1
|
Locatelli F, Del Vecchio L, Elliott S. The anaemia treatment journey of CKD patients: from epoetins to hypoxia-inducible factor-prolyl hydroxylase inhibitors. Clin Kidney J 2023; 16:1563-1579. [PMID: 37779852 PMCID: PMC10539216 DOI: 10.1093/ckj/sfad105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Indexed: 10/03/2023] Open
Abstract
The discovery and development of erythropoiesis-stimulating agents was a journey lasting more than a century, leading to the cloning and approval of recombinant human erythropoietin (rHuEpo). This was an impressive clinical advance, providing the possibility of correcting the symptoms associated with anaemia in chronic kidney disease. Associated iron use was needed to produce new haemoglobin-containing blood red cells. Partial anaemia correction became the standard of care since trials aiming for near-normal haemoglobin levels showed a higher risk of adverse cardiovascular events. Hoping to reduce the cardiovascular risks, a new category of drugs was developed and tested. Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) are small molecules than can be formulated into orally active pills. They simulate reduced tissue oxygen pressure, thus stimulating the production of endogenous erythropoietin (Epo) by the kidneys and liver. Clinical trials with these compounds demonstrated that HIF-PHIs are at least as effective as rHuEpo in treating or correcting anaemia in non-dialysis and dialysis patients. Trials with HIF-PHIs did not demonstrate superiority in safety outcomes and in some trials, outcomes were worse. There was also a focus on oral delivery, a possible beneficial iron-sparing effect and the ability to overcome Epo resistance in inflamed patients. A negative effect is possible iron depletion, which may explain adverse outcomes.
Collapse
Affiliation(s)
- Francesco Locatelli
- Department of Nephrology and Dialysis, Alessandro Manzoni Hospital, Lecco, Italy
| | - Lucia Del Vecchio
- Department of Nephrology and Dialysis, Sant’ Anna Hospital, ASST Lariana, Como, Italy
| | | |
Collapse
|
2
|
Pattanaik S, Jain A, Ahluwalia J. Evolving Role of Pharmacogenetic Biomarkers to Predict Drug-Induced Hematological Disorders. Ther Drug Monit 2021; 43:201-220. [PMID: 33235023 DOI: 10.1097/ftd.0000000000000842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/21/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT Drug-induced hematological disorders constitute up to 30% of all blood dyscrasias seen in the clinic. Hematologic toxicity from drugs may range from life-threatening marrow aplasia, agranulocytosis, hemolysis, thrombosis to mild leukopenia, and thrombocytopenia. Pathophysiologic mechanisms underlying these disorders vary from an extension of the pharmacological effect of the drug to idiosyncratic and immune-mediated reactions. Predicting these reactions is often difficult, and this makes clinical decision-making challenging. Evidence supporting the role of pharmacogenomics in the management of these disorders in clinical practice is rapidly evolving. Despite the Clinical Pharmacology Implementation Consortium and Pharmacogenomics Knowledge Base recommendations, few tests have been incorporated into routine practice. This review aims to provide a comprehensive summary of the various drugs which are implicated for the hematological adverse events, their underlying mechanisms, and the current evidence and practical recommendations to incorporate pharmacogenomic testing in clinical care for predicting these disorders.
Collapse
Affiliation(s)
| | - Arihant Jain
- Internal Medicine, Hematology and Bone Marrow Transplantation, and
| | - Jasmina Ahluwalia
- Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
Simonov V, Ivanov S, Smolov M, Abbasova S, Piskunov A, Poteryaev D. Control of therapeutic IgG antibodies galactosylation during cultivation process and its impact on IgG1/FcγR interaction and ADCC activity. Biologicals 2019; 58:16-21. [DOI: 10.1016/j.biologicals.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 12/04/2018] [Accepted: 01/02/2019] [Indexed: 01/08/2023] Open
|
4
|
Abstract
Many processes lead to anemia. This review covers anemias that are less commonly encountered in the United States. These anemias include hemoglobin defects like thalassemia, bone marrow failure syndromes like aplastic anemia and pure red cell aplasia, and hemolytic processes such as paroxysmal nocturnal hemoglobinuria. The pathogenesis, diagnostic workup, and treatment of these rare anemias are reviewed.
