1
|
Okuda-Shimazaki J, Yoshida H, Lee I, Kojima K, Suzuki N, Tsugawa W, Yamada M, Inaka K, Tanaka H, Sode K. Microgravity environment grown crystal structure information based engineering of direct electron transfer type glucose dehydrogenase. Commun Biol 2022; 5:1334. [PMID: 36473944 PMCID: PMC9727119 DOI: 10.1038/s42003-022-04286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The heterotrimeric flavin adenine dinucleotide dependent glucose dehydrogenase is a promising enzyme for direct electron transfer (DET) principle-based glucose sensors within continuous glucose monitoring systems. We elucidate the structure of the subunit interface of this enzyme by preparing heterotrimer complex protein crystals grown under a space microgravity environment. Based on the proposed structure, we introduce inter-subunit disulfide bonds between the small and electron transfer subunits (5 pairs), as well as the catalytic and the electron transfer subunits (9 pairs). Without compromising the enzyme's catalytic efficiency, a mutant enzyme harboring Pro205Cys in the catalytic subunit, Asp383Cys and Tyr349Cys in the electron transfer subunit, and Lys155Cys in the small subunit, is determined to be the most stable of the variants. The developed engineered enzyme demonstrate a higher catalytic activity and DET ability than the wild type. This mutant retains its full activity below 70 °C as well as after incubation at 75 °C for 15 min - much higher temperatures than the current gold standard enzyme, glucose oxidase, is capable of withstanding.
Collapse
Affiliation(s)
- Junko Okuda-Shimazaki
- grid.10698.360000000122483208Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC27599 USA
| | - Hiromi Yoshida
- grid.258331.e0000 0000 8662 309XDepartment of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793 Japan
| | - Inyoung Lee
- grid.10698.360000000122483208Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC27599 USA
| | - Katsuhiro Kojima
- grid.136594.c0000 0001 0689 5974Graduate School of Engineering, Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 Japan
| | - Nanoha Suzuki
- grid.136594.c0000 0001 0689 5974Graduate School of Engineering, Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 Japan
| | - Wakako Tsugawa
- grid.136594.c0000 0001 0689 5974Graduate School of Engineering, Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 Japan
| | - Mitsugu Yamada
- grid.62167.340000 0001 2220 7916JEM Utilization Center Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba-shi, Ibaraki 305-8505 Japan
| | - Koji Inaka
- grid.459744.fMaruwa Foods and Biosciences, 170-1 Tsutsui-cho, Yamato Koriyama-shi, Nara 639-1123 Japan
| | - Hiroaki Tanaka
- grid.459486.2Confocal Science Inc., Musashino Bldg, 5-14-15 Fukasawa, Setagaya-ku, Tokyo 158-0081 Japan
| | - Koji Sode
- grid.10698.360000000122483208Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC27599 USA
| |
Collapse
|
2
|
Stolarczyk K, Rogalski J, Bilewicz R. NAD(P)-dependent glucose dehydrogenase: Applications for biosensors, bioelectrodes, and biofuel cells. Bioelectrochemistry 2020; 135:107574. [PMID: 32498025 DOI: 10.1016/j.bioelechem.2020.107574] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
This review discusses the physical and chemical properties of nicotinamide redox cofactor dependent glucose dehydrogenase (NAD(P) dependent GDH) and its extensive application in biosensors and bio-fuel cells. GDHs from different organisms show diverse biochemical properties (e.g., activity and stability) and preferences towards cofactors, such as nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+). The (NAD(P)+) play important roles in biological electron transfer, however, there are some difficulties related to their application in devices that originate from their chemical properties and labile binding to the GDH enzyme. This review discusses the electrode modifications aimed at immobilising NAD+ or NADP+ cofactors and GDH at electrodes. Binding of the enzyme was achieved by appropriate protein engineering techniques, including polymerisation, hydrophobisation or hydrophilisation processes. Various enzyme-modified electrodes applied in biosensors, enzymatic fuel cells, and biobatteries are compared. Importantly, GDH can operate alone or as part of an enzymatic cascade, which often improves the functional parameters of the biofuel cell or simply allows use of cheaper fuels. Overall, this review explores how NAD(P)-dependent GDH has recently demonstrated high potential for use in various systems to generate electricity from biological sources for applications in implantable biomedical devices, wireless sensors, and portable electronic devices.
