1
|
Allegra A, Caserta S, Mirabile G, Gangemi S. Aging and Age-Related Epigenetic Drift in the Pathogenesis of Leukemia and Lymphomas: New Therapeutic Targets. Cells 2023; 12:2392. [PMID: 37830606 PMCID: PMC10572300 DOI: 10.3390/cells12192392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
One of the traits of cancer cells is abnormal DNA methylation patterns. The idea that age-related epigenetic changes may partially explain the increased risk of cancer in the elderly is based on the observation that aging is also accompanied by comparable changes in epigenetic patterns. Lineage bias and decreased stem cell function are signs of hematopoietic stem cell compartment aging. Additionally, aging in the hematopoietic system and the stem cell niche have a role in hematopoietic stem cell phenotypes linked with age, such as leukemia and lymphoma. Understanding these changes will open up promising pathways for therapies against age-related disorders because epigenetic mechanisms are reversible. Additionally, the development of high-throughput epigenome mapping technologies will make it possible to identify the "epigenomic identity card" of every hematological disease as well as every patient, opening up the possibility of finding novel molecular biomarkers that can be used for diagnosis, prediction, and prognosis.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (G.M.)
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (G.M.)
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (G.M.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
2
|
Ketkar M, Dutt S. Epigenetic Regulation Towards Acquired Drug Resistance in Cancer. Subcell Biochem 2022; 100:473-502. [PMID: 36301503 DOI: 10.1007/978-3-031-07634-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Therapy resistance remains the most challenging obstacle in cancer treatment. Substantial efforts and evidences have accumulated over decades suggesting not only genetic but non-genomic mechanisms underlying this adaptation of tumor cells. Alterations in epigenome can have a fundamental effect on cellular functions and response to stresses like anticancer therapy. This chapter discusses the principal mechanisms by which epigenetic modifications in the genome and transcriptome aid tumor cells toward acquisition of resistance to chemotherapy.
Collapse
Affiliation(s)
- Madhura Ketkar
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India.
| |
Collapse
|
3
|
Greene JM, Gevertz JL, Sontag ED. Mathematical Approach to Differentiate Spontaneous and Induced Evolution to Drug Resistance During Cancer Treatment. JCO Clin Cancer Inform 2020; 3:1-20. [PMID: 30969799 PMCID: PMC6873992 DOI: 10.1200/cci.18.00087] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Purpose Drug resistance is a major impediment to the success of cancer treatment. Resistance is typically thought to arise from random genetic mutations, after which mutated cells expand via Darwinian selection. However, recent experimental evidence suggests that progression to drug resistance need not occur randomly, but instead may be induced by the treatment itself via either genetic changes or epigenetic alterations. This relatively novel notion of resistance complicates the already challenging task of designing effective treatment protocols. Materials and Methods To better understand resistance, we have developed a mathematical modeling framework that incorporates both spontaneous and drug-induced resistance. Results Our model demonstrates that the ability of a drug to induce resistance can result in qualitatively different responses to the same drug dose and delivery schedule. We have also proven that the induction parameter in our model is theoretically identifiable and propose an in vitro protocol that could be used to determine a treatment’s propensity to induce resistance.
Collapse
Affiliation(s)
| | | | - Eduardo D Sontag
- Northeastern University, Boston, MA.,Harvard Medical School, Cambridge, MA
| |
Collapse
|
4
|
Revealing the epigenetic effect of temozolomide on glioblastoma cell lines in therapeutic conditions. PLoS One 2020; 15:e0229534. [PMID: 32101575 PMCID: PMC7043761 DOI: 10.1371/journal.pone.0229534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Temozolomide (TMZ) is a drug of choice in glioblastoma treatment. Its therapeutic applications expand also beyond high grade gliomas. However, a significant number of recurrences and resistance to the drug is observed. The key factor in each chemotherapy is to achieve the therapeutic doses of a drug at the pathologic site. Nonetheless, the rate of temozolomide penetration from blood to cerebrospinal fluid is only 20–30%, and even smaller into brain intestinum. That makes a challenge for the therapeutic regimens to obtain effective drug concentrations with minimal toxicity and minor side effects. The aim of our research was to explore a novel epigenetic mechanism of temozolomide action in therapeutic conditions. We analyzed the epigenetic effects of TMZ influence on different glioblastoma cell lines in therapeutically achieved TMZ concentrations through total changes of the level of 5-methylcytosine in DNA, the main epigenetic marker. That was done with classical approach of radioactive nucleotide post-labelling and separation on thin-layer chromatography. In the range of therapeutically achieved temozolomide concentrations we observed total DNA hypomethylation. The significant hypermethylating effect was visible after reaching TMZ concentrations of 10–50 μM (depending on the cell line). Longer exposure time promoted DNA hypomethylation. The demethylated state of the glioblastoma cell lines was overcome by repeated TMZ applications, where dose-dependent increase in DNA 5-methylcytosine contents was observed. Those effects were not seen in non-cancerous cell line. The increase of DNA methylation resulting in global gene silencing and consecutive down regulation of gene expression after TMZ treatment may explain better glioblastoma patients’ survival.
Collapse
|
5
|
Ponnusamy L, Mahalingaiah PKS, Singh KP. Epigenetic reprogramming and potential application of epigenetic-modifying drugs in acquired chemotherapeutic resistance. Adv Clin Chem 2019; 94:219-259. [PMID: 31952572 DOI: 10.1016/bs.acc.2019.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemotherapy is the most common clinical choice of treatment for cancer, however, acquired chemoresistance is a major challenge that limits the successful outcome of this option. Systematic review of in vitro, in vivo, preclinical and clinical studies suggests that acquired chemoresistance is polygenic, progressive, and involve both genetic and epigenetic heterogeneities and perturbations. Various mechanisms that confer resistance to chemotherapy are tightly controlled by epigenetic regulations. Poised epigenetic plasticity and temporal increase in epigenetic alterations upon chemotherapy make chemoresistance likely an epigenetic-driven process. The transient and reversible nature of epigenetic modulations enable ways to intervene the epigenetic re-programing associated with acquired chemoresistance via application of epigenetic modifying drugs. This review discusses recent understandings behind the various mechanisms of acquired chemoresistance that are under the control of epigenetic drivers, potential application of epigenetic-based drugs in resensitizing refractory cancers to chemotherapy, the limitations and future scope for clinical application of epigenetic therapeutics in successfully addressing chemoresistance.
Collapse
Affiliation(s)
- Logeswari Ponnusamy
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, United States
| | - Prathap Kumar S Mahalingaiah
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, United States
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
6
|
Deciphering the Elevated Lipid via CD36 in Mantle Cell Lymphoma with Bortezomib Resistance Using Synchrotron-Based Fourier Transform Infrared Spectroscopy of Single Cells. Cancers (Basel) 2019; 11:cancers11040576. [PMID: 31022903 PMCID: PMC6521097 DOI: 10.3390/cancers11040576] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022] Open
Abstract
Despite overall progress in improving cancer treatments, the complete response of mantle cell lymphoma (MCL) is still limited due to the inevitable development of drug resistance. More than half of patients did not attain response to bortezomib (BTZ), the approved treatment for relapsed or refractory MCL. Understanding how MCL cells acquire BTZ resistance at the molecular level may be a key to the long-term management of MCL patients and new therapeutic strategies. We established a series of de novo BTZ-resistant human MCL-derived cells with approximately 15- to 60-fold less sensitivity than those of parental cells. Using gene expression profiling, we discovered that putative cancer-related genes involved in drug resistance and cell survival tested were mostly downregulated, likely due to global DNA hypermethylation. Significant information on dysregulated lipid metabolism was obtained from synchrotron-based Fourier transform infrared (FTIR) spectroscopy of single cells. We demonstrated for the first time an upregulation of CD36 in highly BTZ-resistant cells in accordance with an increase in their lipid accumulation. Ectopic expression of CD36 causes an increase in lipid droplets and renders BTZ resistance to various human MCL cells. By contrast, inhibition of CD36 by neutralizing antibody strongly enhances BTZ sensitivity, particularly in CD36-overexpressing cells and de novo BTZ-resistant cells. Together, our findings highlight the potential application of CD36 inhibition for BTZ sensitization and suggest the use of FTIR spectroscopy as a promising technique in cancer research.
