1
|
Sung K, Ferrari LF, Yang W, Chung C, Zhao X, Gu Y, Lin S, Zhang K, Cui B, Pearn ML, Maloney MT, Mobley WC, Levine JD, Wu C. Swedish Nerve Growth Factor Mutation (NGF R100W) Defines a Role for TrkA and p75 NTR in Nociception. J Neurosci 2018; 38:3394-3413. [PMID: 29483280 PMCID: PMC5895035 DOI: 10.1523/jneurosci.1686-17.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 01/23/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Nerve growth factor (NGF) exerts multiple functions on target neurons throughout development. The recent discovery of a point mutation leading to a change from arginine to tryptophan at residue 100 in the mature NGFβ sequence (NGFR100W) in patients with hereditary sensory and autonomic neuropathy type V (HSAN V) made it possible to distinguish the signaling mechanisms that lead to two functionally different outcomes of NGF: trophic versus nociceptive. We performed extensive biochemical, cellular, and live-imaging experiments to examine the binding and signaling properties of NGFR100W Our results show that, similar to the wild-type NGF (wtNGF), the naturally occurring NGFR100W mutant was capable of binding to and activating the TrkA receptor and its downstream signaling pathways to support neuronal survival and differentiation. However, NGFR100W failed to bind and stimulate the 75 kDa neurotrophic factor receptor (p75NTR)-mediated signaling cascades (i.e., the RhoA-Cofilin pathway). Intraplantar injection of NGFR100W into adult rats induced neither TrkA-mediated thermal nor mechanical acute hyperalgesia, but retained the ability to induce chronic hyperalgesia based on agonism for TrkA signaling. Together, our studies provide evidence that NGFR100W retains trophic support capability through TrkA and one aspect of its nociceptive signaling, but fails to engage p75NTR signaling pathways. Our findings suggest that wtNGF acts via TrkA to regulate the delayed priming of nociceptive responses. The integration of both TrkA and p75NTR signaling thus appears to regulate neuroplastic effects of NGF in peripheral nociception.SIGNIFICANCE STATEMENT In the present study, we characterized the naturally occurring nerve growth factor NGFR100W mutant that is associated with hereditary sensory and autonomic neuropathy type V. We have demonstrated for the first time that NGFR100W retains trophic support capability through TrkA, but fails to engage p75NTR signaling pathways. Furthermore, after intraplantar injection into adult rats, NGFR100W induced neither thermal nor mechanical acute hyperalgesia, but retained the ability to induce chronic hyperalgesia. We have also provided evidence that the integration of both TrkA- and p75NTR-mediated signaling appears to regulate neuroplastic effects of NGF in peripheral nociception. Our study with NGFR100W suggests that it is possible to uncouple trophic effect from nociceptive function, both induced by wild-type NGF.
Collapse
Affiliation(s)
| | - Luiz F Ferrari
- Department of Oral Surgery, University of California San Francisco, San Francisco, California 94143
| | - Wanlin Yang
- Department of Neurosciences
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China 200025
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, South Korea
| | | | - Yingli Gu
- Department of Neurosciences
- Department of Neurology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China 150001
| | - Suzhen Lin
- Department of Neurosciences
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China 200025
| | - Kai Zhang
- Department of Chemistry
- Department of Biochemistry, Neuroscience Program, Center for Biophysics and Quantitative Biology, Chemistry-Biology Interface Training Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | | | - Matthew L Pearn
- Department of Anesthesiology, University of California San Diego, School of Medicine, La Jolla, California 92093
- V.A. San Diego Healthcare System, San Diego, California 92161
| | - Michael T Maloney
- Department of Neurosciences, Stanford University, Stanford, California 94305
| | | | - Jon D Levine
- Department of Oral Surgery, University of California San Francisco, San Francisco, California 94143
| | - Chengbiao Wu
- Department of Neurosciences,
- V.A. San Diego Healthcare System, San Diego, California 92161
| |
Collapse
|
2
|
Raucci F, Tiong JD, Wray S. P75 nerve growth factor receptors modulate development of GnRH neurons and olfactory ensheating cells. Front Neurosci 2013; 7:262. [PMID: 24409113 PMCID: PMC3873506 DOI: 10.3389/fnins.2013.00262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/16/2013] [Indexed: 01/31/2023] Open
Abstract
Temporal and spatial localization of nerve growth factor receptor (p75NGFR) in the developing olfactory system and gonadotropin-releasing hormone-1 (GnRH) system was characterized and its role analyzed using p75NGFR null mice and nasal explants. Prenatally, p75NGFR was expressed by GnRH neurons and olfactory ensheathing cells (OECs). In p75NGFR null mice, no change in the number of GnRH cells was detected as compared to wild-type. However, in null mice, a shift in the distribution of GnRH neurons was found, with a small population of GnRH cells migrating further caudally toward the median eminence. Additionally, a reduction of both GAD67 positive olfactory axons and GFAP positive OEC fibers occurred. Acute administration of a p75NGFR blocker to GnRH cells maintained in vitro increased migration rate, consistent with the change in distribution detected in p75NGFR null mice. Chronic inhibition of p75NGFR caused an attenuation of olfactory axon fasciculation and a decrease in OEC density, again mimicking the changes detected in null mice. However, a reduction in GnRH cell number was found after chronic treatment that not observed in KO animals suggesting indirect changes occur during chronic treatment in vitro and/or a compensatory mechanism occurs in vivo that prevents loss of GnRH neurons in the absence of p75NGFR.
