1
|
Freire RVM, Tran B, Debas M, Zabara M, Amenitsch H, Salentinig S. Nanostructure Formation in Glycerolipid Films during Enzymatic Hydrolysis: A GISAXS Study. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39448890 DOI: 10.1021/acsami.4c12125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Responsive nanostructured films from food-grade lipids can be valuable for food, pharmaceutical, and biotechnological science. Lyotropic liquid crystalline structures that respond to enzymes in their environment can, for instance, be innovated as drug delivery platforms or biosensors. However, the structural changes that such films undergo during enzymatic reactions with lipase are not yet understood. This work demonstrates the preparation of mesostructured lipid films from the food-grade lipids glycerol monooleate (GMO) and triolein on silicon wafers and their digestion with pancreatic lipase using time-resolved synchrotron grazing incidence small-angle X-ray scattering (GISAXS). The film structure is compared with the corresponding GMO/triolein bulk phases in excess water. Increasing the GMO/triolein ratio in the film makes it possible to modulate the structure of the films from oil coatings to inverse hexagonal and inverse bicontinuous cubic films. Pancreatic lipase triggered swelling of the internal film nanostructure and eventually structural transformation inside the film. Orientation and reorientation of the internal film structure relative to the silicon wafer surface were observed during the preparation of the films and their digestion. The findings contribute to the understanding of self-assembly in thin films and guide the development of enzyme-responsive coatings for the functional modification of various substrates.
Collapse
Affiliation(s)
- Rafael V M Freire
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Bettina Tran
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Meron Debas
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Mahsa Zabara
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Heinz Amenitsch
- Institute for Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria and Elettra Sincrotrone Trieste S.C.p.A., s.s. 14 km 163.5 in Area Science Park, Basovizza, 34149 Trieste, Italy
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
2
|
Böde K, Javornik U, Dlouhý O, Zsíros O, Biswas A, Domonkos I, Šket P, Karlický V, Ughy B, Lambrev PH, Špunda V, Plavec J, Garab G. Role of isotropic lipid phase in the fusion of photosystem II membranes. PHOTOSYNTHESIS RESEARCH 2024; 161:127-140. [PMID: 38662326 PMCID: PMC11269484 DOI: 10.1007/s11120-024-01097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
It has been thoroughly documented, by using 31P-NMR spectroscopy, that plant thylakoid membranes (TMs), in addition to the bilayer (or lamellar, L) phase, contain at least two isotropic (I) lipid phases and an inverted hexagonal (HII) phase. However, our knowledge concerning the structural and functional roles of the non-bilayer phases is still rudimentary. The objective of the present study is to elucidate the origin of I phases which have been hypothesized to arise, in part, from the fusion of TMs (Garab et al. 2022 Progr Lipid Res 101,163). We take advantage of the selectivity of wheat germ lipase (WGL) in eliminating the I phases of TMs (Dlouhý et al. 2022 Cells 11: 2681), and the tendency of the so-called BBY particles, stacked photosystem II (PSII) enriched membrane pairs of 300-500 nm in diameter, to form large laterally fused sheets (Dunahay et al. 1984 BBA 764: 179). Our 31P-NMR spectroscopy data show that BBY membranes contain L and I phases. Similar to TMs, WGL selectively eliminated the I phases, which at the same time exerted no effect on the molecular organization and functional activity of PSII membranes. As revealed by sucrose-density centrifugation, magnetic linear dichroism spectroscopy and scanning electron microscopy, WGL disassembled the large laterally fused sheets. These data provide direct experimental evidence on the involvement of I phase(s) in the fusion of stacked PSII membrane pairs, and strongly suggest the role of non-bilayer lipids in the self-assembly of the TM system.
Collapse
Affiliation(s)
- Kinga Böde
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Uroš Javornik
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia
| | - Ondřej Dlouhý
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Ottó Zsíros
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Avratanu Biswas
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Ildikó Domonkos
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Primož Šket
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia
| | - Václav Karlický
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Bettina Ughy
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Petar H Lambrev
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- EN-FIST Center of Excellence, Ljubljana, Slovenia
| | - Győző Garab
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary.
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
3
|
Schlattmann D, Weber B, Wyszynski L, Schönhoff M, Haas H. Molecular localization and exchange kinetics in pharmaceutical liposome and mRNA lipoplex nanoparticle products determined by small angle X-ray scattering and pulsed field gradient NMR diffusion measurements. Eur J Pharm Biopharm 2024; 201:114380. [PMID: 38960290 DOI: 10.1016/j.ejpb.2024.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
We have used pulsed field gradient (PFG)-NMR diffusion experiments, also known as DOSY, in combination with small angle X-ray scattering measurements to investigate structure and molecular exchange dynamics between pharmaceutical lipid nanoparticles and the bulk phase. Using liposomes and lipoplexes formed after complexation of the liposomes with messenger mRNA as test systems, information on dynamics of encapsulated water molecules, lipids and excipients was obtained. The encapsulated fraction, having a diffusivity similar to that of the liposomes, could be clearly identified and quantified by the NMR diffusion measurements. The unilamellar liposome membranes allowed a fast exchange of water molecules, while sucrose, used as an osmolyte and model solute, showed very slow exchange. Upon interactions with mRNA a topological transition from a vesicular to a lamellar organization took place, where the mRNA was inserted in repeating lipid bilayer stacks. In the lipoplexes, a small fraction of tightly bound water molecules was present, with a diffusivity that was influenced by the additional presence of sucrose. This extended information on dynamic coherencies inside pharmaceutical nanoparticle products, provided by the combined application of SAXS and PFG-NMR diffusion measurements, can be valuable for evaluation of quality and comparability of nanoscaled pharmaceuticals.
Collapse
Affiliation(s)
- Daniel Schlattmann
- Institute of Physical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | | | - Leonard Wyszynski
- Institute of Physical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Monika Schönhoff
- Institute of Physical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany.
| | - Heinrich Haas
- BioNTech SE. Mainz, Germany; Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
4
|
Caselli L, Conti L, De Santis I, Berti D. Small-angle X-ray and neutron scattering applied to lipid-based nanoparticles: Recent advancements across different length scales. Adv Colloid Interface Sci 2024; 327:103156. [PMID: 38643519 DOI: 10.1016/j.cis.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Lipid-based nanoparticles (LNPs), ranging from nanovesicles to non-lamellar assemblies, have gained significant attention in recent years, as versatile carriers for delivering drugs, vaccines, and nutrients. Small-angle scattering methods, employing X-rays (SAXS) or neutrons (SANS), represent unique tools to unveil structure, dynamics, and interactions of such particles on different length scales, spanning from the nano to the molecular scale. This review explores the state-of-the-art on scattering methods applied to unveil the structure of lipid-based nanoparticles and their interactions with drugs and bioactive molecules, to inform their rational design and formulation for medical applications. We will focus on complementary information accessible with X-rays or neutrons, ranging from insights on the structure and colloidal processes at a nanoscale level (SAXS) to details on the lipid organization and molecular interactions of LNPs (SANS). In addition, we will review new opportunities offered by Time-resolved (TR)-SAXS and -SANS for the investigation of dynamic processes involving LNPs. These span from real-time monitoring of LNPs structural evolution in response to endogenous or external stimuli (TR-SANS), to the investigation of the kinetics of lipid diffusion and exchange upon interaction with biomolecules (TR-SANS). Finally, we will spotlight novel combinations of SAXS and SANS with complementary on-line techniques, recently enabled at Large Scale Facilities for X-rays and neutrons. This emerging technology enables synchronized multi-method investigation, offering exciting opportunities for the simultaneous characterization of the structure and chemical or mechanical properties of LNPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| | - Laura Conti
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ilaria De Santis
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Debora Berti
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
5
|
Morin M, Björklund S, Nilsson EJ, Engblom J. Bicontinuous Cubic Liquid Crystals as Potential Matrices for Non-Invasive Topical Sampling of Low-Molecular-Weight Biomarkers. Pharmaceutics 2023; 15:2031. [PMID: 37631245 PMCID: PMC10459996 DOI: 10.3390/pharmaceutics15082031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Many skin disorders, including cancer, have inflammatory components. The non-invasive detection of related biomarkers could therefore be highly valuable for both diagnosis and follow up on the effect of treatment. This study targets the extraction of tryptophan (Trp) and its metabolite kynurenine (Kyn), two compounds associated with several inflammatory skin disorders. We furthermore hypothesize that lipid-based bicontinuous cubic liquid crystals could be efficient extraction matrices. They comprise a large interfacial area separating interconnected polar and apolar domains, allowing them to accommodate solutes with various properties. We concluded, using the extensively studied GMO-water system as test-platform, that the hydrophilic Kyn and Trp favored the cubic phase over water and revealed a preference for locating at the lipid-water interface. The interfacial area per unit volume of the matrix, as well as the incorporation of ionic molecules at the lipid-water interface, can be used to optimize the extraction of solutes with specific physicochemical characteristics. We also observed that the cubic phases formed at rather extreme water activities (>0.9) and that wearing them resulted in efficient hydration and increased permeability of the skin. Evidently, bicontinuous cubic liquid crystals constitute a promising and versatile platform for non-invasive extraction of biomarkers through skin, as well as for transdermal drug delivery.
Collapse
Affiliation(s)
- Maxim Morin
- Biofilms—Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden (S.B.); (E.J.N.)
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| | - Sebastian Björklund
- Biofilms—Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden (S.B.); (E.J.N.)
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| | - Emelie J. Nilsson
- Biofilms—Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden (S.B.); (E.J.N.)
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| | - Johan Engblom
- Biofilms—Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden (S.B.); (E.J.N.)
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| |
Collapse
|
6
|
Fanani ML, Ambroggio EE. Phospholipases and Membrane Curvature: What Is Happening at the Surface? MEMBRANES 2023; 13:190. [PMID: 36837693 PMCID: PMC9965983 DOI: 10.3390/membranes13020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In this revision work, we emphasize the close relationship between the action of phospholipases and the modulation of membrane curvature and curvature stress resulting from this activity. The alteration of the tridimensional structure of membranes upon the action of phospholipases is analyzed based on studies on model lipid membranes. The transient unbalance of both compositional and physical membrane properties between the hemilayers upon phospholipase activity lead to curvature tension and the catalysis of several membrane-related processes. Several proteins' membrane-bound and soluble forms are susceptible to regulation by the curvature stress induced by phospholipase action, which has important consequences in cell signaling. Additionally, the modulation of membrane fusion by phospholipase products regulates membrane dynamics in several cellular scenarios. We commented on vesicle fusion in the Golgi-endoplasmic system, synaptic vesicle fusion to the plasma membrane, viral membrane fusion to host cell plasma membrane and gametes membrane fusion upon acrosomal reaction. Furthermore, we explored the modulation of membrane fusion by the asymmetric adsorption of amphiphilic drugs. A deep understanding of the relevance of lipid membrane structure, particularly membrane curvature and curvature stress, on different cellular events leads to the challenge of its regulation, which may become a powerful tool for pharmacological therapy.