Collapse
|
7
|
Wang J, Van Den Berg D, Hwang AE, Weisenberger D, Triche T, Nathwani BN, Conti DV, Siegmund K, Mack TM, Horvath S, Cozen W. DNA methylation patterns of adult survivors of adolescent/young adult Hodgkin lymphoma compared to their unaffected monozygotic twin. Leuk Lymphoma 2019; 60:1429-1437. [PMID: 30668190 DOI: 10.1080/10428194.2018.1533128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
DNA methylation (DNAm) silences gene expression and may play a role in immune dysregulation that is characteristic of adolescent/young adult Hodgkin lymphoma (AYAHL). We used the Infinium HumanMethylation27 BeadChip to quantify DNAm in blood (N = 9 pairs, mean age 57.4 y) or saliva (N = 36 pairs, mean age 50.0 y) from long-term AYAHL survivors and their unaffected co-twins. Epigenetic aging (DNAm age) was calculated using previously described methods and compared between survivors and co-twins using paired t-tests and analyses were stratified by sample type, histology, sex, age at sample collection and time since diagnosis. Differences in blood DNAm age were observed between survivors and unaffected co-twins (64.1 vs. 61.3 years, respectively, p = .04), especially in females (p = .01); no differences in saliva DNAm age were observed. Survivors and co-twins had 74 (in blood DNA) and 6 (in saliva DNA) differentially methylated loci. Our results suggest persistent epigenetic aging in AYAHL survivors long after HL cure.
Collapse
Affiliation(s)
- Jun Wang
- a Department of Preventive Medicine , University of Southern California , Los Angeles , CA , USA
| | - David Van Den Berg
- a Department of Preventive Medicine , University of Southern California , Los Angeles , CA , USA
| | - Amie E Hwang
- a Department of Preventive Medicine , University of Southern California , Los Angeles , CA , USA
| | - Daniel Weisenberger
- b Norris Comprehensive Cancer Center , University of Southern California , Los Angeles , CA , USA
| | - Timothy Triche
- c Department of Translational Genomics , University of Southern California , Los Angeles , CA , USA.,d Center for Epigenetics, Van Andel Research Institute , Grand Rapids , MI , USA
| | - Bharat N Nathwani
- e Department of Pathology , City of Hope National Medical Center , Duarte , CA , USA
| | - David V Conti
- a Department of Preventive Medicine , University of Southern California , Los Angeles , CA , USA
| | - Kim Siegmund
- a Department of Preventive Medicine , University of Southern California , Los Angeles , CA , USA
| | - Thomas M Mack
- a Department of Preventive Medicine , University of Southern California , Los Angeles , CA , USA.,f Department of Pathology , University of Southern California , Los Angeles , CA , USA
| | - Steve Horvath
- g Department of Biostatistics , University of California at Los Angeles , Los Angeles , CA , USA
| | - Wendy Cozen
- a Department of Preventive Medicine , University of Southern California , Los Angeles , CA , USA.,f Department of Pathology , University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
8
|
Ponnusamy L, Mahalingaiah PKS, Chang YW, Singh KP. Reversal of epigenetic aberrations associated with the acquisition of doxorubicin resistance restores drug sensitivity in breast cancer cells. Eur J Pharm Sci 2018; 123:56-69. [DOI: 10.1016/j.ejps.2018.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/04/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022]
|
9
|
Nucleosidic DNA demethylating epigenetic drugs – A comprehensive review from discovery to clinic. Pharmacol Ther 2018; 188:45-79. [DOI: 10.1016/j.pharmthera.2018.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Si X, Liu Y, Lv J, Ding H, Zhang XA, Shao L, Yang N, Cheng H, Sun L, Zhu D, Yang Y, Li A, Han X, Sun Y. ERα propelled aberrant global DNA hypermethylation by activating the DNMT1 gene to enhance anticancer drug resistance in human breast cancer cells. Oncotarget 2018; 7:20966-80. [PMID: 26980709 PMCID: PMC4991505 DOI: 10.18632/oncotarget.8038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/16/2016] [Indexed: 11/25/2022] Open
Abstract
Drug-induced aberrant DNA methylation is the first identified epigenetic marker involved in chemotherapy resistance. Understanding how the aberrant DNA methylation is acquired would impact cancer treatment in theory and practice. In this study we systematically investigated whether and how ERα propelled aberrant global DNA hypermethylation in the context of breast cancer drug resistance. Our data demonstrated that anticancer drug paclitaxel (PTX) augmented ERα binding to the DNMT1 and DNMT3b promoters to activate DNMT1 and DNMT3b genes, enhancing the PTX resistance of breast cancer cells. In support of these observations, estrogen enhanced multi-drug resistance of breast cancer cells by up-regulation of DNMT1 and DNMT3b genes. Nevertheless, the aberrant global DNA hypermethylation was dominantly induced by ERα-activated-DNMT1, since DNMT1 over-expression significantly increased global DNA methylation and DNMT1 knockdown reversed the ERα-induced global DNA methylation. Altering DNMT3b expression had no detectable effect on global DNA methylation. Consistently, the expression level of DNMT1 was positively correlated with ERα in 78 breast cancer tissue samples shown by our immunohistochemistry (IHC) analysis and negatively correlated with relapse-free survival (RFS) and distance metastasis-free survival (DMFS) of ERα-positive breast cancer patients. This study provides a new perspective for understanding the mechanism underlying drug-resistance-facilitating aberrant DNA methylation in breast cancer and other estrogen dependent tumors.
Collapse
Affiliation(s)
- Xinxin Si
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinghuan Lv
- Department of Pathology, Municipal Hospital, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu, China
| | - Haijian Ding
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin A Zhang
- Department of Physiology and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lipei Shao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - He Cheng
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Luan Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongliang Zhu
- Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yin Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Andi Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yujie Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.,Collaborative Innovation Center for Cancer Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Wu CF, Bohnert S, Thines E, Efferth T. Cytotoxicity of Salvia miltiorrhizaAgainst Multidrug-Resistant Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:871-894. [DOI: 10.1142/s0192415x16500488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Salvia miltiorrhiza Bunge (Lamiaceae) is a well-known Chinese herb that possesses numerous therapeutic activities, including anticancer effects. In this study, the cytotoxicity and the biological mechanisms of S. miltiorrhiza (SM) root extract on diverse resistant and sensitive cancer cell lines were investigated. CEM/ADR5000 cells were 1.68-fold resistant to CCRF-CEM cells, while HCT116 (p53[Formula: see text] and U87.MG[Formula: see text]EGFR cells were hypersensitive (collateral sensitive) compared to their parental cells. SM root extract stimulated ROS generation, cell cycle S phase arrest and apoptosis. The induction of the intrinsic apoptotic pathway was validated by increased cleavage of caspase 3, 7, 9 and poly ADP-ribose polymerase (PARP). MAP kinases including JNK, ERK1/2 and p38 were obviously phosphorylated and nuclear P65 was downregulated upon SM treatment. Transcriptome-wide COMPARE analysis revealed that the expression of encoding genes with diverse functions were associated with the cellular response to cryptotanshinone, one of the main constituents of SM root extract. In conclusion, SM root extract exerted profound cytotoxicity towards various sensitive and resistant cancer cells and induced the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Ching-Fen Wu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Bohnert
- Institute of Biotechnology and Drug Research, Kaiserslautern, Germany
| | - Eckhard Thines
- Institute of Biotechnology and Drug Research, Kaiserslautern, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
12
|
Li Y, Yang Y, Lu Y, Herman JG, Brock MV, Zhao P, Guo M. Predictive value of CHFR and MLH1 methylation in human gastric cancer. Gastric Cancer 2015; 18:280-7. [PMID: 24748501 PMCID: PMC4894312 DOI: 10.1007/s10120-014-0370-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/09/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric carcinoma (GC) has one of the highest mortality rates of cancer diseases and has a high incidence rate in China. Palliative chemotherapy is the main treatment for advanced gastric cancer. It is necessary to compare the effectiveness and toxicities of different regimens. This study explores the possibility of methylation of DNA damage repair genes serving as a prognostic and chemo-sensitive marker in human gastric cancer. METHODS The methylation status of five DNA damage repair genes (CHFR, FANCF, MGMT, MLH1, and RASSF1A) was detected by nested methylation-specific PCR in 102 paraffin-embedded gastric cancer samples. Chi-square or Fisher's exact tests were used to evaluate the association of methylation status and clinic-pathological factors. The Kaplan-Meier method and Cox proportional hazards models were employed to analyze the association of methylation status and chemo-sensitivity. RESULTS The results indicate that CHFR, MLH1, RASSF1A, MGMT, and FANCF were methylated in 34.3% (35/102), 21.6% (22/102), 12.7% (13/102), 9.8% (10/102), and 0% (0/102) of samples, respectively. No association was found between methylation of CHFR, MLH1, RASSF1A, MGMT, or FANCF with gender, age, tumor size, tumor differentiation, lymph node metastasis, and TNM stage. In docetaxel-treated gastric cancer patients, resistance to docetaxel was found in CHFR unmethylated patients by Cox proportional hazards model (HR 0.243, 95% CI, 0.069-0.859, p = 0.028), and overall survival is longer in the CHFR methylated group compared with the CHFR unmethylated group (log-rank, p = 0.036). In oxaliplatin-treated gastric cancer patients, resistance to oxaliplatin was found in MLH1 methylated patients (HR 2.988, 95% CI, 1.064-8.394, p = 0.038), and overall survival was longer in the MLH1 unmethylated group compared with the MLH1 methylated group (log-rank, p = 0.046). CONCLUSIONS CHFR is frequently methylated in human gastric cancer, and CHFR methylation may serve as a docetaxel-sensitive marker. MLH1 methylation was related to oxaliplatin resistance in gastric cancer patients.
