1
|
Lu JB, Li ZD, Ye ZX, Huang HJ, Chen JP, Li JM, Zhang CX. Long-wave opsin involved in body color plastic development in Nilaparvata lugens. BMC Genomics 2023; 24:353. [PMID: 37365539 DOI: 10.1186/s12864-023-09470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND As one of the components of visual photopigments in photoreceptor cells, opsin exhibits different spectral peaks and plays crucial roles in visual function. Besides, it is discovered to evolve other functions despite color vision. However, research on its unconventional function is limited nowadays. With the increase in genome database numbers, various numbers and types of opsins have been identified in insects due to gene duplications or losses. The Nilaparvata lugens (Hemiptera) is a rice pest known for its long-distance migration capability. In this study, opsins were identified in N. lugens and characterized by genome and transcriptome analyses. Meanwhile, RNA interference (RNAi) was carried out to investigate the functions of opsins, and then the Illumina Novaseq 6000 platform-based transcriptome sequencing was performed to reveal gene expression patterns. RESULTS Four opsins belonging to G protein-coupled receptors were identified in the N. lugens genome, including one long-sensitive opsin (Nllw) together with two ultraviolet-sensitive opsins (NlUV1/2) and an additional new opsin with hypothesized UV peak sensitivity (NlUV3-like). A tandem array of NlUV1/2 on the chromosome suggested the presence of a gene duplication event, with similar exons distribution. Moreover, as revealed by spatiotemporal expression, the four opsins were highly expressed in eyes with age-different expression levels. Besides, RNAi targeting each of the four opsins did not significantly affect the survival of N. lugens in phytotron, but the silencing of Nllw resulted in the melanization of body color. Further transcriptome analysis revealed that silencing of Nllw resulted in up-regulation of a tyrosine hydroxylase gene (NlTH) and down-regulation of an arylalkylamine-N-acetyltransferases gene (NlaaNAT) in N. lugens, demonstrating that Nllw is involved in body color plastic development via the tyrosine-mediated melanism pathway. CONCLUSIONS This study provides the first evidence in a Hemipteran insect that an opsin (Nllw) takes part in the regulation of cuticle melanization, confirming a cross-talk between the gene pathways underlying the visual system and the morphological differentiation in insects.
Collapse
Affiliation(s)
- Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ze-Dong Li
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Palecanda S, Iwanicki T, Steck M, Porter ML. Crustacean conundrums: a review of opsin diversity and evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210289. [PMID: 36058240 PMCID: PMC9441232 DOI: 10.1098/rstb.2021.0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/06/2022] [Indexed: 11/12/2022] Open
Abstract
Knowledge of crustacean vision is lacking compared to the more well-studied vertebrates and insects. While crustacean visual systems are typically conserved morphologically, the molecular components (i.e. opsins) remain understudied. This review aims to characterize opsin diversity across crustacean lineages for an integrated view of visual system evolution. Using publicly available data from 95 species, we identified opsin sequences and classified them by clade. Our analysis produced 485 putative visual opsins and 141 non-visual opsins. The visual opsins were separated into six clades: long wavelength sensitive (LWS), middle wavelength sensitive (MWS) 1 and 2, short wavelength or ultraviolet sensitive (SWS/UVS) and a clade of thecostracan opsins, with multiple LWS and MWS opsin copies observed. The SWS/UVS opsins were relatively conserved in most species. The crustacean classes Cephalocarida, Remipedia and Hexanauplia exhibited reduced visual opsin diversity compared to others, with the malacostracan decapods having the highest opsin diversity. Non-visual opsins were identified from all investigated classes except Cephalocarida. Additionally, a novel clade of non-visual crustacean-specific, R-type opsins (Rc) was discovered. This review aims to provide a framework for future research on crustacean vision, with an emphasis on the need for more work in spectral characterization and molecular analysis. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Sitara Palecanda
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Thomas Iwanicki
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Mireille Steck
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Megan L. Porter
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
3
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
4
|
Chakrabarti P, Sarkar S, Basu P. Pesticide induced visual abnormalities in Asian honey bees (Apis cerana L.) in intensive agricultural landscapes. CHEMOSPHERE 2019; 230:51-58. [PMID: 31102871 DOI: 10.1016/j.chemosphere.2019.05.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Pesticide stress is one of the important factors for global bee declines. Apart from physiological and developmental anomalies, pesticides also impose cognitive damages on bees. The present study investigates the visual acuity of wild populations of honey bees, in an agricultural intensification landscape, and corroborates the findings with controlled laboratory experiments. Even though overall morphometric examinations revealed no significant differences between the populations, correct color choices by bees in pesticide exposed populations were significantly reduced. The study reports, for the first time, the significant reduction in ommatidia facet diameter in these populations, as viewed under scanning electron microscope, along with the molecular underpinnings to these findings. Western blot studies revealed a significant reduction in expression of two visual proteins - blue-sensitive opsin and rhodopsin - in the pesticide exposed populations in both field and laboratory conditions. The novel findings from this study form the basis for further investigations into the effects of field realistic doses of multiple pesticide exposures on wild populations of honey bees.
