1
|
Dietrich E, Jomard A, Osto E. Crosstalk between high-density lipoproteins and endothelial cells in health and disease: Insights into sex-dependent modulation. Front Cardiovasc Med 2022; 9:989428. [PMID: 36304545 PMCID: PMC9594152 DOI: 10.3389/fcvm.2022.989428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death worldwide. Intense research in vascular biology has advanced our knowledge of molecular mechanisms of its onset and progression until complications; however, several aspects of the patho-physiology of atherosclerosis remain to be further elucidated. Endothelial cell homeostasis is fundamental to prevent atherosclerosis as the appearance of endothelial cell dysfunction is considered the first pro-atherosclerotic vascular modification. Physiologically, high density lipoproteins (HDLs) exert protective actions for vessels and in particular for ECs. Indeed, HDLs promote endothelial-dependent vasorelaxation, contribute to the regulation of vascular lipid metabolism, and have immune-modulatory, anti-inflammatory and anti-oxidative properties. Sex- and gender-dependent differences are increasingly recognized as important, although not fully elucidated, factors in cardiovascular health and disease patho-physiology. In this review, we highlight the importance of sex hormones and sex-specific gene expression in the regulation of HDL and EC cross-talk and their contribution to cardiovascular disease.
Collapse
Affiliation(s)
- Elisa Dietrich
- Institute for Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Anne Jomard
- Institute for Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Elena Osto
- Institute for Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Department of Cardiology, Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Ontsouka CE, Huang X, Aliyev E, Albrecht C. In vitro characterization and endocrine regulation of cholesterol and phospholipid transport in the mammary gland. Mol Cell Endocrinol 2017; 439:35-45. [PMID: 27760380 DOI: 10.1016/j.mce.2016.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/25/2016] [Accepted: 10/15/2016] [Indexed: 10/20/2022]
Abstract
Cell-based studies previously showed that the ATP-binding cassette transporter A1 (ABCA1) transfers cholesterol across mammary epithelial cells (MEC). Data for phospholipid transport are lacking, and it is unclear from which cellular source the transported cholesterol stems, whether this transport activates signaling pathways, and how lactogenic hormones regulate it. To clarify these aspects, lipid transport and expressional analyses were performed in bovine primary (bMEC) and/or immortalized (MAC-T) MEC cultures. Lipid efflux and ABCA1, ABCG1 and liver X receptorα mRNA levels were higher in MAC-T than bMEC. In MAC-T, the transported cholesterol originated mainly from the plasma membrane. ABCA1 dependent cholesterol efflux was higher than phosphatidylcholine efflux, was suppressed by probucol (ABCA1 inhibitor), AG490 (janus kinase-2 inhibitor), PD98059 (mitogen activated protein kinase kinase inhibitor) and pretreatment with β-cyclodextrin (lowering membrane cholesterol). Insulin was the only hormone significantly increasing cholesterol efflux. In conclusion, this study gives novel mechanistic and regulatory insights into the transport of cholesterol and phospholipids in MEC.
Collapse
Affiliation(s)
- Corneille Edgar Ontsouka
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Buehlstrasse 28, 3012, Bern, Switzerland; Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Xiao Huang
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Buehlstrasse 28, 3012, Bern, Switzerland; Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Eldar Aliyev
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Buehlstrasse 28, 3012, Bern, Switzerland
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Buehlstrasse 28, 3012, Bern, Switzerland; Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Jin X, Sviridov D, Liu Y, Vaisman B, Addadi L, Remaley AT, Kruth HS. ABCA1 (ATP-Binding Cassette Transporter A1) Mediates ApoA-I (Apolipoprotein A-I) and ApoA-I Mimetic Peptide Mobilization of Extracellular Cholesterol Microdomains Deposited by Macrophages. Arterioscler Thromb Vasc Biol 2016; 36:2283-2291. [PMID: 27758769 DOI: 10.1161/atvbaha.116.308334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/02/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We examined the function of ABCA1 (ATP-binding cassette transporter A1) in ApoA-I (apolipoprotein A-I) mobilization of cholesterol microdomains deposited into the extracellular matrix by cholesterol-enriched macrophages. We have also determined whether an ApoA-I mimetic peptide without and with complexing to sphingomyelin can mobilize macrophage-deposited cholesterol microdomains. APPROACH AND RESULTS Extracellular cholesterol microdomains deposited by cholesterol-enriched macrophages were detected with a monoclonal antibody, 58B1. ApoA-I and an ApoA-I mimetic peptide 5A mobilized cholesterol microdomains deposited by ABCA1+/+ macrophages but not by ABCA1-/- macrophages. In contrast, ApoA-I mimetic peptide 5A complexed with sphingomyelin could mobilize cholesterol microdomains deposited by ABCA1-/- macrophages. CONCLUSIONS Our findings show that a unique pool of extracellular cholesterol microdomains deposited by macrophages can be mobilized by both ApoA-I and an ApoA-I mimetic peptide but that mobilization depends on macrophage ABCA1. It is known that ABCA1 complexes ApoA-I and ApoA-I mimetic peptide with phospholipid, a cholesterol-solubilizing agent, explaining the requirement for ABCA1 in extracellular cholesterol microdomain mobilization. Importantly, ApoA-I mimetic peptide already complexed with phospholipid can mobilize macrophage-deposited extracellular cholesterol microdomains even in the absence of ABCA1.