Collapse
Affiliation(s)
- Yazhuo Li
- Department of Pathology, Chinese PLA General Hospital, Haitangwan Town, Sanya, 572000, Hainan, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Terai H, Soejima K, Yasuda H, Sato T, Naoki K, Ikemura S, Arai D, Ohgino K, Ishioka K, Hamamoto J, Kanai Y, Betsuyaku T. Long‑term exposure to gefitinib induces acquired resistance through DNA methylation changes in the EGFR‑mutant PC9 lung cancer cell line. Int J Oncol 2014; 46:430-6. [PMID: 25353970 DOI: 10.3892/ijo.2014.2733] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/13/2014] [Indexed: 11/06/2022] Open
Abstract
This study was designed to identify epigenetically regulated genes and to clarify the contribution of epige-netic alteration to acquired resistance to epidermal growth factor receptor‑tyrosine kinase inhibitors (EGFR‑TKIs). We established a gefitinib‑resistant lung cancer cell line, PC9, which was originally gefitinib‑sensitive, by serial long‑term exposure to gefitinib. RNA and DNA were collected from both gefitinib‑sensitive and ‑resistant PC9 cells, and comprehensive DNA methylation and mRNA expression analyses were performed using Infinium HumanMethylation27 Bead Arrays and Agilent SurePrint G3 Human Gene Expression 8x60K Array, respectively. DNA methylation was increased in 640 genes in gefitinib‑resistant cells compared to parental cells. Among them, we selected 29 candidate genes that presented a decrease in mRNA expression in resistant PC9. We further studied four of the selected genes (C10orf116, IGFBP3, KL, and S100P) and found that KL or S100P silencing by siRNA induced a decrease in gefitinib sensitivity compared to that in the negative control in PC9. In conclusion, KL and S100P could be potential targets to overcome resistance to EGFR‑TKIs.
Collapse
Affiliation(s)
- Hideki Terai
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Kenzo Soejima
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Takashi Sato
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Katsuhiko Naoki
- Keio Cancer Center, School of Medicine, Keio University, Tokyo, Japan
| | - Shinnosuke Ikemura
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Daisuke Arai
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Keiko Ohgino
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Kota Ishioka
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Junko Hamamoto
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yae Kanai
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
14
|
Iglesias T, Espina M, Montes-Bayón M, Sierra LM, Blanco-González E. Anion exchange chromatography for the determination of 5-methyl-2'-deoxycytidine: application to cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines. Anal Bioanal Chem 2014; 407:2423-31. [PMID: 25142048 DOI: 10.1007/s00216-014-8070-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/30/2022]
Abstract
Epigenetic alterations are increasingly implicated in the initiation and progression of cancer. Genome-wide (global) hypomethylation seems to occur in early neoplasia and is a feature of genomic DNA derived from solid tumour tissues like ovarian cancer. Thus, analytical methods that provide sensitive and quantitative information about cytosine methylation in DNA are currently required. In this work, we compare two different anion-exchange columns for the separation of methylated cytosine from the other DNA nucleotides: a silica-based (Tracer Extrasil SAX) column and a polystyrene/divinyl benzene-based (Mono-Q™) column. Under the optimised conditions, linearity range, precision and detection limits of the developed high-performance liquid chromatography (HPLC) method were evaluated and compared using conventional ultraviolet (UV) absorbance detection at 270 nm. Good separation of the five target nucleotides, including 5-methyl-2'-deoxycytidine monophosphate (5mdCMP) and 2'-deoxycytidine monophosphate (dCMP) was achieved on the Mono-Q™ column with a gradient elution of ammonium acetate buffer (1 M, pH 6.9) at a flow rate of 1 mL min(-1). The coupling of this column to inductively coupled plasma mass spectrometry (ICP-MS) permitted also phosphorous ((31)P) specific detection of the nucleotides. Both detection systems offered adequate analytical performance characteristics, with detection limits of 30 and 40 μg L(-1) for 5mdCMP by HPLC-UV and HPLC-ICP-MS, respectively. However, the latter method allowed the determination of the global DNA methylation level (%) without the need for external calibration. Different genomic DNA samples were analysed including calf thymus DNA and DNA from two human cancer cell lines (adenocarcinoma epithelial A549 and ovarian carcinoma A2780) using the proposed strategy. In the line A2780, the cisplatin-sensitive and cisplatin-resistant variants were analysed, finding no significant differences in the methylation percentage after treatment with cisplatin.
Collapse
Affiliation(s)
- Tamara Iglesias
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006, Oviedo, Spain
| | | | | | | | | |
Collapse
|
15
|
Sequential treatment with cytarabine and decitabine has an increased anti-leukemia effect compared to cytarabine alone in xenograft models of childhood acute myeloid leukemia. PLoS One 2014; 9:e87475. [PMID: 24489920 PMCID: PMC3905025 DOI: 10.1371/journal.pone.0087475] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/26/2013] [Indexed: 01/06/2023] Open
Abstract
The current interest in epigenetic priming is underpinned by the belief that remodelling of the epigenetic landscape will sensitise tumours to subsequent therapy. In this pre-clinical study, paediatric AML cells expanded in culture and primary AML xenografts were treated with decitabine, a DNA demethylating agent, and cytarabine, a frontline cytotoxic agent used in the treatment of AML, either alone or in combination. Sequential treatment with decitabine and cytarabine was found to be more effective in reducing tumour burden than treatment with cytarabine alone suggesting that the sequential delivery of these agents may a have real clinical advantage in the treatment of paediatric AML. However we found no evidence to suggest that this outcome was dependent on priming with a hypomethylating agent, as the benefits observed were independent of the order in which these drugs were administered.
Collapse
|
16
|
Cortés-Sempere M, de Miguel MP, Pernía O, Rodriguez C, de Castro Carpeño J, Nistal M, Conde E, López-Ríos F, Belda-Iniesta C, Perona R, Ibanez de Caceres I. IGFBP-3 methylation-derived deficiency mediates the resistance to cisplatin through the activation of the IGFIR/Akt pathway in non-small cell lung cancer. Oncogene 2012; 32:1274-83. [PMID: 22543588 DOI: 10.1038/onc.2012.146] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although many cancers initially respond to cisplatin (CDDP)-based chemotherapy, resistance frequently develops. Insulin-like growth factor-binding protein-3 (IGFBP-3) silencing by promoter methylation is involved in the CDDP-acquired resistance process in non-small cell lung cancer (NSCLC) patients. Our purpose is to design a translational-based profile to predict resistance in NSCLC by studying the role of IGFBP-3 in the phosphatidyl inositol 3-kinase (PI3K) signaling pathway. We have first examined the relationship between IGFBP-3 expression regulated by promoter methylation and activation of the epidermal growth factor receptor (EGFR), insulin-like growth factor-I receptor (IGFIR) and PI3K/AKT pathways in 10 human cancer cell lines and 25 NSCLC patients with known IGFBP-3 methylation status and response to CDDP. Then, to provide a helpful tool that enables clinicians to identify patients with a potential response to CDDP, we have calculated the association between our diagnostic test and the true outcome of analyzed samples in terms of cisplatin IC50; the inhibitory concentration that kills 50% of the cell population. Our results suggest that loss of IGFBP-3 expression by promoter methylation in tumor cells treated with CDDP may activate the PI3K/AKT pathway through the specific derepression of IGFIR signaling, inducing resistance to CDDP. This study also provides a predictive test for clinical practice with an accuracy and precision of 0.84 and 0.9, respectively, (P=0.0062). We present a biomarker test that could provide clinicians with a robust tool with which to decide on the use of CDDP, improving patient clinical outcomes.