Collapse
Affiliation(s)
- Molly Maddock Daughety
- Division of Hematology/Medical Oncology, Department of Medicine, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97201-3098, USA
| | - Thomas G DeLoughery
- Division of Hematology/Medical Oncology, Department of Medicine, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97201-3098, USA; Division of Hematology/Medical Oncology, Department of Medicine, Knight Cancer Institute, Oregon Health and Science University, MC L586, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
5
|
Oliveira CDRD, Bairros AVD, Yonamine M. Blood doping: risks to athletes' health and strategies for detection. Subst Use Misuse 2014; 49:1168-81. [PMID: 24766400 DOI: 10.3109/10826084.2014.903754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Blood doping has been defined as the misuse of substances or certain techniques to optimize oxygen delivery to muscles with the aim to increase performance in sports activities. It includes blood transfusion, administration of erythropoiesis-stimulating agents or blood substitutes, and gene manipulations. The main reasons for the widespread use of blood doping include: its availability for athletes (erythropoiesis-stimulating agents and blood transfusions), its efficiency in improving performance, and its difficult detection. This article reviews and discusses the blood doping substances and methods used for in sports, the adverse effects related to this practice, and current strategies for its detection.
Collapse
|
6
|
Heuberger JAAC, Cohen Tervaert JM, Schepers FML, Vliegenthart ADB, Rotmans JI, Daniels JMA, Burggraaf J, Cohen AF. Erythropoietin doping in cycling: lack of evidence for efficacy and a negative risk-benefit. Br J Clin Pharmacol 2014; 75:1406-21. [PMID: 23216370 DOI: 10.1111/bcp.12034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/09/2012] [Indexed: 11/29/2022] Open
Abstract
Imagine a medicine that is expected to have very limited effects based upon knowledge of its pharmacology and (patho)physiology and that is studied in the wrong population, with low-quality studies that use a surrogate end-point that relates to the clinical end-point in a partial manner at most. Such a medicine would surely not be recommended. The use of recombinant human erythropoietin (rHuEPO) to enhance performance in cycling is very common. A qualitative systematic review of the available literature was performed to examine the evidence for the ergogenic properties of this drug, which is normally used to treat anaemia in chronic renal failure patients. The results of this literature search show that there is no scientific basis from which to conclude that rHuEPO has performance-enhancing properties in elite cyclists. The reported studies have many shortcomings regarding translation of the results to professional cycling endurance performance. Additionally, the possibly harmful side-effects have not been adequately researched for this population but appear to be worrying, at least. The use of rHuEPO in cycling is rife but scientifically unsupported by evidence, and its use in sports is medical malpractice. What its use would have been, if the involved team physicians had been trained in clinical pharmacology and had investigated this properly, remains a matter of speculation. A single well-controlled trial in athletes in real-life circumstances would give a better indication of the real advantages and risk factors of rHuEPO use, but it would be an oversimplification to suggest that this would eradicate its use.