Collapse
Affiliation(s)
- Xueting Jin
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.)
| | - Denis Sviridov
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.)
| | - Ying Liu
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.)
| | - Boris Vaisman
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.)
| | - Lia Addadi
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.)
| | - Alan T Remaley
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.)
| | - Howard S Kruth
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.).
| |
Collapse
|
4
|
Amjadi F, Aflatoonian R, Javanmard SH, Saifi B, Ashrafi M, Mehdizadeh M. Apolipoprotein A1 as a novel anti-implantation biomarker in polycystic ovary syndrome: A case-control study. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2016; 20:1039-45. [PMID: 26941806 PMCID: PMC4755089 DOI: 10.4103/1735-1995.172813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background: Women with polycystic ovary syndrome have lower pregnancy rates, possibly due to the decreased uterine receptivity. Successful implantation depends on protein networks that are essential for cross-talk between the embryo and endometrium. Apolipoprotein A1 has been proposed as a putative anti-implantation factor. In this study, we evaluated apolipoprotein A1 expression in human endometrial tissues. Materials and Methods: Endometrial apolipoprotein A1 messenger RNA (mRNA) and protein expression were investigated using quantitative real-time polymerase chain reaction (PCR) and Western blot. The distribution of apolipoprotein A1 was also detected by immunostaining. Samples were obtained from 10 patients with polycystic ovary syndrome and 15 healthy fertile women in the proliferative (on day 2 or day 3 before ovulation, n = 7) and secretory (on days 3-5 after ovulation, n = 8) phases. Results: Endometrial apolipoprotein A1 expression was upregulated in patients with polycystic ovary syndrome compared to normal subjects. However, apolipoprotein A1 expression in the proliferative phase was significantly higher than in the luteal phase (P value < 0.05). Conclusion: It seems that differentially expressed apolipoprotein A1 negatively affects endometrial receptivity in patients with polycystic ovary syndrome. The results showed that apolipoprotein A1 level significantly changes in the human endometrium during the menstrual cycle with minimum expression in the secretory phase, coincident with the receptive phase (window of implantation). Further studies are required to clarify the clinical application of this protein.
Collapse
Affiliation(s)
- Fatemehsadat Amjadi
- Department of Anatomy, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, The Academic Center for Education Culture and Research (ACECR), Tehran, Iran
| | - Shaghayegh Haghjoo Javanmard
- Department of Physiology, Applied Physiology Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bita Saifi
- Department of Anatomy, Mashhad Medical Branch, Islamic Azad University, Mashhad, Iran
| | - Mahnaz Ashrafi
- Department of Obstetrics and Gynecology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Faculty of Advanced Technologies in Medicine, Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Smith PW. Hormone Replacement in Women. Integr Med (Encinitas) 2012. [DOI: 10.1016/b978-1-4377-1793-8.00035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Efectos del estradiol-drospirenona o estradiol-trimegestona sobre los lípidos y lipoproteínas en menopáusicas. CLINICA E INVESTIGACION EN GINECOLOGIA Y OBSTETRICIA 2011. [DOI: 10.1016/j.gine.2009.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Insulin down-regulates specific activity of ATP-binding cassette transporter A1 for high density lipoprotein biogenesis through its specific phosphorylation. Atherosclerosis 2011; 216:334-41. [PMID: 21402379 DOI: 10.1016/j.atherosclerosis.2011.02.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/02/2011] [Accepted: 02/13/2011] [Indexed: 01/21/2023]
Abstract
Insulin resistance/hyperinsulinism is one of the major risks for atherosclerotic vascular diseases and low HDL may be involved in pathogenesis. We examined direct effects of insulin on HDL biosynthesis focusing on the activity of ATP-binding cassette transporter A1 (ABCA1) in culture cells and in experimental animals. Insulin impairs HDL biosynthesis through modulation of ABCA1 activity by two different mechanisms. Insulin enhances degradation of ABCA1. However, even after this effect was cancelled by blocking its specific signal, insulin still reduces HDL biogenesis. This effect was found due to phosphorylation of ABCA1 that leads to decrease of its specific activity. We identified a novel insulin-specific phosphorylation site Tyr1206 of ABCA1 to regulate its specific activity. The observation in a rat model of insulin resistance was consistent with these results. The findings demonstrate a new mechanism for regulation of ABCA1 activity and provide new insights into the link between development of atherosclerosis, and insulin resistance/hyperinsulinism.