Collapse
Affiliation(s)
| | - Sagartirtha Sarkar
- University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Parthiba Basu
- University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
5
|
Lichtenstein L, Grübel K, Spaethe J. Opsin expression patterns coincide with photoreceptor development during pupal development in the honey bee, Apis mellifera. BMC DEVELOPMENTAL BIOLOGY 2018; 18:1. [PMID: 29382313 PMCID: PMC5791347 DOI: 10.1186/s12861-018-0162-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022]
Abstract
Background The compound eyes of insects allow them to catch photons and convert the energy into electric signals. All compound eyes consist of numerous ommatidia, each comprising a fixed number of photoreceptors. Different ommatidial types are characterized by a specific set of photoreceptors differing in spectral sensitivity. In honey bees, males and females possess different ommatidial types forming distinct retinal mosaics. However, data are lacking on retinal ontogeny and the mechanisms by which the eyes are patterned. In this study, we investigated the intrinsic temporal and circadian expression patterns of the opsins that give rise to the ultraviolet, blue and green sensitive photoreceptors, as well as the morphological maturation of the retina during pupal development of honey bees. Results qPCR and histological labeling revealed that temporal opsin mRNA expression differs between sexes and correlates with rhabdom elongation during photoreceptor development. In the first half of the pupal stage, when the rhabdoms of the photoreceptors are still short, worker and (dorsal) drone retinae exhibit similar expression patterns with relatively high levels of UV (UVop) and only marginal levels of blue (BLop) and green (Lop1) opsin mRNA. In the second half of pupation, when photoreceptors and rhabdoms elongate, opsin expression in workers becomes dominated by Lop1 mRNA. In contrast, the dorsal drone eye shows high expression levels of UVop and BLop mRNA, whereas Lop1 mRNA level decreases. Interestingly, opsin expression levels increase up to 22-fold during early adult life. We also found evidence that opsin expression in adult bees is under the control of the endogenous clock. Conclusions Our data indicate that the formation of the sex-specific retinal composition of photoreceptors takes place during the second half of the pupal development, and that opsin mRNA expression levels continue to increase in young bees, which stands in contrast to Drosophila, where the highest expression levels are found during the late pupal stage and remain constant in adults. From an evolutionary perspective, we hypothesize that the delayed retinal maturation during the early adult phase is linked to the delayed transition from indoor to outdoor activities in bees, when vision becomes important.
Collapse
Affiliation(s)
- Leonie Lichtenstein
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg, Germany.
| | - Kornelia Grübel
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Abstract
Abstract
Ants constitute one of the most intriguing animal groups with their advanced social lifes, different life histories and sensory modalities, one of which is vision. Chemosensation dominates all other modalities in the accomplishment of different vital tasks, but vision, varying from total blindness in some species to a relatively well-developed vision providing ants the basis for visually-guided behaviors, is also of importance. Although studies on ant vision mainly focused on recognition of and guidance by landmark cues in artificial and/or natural conditions, spectral sensitivities of their compound eyes and ocelli were also disclosed, but to a lesser extent. In this review, we have tried to present current data on the spectral sensitivities of the different ant species tested so far and the different methodological approaches. The results, as well as the similarities and/or discrepancies of the methodologies applied, were compared. General tendencies in ants’ spectral sensitivities are presented in a comparative manner and the role of opsins and ant ocelli in their spectral sensitivity is discussed in addition to the sensitivity of ants to long wavelengths. Extraocular sensitivity was also shown in some ant species. The advantages and/or disadvantages of a dichromatic and trichromatic color vision system are discussed from an ecological perspective.