Collapse
Affiliation(s)
- Krzysztof Stolarczyk
- Faculty of Chemistry, University of Warsaw, Pasteura St. 1, 02-093 Warsaw, Poland
| | - Jerzy Rogalski
- Department of Biochemistry and Biotechnology, Maria Curie-Sklodowska University, Akademicka Str. 19, 20-031 Lublin, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura St. 1, 02-093 Warsaw, Poland.
| |
Collapse
|
3
|
Co-immobilization of Short-Chain Dehydrogenase/Reductase and Glucose Dehydrogenase for the Efficient Production of (±)-Ethyl Mandelate. Catal Letters 2019. [DOI: 10.1007/s10562-019-02727-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
4
|
What to sacrifice? Fusions of cofactor regenerating enzymes with Baeyer-Villiger monooxygenases and alcohol dehydrogenases for self-sufficient redox biocatalysis. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Akita H, Hayashi J, Sakuraba H, Ohshima T. Artificial Thermostable D-Amino Acid Dehydrogenase: Creation and Application. Front Microbiol 2018; 9:1760. [PMID: 30123202 PMCID: PMC6085447 DOI: 10.3389/fmicb.2018.01760] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/13/2018] [Indexed: 01/06/2023] Open
Abstract
Many kinds of NAD(P)+-dependent L-amino acid dehydrogenases have been so far found and effectively used for synthesis of L-amino acids and their analogs, and for their sensing. By contrast, similar biotechnological use of D-amino acid dehydrogenase (D-AADH) has not been achieved because useful D-AADH has not been found from natural resources. Recently, using protein engineering methods, an NADP+-dependent D-AADH was created from meso-diaminopimelate dehydrogenase (meso-DAPDH). The artificially created D-AADH catalyzed the reversible NADP+-dependent oxidative deamination of D-amino acids to 2-oxo acids. The enzyme, especially thermostable one from thermophiles, was efficiently applicable to synthesis of D-branched-chain amino acids (D-BCAAs), with high yields and optical purity, and was useful for the practical synthesis of 13C- and/or 15N-labeled D-BCAAs. The enzyme also made it possible to assay D-isoleucine selectively in a mixture of isoleucine isomers. Analyses of the three-dimensional structures of meso-DAPDH and D-AADH, and designed mutations based on the information obtained made it possible to markedly enhance enzyme activity and to create D-AADH homologs with desired reactivity profiles. The methods described here may be an effective approach to artificial creation of biotechnologically useful enzymes.
Collapse
Affiliation(s)
- Hironaga Akita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, Japan
| | - Junji Hayashi
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University Biwako-Kusatsu Campus, Shiga, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technology, Osaka, Japan
| |
Collapse
|
6
|
Domanskyi S, Privman V. Modeling and Modifying Response of Biochemical Processes for Biocomputing and Biosensing Signal Processing. EMERGENCE, COMPLEXITY AND COMPUTATION 2017. [DOI: 10.1007/978-3-319-33921-4_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Key Enzymes of the Semiphosphorylative Entner-Doudoroff Pathway in the Haloarchaeon Haloferax volcanii: Characterization of Glucose Dehydrogenase, Gluconate Dehydratase, and 2-Keto-3-Deoxy-6-Phosphogluconate Aldolase. J Bacteriol 2016; 198:2251-62. [PMID: 27297879 DOI: 10.1128/jb.00286-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The halophilic archaeon Haloferax volcanii has been proposed to degrade glucose via the semiphosphorylative Entner-Doudoroff (spED) pathway. So far, the key enzymes of this pathway, glucose dehydrogenase (GDH), gluconate dehydratase (GAD), and 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase (KDPGA), have not been characterized, and their functional involvement in glucose degradation has not been demonstrated. Here we report that the genes HVO_1083 and HVO_0950 encode GDH and KDPGA, respectively. The recombinant enzymes show high specificity for glucose and KDPG and did not convert the corresponding C4 epimers galactose and 2-keto-3-deoxy-6-phosphogalactonate at significant rates. Growth studies of knockout mutants indicate the functional involvement of both GDH and KDPGA in glucose degradation. GAD was purified from H. volcanii, and the encoding gene, gad, was identified as HVO_1488. GAD