Collapse
|
8
|
Iwamoto N, Abe-Dohmae S, Ayaori M, Tanaka N, Kusuhara M, Ohsuzu F, Yokoyama S. ATP-Binding Cassette Transporter A1 Gene Transcription Is Downregulated by Activator Protein 2α. Circ Res 2007; 101:156-65. [PMID: 17556657 DOI: 10.1161/circresaha.107.151746] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ATP-binding cassette transporter A1 (ABCA1) is a rate-limiting factor for high-density lipoprotein (HDL) biogenesis. The ABCA1 gene expression is known to be upregulated by various transcriptional factors. However, negative regulation factors would be better targets for pharmacological modulation of HDL biogenesis. Doxazosin, an α
1
-adrenoceptor blocker, increased ABCA1 mRNA, its protein, and apolipoprotein A-I–mediated HDL biogenesis in THP-1 macrophages and CHO-K1 cells, independent of α
1
-adrenoceptor blockade. Analysis of the human ABCA1 promoter indicated that the region between the positions −368 and −147 that contains an activator protein (AP)2-binding site responsible for the effects of doxazosin. Overexpression of AP2α inhibited ABCA1 transcription in a dose-dependent fashion. Mutation in the AP2-binding site caused increase of the basal promoter activity and canceling both the transactivation by doxazosin and the trans-repression by AP2α. Doxazosin had no effect on ABCA1 mRNA level in HepG2 cells, which lack endogenous AP2α, and it reversed the inhibitory effect of AP2α expression in this type of cells. Chromatin immunoprecipitation and gel shift assays revealed that doxazosin reduced specific binding of AP2α to the ABCA1 promoter, as it suppressed phosphorylation of AP2α. Finally, doxazosin increased ABCA1 expression and plasma HDL in mice. We thus concluded that AP2α negatively regulates the ABCA1 gene transcription. Doxazosin inhibits AP2α activity independent of α
1
-adrenoceptor blockade and increases the ABCA1 expression and HDL biogenesis. AP2α is a potent pharmacological target for the increase of HDL.
Collapse
Affiliation(s)
- Noriyuki Iwamoto
- Biochemistry Department, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Wang Y, Chen Z, Liao Y, Mei C, Peng H, Wang M, Guo H, Lu H. Angiotensin II increases the cholesterol content of foam cells via down-regulating the expression of ATP-binding cassette transporter A1. Biochem Biophys Res Commun 2006; 353:650-4. [PMID: 17196163 DOI: 10.1016/j.bbrc.2006.12.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 12/09/2006] [Indexed: 11/28/2022]
Abstract
ATP-binding cassette transporter A1 (ABCA1) as one kind of membrane protein was found recently to play a major role in cholesterol homeostasis. Angiotensin II (AngII) has been shown to possess several atherogenic properties. The aim of the study is to investigate the influence of AngII on the expression of ABCA1 and the content of cholesterol in THP-1 derived foam cells. Our study showed that: (1) reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting demonstrated that AngII down-regulated the expression of ABCA1 in a dose-dependent manner. (2) The content of cholesterol was negatively correlated with ABCA1. The results suggest the promoting effects of AngII on the forming of foam cells are in a dose-dependent manner via down-regulating the expression of ABCA1.