Collapse
|
7
|
Brooks AR, Sim D, Gritzan U, Patel C, Blasko E, Feldman RI, Tang L, Ho E, Zhao XY, Apeler H, Murphy JE. Glycoengineered factor IX variants with improved pharmacokinetics and subcutaneous efficacy. J Thromb Haemost 2013; 11:1699-706. [PMID: 23692404 DOI: 10.1111/jth.12300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/14/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND The rapid clearance of factor IX (FIX) necessitates frequent intravenous administration to achieve effective prophylaxis for patients with hemophilia B. Subcutaneous administration would be a preferred route of administration but is limited by bioavailability. OBJECTIVES To improve the pharmacokinetics (PK) and bioavailability of FIX, a screen was performed to identify positions for the introduction of novel glycosylation sites with maximal effect on PK and maintenance of coagulation activity. METHODS Two hundred fifty-one variants, each containing one additional N-linked glycosylation site, were screened in vitro, and the PK profiles of selected variants mapping to spatially distinct regions of FIX were evaluated in mice. Optimal variants were combined, and their PK and efficacy were determined in mice with hemophilia B. RESULTS Variants that mapped to spatially distinct regions of the FIX structure exhibited different degrees of improved PK and enabled selection of optimized sites while minimizing the loss of FIX activity. Combining the most effective N-glycan sites in the same FIX molecule resulted in further improvements in PK. An optimized variant containing three novel N-glycan sites (at amino acids 103, 151, and 228), and the activity enhancing 338A variant had double the specific activity of wild-type FIX, exhibited 4.5-fold reduced clearance and 2.4-fold increased subcutaneous bioavailability, and was efficacious at a fivefold lower mass dose than wild-type FIX after subcutaneous injection in a bleeding model in mice with hemophilia B. CONCLUSIONS Glycoengineering was used to significantly improve the subcutaneous PK and efficacy of FIX and may have advantages for subcutaneous dosing.
Collapse
Affiliation(s)
- A R Brooks
- Biologics Research, Bayer Healthcare Pharmaceuticals, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Costa AR, Rodrigues ME, Henriques M, Oliveira R, Azeredo J. Glycosylation: impact, control and improvement during therapeutic protein production. Crit Rev Biotechnol 2013; 34:281-99. [PMID: 23919242 DOI: 10.3109/07388551.2013.793649] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The emergence of the biopharmaceutical industry represented a major revolution for modern medicine, through the development of recombinant therapeutic proteins that brought new hope for many patients with previously untreatable diseases. There is a ever-growing demand for these therapeutics that forces a constant technological evolution to increase product yields while simultaneously reducing costs. However, the process changes made for this purpose may also affect the quality of the product, a factor that was initially overlooked but which is now a major focus of concern. Of the many properties determining product quality, glycosylation is regarded as one of the most important, influencing, for example, the biological activity, serum half-life and immunogenicity of the protein. Consequently, monitoring and control of glycosylation is now critical in biopharmaceutical manufacturing and a requirement of regulatory agencies. A rapid evolution is being observed in this context, concerning the influence of glycosylation in the efficacy of different therapeutic proteins, the impact on glycosylation of a diversity of parameters/processes involved in therapeutic protein production, the analytical methodologies employed for glycosylation monitoring and control, as well as strategies that are being explored to use this property to improve therapeutic protein efficacy (glycoengineering). This work reviews the main findings on these subjects, providing an up-to-date source of information to support further studies.
Collapse
Affiliation(s)
- Ana Rita Costa
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar , Braga , Portugal
| | | | | | | | | |
Collapse
|
9
|
Abstract
Recombinant human erythropoietin (rHuEPO), such as the approved agents epoetin alfa and epoetin beta, has been used successfully for over 20 years to treat anemia in millions of patients. However, due to the relatively short half-life of the molecule (approximately 8 hours), frequent dosing may be required to achieve required hemoglobin levels. Therefore, a need was identified in some anemic patient populations for erythropoiesis stimulating agents with longer half-lives that required less frequent dosing. This need led to the development of second generation molecules which are modified versions of rHuEPO with improved pharma-cokinetic and pharmacodynamic properties such as darbepoetin alfa, a hyperglycosylated analog of rHuEPO, and pegzyrepoetin, a pegylated rHuEPO. Third generation molecules, such as peginesatide, which are peptide mimetics that have no sequence homology to rHuEPO have also recently been developed. The various molecular, pharmacokinetic, and pharmacodynamic properties of these and other erythropoiesis stimulating agents will be discussed in this review.
