183i] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel and sensitive detection method based on photoelectrocatalytic oxidation of o-diphenols was demonstrated on a copper-plated screen-printed carbon electrode (designated CuSPE) in pH 8 phosphate buffer solution. The o-diphenols can be detected amperometrically through electrochemical oxidation at a low applied potential of -0.1 V versus Ag/AgCl, where the CuSPE is much less subject to interfering reactions. The mechanism that induces good selectivity of the CuSPE is explained in terms of the formation of a cyclic five-member complex intermediate (Cu(II)-o-quinolate). A prototype homemade flow through cell design is described for incorporating the photoelectrode and light source. Electrode irradiation results in a large increase in anodic current. The oxidative photocurrents produced by irradiation increase with light intensity presumably because of the formation of semiconductor Cu(2)O. The principle used in this study has an opportunity to extend into various research applications.
Collapse
Affiliation(s)
- Jyh-Myng Zen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | | | | | | | | |
Collapse
|
13
|
Sotomayor MDPT, Tanaka AA, Kubota LT. Tris (2,2′-bipyridil) copper (II) chloride complex: a biomimetic tyrosinase catalyst in the amperometric sensor construction. Electrochim Acta 2003. [DOI: 10.1016/s0013-4686(02)00777-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Zen JM, Chung HH, Kumar AS. Selective detection of o-diphenols on copper-plated screen-printed electrodes. Anal Chem 2002; 74:1202-6. [PMID: 11924986 DOI: 10.1021/ac011012l] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Selective detection of o-diphenols (e.g., catechol, dopamine, and pyrogallol) in the presence of simple phenols, m- and p- derivative diphenols, and ascorbic acid has been demonstrated on copper-plated screen-printed electrodes (CuSPEs) in pH 7.4 phosphate buffer solution. The CuSPE showed an unusual catalytic response at -0.05 V versus Ag/AgCl selectively to o-diphenolic compounds. The o-diphenols can thus be determined amperometrically through direct electrochemical oxidation in low potentials (approximately 0 V), where the CuSPE is much less subject to interfering reactions. Such a catalytic phenomenon cannot be observed on conventional Pt and glassy carbon electrodes. The selective mechanism is explained in terms of the formation of cyclic five-member complex intermediate (Cu(II)-o-quinolate). Most important of all, the common drawbacks of electrode fouling through polymerization were completely overcome in this system.
Collapse
|
15
|
Novel tert-butyl migration in copper-mediated phenol ortho-oxygenation implicates a mechanism involving conversion of a 6-hydroperoxy-2,4-cyclohexadienone directly to an o-quinone. J Org Chem 2000; 65:4804-9. [PMID: 10956455 DOI: 10.1021/jo991625m] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Copper mediated ortho-oxygenation of phenolates may proceed through the generation of a 6-peroxy-2,4-cyclohexadienone intermediate. To test this theory, we studied the fate of sodium 4-carbethoxy-2, 6-di-tert-butylphenolate, where the ortho-oxygenation sites are blocked by tert-butyl groups. Using the Cu(I) complex of N, N-bis(2-(N-methylbenzimidazol-2-yl)ethyl)benzylamine, isolation of the major oxygenated product and characterization by single-crystal X-ray crystallography and NMR spectroscopy revealed it to be 4-carbethoxy-3,6-di-tert-butyl-1,2-benzoquinone, resulting from a 1, 2-migration of a tert-butyl group. The independently prepared 6-hydroperoxide is transformed by the Cu(I)- (or Cu(II)-) ligand complex to the same o-quinone. The observed 1,2-migration of the tert-butyl group appears to reflect an electron demand created by rearrangement of the postulated peroxy intermediate. A mechanism proceeding alternatively through a catechol and subsequent oxidation to the o-quinone seems ruled out by a control study demonstrating that the requisite intermediate to catechol formation would instead eliminate the 2-tert-butyl group.
Collapse
|
16
|
Berreau LM, Mahapatra S, Halfen JA, Houser RP, Young VG, Tolman WB. Reaktivität von Peroxo- und Di-μ-oxo-dikupferkomplexen gegenüber Brenzcatechinen. Angew Chem Int Ed Engl 1999. [DOI: 10.1002/(sici)1521-3757(19990115)111:1/2<180::aid-ange180>3.0.co;2-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Direct synthesis of diphenyl carbonate by oxidative carbonylation of phenol using Pd–Cu based redox catalyst system. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1381-1169(98)00122-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|