Collapse
Affiliation(s)
- Yanfu Wang
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tong Ji Medical College, Hua Zhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wahab M, Al-Azzawi F. Current state of hormone replacement therapy: the case for using trimegestone. WOMEN'S HEALTH (LONDON, ENGLAND) 2006; 2:539-50. [PMID: 19803961 DOI: 10.2217/17455057.2.4.539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Estrogen deficiency has a negative impact on the quality of life of postmenopausal women and is associated with vasomotor symptoms, insomnia and emotional lability. Other manifestations of estrogen deficiency include dry skin, dry vagina and dyspareunia, in addition to bone loss. Estrogen replacement effectively reverses these changes. The only indication for the administration of a progestogen is to protect the postmenopausal uterus against the potential development of endometrial hyperplasia and carcinoma.
Collapse
Affiliation(s)
- May Wahab
- George Eliot Hospital, Nuneaton, Warwickshire, CV10 7DJ, UK.
| | | |
Collapse
|
11
|
Bayrak A, Aldemir DA, Bayrak T, Corakçi A, Dursun P. The effect of hormone replacement therapy on the levels of serum lipids, apolipoprotein AI, apolipoprotein B and lipoprotein (a) in Turkish postmenopausal women. Arch Gynecol Obstet 2006; 274:289-96. [PMID: 16810536 DOI: 10.1007/s00404-006-0187-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 05/10/2006] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Estrogen replacement therapy alters the lipid profiles favorably for delaying atherosclerosis in postmenopausal women. The effects of estrogen plus progesterone combination therapy on lipids are controversial. This study was designed to evaluate the effect of female sex hormones on lipids and lipoproteins and to clarify the influence of progesterone on the effect of estrogen in postmenopausal women. METHODS Of the 60 postmenopausal women admitted to our menopause clinic, 40 had intact uterus and received continuous 0.625 mg conjugated equine estrogen (CEE) plus 2.5 mg medroxyprogesterone acetate (MPA), whereas the remaining 20 were hysterectomized and received 0.625 mg CEE daily. To assess the alterations in lipids and lipoproteins during menopause, 45 healthy premenopausal women were investigated. Lipid and lipoprotein levels were assessed in each subject at baseline and at the 6th and 18th months of therapy. RESULTS In menopause, a shift towards more atherogenic lipid and lipoprotein profiles than those of the premenopausal state was found. Following 18 months of treatment, both regimens reduced total cholesterol (TC) levels as compared with the baseline (6.4 vs. 6.9% in the CEE/MPA and CEE groups, respectively). The CEE group had a more pronounced increase in high-density lipoprotein (HDL) cholesterol than the CEE/MPA group (10.3 vs. 8.8%, respectively). Both groups displayed reduced TC, low-density lipoprotein (LDL) cholesterol and apolipoprotein-B (ApoB) concentrations, whereas triglycerides increased, with a greater tendency to increase in the CEE/MPA group at the end of the trial. Also, the lipoprotein (a) [Lp(a)] levels decreased significantly (27.6 vs. 24.5% in the CEE/MPA and CEE groups, respectively). This decrease was more pronounced in subjects with a relatively higher basal Lp(a) concentration. CONCLUSION Both treatment regimens caused positive alterations in the lipid and lipoprotein profiles. This association might play a pivotal role in the postmenopausal increases in atherosclerotic diseases and cardioprotective effect of estrogen in postmenopausal women.
Collapse
Affiliation(s)
- Ahmet Bayrak
- Biochemistry Dept., Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | | | | |
Collapse
|
12
|
Iwamoto N, Abe-Dohmae S, Sato R, Yokoyama S. ABCA7 expression is regulated by cellular cholesterol through the SREBP2 pathway and associated with phagocytosis. J Lipid Res 2006; 47:1915-27. [PMID: 16788211 DOI: 10.1194/jlr.m600127-jlr200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABCA7 is highly homologous to ABCA1 and mediates cellular cholesterol and phospholipid release by apolipoproteins when transfected in vitro. However, expression of ABCA7 was downregulated by increased cellular cholesterol while ABCA1 was upregulated, and the results were consistent by forced expression or downregulation of sterol-responsive/regulatory element (SRE) binding proteins (SREBPs). We analyzed the promoter of the ABCA7 gene and identified the new exon encoding 96 bp (mouse) and 95 bp (human) of the 5' untranslated region and the transcription start site at 1,122 bp (mouse) and 1,260 bp (human) upstream of the initiation methionine codon. At 5' upstream of this exon is the ABCA7 proximal promoter containing multiple binding sites of transcription factors for hematopoiesis and SRE of 9 bp at 212 bp (mouse) and 179 bp (human) upstream of the new exon. The apolipoprotein A-I-mediated lipid release was not influenced by suppression of the endogenous ABCA7 with small interfering RNA in mouse fibroblasts or by its increase in ABCA1-deficient mouse cells. In contrast, phagocytic activity was altered in parallel to the ABCA7 expression in these cells. When phagocytosis was induced, the messages increased for SREBP2, ABCA7, and other SREBP2-regulated proteins. The ABCA1 message decreased in this condition. We conclude that the ABCA7 gene is regulated by sterol in the opposite direction to ABCA1 through SRE/SREBP2 and that expression of ABCA7 by this regulation is associated with phagocytic activity.