Collapse
Affiliation(s)
- M Cortés-Sempere
- Instituto de Investigaciones Biomedicas CSIC/UAM, CIBER de Enfermedades Raras CIBERER, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Candelaria M, de la Cruz-Hernandez E, Taja-Chayeb L, Perez-Cardenas E, Trejo-Becerril C, Gonzalez-Fierro A, Chavez-Blanco A, Soto-Reyes E, Dominguez G, Trujillo JE, Diaz-Chavez J, Duenas-Gonzalez A. DNA methylation-independent reversion of gemcitabine resistance by hydralazine in cervical cancer cells. PLoS One 2012; 7:e29181. [PMID: 22427797 PMCID: PMC3299634 DOI: 10.1371/journal.pone.0029181] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 11/22/2011] [Indexed: 11/18/2022] Open
Abstract
Background Down regulation of genes coding for nucleoside transporters and drug metabolism responsible for uptake and metabolic activation of the nucleoside gemcitabine is related with acquired tumor resistance against this agent. Hydralazine has been shown to reverse doxorubicin resistance in a model of breast cancer. Here we wanted to investigate whether epigenetic mechanisms are responsible for acquiring resistance to gemcitabine and if hydralazine could restore gemcitabine sensitivity in cervical cancer cells. Methodology/Principal Findings The cervical cancer cell line CaLo cell line was cultured in the presence of increasing concentrations of gemcitabine. Down-regulation of hENT1 & dCK genes was observed in the resistant cells (CaLoGR) which was not associated with promoter methylation. Treatment with hydralazine reversed gemcitabine resistance and led to hENT1 and dCK gene reactivation in a DNA promoter methylation-independent manner. No changes in HDAC total activity nor in H3 and H4 acetylation at these promoters were observed. ChIP analysis showed H3K9m2 at hENT1 and dCK gene promoters which correlated with hyper-expression of G9A histone methyltransferase at RNA and protein level in the resistant cells. Hydralazine inhibited G9A methyltransferase activity in vitro and depletion of the G9A gene by iRNA restored gemcitabine sensitivity. Conclusions/Significance Our results demonstrate that acquired gemcitabine resistance is associated with DNA promoter methylation-independent hENT1 and dCK gene down-regulation and hyper-expression of G9A methyltransferase. Hydralazine reverts gemcitabine resistance in cervical cancer cells via inhibition of G9A histone methyltransferase.
Collapse
Affiliation(s)
- Myrna Candelaria
- Division of Clinical Research, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | | | - Lucia Taja-Chayeb
- Division of Basic Research, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | | | | | | | - Alma Chavez-Blanco
- Division of Basic Research, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Ernesto Soto-Reyes
- Division of Basic Research, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Guadalupe Dominguez
- Division of Basic Research, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Jaenai E. Trujillo
- Division of Basic Research, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Jose Diaz-Chavez
- Division of Basic Research, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Alfonso Duenas-Gonzalez
- Unit of Biomedical Research in Cancer. Instituto Nacional de Cancerologia/Instituto de Investigaciones Biomedicas UNAM, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
18
|
Hütter G, Kaiser M, Neumann M, Mossner M, Nowak D, Baldus CD, Gökbuget N, Hoelzer D, Thiel E, Hofmann WK. Epigenetic regulation of PAX5 expression in acute T-cell lymphoblastic leukemia. Leuk Res 2011; 35:614-9. [DOI: 10.1016/j.leukres.2010.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 10/11/2010] [Accepted: 11/22/2010] [Indexed: 01/09/2023]
|
19
|
The role of epigenetics in resistance to Cisplatin chemotherapy in lung cancer. Cancers (Basel) 2011; 3:1426-53. [PMID: 24212667 PMCID: PMC3756421 DOI: 10.3390/cancers3011426] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 12/23/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common cause of cancer related death in the world. Cisplatin and carboplatin are the most commonly used cytotoxic chemotherapeutic agents to treat the disease. These agents, usually combined with drugs such as gemcitabine or pemetrexed, induce objective tumor responses in only 20-30% of patients. Aberrant epigenetic regulation of gene expression is a frequent event in NSCLC. In this article we review the emerging evidence that epigenetics and the cellular machinery involved with this type of regulation may be key elements in the development of cisplatin resistance in NSCLC.
Collapse
|
20
|
Schäfer A, Schomacher L, Barreto G, Döderlein G, Niehrs C. Gemcitabine functions epigenetically by inhibiting repair mediated DNA demethylation. PLoS One 2010; 5:e14060. [PMID: 21124914 PMCID: PMC2988820 DOI: 10.1371/journal.pone.0014060] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/26/2010] [Indexed: 12/31/2022] Open
Abstract
Gemcitabine is a cytotoxic cytidine analog, which is widely used in anti-cancer therapy. One mechanism by which gemcitabine acts is by inhibiting nucleotide excision repair (NER). Recently NER was implicated in Gadd45 mediated DNA demethylation and epigenetic gene activation. Here we analyzed the effect of gemcitabine on DNA demethylation. We find that gemcitabine inhibits specifically Gadd45a mediated reporter gene activation and DNA demethylation, similar to the topoisomerase I inhibitor camptothecin, which also inhibits NER. In contrast, base excision repair inhibitors had no effect on DNA demethylation. In Xenopus oocytes, gemcitabine inhibits DNA repair synthesis accompanying demethylation of oct4. In mammalian cells, gemcitabine induces DNA hypermethylation and silencing of MLH1. The results indicate that gemcitabine induces epigenetic gene silencing by inhibiting repair mediated DNA demethylation. Thus, gemcitabine can function epigenetically and provides a tool to manipulate DNA methylation.
Collapse
Affiliation(s)
- Andrea Schäfer
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Lars Schomacher
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Guillermo Barreto
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Gabi Döderlein
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum, Heidelberg, Germany
- Institut für Molekulare Biologie, Mainz, Germany
- * E-mail:
| |
Collapse
|
21
|
Valdez BC, Andersson BS. Interstrand crosslink inducing agents in pretransplant conditioning therapy for hematologic malignancies. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:659-668. [PMID: 20577993 PMCID: PMC4346159 DOI: 10.1002/em.20603] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Despite successful molecularly targeted, highly specific, therapies for hematologic malignancies, the DNA interstrand crosslinking agents, which are among the oldest and least specific cytotoxic drugs, still have an important role. This is particularly true in stem cell transplantation, where virtually every patient receives conditioning therapy with a DNA-alkylating agent-based program. However, due to concern about serious additive toxicities with combinations of different alkylating drugs, the last several years have seen nucleoside analogs, whose cytotoxic action follows vastly different molecular pathways, introduced in combination with alkylating agents. The mechanistic differences paired with different metabolic pathways for the respective drugs have clinically translated into increased safety without appreciable loss of antileukemic activity. In this report, we review pre-clinical evidence for synergistic antileukemic activity when nucleoside analog(s) and DNA-alkylating agent(s) are combined in the most appropriate manner(s), without a measurable decrease in clinical efficacy compared with the more established alkylating agent combinations. Data from our own laboratory using combinations of fludarabine, clofarabine, and busulfan as prototype representatives for these respective classes of cytotoxic agents are combined with information from other investigators to explain how the observed molecular events will result in greatly enhanced synergistic cytotoxicity. We further present possible mechanistic pathways for such desirable cytotoxic synergism. Finally, we propose how this information-backed hypothesis can be incorporated in the design of the next generation conditioning therapy programs in stem cell transplantation to optimize antileukemic efficacy while still safeguarding patient safety.