Collapse
|
10
|
Abuse of medicines for performance enhancement in sport: why is this a problem for the pharmaceutical industry? Bioanalysis 2012; 4:1681-90. [PMID: 22831483 DOI: 10.4155/bio.12.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The misuse of medicines for performance enhancement in sport (doping) is not approved by regulatory agencies, and is illegal in many countries. In addition to the 'traditional' doping agents such as steroids, β-blockers and blood transfusions, the list of agents and techniques used in doping is increasing and now includes newer medicines such as erythropoiesis-stimulating agents and growth hormones. Innovative new medicines are of particular interest as would-be dopers may believe them to be undetectable by current methods. Close collaboration between the biopharmaceutical industry and anti-doping agencies such as the World Anti-Doping Agency is critical to a successful anti-doping strategy. Industry is ideally placed to identify the doping potential of new medicines at early stages and to support early development of detection assays. A strong, united front between the biopharmaceutical industry and anti-doping agencies is essential to counter the misuse of medicines for performance enhancement, as well as to promote fair play and clean sport.
Collapse
|
11
|
Kotasińska M, Richter V, Thiemann J, Schlüter H. Cation exchange displacement batch chromatography of proteins guided by screening of protein purification parameters. J Sep Sci 2012; 35:3170-6. [DOI: 10.1002/jssc.201200329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 01/06/2023]
Affiliation(s)
- Marta Kotasińska
- Massenspektrometrische Proteomanalytik; Inst. für Klinische Chemie; Universitätsklinikum Hamburg-Eppendorf; Hamburg Germany
| | - Verena Richter
- Massenspektrometrische Proteomanalytik; Inst. für Klinische Chemie; Universitätsklinikum Hamburg-Eppendorf; Hamburg Germany
| | | | - Hartmut Schlüter
- Massenspektrometrische Proteomanalytik; Inst. für Klinische Chemie; Universitätsklinikum Hamburg-Eppendorf; Hamburg Germany
| |
Collapse
|
12
|
Abstract
Erythropoiesis is the process whereby erythroid progenitor cells differentiate and divide, resulting in increased numbers of red blood cells (RBCs). RBCs contain hemoglobin, the main oxygen carrying component in blood. The large number of RBCs found in blood is required to support the prodigious consumption of oxygen by tissues as they undergo oxygen-dependent processes. Erythropoietin is a hormone that when it binds and activates Epo receptors resident on the surface of cells results in stimulation of erythropoiesis. Successful cloning of the EPO gene allowed for the first time production of recombinant human erythropoietin and other erythropoiesis stimulating agents (ESAs), which are used to treat anemia in patients. In this chapter, the control of Epo levels and erythropoiesis, the various forms of ESAs used commercially, and their physical and biological properties are discussed.
Collapse
Affiliation(s)
- Steve Elliott
- Department of Hematology, Amgen, Inc., Thousand Oaks, CA 91320, USA.
| |
Collapse
|
13
|
Jelkmann W. Biosimilar epoetins and other "follow-on" biologics: update on the European experiences. Am J Hematol 2010; 85:771-80. [PMID: 20706990 DOI: 10.1002/ajh.21805] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
After the patents of biopharmaceuticals have expired, based on specific regulatory approval pathways copied products ("biosimilars" or "follow-on biologics") have been launched in the EU. This article summarizes experiences with hematopoietic medicines, namely the epoetins (two biosimilars traded under five different brand names) and the filgrastims (two biosimilars, six brand names). Physicians and pharmacists should be familiar with the legal and pharmacological specialities of biosimilars: The production process can differ from that of the original, clinical indications can be extrapolated, glycoproteins contain varying isoforms, the formulation may differ from the original, and biopharmaceuticals are potentially immunogenic. Only on proof of quality, efficacy and safety, biosimilars are a viable option because of their lower costs.