Collapse
Affiliation(s)
- Franca Raucci
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Strokes, National Institutes of Health Bethesda, MD, USA
| | - Jean D Tiong
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Strokes, National Institutes of Health Bethesda, MD, USA
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Strokes, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
3
|
Edalat H, Hajebrahimi Z, Movahedin M, Tavallaei M, Amiri S, Mowla SJ. p75NTR suppression in rat bone marrow stromal stem cells significantly reduced their rate of apoptosis during neural differentiation. Neurosci Lett 2011; 498:15-9. [PMID: 21539892 DOI: 10.1016/j.neulet.2011.04.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/05/2011] [Accepted: 04/19/2011] [Indexed: 11/26/2022]
Abstract
Most of the transplanted cells within central nervous system (CNS) undergo extensive cell death. Preventing the death of stem cell-derived neuron-like cells within adult CNS would enhance the efficiency of transplantation in clinics. We have employed an interfering RNA (RNAi) approach to elevate the survival rate of neurally differentiated bone marrow stromal stem cells (BMSCs), by means of suppressing p75NTR expression. Our data revealed that stably overexpressing a specific shRNA against p75NTR transcript could effectively reduce the expression of endogenous p75NTR in neurally differentiated BMSCs. As p75NTR can induce neuronal death in target cells, its suppression is followed by a significant reduction of apoptosis in neural-like cells derived from BMSCs. Thus, our data provides a method to increase the survival of stem cells being employed in transplantation within CNS and hence increase the success rate of cell-based therapies in damaged area of brain and spinal cord.
Collapse
Affiliation(s)
- Houri Edalat
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
4
|
Teng KK, Felice S, Kim T, Hempstead BL. Understanding proneurotrophin actions: Recent advances and challenges. Dev Neurobiol 2010; 70:350-9. [PMID: 20186707 DOI: 10.1002/dneu.20768] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurotrophins are initially synthesized as larger precursors (proneurotrophins), which undergo proteolytic cleavage to yield mature forms. Although the functions of the mature neurotrophins have been well established during neural development and in the adult nervous system, roles for the proneurotrophins in developmental and injury-induced cell death, as well as in synaptic plasticity, have only recently been appreciated. Interestingly, both mature neurotrophins and proneurotrophins utilize dual-receptor complexes to mediate their actions. The mature neurotrophin coreceptors consist of the Trk receptor tyrosine kinases and p75(NTR), wherein Trk transduces survival and differentiative signaling, and p75(NTR) modulates the affinity and selectivity of Trk activation. On the other hand, proneurotrophins engage p75(NTR) and the structurally distinct coreceptor sortilin, to initiate p75(NTR)-dependent signal transduction cascade. Although the specificity of mature neurotrophins vs. proneurotrophins actions is due in part to the formation of distinct coreceptor complexes, a number of recent studies highlight how different p75(NTR)-mediated cellular actions are modulated. Here, we review emerging evidence for a novel transmembrane mechanism for ligand-specific p75(NTR) activation and several mechanisms by which p75(NTR)-dependent apoptotic and nonapoptotic responses can be selective activated.