Collapse
Affiliation(s)
| | - Borje S. Andersson
- Correspondence to: Borje S. Andersson, Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Unit 423, 1515 Holcombe Blvd, Houston, TX 77030.
| |
Collapse
|
22
|
Ibanez de Caceres I, Cortes-Sempere M, Moratilla C, Machado-Pinilla R, Rodriguez-Fanjul V, Manguán-García C, Cejas P, López-Ríos F, Paz-Ares L, de CastroCarpeño J, Nistal M, Belda-Iniesta C, Perona R. IGFBP-3 hypermethylation-derived deficiency mediates cisplatin resistance in non-small-cell lung cancer. Oncogene 2009; 29:1681-90. [DOI: 10.1038/onc.2009.454] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Valdez BC, Li Y, Murray D, Corn P, Champlin RE, Andersson BS. 5-Aza-2'-deoxycytidine sensitizes busulfan-resistant myeloid leukemia cells by regulating expression of genes involved in cell cycle checkpoint and apoptosis. Leuk Res 2009; 34:364-72. [PMID: 19732952 DOI: 10.1016/j.leukres.2009.08.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 08/11/2009] [Accepted: 08/11/2009] [Indexed: 11/24/2022]
Abstract
Busulfan (Bu) is a DNA-alkylating drug used in myeloablative pretransplant conditioning therapy for patients with myeloid leukemia (ML). A major obstacle to successful treatment is cellular Bu-resistance. To investigate the possible contribution of DNA hypermethylation to Bu-resistance, we examined the cytotoxic activity of combined 5-aza-2'-deoxycytidine (DAC) and Bu. Exposure of Bu-resistant B5/Bu250(6) ML cells to 0.5 microM DAC resulted in G2-arrest and apoptosis. The observed G2-arrest was associated with hypomethylation and subsequent expression of epigenetically controlled genes including p16(INK4A), activation of the p53 pathway, and phosphorylation of CDC2. The DAC-mediated apoptosis was partly due to hypomethylation and up-regulation of XAF1, which resulted in down-regulation of the anti-apoptotic proteins XIAP, cIAP1 and cIAP2. The pro-apoptotic PUMA and BNIP3 proteins were up-regulated while pro-survival STAT3 and c-MYC were suppressed. Combination of 0.05 microM DAC and 5 microg/ml Bu resulted in synergistic cytotoxicity, which was associated with PARP1 cleavage and activation of caspases 3 and 8, suggesting induction of an apoptotic response. P53 inhibition in B5/Bu250(6) cells using pifithrin-alpha alleviated these effects, suggesting a role for p53 therein; this observation was supported by the relative resistance of p53-null K562 cells to [DAC+Bu] combinations and by the effects of an anti-p53 shRNA on the OCI-AML3 cell line. We conclude that the synergistic effects of [DAC+Bu] are p53-dependent and involve cell cycle arrest, apoptosis induction and down-regulation of pro-survival genes. Our results suggest that, depending on tumor p53 status, incorporation of DAC might synergistically improve the cytoreductive efficacy of Bu-based pretransplant regimen in patients with ML.
Collapse
Affiliation(s)
- Benigno C Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Kendall HE, Vacek PM, Rivers JL, Rice SC, Messier TL, Finette BA. Analysis of genetic alterations and clonal proliferation in children treated for acute lymphocytic leukemia. Cancer Res 2007; 66:8455-61. [PMID: 16951156 DOI: 10.1158/0008-5472.can-05-4015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of risk-directed treatment protocols over the last 25 years has resulted in an increase in the survival rates of children treated for cancer. As a consequence, there is a growing population of pediatric cancer survivors in which the long-term genotoxic effects of chemotherapy is unknown. We previously reported that children treated for acute lymphocytic leukemia have significantly elevated somatic mutant frequencies at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene in their peripheral T cells. To understand the molecular etiology of the increase in mutant frequencies following chemotherapy, we investigated the HPRT mutation spectra and the extent of clonal proliferation in 562 HPRT T cell mutant isolates of 87 blood samples from 47 subjects at diagnosis, during chemotherapy, and postchemotherapy. We observed a significant increase in the proportion of CpG transitions following treatment (13.6-23.3%) compared with healthy controls (4.0%) and a significant decrease in V(D)J-mediated deletions following treatment (0-6.8%) compared with healthy controls (17.0%). There was also a significant change in the class type percentage of V(D)J-mediated HPRT deletions following treatment. In addition, there was a >5-fold increase in T cell receptor gene usage-defined mean clonal proliferation from diagnosis compared with the completion of chemotherapeutic intervention. These data indicate that unique genetic alterations and extensive clonal proliferation are occurring in children following treatment for acute lymphocytic leukemia that may influence long-term risks for multifactorial diseases, including secondary cancers.
Collapse
Affiliation(s)
- Heather E Kendall
- Department of Pediatrics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
25
|
Stewart DJ. Mechanisms of resistance to cisplatin and carboplatin. Crit Rev Oncol Hematol 2007; 63:12-31. [PMID: 17336087 DOI: 10.1016/j.critrevonc.2007.02.001] [Citation(s) in RCA: 455] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/25/2007] [Accepted: 02/02/2007] [Indexed: 02/08/2023] Open
Abstract
While cisplatin and carboplatin are active versus most common cancers, epithelial malignancies are incurable when metastatic. Even if an initial response occurs, acquired resistance due to mutations and epigenetic events limits efficacy. Resistance may be due to excess of a resistance factor, to saturation of factors required for tumor cell killing, or to mutation or alteration of a factor required for tumor cell killing. Platinum resistance could arise from decreased tumor blood flow, extracellular conditions, reduced platinum uptake, increased efflux, intracellular detoxification by glutathione, etc., decreased binding (e.g., due to high intracellular pH), DNA repair, decreased mismatch repair, defective apoptosis, antiapoptotic factors, effects of several signaling pathways, or presence of quiescent non-cycling cells. In lung cancer, flattening of dose-response curves at higher doses suggests that efficacy is limited by exhaustion of something required for cell killing, and several clinical observations suggest epigenetic events may play a major role in resistance.
Collapse
Affiliation(s)
- David J Stewart
- Section of Experimental Therapeutics, Department of Thoracic/Head & Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Bredberg A, Bodmer W. Cytostatic drug treatment causes seeding of gene promoter methylation. Eur J Cancer 2007; 43:947-54. [PMID: 17236756 PMCID: PMC2430383 DOI: 10.1016/j.ejca.2006.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/22/2006] [Accepted: 12/05/2006] [Indexed: 11/23/2022]
Abstract
Epigenetic changes in multiple genes are emerging as an important mechanism for tumour cells to acquire resistance to chemotherapy. In the present work, we test the hypothesis that epigenetic organisation in cancer cells can be affected by cytostatic drugs. Colorectal cancer cells were cultured for several weeks in the presence of 6-thioguanine. Bisulphite sequencing of the CpG-rich promoter regions of two expressed genes showed a significantly increased frequency of methylated CpG sites in drug-treated cells, as compared with controls: 4.7% and 1.7%, respectively, for the HPRT gene; and 11.1% and 8.2% for CDX1. Essentially, all of the increase for the CDX1 gene was in a four CpG sub-region previously found to correlate with gene activity (P = 0.006). This pattern of sparse promoter methylation fits with a recently proposed ‘seeding’ two-step mechanism leading up to gene inactivation in cancer cells. Taken together, our findings suggest activation in cancer cells of an epigenetic process enabling a tumour to generate drug-resistant variant cells.
Collapse
Affiliation(s)
- Anders Bredberg
- Cancer Research UK Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- Department of Medical Microbiology, Malmö University Hospital, Lund University, S-20520 Malmö, Sweden
| | - Walter Bodmer
- Cancer Research UK Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- Corresponding author: Tel.: +44 1865 222422; fax: +44 1865 222431.
| |
Collapse
|
27
|
Segura-Pacheco B, Perez-Cardenas E, Taja-Chayeb L, Chavez-Blanco A, Revilla-Vazquez A, Benitez-Bribiesca L, Duenas-González A. Global DNA hypermethylation-associated cancer chemotherapy resistance and its reversion with the demethylating agent hydralazine. J Transl Med 2006; 4:32. [PMID: 16893460 PMCID: PMC1563479 DOI: 10.1186/1479-5876-4-32] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 08/07/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The development of resistance to cytotoxic chemotherapy continues to be a major obstacle for successful anticancer therapy. It has been shown that cells exposed to toxic concentrations of commonly used cancer chemotherapy agents develop DNA hypermethylation. Hence, demethylating agents could play a role in overcoming drug resistance. METHODS MCF-7 cells were rendered adriamycin-resistant by weekly treatment with adriamycin. Wild-type and the resulting MCF-7/Adr cells were analyzed for global DNA methylation. DNA methyltransferase activity and DNA methyltransferase (dnmt) gene expression were also determined. MCF-7/Adr cells were then subjected to antisense targeting of dnmt1, -3a, and -b genes and to treatment with the DNA methylation inhibitor hydralazine to investigate whether DNA demethylation restores sensitivity to adriamycin. RESULTS MCF-7/Adr cells exhibited the multi-drug resistant phenotype as demonstrated by adriamycin resistance, mdr1 gene over-expression, decreased intracellular accumulation of adriamycin, and cross-resistance to paclitaxel. The mdr phenotype was accompanied by global DNA hypermethylation, over-expression of dnmt genes, and increased DNA methyltransferase activity as compared with wild-type MCF-7 cells. DNA demethylation through antisense targeting of dnmts or hydralazine restored adriamycin sensitivity of MCF-7/Adr cells to a greater extent than verapamil, a known inhibitor of mdr protein, suggesting that DNA demethylation interferes with the epigenetic reprogramming that participates in the drug-resistant phenotype. CONCLUSION We provide evidence that DNA hypermethylation is at least partly responsible for development of the multidrug-resistant phenotype in the MCF-7/Adr model and that hydralazine, a known DNA demethylating agent, can revert the resistant phenotype.