Collapse
Affiliation(s)
- Wolfgang Jelkmann
- Institute of Physiology, University of Luebeck, Ratzeburger Allee 160, Luebeck, Germany.
| |
Collapse
|
14
|
Singh SK. Impact of product-related factors on immunogenicity of biotherapeutics. J Pharm Sci 2010; 100:354-87. [PMID: 20740683 DOI: 10.1002/jps.22276] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 05/13/2010] [Accepted: 05/24/2010] [Indexed: 12/12/2022]
Abstract
All protein therapeutics have the potential to be immunogenic. Several factors, including patient characteristics, disease state, and the therapy itself, influence the generation of an immune response. Product-related factors such as the molecule design, the expression system, post-translational modifications, impurities, contaminants, formulation and excipients, container, closure, as well as degradation products are all implicated. However, a critical examination of the available data shows that clear unequivocal evidence for the impact of these latter factors on clinical immunogenicity is lacking. No report could be found that clearly deconvolutes the clinical impact of the product attributes on patient susceptibility. Aggregation carries the greatest concern as a risk factor for immunogenicity, but the impact of aggregates is likely to depend on their structure as well as on the functionality (e.g., immunostimulatory or immunomodulatory) of the therapeutic. Preclinical studies are not yet capable of assessing the clinically relevant immunogenicity potential of these product-related factors. Simply addressing these risk factors as part of product development will not eliminate immunogenicity. Minimization of immunogenicity has to begin at the molecule design stage by reducing or eliminating antigenic epitopes and building in favorable physical and chemical properties.
Collapse
Affiliation(s)
- Satish Kumar Singh
- Pfizer, Inc., BioTherapeutics Pharmaceutical Sciences, Pharmaceutical Research and Development, Chesterfield, Missouri 63017, USA.
| |
Collapse
|
15
|
Foote M. Backing up your statements: how to perform literature searches to prove your points. Chest 2009; 136:1432-1434. [PMID: 19892686 DOI: 10.1378/chest.09-1615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
16
|
Abstract
Objective. Drugs can induce almost the entire spectrum of hematologic disorders, affecting white cells, red cells, platelets, and the coagulation system. This paper aims to emphasize the broad range of drug-induced hematological syndromes and to highlight some of the newer drugs and syndromes.
Methods. Medline literature on drug-induced hematologic syndromes was reviewed. Most reports and reviews focus on individual drugs or cytopenias. Results. Drug-induced syndromes include hemolytic anemias, methemoglobinemia, red cell aplasia, sideroblastic anemia, megaloblastic anemia, polycythemia, aplastic anemia, leukocytosis, neutropenia, eosinophilia, immune thrombocytopenia, microangiopathic syndromes, hypercoagulability, hypoprothrombinemia, circulating anticoagulants, myelodysplasia, and acute leukemia. Some of the classic drugs known to cause hematologic abnormalities have been replaced by newer drugs, including biologics, accompanied by their own syndromes and unintended side effects. Conclusions. Drugs can induce toxicities spanning many hematologic syndromes, mediated by a variety of mechanisms. Physicians need to be alert to the potential for iatrogenic drug-induced hematologic complications.
Collapse
|
17
|
Abstract
Recombinant antibody therapeutics represent a significant success story in terms of clinical benefit delivered and revenue (profit) generated within the biopharmaceutical industry. Additionally, it is estimated that 30% of new drugs likely to be licensed during the next decade will be based on antibody products. High volume production with the maintenance of structural and functional fidelity of these large biological molecules results in high "cost of goods" that can limit their availability to patients, due to the strain it puts on national and private health budgets. The challenge in reducing cost of goods is that each antibody is unique, both in structure and function. Optimal clinical efficacy will require engineering of antibody genes to deliver products with enhanced activities produced by cell lines engineered to deliver antibody homogeneous for pre-selected post-translational modifications, that is, protein structures and glycoforms. A "universal" production vehicle cannot meet these demands and several production mammalian cells are now available, alternatives to mammalian cell lines are also reaching maturity. Advances in downstream processing also need to be realised whilst chemical changes during processing and storage must be minimised.