Collapse
Affiliation(s)
- Noriyuki Iwamoto
- Biochemistry, Cell Biology, and Metabolism 1, Nagoya City University, Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | |
Collapse
|
13
|
|
14
|
Al-Azzawi F, Thompson J, Stevenson J. Which progestogen is more likely to increase the risk of fatal myocardial infarction: A combination of epidemiological and trial evidence. Maturitas 2006; 54:154-63. [PMID: 16364575 DOI: 10.1016/j.maturitas.2005.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 09/21/2005] [Accepted: 10/07/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVES To evaluate the impact of metabolic effects of different progestogens on the risk of fatal myocardial infarction is evaluated. METHODS The changes in (apo)lipoproteins obtained from a randomized trial of three hormone therapy regimens were applied to three models for predicting fatal myocardial infarction derived from the apolipoprotein-related mortality risk (AMORIS) study. In our trial, 487 postmenopausal women were randomized to oral estradiol, with sequential addition of two trimegestone (TMG) doses or norethisterone acetate (NETA), and studied at baseline and after 3, 6, and 12 months. RESULTS The change from baseline in risk of fatal myocardial infarction, using AMORIS model 3, containing total cholesterol, triglycerides, and apolipoprotein AI, was a 10% reduction for the two TMG doses; NETA had no apparent impact. The differences between treatments were significant at all three time points. When apoB was added in AMORIS model 4, the difference between treatments (5% reduction in the two doses of TMG, compared to NETA) decreased over time, probably due to the effect of dropouts in the NETA group. CONCLUSIONS This analysis shows different metabolic responses to progestogens in terms of risk of fatal myocardial infarction. Generalization of health benefits or adverse effects seen in trials of hormone therapy to other progestogens could be misleading.
Collapse
Affiliation(s)
- Farook Al-Azzawi
- Gynaecology Research Unit, University Hospitals of Leicester, Leicester LEI 5WW, UK.
| | | | | |
Collapse
|
15
|
Abe-Dohmae S, Kato KH, Kumon Y, Hu W, Ishigami H, Iwamoto N, Okazaki M, Wu CA, Tsujita M, Ueda K, Yokoyama S. Serum amyloid A generates high density lipoprotein with cellular lipid in an ABCA1- or ABCA7-dependent manner. J Lipid Res 2006; 47:1542-50. [PMID: 16607034 DOI: 10.1194/jlr.m600145-jlr200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serum amyloid A (SAA) is an amphiphilic helical protein that is found associated with plasma HDL in various pathological conditions, such as acute or chronic inflammation. Cellular lipid release and generation of HDL by this protein were investigated, in comparison with the reactions by apolipoprotein A-I (apoA-I) and several types of cells that appear with various specific profiles of cholesterol and phospholipid release. SAA mediated cellular lipid release from these cells with the same profile as apoA-I. Upregulation of cellular ABCA1 protein by liver X receptor/retinoid X receptor agonists resulted in an increase of cellular lipid release by apoA-I and SAA. SAA reacted with the HEK293-derived clones that stably express human ABCA1 (293/2c) or ABCA7 (293/6c) to generate cholesterol-containing HDL in a similar manner to apoA-I. Dibutyryl cyclic AMP and phorbol 12-myristate 13-acetate, which differentiate apoA-I-mediated cellular lipid release between 293/2c and 293/6c, also exhibited the same differential effects on the SAA-mediated reactions. No evidence was found for the ABCA1/ABCA7-independent lipid release by SAA. Characterization of physicochemical properties of the HDL revealed that SAA-generated HDL particles had higher density, larger diameter, and slower electrophoretic mobility than those generated by apoA-I. These results demonstrate that SAA generates cholesterol-containing HDL directly with cellular lipid and that the reaction is mediated by ABCA1 and ABCA7.