Collapse
Affiliation(s)
- María Laura Fanani
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Ernesto Esteban Ambroggio
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| |
Collapse
|
7
|
Structural Entities Associated with Different Lipid Phases of Plant Thylakoid Membranes—Selective Susceptibilities to Different Lipases and Proteases. Cells 2022; 11:cells11172681. [PMID: 36078087 PMCID: PMC9454902 DOI: 10.3390/cells11172681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
It is well established that plant thylakoid membranes (TMs), in addition to a bilayer, contain two isotropic lipid phases and an inverted hexagonal (HII) phase. To elucidate the origin of non-bilayer lipid phases, we recorded the 31P-NMR spectra of isolated spinach plastoglobuli and TMs and tested their susceptibilities to lipases and proteases; the structural and functional characteristics of TMs were monitored using biophysical techniques and CN-PAGE. Phospholipase-A1 gradually destroyed all 31P-NMR-detectable lipid phases of isolated TMs, but the weak signal of isolated plastoglobuli was not affected. Parallel with the destabilization of their lamellar phase, TMs lost their impermeability; other effects, mainly on Photosystem-II, lagged behind the destruction of the original phases. Wheat-germ lipase selectively eliminated the isotropic phases but exerted little or no effect on the structural and functional parameters of TMs—indicating that the isotropic phases are located outside the protein-rich regions and might be involved in membrane fusion. Trypsin and Proteinase K selectively suppressed the HII phase—suggesting that a large fraction of TM lipids encapsulate stroma-side proteins or polypeptides. We conclude that—in line with the Dynamic Exchange Model—the non-bilayer lipid phases of TMs are found in subdomains separated from but interconnected with the bilayer accommodating the main components of the photosynthetic machinery.
Collapse
|
8
|
Disalvo EA, Rosa AS, Cejas JP, Frias MDLA. Water as a Link between Membrane and Colloidal Theories for Cells. Molecules 2022; 27:4994. [PMID: 35956945 PMCID: PMC9370763 DOI: 10.3390/molecules27154994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
This review is an attempt to incorporate water as a structural and thermodynamic component of biomembranes. With this purpose, the consideration of the membrane interphase as a bidimensional hydrated polar head group solution, coupled to the hydrocarbon region allows for the reconciliation of two theories on cells in dispute today: one considering the membrane as an essential part in terms of compartmentalization, and another in which lipid membranes are not necessary and cells can be treated as a colloidal system. The criterium followed is to describe the membrane state as an open, non-autonomous and responsive system using the approach of Thermodynamic of Irreversible Processes. The concept of an open/non-autonomous membrane system allows for the visualization of the interrelationship between metabolic events and membrane polymorphic changes. Therefore, the Association Induction Hypothesis (AIH) and lipid properties interplay should consider hydration in terms of free energy modulated by water activity and surface (lateral) pressure. Water in restricted regions at the lipid interphase has thermodynamic properties that explain the role of H-bonding networks in the propagation of events between membrane and cytoplasm that appears to be relevant in the context of crowded systems.
Collapse
Affiliation(s)
- E. Anibal Disalvo
- Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofisica Aplicada y Alimentos, CIBAAL, Laboratory of Biointerphases and Biomimetic Systems, National University of Santiago del Estero and CONICET), RN 9-Km 1125, Santiago del Estero 4206, Argentina
| | | | | | | |
Collapse
|
9
|
Ogawa S, Takahashi I. Short-Chain Mono-Alkyl β-D-Glucoside Crystals—Do They Form a Cubic Crystal Structure? Molecules 2022; 27:molecules27144359. [PMID: 35889235 PMCID: PMC9320782 DOI: 10.3390/molecules27144359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Three-dimensional liquid crystal (LC) phases, cubic LC phases, have been extensively studied as fascinating molecular assembled systems formed by amphiphilic compounds. However, similar structures have only been seen in rare instances in lipid crystal states in glycolipid crystal studies. In this study, we prepared short-chain n-alkyl β-D-glucosides (CnG) with an alkyl chain length n ranging from 4 to 6 and investigated their crystal structures. First, differential thermal analysis (DTA) and thermogravimetric analysis (TG) measurements showed the formation of hydrated crystals for C4G and C5G, respectively. Second, the crystal structures of CnG (n = 4, 5, 6) in both anhydrous and hydrated states were examined using a temperature-controlled powder X-ray diffraction (PXRD) measurement. Both hydrate and anhydrous crystals of C4G and C5G with critical packing parameters (CPPs) less than 0.33 formed cubic crystal phases. Bilayer lengths, calculated from the main diffraction peaks in each PXRD profile, depended on crystalline moisture for C5G, but no significant change was confirmed for C4G, indicating that the properties of each hydrophilic layer differ. However, C6G with a CPP of 0.42 formed a crystal structure with a modulated lamellar structure similar to C7G and C8G with similar CPP values. Thus, a glycolipid motif concept with a cubic crystal structure was demonstrated.
Collapse
Affiliation(s)
- Shigesaburo Ogawa
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bio-Industry, Tokyo University of Agriculture, 196 Yasaka, Hokkaido 099-2493, Japan
- Correspondence: (S.O.); (I.T.)
| | - Isao Takahashi
- Department of Physics, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Japan
- Correspondence: (S.O.); (I.T.)
| |
Collapse
|
10
|
Oliveira C, Ferreira CJO, Sousa M, Paris JL, Gaspar R, Silva BFB, Teixeira JA, Ferreira-Santos P, Botelho CM. A Versatile Nanocarrier-Cubosomes, Characterization, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2224. [PMID: 35808060 PMCID: PMC9268278 DOI: 10.3390/nano12132224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023]
Abstract
The impact of nanotechnology on the exponential growth of several research areas, particularly nanomedicine, is undeniable. The ability to deliver active molecules to the desired site could significantly improve the efficiency of medical treatments. One of the nanocarriers developed which has drawn researchers' attention are cubosomes, which are nanosized dispersions of lipid bicontinuous cubic phases in water, consisting of a lipidic interior and aqueous domains folded in a cubic lattice. They stand out due to their ability to incorporate hydrophobic, hydrophilic, and amphiphilic compounds, their tortuous internal configuration that provides a sustained release, and the capacity to protect and safely deliver molecules. Several approaches can be taken to prepare this structure, as well as different lipids like monoolein or phytantriol. This review paper describes the different methods to prepare nanocarriers. As it is known, the physicochemical properties of nanocarriers are very important, as they influence their pharmacokinetics and their ability to incorporate and deliver active molecules. Therefore, an extensive characterization is essential to obtain the desired effect. As a result, we have extensively described the most common techniques to characterize cubosomes, particularly nanocarriers. The exceptional properties of the cubosomes make them suitable to be used in several applications in the biomedical field, from cancer therapeutics to imaging, which will be described. Taking in consideration the outstanding properties of cubosomes, their application in several research fields is envisaged.
Collapse
Affiliation(s)
- Cristiana Oliveira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Celso J. O. Ferreira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (R.G.); (B.F.B.S.)
- CF-UM_UP Department of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Miguel Sousa
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Juan L. Paris
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain;
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain
| | - Ricardo Gaspar
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (R.G.); (B.F.B.S.)
| | - Bruno F. B. Silva
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (R.G.); (B.F.B.S.)
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Ferreira-Santos
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Claudia M. Botelho
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Dadhich R, Kapoor S. Lipidomic and Membrane Mechanical Signatures in Triple-Negative Breast Cancer: Scope for Membrane-Based Theranostics. Mol Cell Biochem 2022; 477:2507-2528. [PMID: 35595957 DOI: 10.1007/s11010-022-04459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer associated with poor prognosis, higher grade, and a high rate of metastatic occurrence. Limited therapeutic interventions and the compounding issue of drug resistance in triple-negative breast cancer warrants the discovery of novel therapeutic targets and diagnostic modules. To this view, in addition to proteins, lipids also regulate cellular functions via the formation of membranes that modulate membrane protein function, diffusion, and their localization; thus, orchestrating signaling hot spots enriched in specific lipids/proteins on cell membranes. Lipid deregulation in cancer leads to reprogramming of the membrane dynamics and functions impacting cell proliferation, metabolism, and metastasis, providing exciting starting points for developing lipid-based approaches for treating TNBC. In this review, we provide a detailed account of specific lipidic changes in breast cancer, link the altered lipidome with membrane structure and mechanical properties, and describe how these are linked to subsequent downstream functions implicit in cancer progression, metastasis, and chemoresistance. At the fundamental level, we discuss how the lipid-centric findings in TNBC are providing cues for developing lipid-inspired theranostic strategies while bridging existing gaps in our understanding of the functional involvement of lipid membranes in cancer.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India. .,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8528, Japan.
| |
Collapse
|
12
|
Structural and functional roles of non-bilayer lipid phases of chloroplast thylakoid membranes and mitochondrial inner membranes. Prog Lipid Res 2022; 86:101163. [DOI: 10.1016/j.plipres.2022.101163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022]
|
13
|
Wang D, Liu H, Wang W. Chirality and chiral functional composites of bicontinuous cubic nanostructured cubosomes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Wang XJ, Yu CB, Yu SJ, Wang W. Solvent-manipulated self-assembly of a heterocluster Janus molecule into multi-dimensional nanostructures. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Alaasar M, Darweesh AF, Cai X, Liu F, Tschierske C. Mirror Symmetry Breaking and Network Formation in Achiral Polycatenars with Thioether Tail. Chemistry 2021; 27:14921-14930. [PMID: 34542201 PMCID: PMC8596804 DOI: 10.1002/chem.202102226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 11/20/2022]
Abstract
Mirror symmetry breaking in systems composed of achiral molecules is of importance for the design of functional materials for technological applications as well as for the understanding of the mechanisms of spontaneous emergence of chirality. Herein, we report the design and molecular self-assembly of two series of rod-like achiral polycatenar molecules derived from a π-conjugated 5,5'-diphenyl-2,2'-bithiophene core with a fork-like triple alkoxylated end and a variable single alkylthio chain at the other end. In both series of liquid crystalline materials, differing in the chain length at the trialkoxylated end, helical self-assembly of the π-conjugated rods in networks occurs, leading to wide temperature ranges (>200 K) of bicontinuous cubic network phases, in some cases being stable even around ambient temperatures. The achiral bicontinuous cubic Ia 3 ‾ d phase (gyroid) is replaced upon alkylthio chain elongation by a spontaneous mirror symmetry broken bicontinuous cubic phase (I23) and a chiral isotropic liquid phase (Iso1 [ *] ). Further chain elongation results in removing the I23 phase and the re-appearance of the Ia 3 ‾ d phase with different pitch lengths. In the second series an additional tetragonal phase separates the two cubic phase types.