Collapse
Affiliation(s)
- Kenneth K Teng
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | |
Collapse
|
5
|
Abstract
Abstract Suicide is a major public health concern. The etiology and pathogenic mechanisms associated with suicidal behavior are poorly understood. Recent research on the biological perspective of suicide has gained momentum and appears to provide a promising approach for identifying potential risk factors associated with this disorder. One of the areas that have gained the most attention in suicide research is the role of brain-derived neurotrophic factor (BDNF), which participates in many physiological functions in the brain, including synaptic and structural plasticity. Several studies consistently show that expression of BDNF is reduced in blood cells of suicidal patients and in brains of subjects who committed suicide. Recent studies also demonstrate abnormalities in the functioning of BDNF, because its cognate receptors (tropomycin receptor kinase B and pan75 neurotrophin receptor) are abnormally active and/or expressed in the post-mortem brains of suicide subjects. There is further evidence of the role of BDNF in suicide as numerous studies show a strong association of suicidal behavior with BDNF functional polymorphism. Overall, it appears that abnormalities in BDNF signaling may serve as an important biological risk factor in the etiology and pathogenesis of suicide.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| |
Collapse
|
6
|
Abstract
Depression and suicidal behavior have recently been shown to be associated with disturbances in structural and synaptic plasticity. Brain-derived neurotrophic factor (BDNF), one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons and in synaptic plasticity. Several lines of evidence suggest that BDNF is involved in depression, such that the expression of BDNF is decreased in depressed patients. In addition, antidepressants up-regulate the expression of BDNF. This has led to the proposal of the "neurotrophin hypothesis of depression". Increasing evidence demonstrates that suicidal behavior is also associated with lower expression of BDNF, which may be independent from depression. Recent genetic studies also support a link of BDNF to depression/suicidal behavior. Not only BDNF, but abnormalities in its cognate receptor tropomycin receptor kinase B (TrkB) and its splice variant (TrkB.T1) have also been reported in depressed/suicidal patients. It has been suggested that epigenetic modulation of the Bdnf and Trkb genes may contribute to their altered expression and functioning. More recently, impairment in the functioning of pan75 neurotrophin receptor has been reported in suicide brain specimens. pan75 neurotrophin receptor is a low-affinity neurotrophin receptor that, when expressed in conjunction with low availability of neurotropins/Trks, induces apoptosis. Overall, these studies suggest the possibility that BDNF and its mediated signaling may participate in the pathophysiology of depression and suicidal behavior. This review focuses on the critical evidence demonstrating the involvement of BDNF in depression and suicide.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
7
|
Abstract
Regeneration following axonal injury of the adult peripheral sensory nervous system is heavily influenced by factors located in a neuron's extracellular environment. These factors include neurotrophins, such as Nerve Growth Factor (NGF) and the extracellular matrix, such as laminin. The presence of these molecules in the peripheral nervous system (PNS) is a major contributing factor for the dichotomy between regenerative capacities of central vs. peripheral neurons. Although PNS neurons are capable of spontaneous regeneration, this response is critically dependent on many different factors including the type, location and severity of the injury. In this article, we will focus on the plasticity of adult dorsal root ganglion (DRG) sensory neurons and how trophic factors and the extracellular environment stimulate the activation of intracellular signaling cascades that promote axonal growth in adult dorsal root ganglion neurons.
Collapse
|
8
|
Dwivedi Y, Rizavi HS, Zhang H, Mondal AC, Roberts RC, Conley RR, Pandey GN. Neurotrophin receptor activation and expression in human postmortem brain: effect of suicide. Biol Psychiatry 2009; 65:319-28. [PMID: 18930453 PMCID: PMC2654767 DOI: 10.1016/j.biopsych.2008.08.035] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/31/2008] [Accepted: 08/25/2008] [Indexed: 01/19/2023]
Abstract