Collapse
Affiliation(s)
- Volkan Aksoy
- Department of Biology, Faculty of Sciences, Balkan Campus, Trakya University, 22030 Edirne, Turkey
| | - Yilmaz Camlitepe
- Department of Biology, Faculty of Sciences, Balkan Campus, Trakya University, 22030 Edirne, Turkey
| |
Collapse
|
7
|
Tsukamoto H, Chen IS, Kubo Y, Furutani Y. A ciliary opsin in the brain of a marine annelid zooplankton is ultraviolet-sensitive, and the sensitivity is tuned by a single amino acid residue. J Biol Chem 2017. [PMID: 28623234 DOI: 10.1074/jbc.m117.793539] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ciliary opsins were classically thought to function only in vertebrates for vision, but they have also been identified recently in invertebrates for non-visual photoreception. Larvae of the annelid Platynereis dumerilii are used as a zooplankton model, and this zooplankton species possesses a "vertebrate-type" ciliary opsin (named c-opsin) in the brain. Platynereis c-opsin is suggested to relay light signals for melatonin production and circadian behaviors. Thus, the spectral and biochemical characteristics of this c-opsin would be directly related to non-visual photoreception in this zooplankton model. Here we demonstrate that the c-opsin can sense UV to activate intracellular signaling cascades and that it can directly bind exogenous all-trans-retinal. These results suggest that this c-opsin regulates circadian signaling in a UV-dependent manner and that it does not require a supply of 11-cis-retinal for photoreception. Avoidance of damaging UV irradiation is a major cause of large-scale daily zooplankton movement, and the observed capability of the c-opsin to transmit UV signals and bind all-trans-retinal is ideally suited for sensing UV radiation in the brain, which presumably lacks enzymes producing 11-cis-retinal. Mutagenesis analyses indicated that a unique amino acid residue (Lys-94) is responsible for c-opsin-mediated UV sensing in the Platynereis brain. We therefore propose that acquisition of the lysine residue in the c-opsin would be a critical event in the evolution of Platynereis to enable detection of ambient UV light. In summary, our findings indicate that the c-opsin possesses spectral and biochemical properties suitable for UV sensing by the zooplankton model.
Collapse
Affiliation(s)
- Hisao Tsukamoto
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan; Department of Structural Molecular Science, Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan.
| | - I-Shan Chen
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Physiological Sciences, SOKENDAI, Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Physiological Sciences, SOKENDAI, Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan; Department of Structural Molecular Science, Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
8
|
Giraldo-Calderón GI, Zanis MJ, Hill CA. Retention of duplicated long-wavelength opsins in mosquito lineages by positive selection and differential expression. BMC Evol Biol 2017; 17:84. [PMID: 28320313 PMCID: PMC5359912 DOI: 10.1186/s12862-017-0910-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 02/09/2017] [Indexed: 12/02/2022] Open
Abstract
Background Opsins are light sensitive receptors associated with visual processes. Insects typically possess opsins that are stimulated by ultraviolet, short and long wavelength (LW) radiation. Six putative LW-sensitive opsins predicted in the yellow fever mosquito, Aedes aegypti and malaria mosquito, Anopheles gambiae, and eight in the southern house mosquito, Culex quinquefasciatus, suggest gene expansion in the Family Culicidae (mosquitoes) relative to other insects. Here we report the first detailed molecular and evolutionary analyses of LW opsins in three mosquito vectors, with a goal to understanding the molecular basis of opsin-mediated visual processes that could be exploited for mosquito control. Results Time of divergence estimates suggest that the mosquito LW opsins originated from 18 or 19 duplication events between 166.9/197.5 to 1.07/0.94 million years ago (MY) and that these likely occurred following the predicted divergence of the lineages Anophelinae and Culicinae 145–226 MY. Fitmodel analyses identified nine amino acid residues in the LW opsins that may be under positive selection. Of these, eight amino acids occur in the N and C termini and are shared among all three species, and one residue in TMIII was unique to culicine species. Alignment of 5′ non-coding regions revealed potential Conserved Non-coding Sequences (CNS) and transcription factor binding sites (TFBS) in seven pairs of LW opsin paralogs. Conclusions Our analyses suggest opsin gene duplication and residues possibly associated with spectral tuning of LW-sensitive photoreceptors. We explore two mechanisms - positive selection and differential expression mediated by regulatory units in CNS – that may have contributed to the retention of LW opsin genes in Culicinae and Anophelinae. We discuss the evolution of mosquito LW opsins in the context of major Earth events and possible adaptation of mosquitoes to LW-dominated photo environments, and implications for mosquito control strategies based on disrupting vision-mediated behaviors. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0910-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gloria I Giraldo-Calderón
- Department of Entomology, Purdue University, West Lafayette, IN, 47907-2089, USA.,Present Address: Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Michael J Zanis
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907-2089, USA.,Present Address: Department of Biology, Seattle University, Seattle, WA, 98122, USA
| | - Catherine A Hill
- Department of Entomology, Purdue University, West Lafayette, IN, 47907-2089, USA. .,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907-2089, USA.