Collapse
Affiliation(s)
- Mohamed Alaasar
- Institute of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
- Department of Chemistry Faculty of ScienceCairo UniversityGizaEgypt
| | | | - Xiaoqian Cai
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft MatterXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Feng Liu
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft MatterXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Carsten Tschierske
- Institute of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
| |
Collapse
|
16
|
Dlouhý O, Karlický V, Arshad R, Zsiros O, Domonkos I, Kurasová I, Wacha AF, Morosinotto T, Bóta A, Kouřil R, Špunda V, Garab G. Lipid Polymorphism of the Subchloroplast-Granum and Stroma Thylakoid Membrane-Particles. II. Structure and Functions. Cells 2021; 10:2363. [PMID: 34572012 PMCID: PMC8472583 DOI: 10.3390/cells10092363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/29/2021] [Accepted: 09/04/2021] [Indexed: 12/22/2022] Open
Abstract
In Part I, by using 31P-NMR spectroscopy, we have shown that isolated granum and stroma thylakoid membranes (TMs), in addition to the bilayer, display two isotropic phases and an inverted hexagonal (HII) phase; saturation transfer experiments and selective effects of lipase and thermal treatments have shown that these phases arise from distinct, yet interconnectable structural entities. To obtain information on the functional roles and origin of the different lipid phases, here we performed spectroscopic measurements and inspected the ultrastructure of these TM fragments. Circular dichroism, 77 K fluorescence emission spectroscopy, and variable chlorophyll-a fluorescence measurements revealed only minor lipase- or thermally induced changes in the photosynthetic machinery. Electrochromic absorbance transients showed that the TM fragments were re-sealed, and the vesicles largely retained their impermeabilities after lipase treatments-in line with the low susceptibility of the bilayer against the same treatment, as reflected by our 31P-NMR spectroscopy. Signatures of HII-phase could not be discerned with small-angle X-ray scattering-but traces of HII structures, without long-range order, were found by freeze-fracture electron microscopy (FF-EM) and cryo-electron tomography (CET). EM and CET images also revealed the presence of small vesicles and fusion of membrane particles, which might account for one of the isotropic phases. Interaction of VDE (violaxanthin de-epoxidase, detected by Western blot technique in both membrane fragments) with TM lipids might account for the other isotropic phase. In general, non-bilayer lipids are proposed to play role in the self-assembly of the highly organized yet dynamic TM network in chloroplasts.
Collapse
Affiliation(s)
- Ondřej Dlouhý
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
| | - Václav Karlický
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
- Laboratory of Ecological Plant Physiology, Domain of Environmental Effects on Terrestrial Ecosystems, Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Rameez Arshad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic; (R.A.); (R.K.)
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Ottó Zsiros
- Photosynthetic Membranes Group, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary; (O.Z.); (I.D.)
| | - Ildikó Domonkos
- Photosynthetic Membranes Group, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary; (O.Z.); (I.D.)
| | - Irena Kurasová
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
- Laboratory of Ecological Plant Physiology, Domain of Environmental Effects on Terrestrial Ecosystems, Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - András F. Wacha
- Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, 1117 Budapest, Hungary; (A.F.W.); (A.B.)
| | | | - Attila Bóta
- Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, 1117 Budapest, Hungary; (A.F.W.); (A.B.)
| | - Roman Kouřil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic; (R.A.); (R.K.)
| | - Vladimír Špunda
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
- Laboratory of Ecological Plant Physiology, Domain of Environmental Effects on Terrestrial Ecosystems, Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Győző Garab
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
- Photosynthetic Membranes Group, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary; (O.Z.); (I.D.)
| |
Collapse
|
17
|
Lipid Polymorphism of the Subchloroplast-Granum and Stroma Thylakoid Membrane-Particles. I. 31P-NMR Spectroscopy. Cells 2021; 10:cells10092354. [PMID: 34572003 PMCID: PMC8470346 DOI: 10.3390/cells10092354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/29/2021] [Accepted: 09/05/2021] [Indexed: 11/23/2022] Open
Abstract
Build-up of the energized state of thylakoid membranes and the synthesis of ATP are warranted by organizing their bulk lipids into a bilayer. However, the major lipid species of these membranes, monogalactosyldiacylglycerol, is a non-bilayer lipid. It has also been documented that fully functional thylakoid membranes, in addition to the bilayer, contain an inverted hexagonal (HII) phase and two isotropic phases. To shed light on the origin of these non-lamellar phases, we performed 31P-NMR spectroscopy experiments on sub-chloroplast particles of spinach: stacked, granum and unstacked, stroma thylakoid membranes. These membranes exhibited similar lipid polymorphism as the whole thylakoids. Saturation transfer experiments, applying saturating pulses at characteristic frequencies at 5 °C, provided evidence for distinct lipid phases—with component spectra very similar to those derived from mathematical deconvolution of the 31P-NMR spectra. Wheat-germ lipase treatment of samples selectively eliminated the phases exhibiting sharp isotropic peaks, suggesting easier accessibility of these lipids compared to the bilayer and the HII phases. Gradually increasing lipid exchanges were observed between the bilayer and the two isotropic phases upon gradually elevating the temperature from 5 to 35 °C, suggesting close connections between these lipid phases. Data concerning the identity and structural and functional roles of different lipid phases will be presented in the accompanying paper.
Collapse
|
18
|
Vítová M, Lanta V, Čížková M, Jakubec M, Rise F, Halskau Ø, Bišová K, Furse S. The biosynthesis of phospholipids is linked to the cell cycle in a model eukaryote. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158965. [PMID: 33992808 PMCID: PMC8202326 DOI: 10.1016/j.bbalip.2021.158965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
The structural challenges faced by eukaryotic cells through the cell cycle are key for understanding cell viability and proliferation. We tested the hypothesis that the biosynthesis of structural lipids is linked to the cell cycle. If true, this would suggest that the cell's structure is important for progress through and perhaps even control of the cell cycle. Lipidomics (31P NMR and MS), proteomics (Western immunoblotting) and transcriptomics (RT-qPCR) techniques were used to profile the lipid fraction and characterise aspects of its metabolism at seven stages of the cell cycle of the model eukaryote, Desmodesmus quadricauda. We found considerable, transient increases in the abundance of phosphatidylethanolamine during the G1 phase (+35%, ethanolamine phosphate cytidylyltransferase increased 2·5×) and phosphatidylglycerol (+100%, phosphatidylglycerol synthase increased 22×) over the G1/pre-replication phase boundary. The relative abundance of phosphatidylcholine fell by ~35% during the G1. N-Methyl transferases for the conversion of phosphatidylethanolamine into phosphatidylcholine were not found in the de novo transcriptome profile, though a choline phosphate transferase was found, suggesting that the Kennedy pathway is the principal route for the synthesis of PC. The fatty acid profiles of the four most abundant lipids suggested that these lipids were not generally converted between one another. This study shows for the first time that there are considerable changes in the biosynthesis of the three most abundant phospholipid classes in the normal cell cycle of D. quadricauda, by margins large enough to elicit changes to the physical properties of membranes.
Collapse
Affiliation(s)
- Milada Vítová
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Vojtěch Lanta
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic; Department of Functional Ecology, Institute of Botany of the Czech Academy of Sciences, Dukelská 135, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Martin Jakubec
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway
| | - Frode Rise
- Department of Chemistry, Universitetet i Oslo, P. O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Øyvind Halskau
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway
| | - Kateřina Bišová
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Samuel Furse
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway; Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRL Institute of Metabolic Science, University of Cambridge, Level 4, Pathology Building, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Biological chemistry group, Jodrell laboratory, Royal Botanic Gardens Kew, United Kingdom.
| |
Collapse
|
19
|
Walter V, Ruscher C, Gola A, Marques CM, Benzerara O, Thalmann F. Ripple-like instability in the simulated gel phase of finite size phosphocholine bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183714. [PMID: 34331947 DOI: 10.1016/j.bbamem.2021.183714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022]
Abstract
Atomistic molecular dynamics simulations have reached a degree of maturity that makes it possible to investigate the lipid polymorphism of model bilayers over a wide range of temperatures. However if both the fluid Lα and tilted gel [Formula: see text] states are routinely obtained, the [Formula: see text] ripple phase of phosphatidylcholine lipid bilayers is still unsatifactorily described. Performing simulations of lipid bilayers made of different numbers of DPPC (1,2-dipalmitoylphosphatidylcholine) molecules ranging from 32 to 512, we demonstrate that the tilted gel phase [Formula: see text] expected below the pretransition cannot be obtained for large systems (equal or larger than 94 DPPC molecules) through common simulations settings or temperature treatments. Large systems are instead found in a disordered gel phase which display configurations, topography and energies reminiscent from the ripple phase [Formula: see text] observed between the pretransition and the main melting transition. We show how the state of the bilayers below the melting transition can be controlled and depends on thermal history and conditions of preparations. A mechanism for the observed topographic instability is suggested.
Collapse
Affiliation(s)
- Vivien Walter
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, SE1 1DB, London, United Kingdom.
| | - Céline Ruscher
- Institut Charles Sadron, CNRS and University of Strasbourg, 23 rue du Loess, F-67034 Strasbourg Cedex 2, France
| | - Adrien Gola
- Institut Charles Sadron, CNRS and University of Strasbourg, 23 rue du Loess, F-67034 Strasbourg Cedex 2, France
| | - Carlos M Marques
- Institut Charles Sadron, CNRS and University of Strasbourg, 23 rue du Loess, F-67034 Strasbourg Cedex 2, France
| | - Olivier Benzerara
- Institut Charles Sadron, CNRS and University of Strasbourg, 23 rue du Loess, F-67034 Strasbourg Cedex 2, France
| | - Fabrice Thalmann
- Institut Charles Sadron, CNRS and University of Strasbourg, 23 rue du Loess, F-67034 Strasbourg Cedex 2, France.
| |
Collapse
|
20
|
Chowdhury A, Sasidharan S, Xavier P, Viswanath P, Raghunathan VA. Effect of pH on the phase behavior of DMPC bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183695. [PMID: 34273298 DOI: 10.1016/j.bbamem.2021.183695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
We have studied the effect of acidic pH on the phase behavior of the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) using differential scanning calorimetry and x-ray scattering. Dispersions of DMPC in HCl solutions of pH = 4 and 3 behave identical to dispersions in water. The main transition temperature increases sharply and the pre-transition disappears at lower pH. An untilted gel phase is observed at pH = 2 and 1, in contrast to the tilted gel phase found at higher pH. The relatively large periodicity of the untilted gel phase, in comparison to that of the tilted gel phase occurring near neutral pH, clearly demonstrates the simultaneous charging and dehydration of the headgroups as the pH approaches the pK of the phosphate group. Headgroup dehydration at low pH also leads to the formation of DMPC crystallites and the inverted hexagonal phase at low and high temperatures, respectively, after a few days of incubation. These results show the significant effect of acidic pH on the phase behavior of zwitterionic lipids.