BACKGROUND The physiological functions of neurotrophins occur through binding to two receptors: pan75 neurotrophin receptor (p75(NTR)) and a family of tropomyosin receptor kinases (Trks A, B, and C). We recently reported that expression of neurotrophins and TrkB were reduced in brains of suicide subjects. This study examines whether expression and activation of Trk receptors and expression of p75(NTR) are altered in brain of these subjects. METHODS Expression levels of TrkA, B, C, and of p75(NTR) were measured by quantitative reverse transcription polymerase chain reaction and Western blot in prefrontal cortex (PFC) and hippocampus of suicide and normal control subjects. The activation of Trks was determined by immunoprecipitation followed by Western blotting using phosphotyrosine antibody. RESULTS In hippocampus, lower mRNA levels of TrkA and TrkC were observed in suicide subjects. In the PFC, the mRNA level of TrkA was decreased, without any change in TrkC. However, the mRNA level of p75(NTR) was increased in both PFC and hippocampus. Immunolabeling studies showed similar results as observed for the mRNAs. In addition, phosphorylation of all Trks was decreased in hippocampus, but in PFC, decreased phosphorylation was noted only for TrkA and B. Increased expression ratios of p75(NTR) to Trks were also observed in PFC and hippocampus of suicide subjects. CONCLUSIONS Our results suggest not only reduced functioning of Trks in brains of suicide subjects but also that increased ratios of p75(NTR) to Trks indicate possible activation of pathways that are apoptotic in nature. These findings may be crucial in the pathophysiology of suicide.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Hooriyah S. Rizavi
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago IL, 60612, USA
| | - Hui Zhang
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago IL, 60612, USA
| | - Amal C. Mondal
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago IL, 60612, USA
| | - Rosalinda C. Roberts
- University of Alabama at Birmingham, 865D Sparks Center, 1720 7th Ave South, Birmingham, AL 35294, USA
| | | | - Ghanshyam N. Pandey
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago IL, 60612, USA
| |
Collapse
|
9
|
Protein Misfolding and Axonal Protection in Neurodegenerative Diseases. PROTEIN FOLDING AND MISFOLDING: NEURODEGENERATIVE DISEASES 2008. [DOI: 10.1007/978-1-4020-9434-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Neurotrophin-induced upregulation of p75NTR via a protein kinase C-delta-dependent mechanism. Brain Res 2008; 1217:10-24. [PMID: 18511024 DOI: 10.1016/j.brainres.2008.03.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 02/27/2008] [Accepted: 03/28/2008] [Indexed: 02/06/2023]
Abstract
Neurotrophins exert their biological effects via p75NTR and Trk receptors. Functional interplay between these two receptors has been widely explored with respect to p75NTR enhancing the activation and signalling of Trk, but few studies address the bidirectional aspects. We have previously demonstrated that the expression of p75NTR can be differentially modulated by different Trk receptor mutations. Here we investigate the mechanism of Nerve Growth Factor (NGF)-induced upregulation of p75NTR expression. We utilize pharmacological inhibition to investigate the role of various TrkA-associated signalling intermediates in this regulatory cascade. Notably, the inhibition of phospholipase C-gamma (PLC-gamma) using U73122, prevented the NGF-induced upregulation of p75NTR protein and mRNA. The inhibition of protein kinase C-delta (PKC-delta) activation by rottlerin, a selective PKC-delta inhibitor, and by small interfering RNA (siRNA) directed against PKC-delta also inhibited this NGF-induced upregulation. Finally, we also show that in cerebellar granule neurons, BDNF acting via TrkB increases p75NTR expression in a PKC-delta dependent manner. These results indicate the importance of Trk-dependent PLC-gamma and PKC-delta activation for downstream regulation of p75NTR protein expression in response to neurotrophin stimulation, a process that has implications to the survival and growth of the developing nervous system.
Collapse
|
11
|
Puligilla C, Feng F, Ishikawa K, Bertuzzi S, Dabdoub A, Griffith AJ, Fritzsch B, Kelley MW. Disruption of fibroblast growth factor receptor 3 signaling results in defects in cellular differentiation, neuronal patterning, and hearing impairment. Dev Dyn 2007; 236:1905-17. [PMID: 17557302 PMCID: PMC3904742 DOI: 10.1002/dvdy.21192] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Deletion of fibroblast growth factor receptor 3 (Fgfr3) leads to hearing impairment in mice due to defects in the development of the organ of Corti, the sensory epithelium of the Cochlea. To examine the role of FGFR3 in auditory development, cochleae from Fgfr3(-/-) mice were examined using anatomical and physiological methods. Deletion of Fgfr3 leads to the absence of inner pillar cells and an increase in other cell types, suggesting that FGFR3 regulates cell fate. Defects in outer hair cell differentiation were also observed and probably represent the primary basis for hearing loss. Furthermore, innervation defects were detected consistent with changes in the fiber guidance properties of pillar cells. To elucidate the mechanisms underlying the effects of FGFR3, we examined the expression of Bmp4, a known target. Bmp4 was increased in Fgfr3(-/-) cochleae, and exogenous application of bone morphogenetic protein 4 (BMP4) onto cochlear explants induced a significant increase in the outer hair cells, suggesting the Fgf and Bmp signaling act in concert to pattern the cochlea.