| |
Collapse
|
9
|
Ping X, Lee JS, Garlick D, Jiang Z, Blaisdell AP. Behavioral evidence illuminating the visual abilities of the terrestrial Caribbean hermit crab Coenobita clypeatus. Behav Processes 2015; 118:47-58. [DOI: 10.1016/j.beproc.2015.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
|
10
|
Terakita A, Tsukamoto H, Koyanagi M, Sugahara M, Yamashita T, Shichida Y. Expression and comparative characterization of Gq-coupled invertebrate visual pigments and melanopsin. J Neurochem 2008; 105:883-90. [DOI: 10.1111/j.1471-4159.2007.05184.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Tsukamoto H, Terakita A, Shichida Y. A rhodopsin exhibiting binding ability to agonist all-trans-retinal. Proc Natl Acad Sci U S A 2005; 102:6303-8. [PMID: 15851682 PMCID: PMC1088369 DOI: 10.1073/pnas.0500378102] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rhodopsins are the members of the family of G protein-coupled receptors that have diverged from ligand-binding receptors into photoreceptive pigments. Vertebrate rhodopsins are able to bind the inverse agonist 11-cis-retinal but are unable to bind the agonist all-trans-retinal, indicating that vertebrate rhodopsin changed its binding ability during the course of molecular evolution. Here, we show that unlike vertebrate rhodopsin, amphioxus rhodopsin is still able to bind the agonist all-trans-retinal. The opsin of amphioxus rhodopsin can also bind 11-cis-retinal to form a photoreceptive pigment that can convert to a red-shifted photoproduct through cis-trans isomerization of the chromophore upon photon absorption. The red-shifted photoproduct is the stable G protein activating state. Incubation of the opsin with all-trans-retinal produces a G protein activating state that is spectroscopically and biochemically indistinguishable from the red-shifted photoproduct, indicating that the opsin possesses agonist-binding ability. The opsin exhibits an approximately 50-fold higher affinity for 11-cis-retinal than for all-trans-retinal, and mutational analyses revealed that Trp-265 situated in helix VI is important for the increase in binding affinity to 11-cis-retinal. These properties of amphioxus rhodopsin suggest that an ancestral rhodopsin increased the affinity for 11-cis-retinal by rearrangement of a structure including Trp-265 to act as a photoreceptor. In addition, an additional mechanism was acquired in vertebrate rhodopsin to prevent completely the binding of exogenous all-trans-retinal during molecular evolution.
Collapse
Affiliation(s)
- Hisao Tsukamoto
- Department of Biophysics, Graduate School of Science, Kyoto University and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
12
|
Vogeley L, Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL, Luecke H. Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 A. Science 2004; 306:1390-3. [PMID: 15459346 PMCID: PMC5017883 DOI: 10.1126/science.1103943] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Microbial sensory rhodopsins are a family of membrane-embedded photoreceptors in prokaryotic and eukaryotic organisms. Structures of archaeal rhodopsins, which function as light-driven ion pumps or photosensors, have been reported. We present the structure of a eubacterial rhodopsin, which differs from those of previously characterized archaeal rhodopsins in its chromophore and cytoplasmic-side portions. Anabaena sensory rhodopsin exhibits light-induced interconversion between stable 13-cis and all-trans states of the retinylidene protein. The ratio of its cis and trans chromophore forms depends on the wavelength of illumination, thus providing a mechanism for a single protein to signal the color of light, for example, to regulate color-sensitive processes such as chromatic adaptation in photosynthesis. Its cytoplasmic half channel, highly hydrophobic in the archaeal rhodopsins, contains numerous hydrophilic residues networked by water molecules, providing a connection from the photoactive site to the cytoplasmic surface believed to interact with the receptor's soluble 14-kilodalton transducer.
Collapse
Affiliation(s)
- Lutz Vogeley
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Oleg A. Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX 77030, USA
- Biology Department, Moscow State University, Moscow, Russia
| | - Vishwa D. Trivedi
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX 77030, USA
| | - Jun Sasaki
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX 77030, USA
| | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX 77030, USA
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX 77030, USA
- To whom correspondence should be addressed. (H.L.) or (J.L.S.)
| | - Hartmut Luecke
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- Department of Physiology and Biophysics and Department of Informatics and Computer Sciences, University of California, Irvine, CA 92697, USA
- To whom correspondence should be addressed. (H.L.) or (J.L.S.)
| |
Collapse
|