Collapse
Affiliation(s)
| | | | - Pinchu Xavier
- Centre for Nano and Soft Matter Sciences, Bangalore 562162, India
| | - P Viswanath
- Centre for Nano and Soft Matter Sciences, Bangalore 562162, India
| | | |
Collapse
|
21
|
El-Beyrouthy J, Freeman E. Characterizing the Structure and Interactions of Model Lipid Membranes Using Electrophysiology. MEMBRANES 2021; 11:319. [PMID: 33925756 PMCID: PMC8145864 DOI: 10.3390/membranes11050319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022]
Abstract
The cell membrane is a protective barrier whose configuration determines the exchange both between intracellular and extracellular regions and within the cell itself. Consequently, characterizing membrane properties and interactions is essential for advancements in topics such as limiting nanoparticle cytotoxicity. Characterization is often accomplished by recreating model membranes that approximate the structure of cellular membranes in a controlled environment, formed using self-assembly principles. The selected method for membrane creation influences the properties of the membrane assembly, including their response to electric fields used for characterizing transmembrane exchanges. When these self-assembled model membranes are combined with electrophysiology, it is possible to exploit their non-physiological mechanics to enable additional measurements of membrane interactions and phenomena. This review describes several common model membranes including liposomes, pore-spanning membranes, solid supported membranes, and emulsion-based membranes, emphasizing their varying structure due to the selected mode of production. Next, electrophysiology techniques that exploit these structures are discussed, including conductance measurements, electrowetting and electrocompression analysis, and electroimpedance spectroscopy. The focus of this review is linking each membrane assembly technique to the properties of the resulting membrane, discussing how these properties enable alternative electrophysiological approaches to measuring membrane characteristics and interactions.
Collapse
Affiliation(s)
| | - Eric Freeman
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
22
|
Angelova A, Angelov B, Drechsler M, Bizien T, Gorshkova YE, Deng Y. Plasmalogen-Based Liquid Crystalline Multiphase Structures Involving Docosapentaenoyl Derivatives Inspired by Biological Cubic Membranes. Front Cell Dev Biol 2021; 9:617984. [PMID: 33644054 PMCID: PMC7905036 DOI: 10.3389/fcell.2021.617984] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022] Open
Abstract
Structural properties of plasmenyl-glycerophospholipids (plasmalogens) have been scarcely studied for plasmalogens with long polyunsaturated fatty acid (PUFA) chains, despite of their significance for the organization and functions of the cellular membranes. Elaboration of supramolecular assemblies involving PUFA-chain plasmalogens in nanostructured mixtures with lyotropic lipids may accelerate the development of nanomedicines for certain severe pathologies (e.g., peroxisomal disorders, cardiometabolic impairments, and neurodegenerative Alzheimer's and Parkinson's diseases). Here, we investigate the spontaneous self-assembly of bioinspired, custom-produced docosapentaenoyl (DPA) plasmenyl (ether) and ester phospholipids in aqueous environment (pH 7) by synchrotron small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM). A coexistence of a liquid crystalline primitive cubic Im3m phase and an inverted hexagonal (HII) phase is observed for the DPA-ethanolamine plasmalogen (C16:1p-22:5n6 PE) derivative. A double-diamond cubic Pn3m phase is formed in mixed assemblies of the phosphoethanolamine plasmalogen (C16:1p-22:5n6 PE) and monoolein (MO), whereas a coexistence of cubic and lamellar liquid crystalline phases is established for the DPA-plasmenyl phosphocholine (C16:1p-22:5n6 PC)/MO mixture at ambient temperature. The DPA-diacyl phosphoinositol (22:5n6-22:5n6 PI) ester lipid displays a propensity for a lamellar phase formation. Double membrane vesicles and multilamellar onion topologies with inhomogeneous distribution of interfacial curvature are formed upon incorporation of the phosphoethanolamine plasmalogen (C16:1p-22:5n6 PE) into dioleoylphosphocholine (DOPC) bilayers. Nanoparticulate formulations of plasmalogen-loaded cubosomes, hexosomes, and various multiphase cubosome- and hexosome-derived architectures and mixed type nano-objects (e.g., oil droplet-embedding vesicles or core-shell particles with soft corona) are produced with PUFA-chain phospholipids and lipophilic antioxidant-containing membrane compositions that are characterized by synchrotron SAXS and cryo-TEM imaging. The obtained multiphase nanostructures reflect the changes in the membrane curvature induced by the inclusion of DPA-based PE and PC plasmalogens, as well as DPA-PI ester derivative, and open new opportunities for exploration of these bioinspired nanoassemblies.
Collapse
Affiliation(s)
- Angelina Angelova
- Institut Galien Paris-Saclay UMR8612, Université Paris-Saclay, CNRS, Châtenay-Malabry, France
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Prague, Czech
| | - Markus Drechsler
- Keylab "Electron and Optical Microscopy", Bavarian Polymer Institute, University of Bayreuth, Bayreuth, Germany
| | - Thomas Bizien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, France
| | - Yulia E Gorshkova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
23
|
Lipid domain formation and non-lamellar structures associated with varied lysylphosphatidylglycerol analogue content in a model Staphylococcal plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183571. [PMID: 33561475 DOI: 10.1016/j.bbamem.2021.183571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 01/02/2023]
Abstract
Dipalmitoyl-3-aza-dehydroxy-lysylphosphatidylglycerol (DP3adLPG), is a chemically stable synthetic analogue of the bacterial lipid lysylphosphatidylglycerol (LPG), designed as a substitute for the notoriously labile native lipid in biophysical investigations. In Staphylococcus aureus, LPG is known to play a role in resistance to antibiotics by altering membrane charge properties in response to environmental stress, but little is known about how LPG influences other bilayer physicochemical properties or lateral organisation, through the formation of complexes with lipids such as phosphatidylglycerol (PG). In this study we have investigated the different phases formed by biomimetic mixtures of 3adLPG and PG in different thermotropic states, using neutron diffraction and electron microscopy. In a DPPG/DP3adLPG 70:30 mol% mixture, two distinct lamellar phases were observed below the lipid melting transition: Lβ' 1 and Lβ' 2 with respective periodicities of 82 and 62 Å. Increasing the proportion of DP3adLPG to mimic the effects of environmental stress led to the disappearance of the Lβ' 1 phase and the formation of an inverse hexagonal phase. The compositions of these different phases were identified by investigating the thermotropic properties of the two mixtures, and probing their interaction with the antimicrobial peptide magainin 2 F5W. We propose that the observed polymorphism results from the preferential formation of either triplet PG-3adLPG-PG, or paired PG-3adLPG complexes, dependent upon the mixing proportions of the two lipids. The relevance of these findings to the role native LPG in S. aureus, are discussed with respect to their influence on antibiotic resistance and lateral membrane organisation.
Collapse
|
24
|
Rajesh S, Zhai J, Drummond CJ, Tran N. Synthetic ionizable aminolipids induce a pH dependent inverse hexagonal to bicontinuous cubic lyotropic liquid crystalline phase transition in monoolein nanoparticles. J Colloid Interface Sci 2020; 589:85-95. [PMID: 33450463 DOI: 10.1016/j.jcis.2020.12.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 01/28/2023]
Abstract
A prospective class of materials for drug delivery is lyotropic liquid crystalline (LLC) nanoparticles, such as cubosomes and hexosomes. Efforts are being made to generate a pH dependent system, which exhibits slow release hexosomes (H2) at physiological pH and relatively fast release cubosomes (Q2) at acidic disease sites such as in various cancers and bacterial infection (pH ~ 5.5-6.5). Herein, we report the synthesis of nine ionizable aminolipids, which were doped into monoolein (MO) lipid nanoparticles. Using high throughput formulation and synchrotron small angle X-ray scattering (SAXS), the effects of aminolipid structure and concentration on the mesophase of MO nanoparticles at various pHs were determined. As the pH changed from neutral to acidic, mesophases, could be formed in an order L2 (inverse micelles) → H2 → Q2. Specifically, systems with heterocyclic oleates exhibited the H2 to Q2 transition at pH 5.5-6.5. Furthermore, the phase transition pH could be fine-tuned by incorporating two aminolipids into the nanoparticles. Nanoparticles with a pH dependent phase transition as described in this study may be useful as drug delivery carriers for the treatment of cancers and certain bacterial infection.
Collapse
Affiliation(s)
- Sarigama Rajesh
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Jiali Zhai
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| | - Nhiem Tran
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
25
|
Clulow AJ, Binte Abu Bakar SY, Salim M, Nowell CJ, Hawley A, Boyd BJ. Emulsions containing optimum cow milk fat and canola oil mixtures replicate the lipid self-assembly of human breast milk during digestion. J Colloid Interface Sci 2020; 588:680-691. [PMID: 33309144 DOI: 10.1016/j.jcis.2020.11.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS The digestion of different milks and milk substitutes leads to the formation of a variety of self-assembled lipid structures, with the structuring of human milk being paramount for infant nutrition. It was hypothesised that mixing cow milk fat rich in medium/long-chain lipids with canola oil rich in long-chain unsaturated lipids would replicate the structuring of human milk by balancing lipid chain lengths and saturation levels. EXPERIMENTS Emulsions of cow milk fat/canola oil mixtures were prepared in two ways - by pre-mixing ghee and canola oil before dispersing them and by dispersing canola oil directly into commercial cow milk. Small angle X-ray scattering combined with titration of the fatty acids produced during digestion allowed for the correlation of dynamic lipid self-assembly with the extent of lipid digestion. Laser light scattering was used to show that the particle sizes in the digesting mixtures were similar and coherent anti-Stokes Raman spectroscopy (CARS) microscopy was used to confirm the mixing of canola oil into cow milk fat globules. FINDINGS As the amount of long-chain unsaturated canola oil lipids in the mixtures increased, the lipid self-assembly tended towards colloidal structures of greater interfacial curvature. When the ratio of cow milk fat to canola oil lipids was 1:1 (w/w), the digesting lipids assembled themselves into the same liquid crystalline structures as human breast milk. This observation was independent of the method used to mix the lipids, with CARS microscopy indicating uniform mixing of the canola oil into cow milk upon ultrasonication.