Collapse
|
18
|
Erythropoiesis-stimulating agents and other methods to enhance oxygen transport. Br J Pharmacol 2008; 154:529-41. [PMID: 18362898 DOI: 10.1038/bjp.2008.89] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oxygen is essential for life, and the body has developed an exquisite method to collect oxygen in the lungs and transport it to the tissues. Hb contained within red blood cells (RBCs), is the key oxygen-carrying component in blood, and levels of RBCs are tightly controlled according to demand for oxygen. The availability of oxygen plays a critical role in athletic performance, and agents that enhance oxygen delivery to tissues increase aerobic power. Early methods to increase oxygen delivery included training at altitude, and later, transfusion of packed RBCs. A breakthrough in understanding how RBC formation is controlled included the discovery of erythropoietin (Epo) and cloning of the EPO gene. Cloning of the EPO gene was followed by commercial development of recombinant human Epo (rHuEpo). Legitimate use of this and other agents that affect oxygen delivery is important in the treatment of anaemia (low Hb levels) in patients with chronic kidney disease or in cancer patients with chemotherapy-induced anaemia. However, competitive sports was affected by illicit use of rHuEpo to enhance performance. Testing methods for these agents resulted in a cat-and-mouse game, with testing labs attempting to detect the use of a drug or blood product to improve athletic performance (doping) and certain athletes developing methods to use the agents without being detected. This article examines the current methods to enhance aerobic performance and the methods to detect illicit use.
Collapse
|
19
|
Critical review and appraisal of published clinical literature: Useful skill in biotechnology product development. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1387-2656(08)00014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Abstract
Recombinant monoclonal antibody (rMAb) therapy may be instituted to achieve one of two broad outcomes: i) killing of cells or organisms (e.g., cancer cells, bacteria); and ii) neutralisation of soluble molecules (e.g., cytokines in chronic disease or toxins in infection). The choice of rMAb isotype is a critical decision in the development of a therapeutic antibody as it will determine the biological activities triggered in vivo. It is not possible, however, to accurately predict the in vivo activity because multiple parameters impact on the functional outcome, for example, IgG subclass, IgG-Fc glycoform, epitope density, cellular Fc receptors polymorphisms and so on. The present understanding of the molecular interactions between IgG-Fc and effector ligands in vitro has allowed the generation of new antibody structures with altered/improved effector function profiles that may prove optimal for given disease indications. Thus, when maximal antibody-dependent cell-mediated cytotoxicity activity is indicated a non-fucosylated IgG1 format may be optimal; when minimal activity is indicated an aglycosylated IgG2 may be the form of choice.
Collapse
Affiliation(s)
- Roy Jefferis
- University of Birmingham, Division of Immunity & Infection, The School of Medicine, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
21
|
Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 2006; 24:1241-52. [PMID: 17033665 DOI: 10.1038/nbt1252] [Citation(s) in RCA: 644] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The majority of protein-based biopharmaceuticals approved or in clinical trials bear some form of post-translational modification (PTM), which can profoundly affect protein properties relevant to their therapeutic application. Whereas glycosylation represents the most common modification, additional PTMs, including carboxylation, hydroxylation, sulfation and amidation, are characteristic of some products. The relationship between structure and function is understood for many PTMs but remains incomplete for others, particularly in the case of complex PTMs, such as glycosylation. A better understanding of such structural-functional relationships will facilitate the development of second-generation products displaying a PTM profile engineered to optimize therapeutic usefulness.