catalyzed the specific dehydration of gluconate and did not utilize galactonate at significant rates. A knockout mutant of GAD lost the ability to grow on glucose, indicating the essential involvement of GAD in glucose degradation. However, following a prolonged incubation period, growth of the Δgad mutant on glucose was recovered. Evidence is presented that under these conditions, GAD was functionally replaced by xylonate dehydratase (XAD), which uses both xylonate and gluconate as substrates. Together, the characterization of key enzymes and analyses of the respective knockout mutants present conclusive evidence for the in vivo operation of the spED pathway for glucose degradation in H. volcanii IMPORTANCE The work presented here describes the identification and characterization of the key enzymes glucose dehydrogenase, gluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase and their encoding genes of the proposed semiphosphorylative Entner-Doudoroff pathway in the haloarchaeon Haloferax volcanii The functional involvement of the three enzymes was proven by analyses of the corresponding knockout mutants. These results provide evidence for the in vivo operation of the semiphosphorylative Entner-Doudoroff pathway in haloarchaea and thus expand our understanding of the unusual sugar degradation pathways in the domain Archaea.
Collapse
|
8
|
Sun B, Hartl F, Castiglione K, Weuster-Botz D. Dynamic mechanistic modeling of the multienzymatic one-pot reduction of dehydrocholic acid to 12-keto ursodeoxycholic acid with competing substrates and cofactors. Biotechnol Prog 2015; 31:375-86. [DOI: 10.1002/btpr.2036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/09/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Boqiao Sun
- Inst. of Biochemical Engineering, Dept. of Mechanical Engineering; Technische Universität München; Garching 85748 Germany
| | - Florian Hartl
- Inst. of Biochemical Engineering, Dept. of Mechanical Engineering; Technische Universität München; Garching 85748 Germany
| | - Kathrin Castiglione
- Inst. of Biochemical Engineering, Dept. of Mechanical Engineering; Technische Universität München; Garching 85748 Germany
| | - Dirk Weuster-Botz
- Inst. of Biochemical Engineering, Dept. of Mechanical Engineering; Technische Universität München; Garching 85748 Germany
| |
Collapse
|
9
|
Privman V, Domanskyi S, Mailloux S, Holade Y, Katz E. Kinetic Model for a Threshold Filter in an Enzymatic System for Bioanalytical and Biocomputing Applications. J Phys Chem B 2014; 118:12435-43. [DOI: 10.1021/jp508224y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | | | | | - Yaovi Holade
- Université de Poitiers, IC2MP, UMR-CNRS 7285, 4 rue Michel Brunet, B27 TSA 51106, 86073 Poitiers Cedex 9, France
| | | |
Collapse
|
10
|
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 2014; 78:89-175. [PMID: 24600042 DOI: 10.1128/mmbr.00041-13] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.
Collapse
|
11
|
Kanoh Y, Uehara S, Iwata H, Yoneda K, Ohshima T, Sakuraba H. Structural insight into glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium. ACTA ACUST UNITED AC 2014; 70:1271-80. [PMID: 24816096 DOI: 10.1107/s1399004714002363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/01/2014] [Indexed: 11/10/2022]
Abstract
Glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium (tvGlcDH) is highly active towards D-glucose and D-galactose, but does not utilize aldopentoses such as D-xylose as substrates. In the present study, the crystal structures of substrate/cofactor-free tvGlcDH and of a tvGlcDH T277F mutant in a binary complex with NADP and in a ternary complex with D-glucose and nicotinic acid adenine dinucleotide phosphate, an NADP analogue, were determined at resolutions of 2.6, 2.25 and 2.33 Å, respectively. The overall structure of each monomer showed notable similarity to that of the enzyme from Sulfolobus solfataricus (ssGlcDH-1), which accepts a broad range of C5 and C6 sugars as substrates. However, the amino-acid residues of tvGlcDH involved in substrate binding markedly differed from those of ssGlcDH-1. Structural comparison revealed that a decreased number of interactions between the C3-hydroxyl group of the sugar and the enzyme are likely to be responsible for the lack of reactivity of tvGlcDH towards D-xylose.