Collapse
Affiliation(s)
- Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Syaza Y Binte Abu Bakar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC 3169, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
26
|
Frias MA, Disalvo EA. Breakdown of classical paradigms in relation to membrane structure and functions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183512. [PMID: 33202248 DOI: 10.1016/j.bbamem.2020.183512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/10/2023]
Abstract
Updates of the mosaic fluid membrane model implicitly sustain the paradigms that bilayers are closed systems conserving a state of fluidity and behaving as a dielectric slab. All of them are a consequence of disregarding water as part of the membrane structure and its essential role in the thermodynamics and kinetics of membrane response to bioeffectors. A correlation of the thermodynamic properties with the structural features of water makes possible to introduce the lipid membrane as a responsive structure due to the relaxation of water rearrangements in the kinetics of bioeffectors' interactions. This analysis concludes that the lipid membranes are open systems and, according to thermodynamic of irreversible formalism, bilayers and monolayers can be reasonable compared under controlled conditions. The inclusion of water in the complex structure makes feasible to reconsider the concept of dielectric slab and fluidity.
Collapse
Affiliation(s)
- M A Frias
- Applied Biophysics and Food Research Center, CIBAAL-UNSE-CONICET, Santiago del Estero, Argentina
| | - E A Disalvo
- Applied Biophysics and Food Research Center, CIBAAL-UNSE-CONICET, Santiago del Estero, Argentina.
| |
Collapse
|
27
|
Uebbing L, Ziller A, Siewert C, Schroer MA, Blanchet CE, Svergun DI, Ramishetti S, Peer D, Sahin U, Haas H, Langguth P. Investigation of pH-Responsiveness inside Lipid Nanoparticles for Parenteral mRNA Application Using Small-Angle X-ray Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13331-13341. [PMID: 33108188 DOI: 10.1021/acs.langmuir.0c02446] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Messenger ribonucleic acid (mRNA)-based nanomedicines have shown to be a promising new lead in a broad field of potential applications such as tumor immunotherapy. Of these nanomedicines, lipid-based mRNA nanoparticles comprising ionizable lipids are gaining increasing attention as versatile technologies for fine-tuning toward a given application, with proven potential for successful development up to clinical practice. Still, several hurdles have to be overcome to obtain a drug product that shows adequate mRNA delivery and clinical efficacy. In this study, pH-induced changes in internal molecular organization and overall physicochemical characteristics of lipoplexes comprising ionizable lipids were investigated using small-angle X-ray scattering and supplementary techniques. These changes were determined for different types of ionizable lipids, present at various molar fractions and N/P ratios inside the phospholipid membranes. The investigated systems showed a lamellar organization, allowing an accurate determination of pH-dependent structural changes. The differences in the pH responsiveness of the systems comprising different ionizable lipids and mRNA fractions could be clearly revealed from their structural evolution. Measurements of the degree of ionization and pH-dependent mRNA loading into the systems by fluorescence assays supported the findings from the structural investigation. Our approach allows for direct in situ determination of the structural response of the lipoplex systems to changes of the environmental pH similar to that observed for endosomal uptake. These data therefore provide valuable complementary information for understanding and fine-tuning of tailored mRNA delivery systems toward improved cellular uptake and endosomal processing.
Collapse
Affiliation(s)
- Lukas Uebbing
- Department of Pharmaceutics and Biopharmaceutics, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, D-55099 Mainz, Germany
| | - Antje Ziller
- Department of Pharmaceutics and Biopharmaceutics, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, D-55099 Mainz, Germany
| | - Christian Siewert
- Department of Pharmaceutics and Biopharmaceutics, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, D-55099 Mainz, Germany
| | - Martin A Schroer
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation c/o DESY, 22607 Hamburg, Germany
| | - Clement E Blanchet
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation c/o DESY, 22607 Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation c/o DESY, 22607 Hamburg, Germany
| | - Srinivas Ramishetti
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| | - Ugur Sahin
- BioNTech RNA Pharmaceuticals GmbH, An der Goldgrube 12, 55131 Mainz, Germany
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, 55099 Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Heinrich Haas
- BioNTech RNA Pharmaceuticals GmbH, An der Goldgrube 12, 55131 Mainz, Germany
| | - Peter Langguth
- Department of Pharmaceutics and Biopharmaceutics, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, D-55099 Mainz, Germany
| |
Collapse
|
28
|
Lipid-Nucleic Acid Complexes: Physicochemical Aspects and Prospects for Cancer Treatment. Molecules 2020; 25:molecules25215006. [PMID: 33126767 PMCID: PMC7662579 DOI: 10.3390/molecules25215006] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is an extremely complex disease, typically caused by mutations in cancer-critical genes. By delivering therapeutic nucleic acids (NAs) to patients, gene therapy offers the possibility to supplement, repair or silence such faulty genes or to stimulate their immune system to fight the disease. While the challenges of gene therapy for cancer are significant, the latter approach (a type of immunotherapy) starts showing promising results in early-stage clinical trials. One important advantage of NA-based cancer therapies over synthetic drugs and protein treatments is the prospect of a more universal approach to designing therapies. Designing NAs with different sequences, for different targets, can be achieved by using the same technologies. This versatility and scalability of NA drug design and production on demand open the way for more efficient, affordable and personalized cancer treatments in the future. However, the delivery of exogenous therapeutic NAs into the patients’ targeted cells is also challenging. Membrane-type lipids exhibiting permanent or transient cationic character have been shown to associate with NAs (anionic), forming nanosized lipid-NA complexes. These complexes form a wide variety of nanostructures, depending on the global formulation composition and properties of the lipids and NAs. Importantly, these different lipid-NA nanostructures interact with cells via different mechanisms and their therapeutic potential can be optimized to promising levels in vitro. The complexes are also highly customizable in terms of surface charge and functionalization to allow a wide range of targeting and smart-release properties. Most importantly, these synthetic particles offer possibilities for scaling-up and affordability for the population at large. Hence, the versatility and scalability of these particles seem ideal to accommodate the versatility that NA therapies offer. While in vivo efficiency of lipid-NA complexes is still poor in most cases, the advances achieved in the last three decades are significant and very recently a lipid-based gene therapy medicine was approved for the first time (for treatment of hereditary transthyretin amyloidosis). Although the path to achieve efficient NA-delivery in cancer therapy is still long and tenuous, these advances set a new hope for more treatments in the future. In this review, we attempt to cover the most important biophysical and physicochemical aspects of non-viral lipid-based gene therapy formulations, with a perspective on future cancer treatments in mind.
Collapse
|
29
|
Dlouhý O, Kurasová I, Karlický V, Javornik U, Šket P, Petrova NZ, Krumova SB, Plavec J, Ughy B, Špunda V, Garab G. Modulation of non-bilayer lipid phases and the structure and functions of thylakoid membranes: effects on the water-soluble enzyme violaxanthin de-epoxidase. Sci Rep 2020; 10:11959. [PMID: 32686730 PMCID: PMC7371714 DOI: 10.1038/s41598-020-68854-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022] Open
Abstract
The role of non-bilayer lipids and non-lamellar lipid phases in biological membranes is an enigmatic problem of membrane biology. Non-bilayer lipids are present in large amounts in all membranes; in energy-converting membranes they constitute about half of their total lipid content—yet their functional state is a bilayer. In vitro experiments revealed that the functioning of the water-soluble violaxanthin de-epoxidase (VDE) enzyme of plant thylakoids requires the presence of a non-bilayer lipid phase. 31P-NMR spectroscopy has provided evidence on lipid polymorphism in functional thylakoid membranes. Here we reveal reversible pH- and temperature-dependent changes of the lipid-phase behaviour, particularly the flexibility of isotropic non-lamellar phases, of isolated spinach thylakoids. These reorganizations are accompanied by changes in the permeability and thermodynamic parameters of the membranes and appear to control the activity of VDE and the photoprotective mechanism of non-photochemical quenching of chlorophyll-a fluorescence. The data demonstrate, for the first time in native membranes, the modulation of the activity of a water-soluble enzyme by a non-bilayer lipid phase.
Collapse
Affiliation(s)
- Ondřej Dlouhý
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Irena Kurasová
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Václav Karlický
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Uroš Javornik
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia
| | - Primož Šket
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia.,EN-FIST Center of Excellence, Ljubljana, Slovenia
| | - Nia Z Petrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Sashka B Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia.,EN-FIST Center of Excellence, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Bettina Ughy
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.
| | - Vladimír Špunda
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic.
| | - Győző Garab
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
30
|
Mirror Symmetry Breaking in Liquids and Their Impact on the Development of Homochirality in Abiogenesis: Emerging Proto-RNA as Source of Biochirality? Symmetry (Basel) 2020. [DOI: 10.3390/sym12071098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent progress in mirror symmetry breaking and chirality amplification in isotropic liquids and liquid crystalline cubic phases of achiral molecule is reviewed and discussed with respect to its implications for the hypothesis of emergence of biological chirality. It is shown that mirror symmetry breaking takes place in fluid systems where homochiral interactions are preferred over heterochiral and a dynamic network structure leads to chirality synchronization if the enantiomerization barrier is sufficiently low, i.e., that racemization drives the development of uniform chirality. Local mirror symmetry breaking leads to conglomerate formation. Total mirror symmetry breaking requires either a proper phase transitions kinetics or minor chiral fields, leading to stochastic and deterministic homochirality, respectively, associated with an extreme chirality amplification power close to the bifurcation point. These mirror symmetry broken liquids are thermodynamically stable states and considered as possible systems in which uniform biochirality could have emerged. A model is hypothesized, which assumes the emergence of uniform chirality by chirality synchronization in dynamic “helical network fluids” followed by polymerization, fixing the chirality and leading to proto-RNA formation in a single process.