Collapse
|
12
|
Marandi M, Mowla SJ, Tavallaei M, Yaghoobi MM, Jafarnejad SM. Proprotein convertases 1 and 2 (PC1 and PC2) are expressed in neurally differentiated rat bone marrow stromal stem cells (BMSCs). Neurosci Lett 2007; 420:198-203. [PMID: 17556096 DOI: 10.1016/j.neulet.2007.04.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/09/2007] [Accepted: 04/19/2007] [Indexed: 01/19/2023]
Abstract
Neural-like cells derived from bone marrow stromal stem cells (BMSCs) have potential usefulness in cell therapy of degenerative or traumatic diseases of the central nervous system (CNS). The functional recovery mediated by these cells, however, depends on the secretion of neurotrophins (NTs) and their cognate receptors, as the main regulators of neural survival and death. The function of NTs is further modulated by proprotein convertase (PC) enzymes which function in converting proproteins (including proNTs) into their functional end products. Accordingly, failure in converting proprotein forms of NTs into their mature forms may lead to neuronal cell death. In the present study, we have investigated the expression profile of PCs before and during neural differentiation of rat BMSCs by RT-PCR. Our results show that major members of the PC family functioning in the constitutive secretory pathway (furin, PACE4 and PC7/LPC) are highly expressed in both undifferentiated and neurally differentiated BMSCs. In contrast, while PC1/PC3 and PC2 (specific to neural and endocrine cells) are absent in undifferentiated BMSCs, their expression is initiated upon the induction of differentiation. In conclusion, our results suggest that neurally differentiated BMSCs have acquired the functional machinery to process the precursor forms of proteins in both the constitutive and regulated pathways.
Collapse
Affiliation(s)
- Mohammad Marandi
- Department of Cellular and Molecular Biology, Imam Hossein University, Tehran, Iran
| | | | | | | | | |
Collapse
|
13
|
Yaghoobi MM, Mowla SJ. Differential gene expression pattern of neurotrophins and their receptors during neuronal differentiation of rat bone marrow stromal cells. Neurosci Lett 2006; 397:149-54. [PMID: 16384645 DOI: 10.1016/j.neulet.2005.12.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 12/02/2005] [Accepted: 12/04/2005] [Indexed: 01/09/2023]
Abstract
Neural-like cells derived from bone marrow stromal cells (BMSC) have potential usefulness in repair of the CNS injuries or diseases. The functional recovery mediated by these cells, however, depends on secretion of specific growth factors and their designated receptors. In the present study, we have investigated the expression profile of neurotrophins NGF, BDNF and NT-3 and their high-affinity (TrkA, TrkB, TrkC) and common low-affinity (p75NTR) receptors before and during neural differentiation of rat BMSCs by RT-PCR. Results indicate that NGF and BDNF but not NT-3 are expressed in both un-differentiated as well as neurally differentiated BMSCs. In contrast, the expression of TrkA and TrkB is restricted to neurally differentiated cells, while TrkC is not expressed in these cells either before or after differentiation. Interestingly, p75NTR expression is absent in un-differentiated cells but is initiated upon the induction of neural differentiation, and then shut off in fully differentiated neuron-like cells.
Collapse
Affiliation(s)
- Mohammad Mehdi Yaghoobi
- Department of Genetics, School of Basic Sciences, Tarbiat Modarres University, P.O. Box 14115-175, Islamic Republic of Iran
| | | |
Collapse
|
14
|
Rankin SL, Guy CS, Mearow KM. TrkA NGF receptor plays a role in the modulation of p75NTR expression. Neurosci Lett 2005; 383:305-10. [PMID: 15955426 DOI: 10.1016/j.neulet.2005.04.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 04/05/2005] [Accepted: 04/15/2005] [Indexed: 01/19/2023]
Abstract
The cellular response to nerve growth factor (NGF) is mediated by two structurally unrelated receptors, TrkA and p75 neurotrophin receptor (p75NTR), which have been shown to interact resulting in reciprocal modulation of function. In this study, we have examined the modulation of p75NTR protein expression by specific TrkA autophosphorylation sites in the presence or absence of NGF. We have used cell lines derived from PC12 cells that express either no endogenous TrkA (PC12nnr5) or TrkA receptors mutated via site-directed mutagenesis to abrogate individual tyrosine autophosphorylation sites on the cytoplasmic tail (Y490F, Y785F and Y490/785F). Results indicate that in the absence of TrkA in PC12nnr5 cells there is reduced constitutive p75NTR expression, which can be restored to different degrees by transfection of the Y490F TrkA or the Y490/785F TrkA, but not by transfection of the Y785F TrkA. In addition, the expression of p75NTR was upregulated in the presence of NGF in the parental and Y490F cell lines only. Together these results indicate a role for the individual tyrosine autophosphorylation sites of TrkA in regulating p75NTR expression.
Collapse
Affiliation(s)
- Sherri L Rankin
- Division of Basic Medical Sciences-M5352, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Phillip Drive, St. John's, Nfld., Canada A1B 3V6
| | | | | |
Collapse
|