Collapse
Affiliation(s)
- Yoshitaka Kanoh
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Seiichiroh Uehara
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Hideyuki Iwata
- Thermostable Enzyme Laboratory, 5-5-2 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kazunari Yoneda
- Department of Bioscience, School of Agriculture, Tokai University, Aso, Kumamoto 869-1404, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
12
|
Sugii T, Akanuma S, Yagi S, Yagyu K, Shimoda Y, Yamagishi A. Characterization of the low-temperature activity of Sulfolobus tokodaii glucose-1-dehydrogenase mutants. J Biosci Bioeng 2014; 118:367-71. [PMID: 24742629 DOI: 10.1016/j.jbiosc.2014.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/22/2014] [Accepted: 03/05/2014] [Indexed: 10/25/2022]
Abstract
Thermophilic enzymes are potentially useful for industrial processes because they are generally more stable than are mesophilic or psychrophilic enzymes. However, a crucial drawback for their use in such processes is that most thermophilic enzymes are nearly inactive at moderate and low temperatures. We have previously proposed that modulation of the coenzyme-binding pocket of thermophilic dehydrogenases can produce mutated proteins with enhanced low-temperature activities. In the current study, we produced and characterized mutants of an NADP-dependent glucose-1-dehydrogenase from the hyperthermophile Sulfolobus tokodaii in which a predicted coenzyme-binding, non-polar residue was replaced by another non-polar residue. Detailed analyses of the kinetic properties of the wild-type enzyme and its mutants showed that one of the mutants (V254I) had improved kcat and kcat/Km values at both 25°C and 80°C. Temperature-induced unfolding experiments showed that the thermal stability of the mutant enzyme was comparable to that of the wild-type enzyme. Calculation of the energetic contribution of the V254I mutation for the dehydrogenase reaction revealed that the mutation destabilizes the enzyme-NADP(+)-glucose ternary complex and reduces the transition-state energy, thus enhancing catalysis.
Collapse
Affiliation(s)
- Taisuke Sugii
- Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Satoshi Akanuma
- Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Sota Yagi
- Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kazuki Yagyu
- Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yukiko Shimoda
- Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiko Yamagishi
- Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
13
|
Engineering of a bi-enzymatic reaction for efficient production of the ascorbic acid precursor 2-keto-l-gulonic acid. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Akita H, Suzuki H, Doi K, Ohshima T. Efficient synthesis of D-branched-chain amino acids and their labeled compounds with stable isotopes using D-amino acid dehydrogenase. Appl Microbiol Biotechnol 2013; 98:1135-43. [PMID: 23661083 DOI: 10.1007/s00253-013-4902-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/31/2013] [Accepted: 04/03/2013] [Indexed: 02/07/2023]
Abstract
D-Branched-chain amino acids (D-BCAAs) such as D-leucine, D-isoleucine, and D-valine are known to be peptide antibiotic intermediates and to exhibit a variety of bioactivities. Consequently, much effort is going into achieving simple stereospecific synthesis of D-BCAAs, especially analogs labeled with stable isotopes. Up to now, however, no effective method has been reported. Here, we report the establishment of an efficient system for enantioselective synthesis of D-BCAAs and production of D-BCAAs labeled with stable isotopes. This system is based on two thermostable enzymes: D-amino acid dehydrogenase, catalyzing NADPH-dependent enantioselective amination of 2-oxo acids to produce the corresponding D-amino acids, and glucose dehydrogenase, catalyzing NADPH regeneration from NADP(+) and D-glucose. After incubation with the enzymes for 2 h at 65°C and pH 10.5, 2-oxo-4-methylvaleric acid was converted to D-leucine with an excellent yield (>99 %) and optical purity (>99 %). Using this system, we produced five different D-BCAAs labeled with stable isotopes: D-[1-(13)C,(15)N]leucine, D-[1-(13)C]leucine, D-[(15)N]leucine, D-[(15)N]isoleucine, and D-[(15)N]valine. The structure of each labeled D-amino acid was confirmed using time-of-flight mass spectrometry and nuclear magnetic resonance analysis. These analyses confirmed that the developed system was highly useful for production of D-BCAAs labeled with stable isotopes, making this the first reported enzymatic production of D-BCAAs labeled with stable isotopes. Our findings facilitate tracer studies investigating D-BCAAs and their derivatives.