Collapse
Affiliation(s)
- Blanca Segura-Pacheco
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonóma de Mexico, Instituto Nacional de Cancerología, Mexico
| | - Enrique Perez-Cardenas
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonóma de Mexico, Instituto Nacional de Cancerología, Mexico
| | - Lucia Taja-Chayeb
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonóma de Mexico, Instituto Nacional de Cancerología, Mexico
| | - Alma Chavez-Blanco
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonóma de Mexico, Instituto Nacional de Cancerología, Mexico
| | - Alma Revilla-Vazquez
- Lab. de Desarrollo de Metodos Analiticos, FES-Cuautitlan, UNAM, Cuautitlan Izcalli, Estado de Mexico, Mexico
| | - Luis Benitez-Bribiesca
- Unidad de Investigacion Medica en Enfermedades Oncologicas, Hospital de Oncologia, CMN-SXXI, IMSS, DF, Mexico
| | - Alfonso Duenas-González
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonóma de Mexico, Instituto Nacional de Cancerología, Mexico
| |
Collapse
|
28
|
Perez-Plasencia C, Duenas-Gonzalez A. Can the state of cancer chemotherapy resistance be reverted by epigenetic therapy? Mol Cancer 2006; 5:27. [PMID: 16831224 PMCID: PMC1540437 DOI: 10.1186/1476-4598-5-27] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 07/10/2006] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Transcriptome analysis shows that the chemotherapy innate resistance state of tumors is characterized by: poorly dividing tumor cells; an increased DNA repair; an increased drug efflux potential by ABC-transporters; and a dysfunctional ECM. Because chemotherapy resistance involves multiple genes, epigenetic-mediated changes could be the main force responsible of this phenotype. Our hypothesis deals with the potential role of epigenetic therapy for affecting the chemotherapy resistant phenotype of malignant tumors. PRESENTATION OF THE HYPOTHESIS Recent studies reveal the involvement of DNA methylation and histone modifications in the reprogramming of the genome of mammalian cells in cancer. In this sense, it can be hypothesized that epigenetic reprogramming can participate in the establishment of an epigenetic mark associated with the chemotherapy resistant phenotype. If this were correct, then it could be expected that agents targeting DNA methylation and histone deacetylation would by reverting the epigenetic mark induce a global expression profile that mirror the observed in untreated resistant cells. TESTING THE HYPOTHESIS It is proposed to perform a detailed analysis using all the available databases where the gene expression of primary tumors was analyzed and data correlated with the therapeutic outcome to determine whether a transcriptome profiling of "resistance" is observed. Assuming an epigenetic programming determines at some level the intrinsic resistant phenotype, then a similar pattern of gene expression dictated by an epigenetic mark should also be found in cell acquiring drug resistance. If these expectations are meet, then it should be further investigated at the genomic level whether these phenotypes are associated to certain patterns of DNA methylation and chromatin modification. Once confirmed the existence of an epigenetic mark associated to either the intrinsic or acquired chemotherapy resistant phenotype, then a causal association should be investigated. These preclinical findings should also be tested in a clinical setting. IMPLICATIONS OF THE HYPOTHESIS Our hypothesis on the ability of epigenetic therapy to revert the epigenetic changes leading to a transcritome profile that defines the resistant state will eventually be a more rational and effective way to treat malignant tumors.
Collapse
Affiliation(s)
- Carlos Perez-Plasencia
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas (IIB)/Instituto Nacional de Cancerología, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfonso Duenas-Gonzalez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas (IIB)/Instituto Nacional de Cancerología, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| |
Collapse
|
29
|
Vakhitova YV, Sadovnikov SV, Yamidanov RS, Seredenin SB. Cytosine demethylation in the tyrosine hydroxylase gene promoter in hypothalamus cells of rat brain under the action of 2-aminoadamantane compound Ladasten. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406070155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Roberti A, La Sala D, Cinti C. Multiple genetic and epigenetic interacting mechanisms contribute to clonally selection of drug-resistant tumors: Current views and new therapeutic prospective. J Cell Physiol 2006; 207:571-81. [PMID: 16250021 DOI: 10.1002/jcp.20515] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Successful treatment of cancer requires a clear understanding of drug-resistance mechanism. Cancer patient are often treated with standard protocols without considering individual difference in chemosensitivity, whereas the efficacy of anticancer drug varies widely among individual patients. Since chemosensitivity involves multiple interacting factors, it is not sufficient to investigate a single gene or factor to fix chemoresistance. Along with affecting disease progression, the synergism between genetic and epigenetic abnormalities can contribute to convert a sensible tumor cell in a resistant one. Unlike genetic changes, epigenetic changes are potentially reversible. Therefore, treatment with DNA methylation inhibitors can reactivate the expression of genes improperly methylated and can reverse many aspect of cancer phenotype such as drug resistance. The demethylating agents are used in the treatment of several kind of tumor, but toxicity and the potential outcome on the normal methylation patterns have always been concern of researchers and clinicals. It is necessary to create individual chemosensitivity-chemoresistance maps in order to identify the combination of drugs for optimized treatments. An overview on genetic and epigenetic events contributing to clonally selection of chemotherapeutic-resistant tumors is discussed.
Collapse
Affiliation(s)
- Annalisa Roberti
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Siena, Italy
| | | | | |
Collapse
|
31
|
Dueñas-González A, Lizano M, Candelaria M, Cetina L, Arce C, Cervera E. Epigenetics of cervical cancer. An overview and therapeutic perspectives. Mol Cancer 2005; 4:38. [PMID: 16248899 PMCID: PMC1291396 DOI: 10.1186/1476-4598-4-38] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 10/25/2005] [Indexed: 12/22/2022] Open
Abstract
Cervical cancer remains one of the greatest killers of women worldwide. It is difficult to foresee a dramatic increase in cure rate even with the most optimal combination of cytotoxic drugs, surgery, and radiation; therefore, testing of molecular targeted therapies against this malignancy is highly desirable. A number of epigenetic alterations occur during all stages of cervical carcinogenesis in both human papillomavirus and host cellular genomes, which include global DNA hypomethylation, hypermetylation of key tumor suppressor genes, and histone modifications. The reversible nature of epigenetic changes constitutes a target for transcriptional therapies, namely DNA methylation and histone deacetylase inhibitors. To date, studies in patients with cervical cancer have demonstrated the feasibility of reactivating the expression of hypermethylated and silenced tumor suppressor genes as well as the hyperacetylating and inhibitory effect upon histone deacetylase activity in tumor tissues after treatment with demethylating and histone deacetylase inhibitors. In addition, detection of epigenetic changes in cytological smears, serum DNA, and peripheral blood are of potential interest for development of novel biomolecular markers for early detection, prediction of response, and prognosis.