Collapse
Affiliation(s)
- Gary Walsh
- Industrial Biochemistry Program, University of Limerick, Castletroy, Limerick City, Ireland.
| | | |
Collapse
|
22
|
Holland M, Yagi H, Takahashi N, Kato K, Savage COS, Goodall DM, Jefferis R. Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA-associated systemic vasculitis. Biochim Biophys Acta Gen Subj 2006; 1760:669-77. [PMID: 16413679 DOI: 10.1016/j.bbagen.2005.11.021] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 11/23/2005] [Accepted: 11/26/2005] [Indexed: 11/19/2022]
Abstract
Post-translational modifications (PTMs) of proteins produced in vivo may be tissue, developmentally and/or disease specific. PTMs impact on the stability and function of proteins and offer a challenge to the commercial production of protein biotherapeutics. We have previously reported a marked deficit in galactosylation of oligosaccharides released from polyclonal IgG isolated from sera of patients with the anti-neutrophil cytoplasmic antibodies (ANCA) associated vasculitides; Wegener's granulomatosis (WG) and microscopic polyangiitis (MPA). Whilst normal polyclonal IgG molecules are glycosylated within the IgG-Fc region, approximately 20% of molecules also bear oligosaccharides attached to the variable regions of the light or heavy chain IgG-Fab. It is of interest, therefore to compare profiles of oligosaccharides released from the IgG-Fc and IgG-Fab of normal IgG with that isolated from the sera of patients with WG or MPA. This study shows that whilst the oligosaccharides released from ANCA IgG-Fc are hypogalactosylated those released from IgG-Fab are galactosylated and sialylated. These results show that hypogalactosylation of IgG-Fc is not due to a defect in the glycosylation or processing machinery. It rather suggests a subtle change in IgG-Fc conformation that influences the addition of galactose. Remarkably, this influence is exerted on all plasma cells. Interestingly, a licensed monoclonal antibody therapeutic, produced in Sp2/0 cells, is also shown to be hypogalactosylated in its IgG-Fc but fully galactosylated in its IgG-Fab.
Collapse
Affiliation(s)
- M Holland
- Division of Immunity and Infection, The Medical School, University of Birmingham, Edgbaston, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Sinclair AM, Elliott S. Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 2006; 94:1626-35. [PMID: 15959882 DOI: 10.1002/jps.20319] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Therapeutic proteins have revolutionized the treatment of many diseases but low activity or rapid clearance limits their utility. New approaches have been taken to design drugs with enhanced in vivo activity and half-life to reduce injection frequency, increase convenience, and improve patient compliance. One recently used approach is glycoengineering, changing protein-associated carbohydrate to alter pharmacokinetic properties of proteins. This technology has been applied to erythropoietin and resulted in the discovery of darbepoetin alfa (DA), a hyperglycosylated analogue of erythropoietin that contains two additional N-linked carbohydrates, a threefold increase in serum half-life and increased in vivo activity compared to recombinant human erythropoietin (rHuEPO). The increased serum half-life allows for less frequent dosing to maintain target hemoglobin levels in anemic patients. Carbohydrates on DA and other molecules can also increase molecular stability, solubility, increase in vivo biological activity, and reduce immunogenicity. These properties are discussed.
Collapse
Affiliation(s)
- Angus M Sinclair
- Amgen, Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA.
| | | |
Collapse
|
24
|
Abstract
The year 2004 represents a milestone for the biosensor research community: in this year, over 1000 articles were published describing experiments performed using commercially available systems. The 1038 papers we found represent an approximately 10% increase over the past year and demonstrate that the implementation of biosensors continues to expand at a healthy pace. We evaluated the data presented in each paper and compiled a 'top 10' list. These 10 articles, which we recommend every biosensor user reads, describe well-performed kinetic, equilibrium and qualitative/screening studies, provide comparisons between binding parameters obtained from different biosensor users, as well as from biosensor- and solution-based interaction analyses, and summarize the cutting-edge applications of the technology. We also re-iterate some of the experimental pitfalls that lead to sub-optimal data and over-interpreted results. We are hopeful that the biosensor community, by applying the hints we outline, will obtain data on a par with that presented in the 10 spotlighted articles. This will ensure that the scientific community at large can be confident in the data we report from optical biosensors.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|