Collapse
|
31
|
Lee MW, de Anda J, Kroll C, Bieniossek C, Bradley K, Amrein KE, Wong GCL. How do cyclic antibiotics with activity against Gram-negative bacteria permeate membranes? A machine learning informed experimental study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183302. [PMID: 32311341 DOI: 10.1016/j.bbamem.2020.183302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/30/2022]
Abstract
All antibiotics have to engage bacterial amphiphilic barriers such as the lipopolysaccharide-rich outer membrane or the phospholipid-based inner membrane in some manner, either by disrupting them outright and/or permeating them and thereby allow the antibiotic to get into bacteria. There is a growing class of cyclic antibiotics, many of which are of bacterial origin, that exhibit activity against Gram-negative bacteria, which constitute an urgent problem in human health. We examine a diverse collection of these cyclic antibiotics, both natural and synthetic, which include bactenecin, polymyxin B, octapeptin, capreomycin, and Kirshenbaum peptoids, in order to identify what they have in common when they interact with bacterial lipid membranes. We find that they virtually all have the ability to induce negative Gaussian curvature (NGC) in bacterial membranes, the type of curvature geometrically required for permeation mechanisms such as pore formation, blebbing, and budding. This is interesting since permeation of membranes is a function usually ascribed to antimicrobial peptides (AMPs) from innate immunity. As prototypical test cases of cyclic antibiotics, we analyzed amino acid sequences of bactenecin, polymyxin B, and capreomycin using our recently developed machine-learning classifier trained on α-helical AMP sequences. Although the original classifier was not trained on cyclic antibiotics, a modified classifier approach correctly predicted that bactenecin and polymyxin B have the ability to induce NGC in membranes, while capreomycin does not. Moreover, the classifier was able to recapitulate empirical structure-activity relationships from alanine scans in polymyxin B surprisingly well. These results suggest that there exists some common ground in the sequence design of hybrid cyclic antibiotics and linear AMPs.
Collapse
Affiliation(s)
- Michelle W Lee
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Jaime de Anda
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Carsten Kroll
- Roche Pharma Research and Early Development Pharmaceutical Science, Roche, Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Christoph Bieniossek
- Roche Pharma Research and Early Development Pharmaceutical Science, Roche, Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Kenneth Bradley
- Roche Pharma Research and Early Development Pharmaceutical Science, Roche, Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Kurt E Amrein
- Roche Pharma Research and Early Development Pharmaceutical Science, Roche, Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Gerard C L Wong
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
32
|
Kim M, Porras-Gomez M, Leal C. Graphene-based sensing of oxygen transport through pulmonary membranes. Nat Commun 2020; 11:1103. [PMID: 32107376 PMCID: PMC7046670 DOI: 10.1038/s41467-020-14825-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/04/2020] [Indexed: 11/09/2022] Open
Abstract
Lipid-protein complexes are the basis of pulmonary surfactants covering the respiratory surface and mediating gas exchange in lungs. Cardiolipin is a mitochondrial lipid overexpressed in mammalian lungs infected by bacterial pneumonia. In addition, increased oxygen supply (hyperoxia) is a pathological factor also critical in bacterial pneumonia. In this paper we fabricate a micrometer-size graphene-based sensor to measure oxygen permeation through pulmonary membranes. Combining oxygen sensing, X-ray scattering, and Atomic Force Microscopy, we show that mammalian pulmonary membranes suffer a structural transformation induced by cardiolipin. We observe that cardiolipin promotes the formation of periodic protein-free inter-membrane contacts with rhombohedral symmetry. Membrane contacts, or stalks, promote a significant increase in oxygen gas permeation which may bear significance for alveoli gas exchange imbalance in pneumonia.
Collapse
Affiliation(s)
- Mijung Kim
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marilyn Porras-Gomez
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
33
|
Poppe S, Cheng X, Chen C, Zeng X, Zhang RB, Liu F, Ungar G, Tschierske C. Liquid Organic Frameworks: The Single-Network “Plumber’s Nightmare” Bicontinuous Cubic Liquid Crystal. J Am Chem Soc 2020; 142:3296-3300. [DOI: 10.1021/jacs.9b11073] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Silvio Poppe
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle, Germany
| | - Xiaohong Cheng
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle, Germany
- Key Laboratory of Medicinal Chemistry for Natural Resources, Chemistry Department, Yunnan University, Kunming 650091, People’s Republic of China
| | - Changlong Chen
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Xiangbing Zeng
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Rui-bin Zhang
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Feng Liu
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Goran Ungar
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Carsten Tschierske
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle, Germany
| |
Collapse
|
34
|
Enzyme encapsulation in nanostructured self-assembled structures: Toward biofunctional supramolecular assemblies. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Gilbert J, Valldeperas M, Dhayal SK, Barauskas J, Dicko C, Nylander T. Immobilisation of β-galactosidase within a lipid sponge phase: structure, stability and kinetics characterisation. NANOSCALE 2019; 11:21291-21301. [PMID: 31667477 DOI: 10.1039/c9nr06675f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the formulation of an active enzyme enclosed in a matrix for controlled delivery, it is a challenge to achieve a high protein load and to ensure high activity of the protein. For the first time to our knowledge, we report the use of a highly swollen lipid sponge (L3) phase for encapsulation of the large active enzyme, β-galactosidase (β-gal, 238 kDa). This enzyme has large relevance for applications in, e.g. the production of lactose free milk products. The formulation consisted of diglycerol monooleate (DGMO), and a mixture of mono-, di- and triglycerides (Capmul GMO-50) stabilised by polysorbate 80 (P80). The advantage of this type of matrix is that it can be produced on a large scale with a fairly simple and mild process as the system is in practice self-dispersing, yet it has a well-defined internal nano-structure. Minor effects on the sponge phase structure due to the inclusion of the enzyme were observed using small angle X-ray scattering (SAXS). The effect of encapsulation on the enzymatic activity and kinetic characteristics of β-galactosidase activity was also investigated and can be related to the enzyme stability and confinement within the lipid matrix. The encapsulated β-galactosidase maintained its activity for a significantly longer time when compared to the free solution at the same temperature. Differences in the particle size and charge of sponge-like nanoparticles (L3-NPs) with and without the enzyme were analysed by dynamic light scattering (DLS) and zeta-potential measurements. Moreover, all the initial β-galactosidase was encapsulated within L3-NPs as revealed by size exclusion chromatography.
Collapse
Affiliation(s)
- Jennifer Gilbert
- Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden. and Department of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Maria Valldeperas
- Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden. and NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | | | - Justas Barauskas
- Camurus AB, Ideon Science Park, Gamma Building, Sölvegatan 41, SE-22379 Lund, Sweden
| | - Cedric Dicko
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Tommy Nylander
- Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden. and NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden and LINXS - Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen, 1922370 Lund, Sweden
| |
Collapse
|
36
|
Rakotoarisoa M, Angelov B, Espinoza S, Khakurel K, Bizien T, Angelova A. Cubic Liquid Crystalline Nanostructures Involving Catalase and Curcumin: BioSAXS Study and Catalase Peroxidatic Function after Cubosomal Nanoparticle Treatment of Differentiated SH-SY5Y Cells. Molecules 2019; 24:E3058. [PMID: 31443533 PMCID: PMC6749324 DOI: 10.3390/molecules24173058] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 01/23/2023] Open
Abstract
The development of nanomedicines for the treatment of neurodegenerative disorders demands innovative nanoarchitectures for combined loading of multiple neuroprotective compounds. We report dual-drug loaded monoolein-based liquid crystalline architectures designed for the encapsulation of a therapeutic protein and a small molecule antioxidant. Catalase (CAT) is chosen as a metalloprotein, which provides enzymatic defense against oxidative stress caused by reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). Curcumin (CU), solubilized in fish oil, is co-encapsulated as a chosen drug with multiple therapeutic activities, which may favor neuro-regeneration. The prepared self-assembled biomolecular nanoarchitectures are characterized by biological synchrotron small-angle X-ray scattering (BioSAXS) at multiple compositions of the lipid/co-lipid/water phase diagram. Constant fractions of curcumin (an antioxidant) and a PEGylated agent (TPEG1000) are included with regard to the lipid fraction. Stable cubosome architectures are obtained for several ratios of the lipid ingredients monoolein (MO) and fish oil (FO). The impact of catalase on the structural organization of the cubosome nanocarriers is revealed by the variations of the cubic lattice parameters deduced by BioSAXS. The outcome of the cellular uptake of the dual drug-loaded nanocarriers is assessed by performing a bioassay of catalase peroxidatic activity in lysates of nanoparticle-treated differentiated SH-SY5Y human cells. The obtained results reveal the neuroprotective potential of the in vitro studied cubosomes in terms of enhanced peroxidatic activity of the catalase enzyme, which enables the inhibition of H2O2 accumulation in degenerating neuronal cells.
Collapse
Affiliation(s)
- Miora Rakotoarisoa
- Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, LabEx LERMIT, F-92290 Châtenay-Malabry CEDEX, France
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
| | - Shirly Espinoza
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
| | - Krishna Khakurel
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
| | - Thomas Bizien
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette CEDEX, France
| | - Angelina Angelova
- Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, LabEx LERMIT, F-92290 Châtenay-Malabry CEDEX, France.
| |
Collapse
|
37
|
Long acting injectable formulations: the state of the arts and challenges of poly(lactic-co-glycolic acid) microsphere, hydrogel, organogel and liquid crystal. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00449-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Barriga HMG, Holme MN, Stevens MM. Cubosomes: The Next Generation of Smart Lipid Nanoparticles? Angew Chem Int Ed Engl 2019; 58:2958-2978. [PMID: 29926520 PMCID: PMC6606436 DOI: 10.1002/anie.201804067] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Cubosomes are highly stable nanoparticles formed from the lipid cubic phase and stabilized by a polymer based outer corona. Bicontinuous lipid cubic phases consist of a single lipid bilayer that forms a continuous periodic membrane lattice structure with pores formed by two interwoven water channels. Cubosome composition can be tuned to engineer pore sizes or include bioactive lipids, the polymer outer corona can be used for targeting and they are highly stable under physiological conditions. Compared to liposomes, the structure provides a significantly higher membrane surface area for loading of membrane proteins and small drug molecules. Owing to recent advances, they can be engineered in vitro in both bulk and nanoparticle formats with applications including drug delivery, membrane bioreactors, artificial cells, and biosensors. This review outlines recent advances in cubosome technology enabling their application and provides guidelines for the rational design of new systems for biomedical applications.