Collapse
Affiliation(s)
- Hironaga Akita
- Applied Molecular Microbiology and Biomass Chemistry, Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | | | |
Collapse
|
15
|
Kaswurm V, Hecke WV, Kulbe KD, Ludwig R. Guidelines for the Application of NAD(P)H Regenerating Glucose Dehydrogenase in Synthetic Processes. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201200959] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Sawai T, Koma D, Hara R, Kino K, Harayama S. A high-throughput and generic assay method for the determination of substrate specificities of thermophilic α-aminotransferases. J Microbiol Methods 2007; 71:32-8. [PMID: 17719665 DOI: 10.1016/j.mimet.2007.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 07/03/2007] [Accepted: 07/17/2007] [Indexed: 10/23/2022]
Abstract
For the determination of substrate specificities of thermophilic alpha-aminotransferases (AATs), a novel high-throughput assay method was developed. In this method, a thermophilic omega-aminotransferase (OAT) and a thermophilic aldehyde dehydrogenase (ALDH) are coupled to the AAT reaction. Glutamic acid is used as an amino group donor for the AAT reaction yielding 2-oxoglutalic acid. 2-Oxoglutalic acid produced by the AAT reaction is used as an amino group acceptor in the OAT reaction regenerating glutamic acid. The amino group donor of the OAT reaction is 5-aminopentanoic acid yielding pentanedioic acid semialdehyde which is oxidized by ALDH to pentanedioic acid with concomitant reduction of NADP(+) to NADPH. NADPH thus produced then reduces colorless tetrazolium salt into colored formazan. To construct such a reaction system, the genes for a thermophilic AAT, a thermophilic OAT and a thermophilic ALDH were cloned and expressed in Escherichia coli. These enzymes were subsequently purified and used to determine the activities of AAT for the synthesis of unnatural amino acids. This method allowed the clear detection of the AAT activities as it measures the increase in the absorbance on a low background absorbance reading.
Collapse
Affiliation(s)
- Toshiya Sawai
- Laboratory of Applied Biochemistry, Department of Applied Chemistry, School of Science and Engineering, Waseda University, 3-4-1, Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | | | |
Collapse
|
17
|
Ohshima T, Kawakami R, Kanai Y, Goda S, Sakuraba H. Gene expression and characterization of 2-keto-3-deoxygluconate kinase, a key enzyme in the modified Entner-Doudoroff pathway of the aerobic and acidophilic hyperthermophile Sulfolobus tokodaii. Protein Expr Purif 2007; 54:73-8. [PMID: 17407821 DOI: 10.1016/j.pep.2007.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/09/2007] [Accepted: 02/20/2007] [Indexed: 10/23/2022]
Abstract
2-Keto-3-deoxygluconate kinase (KDGK) catalyzes the ATP-dependent phosphorylation of 2-keto-3-deoxygluconate, a key intermediate in the modified (semi-phosphorylative) Entner-Doudoroff (ED) glucose metabolic pathway. We identified the gene (ORF ID: ST2478) encoding KDGK in the hyperthermophilic archaeon Sulfolobus tokodaii based on the structure of a gene cluster in a genomic database and functionally expressed it in Escherichia coli. The expressed protein was purified from crude extract by heat treatment and two conventional column chromatography steps, and the partial amino acid sequence in the N-terminal region of the purified enzyme (MAKLIT) was identical to that obtained from the gene sequence. The purified enzyme was extremely thermostable and retained full activity after heating at 80 degrees C for 1 h. The enzyme utilized ATP or GTP, but not ADP or AMP, as a phosphoryl donor and 2-keto-3-deoxy-D-gluconate or 2-keto-D-gluconate as a phosphoryl acceptor. Divalent cations including Mg(2+), Co(2+), Ni(2+), Zn(2+) or Mn(2+) were required for activity, and the apparent Km values for KDG and ATP at 50 degrees C were 0.027 mM and 0.057 mM, respectively. The presence of KDGK means that the hyperthermophilic archaeon S. tokodaii metabolizes glucose via both modified (semi-phosphorylative) and non-phosphorylative ED pathways.