Collapse
Affiliation(s)
- Alfonso Dueñas-González
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología/Instituto de Investigaciones Biomédicas (INCan/IIB), Universidad Nacional Autónoma de Mexico (UNAM), Mexico City. Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología/Instituto de Investigaciones Biomédicas (INCan/IIB), Universidad Nacional Autónoma de Mexico (UNAM), Mexico City. Mexico
| | - Myrna Candelaria
- Division of Clinical Research, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Lucely Cetina
- Division of Clinical Research, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Claudia Arce
- Division of Clinical Research, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Eduardo Cervera
- Division of Clinical Research, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| |
Collapse
|
32
|
Zambrano P, Segura-Pacheco B, Perez-Cardenas E, Cetina L, Revilla-Vazquez A, Taja-Chayeb L, Chavez-Blanco A, Angeles E, Cabrera G, Sandoval K, Trejo-Becerril C, Chanona-Vilchis J, Duenas-González A. A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes. BMC Cancer 2005; 5:44. [PMID: 15862127 PMCID: PMC1131894 DOI: 10.1186/1471-2407-5-44] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 04/29/2005] [Indexed: 01/11/2023] Open
Abstract
Background The antihypertensive compound hydralazine is a known demethylating agent. This phase I study evaluated the tolerability and its effects upon DNA methylation and gene reactivation in patients with untreated cervical cancer. Methods Hydralazine was administered to cohorts of 4 patients at the following dose levels: I) 50 mg/day, II) 75 mg/day, III) 100 mg/day and IV) 150 mg/day. Tumor biopsies and peripheral blood samples were taken the day before and after treatment. The genes APC, MGMT; ER, GSTP1, DAPK, RARβ, FHIT and p16 were evaluated pre and post-treatment for DNA promoter methylation and gene expression by MSP (Methylation-Specific PCR) and RT-PCR respectively in each of the tumor samples. Methylation of the imprinted H19 gene and the "normally methylated" sequence clone 1.2 was also analyzed. Global DNA methylation was analyzed by capillary electrophoresis and cytosine extension assay. Toxicity was evaluated using the NCI Common Toxicity Criteria. Results Hydralazine was well tolerated. Toxicities were mild being the most common nausea, dizziness, fatigue, headache and palpitations. Overall, 70% of the pretreatment samples and all the patients had at least one methylated gene. Rates of demethylation at the different dose levels were as follows: 50 mg/day, 40%; 75 mg/day, 52%, 100 mg/day, 43%, and 150 mg/day, 32%. Gene expression analysis showed only 12 informative cases, of these 9 (75%) re-expressed the gene. There was neither change in the methylation status of H19 and clone 1.2 nor changes in global DNA methylation. Conclusion Hydralazine at doses between 50 and 150 mg/day is well tolerated and effective to demethylate and reactivate the expression of tumor suppressor genes without affecting global DNA methylation
Collapse
Affiliation(s)
- Pilar Zambrano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología/Instituto de Investigaciones Biomédicas, UNAM, Mexico
| | - Blanca Segura-Pacheco
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología/Instituto de Investigaciones Biomédicas, UNAM, Mexico
| | - Enrique Perez-Cardenas
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología/Instituto de Investigaciones Biomédicas, UNAM, Mexico
| | - Lucely Cetina
- Division of Clinical Research, Instituto Nacional de Cancerología, Mexico
| | | | - Lucía Taja-Chayeb
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología/Instituto de Investigaciones Biomédicas, UNAM, Mexico
| | - Alma Chavez-Blanco
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología/Instituto de Investigaciones Biomédicas, UNAM, Mexico
| | - Enrique Angeles
- Laboratorio de Química Medicinal FES-Cuautitlán, UNAM, Mexico
| | - Gustavo Cabrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología/Instituto de Investigaciones Biomédicas, UNAM, Mexico
| | - Karina Sandoval
- Laboratorio de Desarrollo de Métodos Analíticos, FES-Cuautitlán, UNAM, Mexico
| | - Catalina Trejo-Becerril
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología/Instituto de Investigaciones Biomédicas, UNAM, Mexico
| | - Jose Chanona-Vilchis
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología/Instituto de Investigaciones Biomédicas, UNAM, Mexico
| | - Alfonso Duenas-González
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología/Instituto de Investigaciones Biomédicas, UNAM, Mexico
| |
Collapse
|
33
|
Raguz S, Tamburo De Bella M, Tripuraneni G, Slade MJ, Higgins CF, Coombes RC, Yagüe E. Activation of the MDR1 upstream promoter in breast carcinoma as a surrogate for metastatic invasion. Clin Cancer Res 2004; 10:2776-83. [PMID: 15102684 DOI: 10.1158/1078-0432.ccr-03-0517] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Activation of the MDR1 upstream promoter (USP) has been described previously in four lymphoblastic leukemia patients, where it is the major MDR1 promoter associated with P-glycoprotein overexpression. We asked whether MDR1 USP-derived transcripts were also present in breast carcinoma and assessed their potential as a biomarker. EXPERIMENTAL DESIGN We developed a sensitive method for detecting transcripts derived from the MDR1 USP and used it to identify MDR1 USP-derived transcripts in cell model systems, in 61 breast carcinoma biopsies of the primary tumor, and in isolated malignant epithelial cells both from the primary tumor and from the associated invaded lymph nodes. RESULTS The MDR1 USP was not active in several independent leukemic and breast cancer cell lines or nucleated peripheral blood cells (n = 9). However, transcripts derived from the MDR1 USP were detected in some drug-resistant cell lines and a high proportion of primary breast tumors (71.6%; n = 61), whereas they were present at low frequency in normal breast tissue (10%; n = 10). Activation of MDR1 USP was not due to chromosomal amplifications or rearrangements at the MDR1 locus. Transcription from the MDR1 USP correlated with metastatic node invasion [N = 0-3 versus N > 3 (N = number of lymph nodes invaded); Fisher's exact test, P = 0.011] and was detected in malignant epithelial cells from the primary tumor and those that metastasized to the lymph nodes. CONCLUSIONS MDR1 USP activation is a surrogate marker for breast carcinoma progression and can be used as a marker to study breast cancer susceptibility.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Adult
- Aged
- Aged, 80 and over
- Alternative Splicing
- Biomarkers, Tumor
- Blotting, Southern
- Breast/pathology
- Breast Neoplasms/genetics
- Cell Line, Tumor
- Epithelial Cells/metabolism
- Female
- Genes, MDR/genetics
- Humans
- Leukemia, Lymphoid/genetics
- Lymphatic Metastasis
- Middle Aged
- Models, Genetic
- Neoplasm Metastasis
- Phenotype
- Promoter Regions, Genetic
- RNA/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Selina Raguz
- Clinical Sciences Centre, Medical Research Council, Imperial College, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
34
|
Singh SM, Murphy B, O'Reilly RL. Involvement of gene-diet/drug interaction in DNA methylation and its contribution to complex diseases: from cancer to schizophrenia. Clin Genet 2004; 64:451-60. [PMID: 14986824 DOI: 10.1046/j.1399-0004.2003.00190.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most biological processes, including diseases, involve genetic and non-genetic factors. Also, the realization of a genetic potential may depend on environmental factors by directly affecting the expression of gene(s). Exactly how different environmental factors affect gene expression is not well understood. One of the mechanisms may involve DNA methylation and thereby gene expression. Diet, chemicals, and metals are known to affect DNA methylation and other epigenetic processes but are just beginning to be elucidated. For example, methylation of cytosine(s) in the promoter region could prevent the binding of transcription factors or create binding sites for complexes that deacetylate neighboring histones that in turn compact the chromatin, encouraging a gene to become silent. This article will discuss DNA methylation as an epigenetic mechanism of gene regulation and examine how factors like diet, chemicals, and metals may affect DNA methylation. The effect of alterations in DNA methylation may include aberrant expression of genes or genomes and chromosomal instability, which in turn may contribute to the etiology of complex multifactorial diseases. A similar mechanism is now recognized in a number of cancers. There is also indirect evidence to suggest that methylation could apply to a number of complex diseases, including schizophrenia.
Collapse
Affiliation(s)
- S M Singh
- Molecular Genetics Unit, Department of Biology, Division of Medical Genetics, University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|
35
|
Koul S, McKiernan JM, Narayan G, Houldsworth J, Bacik J, Dobrzynski DL, Assaad AM, Mansukhani M, Reuter VE, Bosl GJ, Chaganti RSK, Murty VVVS. Role of promoter hypermethylation in Cisplatin treatment response of male germ cell tumors. Mol Cancer 2004; 3:16. [PMID: 15149548 PMCID: PMC420487 DOI: 10.1186/1476-4598-3-16] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 05/18/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Male germ cell tumor (GCT) is a highly curable malignancy, which exhibits exquisite sensitivity to cisplatin treatment. The genetic pathway(s) that determine the chemotherapy sensitivity in GCT remain largely unknown. RESULTS We studied epigenetic changes in relation to cisplatin response by examining promoter hypermethylation in a cohort of resistant and sensitive GCTs. Here, we show that promoter hypermethylation of RASSF1A and HIC1 genes is associated with resistance. The promoter hypermethylation and/or the down-regulated expression of MGMT is seen in the majority of tumors. We hypothesize that these epigenetic alterations affecting MGMT play a major role in the exquisite sensitivity to cisplatin, characteristic of GCTs. We also demonstrate that cisplatin treatment induce de novo promoter hypermethylation in vivo. In addition, we show that the acquired cisplatin resistance in vitro alters the expression of specific genes and the highly resistant cells fail to reactivate gene expression after treatment to demethylating and histone deacetylase inhibiting agents. CONCLUSIONS Our findings suggest that promoter hypermethylation of RASSF1A and HIC1 genes play a role in resistance of GCT, while the transcriptional inactivation of MGMT by epigenetic alterations confer exquisite sensitivity to cisplatin. These results also implicate defects in epigenetic pathways that regulate gene transcription in cisplatin resistant GCT.