Collapse
Affiliation(s)
- Hanna M. G. Barriga
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Margaret N. Holme
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Molly M. Stevens
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Departments of Materials and Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK
| |
Collapse
|
39
|
Kulkarni CV. Calculating the ‘chain splay’ of amphiphilic molecules: Towards quantifying the molecular shapes. Chem Phys Lipids 2019; 218:16-21. [DOI: 10.1016/j.chemphyslip.2018.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 10/27/2022]
|
40
|
Lei D, Yu Y, Kuang YL, Liu J, Krauss RM, Ren G. Single-molecule 3D imaging of human plasma intermediate-density lipoproteins reveals a polyhedral structure. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:260-270. [PMID: 30557627 PMCID: PMC6409128 DOI: 10.1016/j.bbalip.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 11/25/2018] [Accepted: 12/09/2018] [Indexed: 11/25/2022]
Abstract
Intermediate-density lipoproteins (IDLs), the remnants of very-low-density lipoproteins via lipolysis, are rich in cholesteryl ester and are associated with cardiovascular disease. Despite pharmacological interest in IDLs, their three-dimensional (3D) structure is still undetermined due to their variation in size, composition, and dynamic structure. To explore the 3D structure of IDLs, we reconstructed 3D density maps from individual IDL particles using cryo-electron microscopy (cryo-EM) and individual-particle electron tomography (IPET, without averaging from different molecules). 3D reconstructions of IDLs revealed an unexpected polyhedral structure that deviates from the generally assumed spherical shape model (Frias et al., 2007; Olson, 1998; Shen et al., 1977). The polyhedral-shaped IDL contains a high-density shell formed by flat surfaces that are similar to those of very-low-density lipoproteins but have sharper dihedral angles between nearby surfaces. These flat surfaces would be less hydrophobic than the curved surface of mature spherical high-density lipoprotein (HDL), leading to a lower binding affinity of IDL to hydrophobic proteins (such as cholesteryl ester transfer protein) than HDL. This is the first visualization of the IDL 3D structure, which could provide fundamental clues for delineating the role of IDL in lipid metabolism and cardiovascular disease.
Collapse
Affiliation(s)
- Dongsheng Lei
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yadong Yu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yu-Lin Kuang
- Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ronald M Krauss
- Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
41
|
Kolli HB, de Nicola A, Bore SL, Schäfer K, Diezemann G, Gauss J, Kawakatsu T, Lu ZY, Zhu YL, Milano G, Cascella M. Hybrid Particle-Field Molecular Dynamics Simulations of Charged Amphiphiles in an Aqueous Environment. J Chem Theory Comput 2018; 14:4928-4937. [DOI: 10.1021/acs.jctc.8b00466] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hima Bindu Kolli
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O.
Box 1033, Blindern, 0315 Oslo, Norway
| | - Antonio de Nicola
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan Yonezawa, Yamagata-ken 992-8510, Japan
| | - Sigbjørn Løland Bore
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O.
Box 1033, Blindern, 0315 Oslo, Norway
| | - Ken Schäfer
- Institut für
Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Gregor Diezemann
- Institut für
Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jürgen Gauss
- Institut für
Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Toshihiro Kawakatsu
- Department of Physics, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Giuseppe Milano
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan Yonezawa, Yamagata-ken 992-8510, Japan
| | - Michele Cascella
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O.
Box 1033, Blindern, 0315 Oslo, Norway
| |
Collapse
|
42
|
Tran N, Zhai J, Conn CE, Mulet X, Waddington LJ, Drummond CJ. Direct Visualization of the Structural Transformation between the Lyotropic Liquid Crystalline Lamellar and Bicontinuous Cubic Mesophase. J Phys Chem Lett 2018; 9:3397-3402. [PMID: 29809009 DOI: 10.1021/acs.jpclett.8b01110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The transition between the lyotropic liquid crystalline lamellar and the bicontinuous cubic mesophase drives multiple fundamental cellular processes involving changes in cell membrane topology, including endocytosis and membrane budding. While several theoretical models have been proposed to explain this dynamic transformation, experimental validation of these models has been challenging because of the short-lived nature of the intermediates present during the phase transition. Herein, we report the direct observation of a lamellar-to-bicontinuous cubic phase transition in nanoscale dispersions using a combination of cryogenic transmission electron microscopy and static small-angle X-ray scattering. The results represent the first experimental confirmation of a theoretical model which proposed that the bicontinuous cubic phase originates from the center of a lamellar vesicle then propagates outward via the formation of interlamellar attachments and stalks. The observation was possible because of the precise control of the lipid composition to place the dispersion systems at the phase boundary of a lamellar and a cubic phase, allowing for the creation of long-lived structural intermediates. By the surveying of the nanoparticles using cryogenic transmission electron microscopy, a complete phase transition sequence was established.
Collapse
Affiliation(s)
- Nhiem Tran
- School of Science , RMIT University , Melbourne , Victoria 3000 , Australia
- CSIRO Manufacturing, Clayton , Victoria 3168 , Australia
- Australian Synchrotron, ANSTO, Clayton , Victoria 3168 , Australia
| | - Jiali Zhai
- School of Science , RMIT University , Melbourne , Victoria 3000 , Australia
- CSIRO Manufacturing, Clayton , Victoria 3168 , Australia
| | - Charlotte E Conn
- School of Science , RMIT University , Melbourne , Victoria 3000 , Australia
| | - Xavier Mulet
- CSIRO Manufacturing, Clayton , Victoria 3168 , Australia
| | | | - Calum J Drummond
- School of Science , RMIT University , Melbourne , Victoria 3000 , Australia
| |
Collapse
|
43
|
Hashim R, Sugimura A, Nguan HS, Rahman M, Zimmermann H. Anhydrous octyl-glucoside phase transition from lamellar to isotropic induced by electric and magnetic fields. J Chem Phys 2018; 146:084702. [PMID: 28249421 DOI: 10.1063/1.4976979] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A static deuterium nuclear magnetic resonance (2HNMR) technique (magnetic field, B = 7.05 T) was employed to monitor the thermotropic lamellar phase of the anhydrous 1:1 mixture sample of octyl-b-D-glucoside (βOG) and that of partially deuterium labelled at the alpha position on the chain, i.e.,βOG-d2 In the absence of an electric field, the 2H NMR spectrum of the mixture gives a typical quadrupolar doublet representing the aligned lamellar phase. Upon heating to beyond the clearing temperature at 112 °C, this splitting converts to a single line expected for an isotropic phase. Simultaneous application of magnetic and electric fields (E = 0.4 MV/m) at 85 °C in the lamellar phase, whose direction was set to be parallel or perpendicular to the magnetic field, resulted in the change of the doublet into a single line and this recovers to the initial doublet with time for both experimental geometries. This implies E- and B-field-induced phase transitions from the lamellar to an isotropic phase and a recovery to the lamellar phase again with time. Moreover, these phase transformations are accompanied by a transient current. A similar observation was made in a computational study when an electric field was applied to a water cluster system. Increasing the field strength distorts the water cluster and weakens its hydrogen bonds leading to a structural breakdown beyond a threshold field-strength. Therefore, we suggest the observed field-induced transition is likely due to a structure change of the βOG lamellar assembly caused by the field effect and not due to Joule heating.
Collapse
Affiliation(s)
- Rauzah Hashim
- Centre of Fundamental and Frontier Science of Self-Assembly, Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Akihiko Sugimura
- School of Information Systems Engineering, Osaka Sangyo University, 3-1-1 Nakagaito, Daito-Shi, Osaka 574-8530, Japan
| | - Hock-Seng Nguan
- Centre of Fundamental and Frontier Science of Self-Assembly, Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Matiur Rahman
- Centre of Fundamental and Frontier Science of Self-Assembly, Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Herbert Zimmermann
- Department of Biophysics, Max-Planck-Institut für Medizinische Forschung, Jahnstrasse 29, D-69120 Heidelberg, Germany
| |
Collapse
|
44
|
Javed MN, Kohli K, Amin S. Risk Assessment Integrated QbD Approach for Development of Optimized Bicontinuous Mucoadhesive Limicubes for Oral Delivery of Rosuvastatin. AAPS PharmSciTech 2018; 19:1377-1391. [PMID: 29388027 DOI: 10.1208/s12249-018-0951-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/02/2018] [Indexed: 01/31/2023] Open
Abstract
Statins are widely prescribed for hyperlipidemia, cancer, and Alzheimer's disease but are facing some inherent challenges such as low solubility and drug loading, higher hepatic metabolism, as well as instability at gastric pH. So, relatively higher circulating dose, required for exerting the therapeutic benefits, leads to dose-mediated severe toxicity. Furthermore, due to low biocompatibility, high toxicity, and other regulatory caveats such as product conformity, reproducibility, and stability of conventional formulations as well as preferentially higher bioabsorption of lipids in their favorable cuboidal geometry, enhancement in in vivo biopharmaceutical performance of Rosuvastatin could be well manifested in Quality by Design (QbD) integrated cuboidal-shaped mucoadhesive microcrystalline delivery systems (Limicubes). Here, quality-target-product-profile (QTPPs), critical quality attributes (CQAs), Ishikawa fishbone diagram, and integration of risk management through risk assessment matrix for failure mode and effects analysis (FMEA) followed by processing of Plackett-Burman design matrix using different statistical test for the first time established an approach to substantiate the claims that controlling levels of only these three screened out independent process variables, i.e., Monoolein (B = 800-1100 μL), Poloxamer (C = 150-200 mg), and stirring speed (F = 700-1000 rpm) were statistically significant to modulate and improve the biopharmaceutical performance affecting key attributes, viz., average particle size (Y1 = 1.40-2.70 μ), entrapment efficiency (Y2 = 62.60-88.80%), and drug loading (Y3 = 0.817-1.15%), in QbD-enabled process. The optimal performance of developed Limicubes exhibited an average particle size of 1.8 ± 0.2 μ, entrapment efficiency 80.32 ± 2.88%, and drug loading 0.93 ± 0.08% at the level of 1100 μL (+ 1), 200 mg (+ 1), and 700 rpm (- 1) for Monoolein, Poloxamer, and stirring speed, respectively.
Collapse
|
45
|
Mantha S, Jackson GL, Mahanthappa MK, Yethiraj A. Counterion-Regulated Dynamics of Water Confined in Lyotropic Liquid Crystalline Morphologies. J Phys Chem B 2018; 122:2408-2413. [PMID: 29397720 DOI: 10.1021/acs.jpcb.7b12034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics of confined water is of fundamental and long-standing interest. In technologically important forms of confinement, such as proton-exchange membranes, electrostatic interactions with the confining matrix and counterions play significant roles on the properties of water. There has been recent interest on the dynamics of water confined to the lyotropic liquid crystalline (LLC) morphologies of Gemini dicarboxylate surfactants. These systems are exciting because the nature of confinement, for example, size and curvature of channels and surface functionality is dictated by the chemistry of the self-assembling surfactant molecules. Quasielastic neutron scattering experiments have shown an interesting dependence of the water self-diffusion constant, Dα, on the identity (denoted α) of the counterion: at high hydration, the magnitude of the water self-diffusion constant is in the order DTMA < DNa < DK, where TMA, Na, and K refer to tetramethyl ammonium, sodium, and potassium counterions, respectively. This sequence is similar to what is seen in bulk electrolyte solutions. At low hydrations, however, the order of water self-diffusion is different, that is, DNa < DTMA < DK. In this work, we present molecular dynamics simulations for the dynamics of water in the LLC phases of dicarboxylate Gemini surfactants. The simulations reproduce the trends seen in experiments. From an analysis of the trajectories, we hypothesize that two competing factors play a role: the volume accessible to the water molecules and the correlations between the water and the counterion. The excluded volume effect is the largest with TMA+, and the electrostatic correlation is the strongest with Na+. The observed trend is a result of which of these two effects is dominant at a given water to surfactant ratio.