Collapse
Affiliation(s)
- Toshihisa Ohshima
- Microbial Genetics Division, Institute of Genetic Resources, Kyushu University, 6-10-1 Hakozaki Higashi-ku, Fukuoka 812-8581, Japan.
| | | | | | | | | |
Collapse
|
18
|
Nishimasu H, Fushinobu S, Shoun H, Wakagi T. Identification and characterization of an ATP-dependent hexokinase with broad substrate specificity from the hyperthermophilic archaeon Sulfolobus tokodaii. J Bacteriol 2006; 188:2014-9. [PMID: 16484213 PMCID: PMC1426560 DOI: 10.1128/jb.188.5.2014-2019.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As a new member of the glucose-phosphorylating enzymes, the ATP-dependent hexokinase from the hyperthermophilic crenarchaeon Sulfolobus tokodaii was purified, identified, and characterized. Our results revealed that the enzyme differs from other known enzymes in primary structure and its broad substrate specificity for both phosphoryl donors and acceptors.
Collapse
Affiliation(s)
- Hiroshi Nishimasu
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
19
|
Yang M, Brazier M, Edwards R, Davis BG. High-throughput mass-spectrometry monitoring for multisubstrate enzymes: determining the kinetic parameters and catalytic activities of glycosyltransferases. Chembiochem 2005; 6:346-57. [PMID: 15678424 DOI: 10.1002/cbic.200400100] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A novel high-throughput screening (HTS) method with electrospray time-of-flight (ESI-TOF) mass spectrometry allows i) rapid and broad screening of multisubstrate enzyme catalytic activity towards a range of donor and acceptor substrates; ii) determination of full multisubstrate kinetic parameters and the binding order of substrates. Two representative glycosyltransferases (GTs, one common, one recently isolated, one O-glycosyltransferase (O-GT), one N-glycosyltransferase (N-GT)) have been used to validate this system: the widely used bovine beta-1,4-galactosyltransferase (EC 2.4.1.22), and the recently isolated Arabidopsis thaliana GT UGT72B1 (EC 2.4.1.-). The GAR (green/amber/red) broad-substrate-specificity screen, which is based on the mass ion abundance of product, provides a fast, high-throughput method for finding potential donors and acceptors from substrate libraries. This was evaluated by using six natural and non-natural donors (alpha-UDP-D-Glucose (UDPGlc), alpha-UDP-N-Acetyl-D-glucosamine (UDPGlcNAc), alpha-UDP-D-5-thioglucose (UDP5SGlc), alpha-GDP-L-fucose (GDPFuc), alpha-GDP-D-mannose (GDPMan), alpha,beta-UDP-D-mannose (UDPMan)) and 32 broad-ranging acceptors (sugars, plant hormones, antibiotics, flavonoids, coumarins, phenylpropanoids and benzoic acids). By using the fast-equilibrium assumption, KM, kcat and KIA were determined for representative substrates, and these values were used to determine substrate binding orders. These screening methods applied to the two very different enzymes revealed some unusual substrate specificities, thus highlighting the utility of broad-ranging substrate screening. For UGT72B1, it was shown that the donor specificity is determined largely by the nucleotide moiety. The method is therefore capable of identifying GT enzymes with usefully broad carbohydrate-transfer ability.
Collapse
Affiliation(s)
- Min Yang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | | |
Collapse
|