Collapse
MESH Headings
- Acetylation/drug effects
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Line, Tumor
- Cisplatin/metabolism
- Cisplatin/pharmacology
- Cisplatin/therapeutic use
- Cohort Studies
- DNA Methylation/drug effects
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/physiology
- Fanconi Anemia Complementation Group F Protein
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/physiology
- Germinoma/drug therapy
- Germinoma/metabolism
- Histones/metabolism
- Humans
- Kruppel-Like Transcription Factors
- Male
- Methyltransferases/antagonists & inhibitors
- O(6)-Methylguanine-DNA Methyltransferase/genetics
- O(6)-Methylguanine-DNA Methyltransferase/physiology
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/physiology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/physiology
- Retrospective Studies
- Testicular Neoplasms/drug therapy
- Testicular Neoplasms/metabolism
- Transcription Factors/genetics
- Transcription Factors/physiology
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/physiology
Collapse
Affiliation(s)
- Sanjay Koul
- Department of Pathology, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - James M McKiernan
- Department of Urology, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Gopeshwar Narayan
- Department of Pathology, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Jane Houldsworth
- The Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Jennifer Bacik
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Deborah L Dobrzynski
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Adel M Assaad
- Department of Pathology, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Mahesh Mansukhani
- Department of Pathology, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Victor E Reuter
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - George J Bosl
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Raju SK Chaganti
- The Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Vundavalli VVS Murty
- Department of Pathology, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA
- Institute for Cancer Genetics, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
36
|
Abstract
Recent advances in human genome research have resulted in novel approaches for the identification of epigenetic modifications associated with cancer. Modulators of DNA methylation and chromatin structure have a dramatic effect on gene expression, cellular proliferation, differentiation, and apoptosis. Molecular pathways regulating epigenetic events that occur during tumorigenesis have been exploited as new targets for therapeutic intervention. Clinical studies exploring the effectiveness of therapeutic agents targeting DNA methylation and acetylation of histones have yielded promising results. Molecular profiles of epigenetic alterations in cancer cells could allow better stratification of patients who may show responsiveness to specific treatments.
Collapse
Affiliation(s)
- Thea Kalebic
- Lung and Upper Aerodigestive Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland 20892, USA.
| |
Collapse
|
37
|
Moore LE, Huang WY, Chung J, Hayes RB. Epidemiologic considerations to assess altered DNA methylation from environmental exposures in cancer. Ann N Y Acad Sci 2003; 983:181-96. [PMID: 12724223 DOI: 10.1111/j.1749-6632.2003.tb05973.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epidemiologic studies in human populations have identified a broad spectrum of risk factors for cancer. Gene-damaging agents have been a primary focus of cancer epidemiology; however, all xenobiotics do not interact with DNA directly. Some exogenous agents induce epigenetic changes. In view of this, markers that measure changes to the epigenome must also be incorporated into molecular epidemiologic studies. We review the current understanding of the impact of exogenous agents including: micronutrients, chemotherapeutic agents, metals, and others, on DNA methylation. Two categories of genes are described: (1) genes that can alter susceptibility to aberrant DNA methylation and (2) genes that increase susceptibility to cancer when they are silenced through DNA methylation. Methods for incorporating markers of DNA methylation status into etiologic investigations of the impact of environmental exposures on disease (e.g., cancer) are discussed.
Collapse
Affiliation(s)
- Lee E Moore
- Occupational Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
38
|
Qiu YY, Mirkin BL, Dwivedi RS. Differential expression of DNA-methyltransferases in drug resistant murine neuroblastoma cells. CANCER DETECTION AND PREVENTION 2002; 26:444-53. [PMID: 12507229 DOI: 10.1016/s0361-090x(02)00116-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuroblastoma tumors frequently become drug resistant during the process of chemotherapy resulting in unfavorable clinical outcomes. Development of sustained drug resistance in neuroblastoma is a major problem in successful treatment. To explore the role of DNA-methyltransferases (Dnmt) in acquired drug resistance of neuroblastoma, the present investigation was carried out to study the expression of Dnmtl, Dnmt3a, and Dnmt3b in drug resistant murine neuroblastoma cells, in an in vitro model system. We have analyzed the expression of Dnmtl, Dnmt3a, and Dnmt3b methyltransferases in wild type and drug resistant murine neuroblastoma cells by using Western blot, immunofluorescence microscopy, semiquantitative and quantitative real time RT-PCR analyses. The present investigation demonstrates that total Dnmt enzymatic activity was increased two-fold (P < 0.001) with a 33% increase in global DNA methylation rate in drug resistant cells. Results of the Western blot, immunofluorescence microscopy, RT-PCR, and quantitative real time RT-PCR analysis demonstrated that Dnmt1 and Dnmt3b expression increased significantly (P < 0.001) in drug resistant cells when compared with wild type cells. Dnmt3a expression did not reveal any change between wild type and drug resistant cells. These findings suggest that Dnmtases are differentially expressed in drug resistant murine neuroblastoma cells and overexpression of Dnmtl and Dnmt3b may contribute towards loss of function of the growth regulatory or tumor suppressor genes by methylation of their 'CpG' region and subsequently silencing of their expression. The products of these methylated genes may, thus, confer a high level of drug resistant phenotype in drug resistant neuroblastoma cells.
Collapse
Affiliation(s)
- Yi Y Qiu
- Department of Pediatrics, Children's Memorial Hospital, Children's Memorial Institute for Education and Research, Feinberg School of Medicine, Medical School, 2300 Children's Plaza, Mail Box no. 204, Chicago, IL 60614-3394, USA
| | | | | |
Collapse
|
39
|
Affiliation(s)
- P W Laird
- Department of Surgery, University of Southern California Keck School of Medicine, Norris Comprehensive Cancer Center, Los Angeles 90089-9176, USA.
| |
Collapse
|
40
|
Paul D, Cowan KH. Drug Resistance in Breast Cancer. Breast Cancer 1999. [DOI: 10.1007/978-1-59259-456-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Lee YW, Broday L, Costa M. Effects of nickel on DNA methyltransferase activity and genomic DNA methylation levels. Mutat Res 1998; 415:213-8. [PMID: 9714811 DOI: 10.1016/s1383-5718(98)00078-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methylation of DNA plays an important role in organizing the genome into transcriptionally active and inactive zones. Nickel compounds cause chromatin condensation and DNA methylation in the transgenic gpt+ Chinese hamster cell line (G12). Here we show that nickel is an inhibitor of cytosine 5-methyltransferase activity in vivo and in vitro. In living cells, this inhibition is transient and following a recovery period after nickel treatment, Mtase activity slightly rebounds. Genomic DNA methylation levels are also somewhat decreased following nickel treatment, but with time, there is an elevation of total DNA methylation above basal levels and before any rebound of methyltransferase activity. These results suggest that nickel exposure can elevate total genomic DNA methylation levels even when DNA methyltransferase activity is depressed. These findings may explain the hypermethylation of senescence and tumor suppressor genes found during nickel carcinogenesis and support the model of a direct effect of Ni2+ on chromatin leading to de novo DNA methylation.
Collapse
Affiliation(s)
- Y W Lee
- Institute of Environmental Medicine, New York University Medical Center, NY 10016, USA
| | | | | |
Collapse
|
42
|
Abstract
This paper will explore emerging concepts related to alternative carcinogenic mechanisms of 'non-mutagenic,' and hence epigenetic, carcinogens that may heritably alter DNA methylation without changing the underlying DNA sequence. In this review, we will touch on the basic concepts of DNA methylation, and will elaborate in greater detail on related topics including chromatin condensation, and heterochromatin spreading that is well known to induce gene silencing by position effect variegation in Drosophila and other species. Data from our model transgenic G12 cell system will be presented to support our hypothesis that certain carcinogens, such as nickel, may be carcinogenic not primarily because of their overt mutability, but rather as the result of their ability to promote DNA hypermethylation of important cancer-related genes. We will conclude with a discussion of the broader relevance of our findings and its application to other so-called 'epigenetic' carcinogens.
Collapse
Affiliation(s)
- C B Klein
- Nelson Institute of Environmental Medicine, New York University Medical Center, NY 10016, USA
| | | |
Collapse
|