Collapse
Affiliation(s)
- Sriteja Mantha
- Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Grayson L Jackson
- Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Mahesh K Mahanthappa
- Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Arun Yethiraj
- Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| |
Collapse
|
46
|
Tran N, Mulet X, Hawley AM, Fong C, Zhai J, Le TC, Ratcliffe J, Drummond CJ. Manipulating the Ordered Nanostructure of Self-Assembled Monoolein and Phytantriol Nanoparticles with Unsaturated Fatty Acids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2764-2773. [PMID: 29381863 DOI: 10.1021/acs.langmuir.7b03541] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mesophase structures of self-assembled lyotropic liquid crystalline nanoparticles are important factors that directly influence their ability to encapsulate and release drugs and their biological activities. However, it is difficult to predict and precisely control the mesophase behavior of these materials, especially in complex systems with several components. In this study, we report the controlled manipulation of mesophase structures of monoolein (MO) and phytantriol (PHYT) nanoparticles by adding unsaturated fatty acids (FAs). By using high throughput formulation and small-angle X-ray scattering characterization methods, the effects of FAs chain length, cis-trans isomerism, double bond location, and level of chain unsaturation on self-assembled systems are determined. Additionally, the influence of temperature on the phase behavior of these nanoparticles is analyzed. We found that in general, the addition of unsaturated FAs to MO and PHYT induces the formation of mesophases with higher Gaussian surface curvatures. As a result, a rich variety of lipid polymorphs are found to correspond with the increasing amounts of FAs. These phases include inverse bicontinuous cubic, inverse hexagonal, and discrete micellar cubic phases and microemulsion. However, there are substantial differences between the phase behavior of nanoparticles with trans FA, cis FAs with one double bond, and cis FAs with multiple double bonds. Therefore, the material library produced in this study will assist the selection and development of nanoparticle-based drug delivery systems with desired mesophase.
Collapse
Affiliation(s)
- Nhiem Tran
- CSIRO Manufacturing , Clayton, Victoria 3149, Australia
| | - Xavier Mulet
- CSIRO Manufacturing , Clayton, Victoria 3149, Australia
| | - Adrian M Hawley
- Australian Synchrotron, ANSTO , Clayton, Victoria 3149, Australia
| | - Celesta Fong
- CSIRO Manufacturing , Clayton, Victoria 3149, Australia
| | | | | | | | | |
Collapse
|
47
|
Tran N, Hocquet M, Eon B, Sangwan P, Ratcliffe J, Hinton TM, White J, Ozcelik B, Reynolds NP, Muir BW. Non-lamellar lyotropic liquid crystalline nanoparticles enhance the antibacterial effects of rifampicin against Staphylococcus aureus. J Colloid Interface Sci 2018; 519:107-118. [PMID: 29486430 DOI: 10.1016/j.jcis.2018.02.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 01/01/2023]
Abstract
The fight against infection in an era of emerging antibiotic resistant bacteria is one of the grandest scientific challenges facing society today. Nano-carriers show great promise in improving the antibacterial activity of antibiotics as they are able to enhance their solubility, provide sustained release and reduce toxic side effects via specifically targeting infection sites. Here, we investigate the antibacterial effect of two lipidic nano-carriers that contain the poorly soluble antibiotic rifampicin in their bilayers. One nanoparticle is assembled solely from the lipid monoolein, thus is neutral at physiological pH and the other contains a mixture of monoolein and the cationic lipid N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate (DOTAP), thus is positively charged. Our results show that rifampicin-loaded nanoparticles reduce the minimum inhibitory concentration against Staphylococcus aureus compared to rifampicin alone, however this reduction was most pronounced for the positively charged nanoparticles. Fluorescent microscopy revealed binding of all nanoparticles to the bacteria and enhanced binding was observed for the charged nanoparticles. This suggests that the cationic lipids promote electrostatic interactions with the negatively charged bacterial membrane. Förster resonance energy transfer demonstrated that the cationic charged nanoparticles were able to fuse with bacterial membranes whilst atomic force microscopy and transmission electron microscopy revealed structural damage to the bacterial membranes caused by the nanoparticles. Significantly, we identified a concentration window in which the nanoparticles exhibited antibacterial activity while not affecting HeLa and CHO cell viability. This ability to improve the efficacy of antibiotics without affecting their eukaryotic cytotoxicity is of significant importance for future development of nanomedicine based strategies to combat infections.
Collapse
Affiliation(s)
- Nhiem Tran
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Marion Hocquet
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia; Chimie Paris Tech, Paris, France
| | - Blandine Eon
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia; Chimie Paris Tech, Paris, France
| | | | | | | | - Jacinta White
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | | | - Nicholas P Reynolds
- Swinburne University of Technology, ARC Training Centre for Biodevices, Faculty of Science, Engineering and Technology, Victoria 3122, Australia
| | | |
Collapse
|
48
|
Oka T. Small-Angle X-ray Crystallography on Single-Crystal Regions of Inverse Bicontinuous Cubic Phases: Lipid Bilayer Structures and Gaussian Curvature-Dependent Fluctuations. J Phys Chem B 2017; 121:11399-11409. [PMID: 29172522 DOI: 10.1021/acs.jpcb.7b08589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
I report for the first time an X-ray crystallographic study on single-crystal regions of cubic phases of a lyotropic liquid crystal. The single-crystal regions of three inverse bicontinuous cubic phases of a lipid, monoolein, diffracted X-ray only in small-angle regions, but amplitudes of structure factors were determined from the small-angle X-ray diffraction data with high accuracy. Structure factors from lipid bilayer models with constant thickness were optimized to amplitudes obtained from the X-ray data. By using amplitudes of the structure factors from X-ray data and phases from the models, electron density maps of three cubic phases were reconstructed. Lipid bilayer membranes, consisting of high density head regions and low density tail regions, were clearly distinguished in the electron density maps. Water regions had slightly lower density than that of the lipid head regions and were clearly visible for two of the cubic phases. Centers of bilayer membranes were located on the corresponding triply periodic minimal surfaces in the maps. Electron density data indicated Gaussian curvature-dependent fluctuations of bilayer membranes: the smaller the Gaussian curvature is, the larger the fluctuation becomes. The technique described in this report is expected to bring new knowledge in the structural research of lyotropic liquid crystals.
Collapse
Affiliation(s)
- Toshihiko Oka
- Department of Physics, Faculty of Science, and ‡Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University , Shizuoka 422-8529, Japan
| |
Collapse
|
49
|
Preferential selection of Arginine at the lipid-water-interface of TRPV1 during vertebrate evolution correlates with its snorkeling behaviour and cholesterol interaction. Sci Rep 2017; 7:16808. [PMID: 29196683 PMCID: PMC5711878 DOI: 10.1038/s41598-017-16780-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 11/11/2017] [Indexed: 02/07/2023] Open
Abstract
TRPV1 is a thermo-sensitive ion channel involved in neurosensory and other physiological functions. The trans-membrane helices of TRPV1 undergo quick and complex conformational changes governed by thermodynamic parameters and membrane components leading to channel opening. However, the molecular mechanisms underlying such events are poorly understood. Here we analysed the molecular evolution of TRPV1 at the lipid-water-interface region (LWI), typically defined as a layer of 6 Å thickness on each side of the membrane with less availability of free water. Amino acids demarcating the end of the trans-membrane helices are highly conserved. Residues present in the inner leaflet are more conserved and have been preferentially selected over others. Amino acids with snorkeling properties (Arginine and Tyrosine) undergo specific selection during the vertebrate evolution in a cholesterol-dependent and/or body temperature manner. Results suggest that H-bond formation between the OH- group of cholesterol and side chain of Arg557 or Arg575 at the inner leaflet is a critical parameter that can regulate channel functions. Different LWI mutants of TRPV1 have altered membrane localization and deficient colocalization with lipid raft markers. These findings may help to understand the lipid-protein interactions, and molecular basis of different neuronal functions. Such findings may have broad importance in the context of differential sensory responses, pathophysiologies, and application of pharmacological drugs such as anaesthetics acting on TRPVs.
Collapse
|
50
|
Pansu B, Sadoc JF. Metallurgy of soft spheres with hard core: From BCC to Frank-Kasper phases. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:102. [PMID: 29177986 DOI: 10.1140/epje/i2017-11592-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Understanding how soft particles can fill the space is still an open question. Structures far from classical FCC or BCC phases are now commonly experimentally observed in many different systems. Models based on pair interaction between soft particles are at present much studied in 2D. Pair interactions with two different lengths have been shown to lead to quasicrystalline architectures. It is also the case for a hard core with a square repulsive shoulder potential. In 3D, global approaches have been proposed for instance by minimizing the interface area between the deformed objects in the case of foams or micellar systems or using a self-consistent mean-field theory in copolymer melts. In this paper we propose to compare a strong van der Waals attraction between spherical hard cores and an elastic energy associated to the deformation of the soft corona. This deformation is measured as the shift between the deformed shell compared to a corona with a perfect spherical symmetry. The two main parameters in this model are: the hard-core volume fraction and the weight of the elastic energy compared to the van der Waals one. The elastic energy clearly favours the BCC structure but large van der Waals forces favor Frank and Kasper phases. This result opens a route towards controlling the building of nanoparticle superlattices with complex structures and thus original physical properties.
Collapse
Affiliation(s)
- Brigitte Pansu
- Laboratoire de Physique des Solides, Bât 510, UMR-CNRS 8502, Université Paris-Sud, Université Paris-Saclay, F-91405, Orsay, France.
| | - Jean-François Sadoc
- Laboratoire de Physique des Solides, Bât 510, UMR-CNRS 8502, Université Paris-Sud, Université Paris-Saclay, F-91405, Orsay, France
| |
Collapse
|