Collapse
Affiliation(s)
- Sumiko Abe-Dohmae
- Biochemistry, Cell Biology, and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Botsis D, Christodoulakos G, Papagianni V, Lambrinoudaki I, Aravantinos L, Makrakis E, Creatsas G. The effect of raloxifene and tibolone on the uterine blood flow and endometrial thickness: A transvaginal Doppler study. Maturitas 2006; 53:362-8. [PMID: 16159701 DOI: 10.1016/j.maturitas.2005.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/27/2005] [Accepted: 06/29/2005] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To evaluate and compare the effect of different than classical hormone therapy medications, such as raloxifene and tibolone, on the uterine arteries and endometrium of postmenopausal women using transvaginal ultrasonography. METHODS The prospective study included 62 healthy, postmenopausal women recruited from the Menopausal Clinic of the 2nd Department of Obstetrics and Gynecology of the University of Athens. Subjects were randomly allocated to receive raloxifene HCl in a daily dose of 60 mg orally (Group A-31 women) or tibolone in a daily dose of 2.5 mg orally (Group B-31 women). The study period was 6 months and all subjects were assessed using transvaginal ultrasonography before treatment initiation as well as after 3 and 6 months for evaluation of the endometrial thickness and the pulsatility (PI) and resistance (RI) indices at the level of the uterine arteries. RESULTS No significant differences in RI, PI and endometrial thickness were observed in the raloxifene group during the 6-month treatment. In the tibolone group, PI and RI values decreased linearly from baseline to the end of the study, whereas the endometrial thickness was significantly increased during the first 3 months remaining unaltered thereafter. Comparisons between the two study groups revealed significant percent change of values in the pre-treatment to month-3 period and no difference with regard to pre-treatment, month-3 and month-6 absolute values. CONCLUSION Raloxifene and tibolone exert dissimilar effects on uterine blood supply parameters and endometrial thickness.
Collapse
Affiliation(s)
- Dimitrios Botsis
- 2nd Department of Obstetrics and Gynecology, University of Athens, Aretaieion Hospital, 76 Vas. Sofias Av., Athens 11528, Greece
| | | | | | | | | | | | | |
Collapse
|
17
|
Wahab M, Al-Azzawi F. The use of levonorgestrel-releasing intrauterine system for treatment of menorrhagia in women with inherited bleeding disorders. BJOG 2005; 112:1455-6. [PMID: 16167959 DOI: 10.1111/j.1471-0528.2005.00691.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Peng DQ, Wu Z, Brubaker G, Zheng L, Settle M, Gross E, Kinter M, Hazen SL, Smith JD. Tyrosine modification is not required for myeloperoxidase-induced loss of apolipoprotein A-I functional activities. J Biol Chem 2005; 280:33775-84. [PMID: 16091367 DOI: 10.1074/jbc.m504092200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Apolipoprotein A-I (apoAI), the major protein of high density lipoprotein, plays an important role in reverse cholesterol transport via its activity as an ABCA1-dependent acceptor of cellular cholesterol. We reported recently that myeloperoxidase (MPO) modification of apoAI inhibits its ABCA1-dependent cholesterol acceptor activity (Zheng, L., Nukuna, B., Brennan, M. L., Sun, M., Goormastic, M., Settle, M., Schmitt, D., Fu, X., Thomson, L., Fox, P. L., Ischiropoulos, H., Smith, J. D., Kinter, M., and Hazen, S. L. (2004) J. Clin. Invest. 114, 529-541). We also reported that MPO-mediated chlorination preferentially modifies two of the seven tyrosines in apoAI, and loss of parent peptides containing these residues dose-dependently correlates with loss in ABCA1-mediated cholesterol acceptor activity (Zheng, L., Settle, M., Brubaker, G., Schmitt, D., Hazen, S. L., Smith, J. D., and Kinter, M. (2005) J. Biol. Chem. 280, 38-47). To determine whether oxidative modification of apoA-I tyrosine residues was responsible for the MPO-mediated inactivation of cholesterol acceptor activity, we made recombinant apoAI with site-specific substitutions of all seven tyrosine residues to phenylalanine. ApoAI and the tyrosine-free apoAI were equally susceptible to dose-dependent MPO-mediated loss of ABCA1-dependent cholesterol acceptor activity, as well as lipid binding activity. MPO modification altered the migration of apoAI on SDS gels and decreased its alpha-helix content. MPO-induced modification also targeted apoAI tryptophan and lysine residues. Specifically, we detected apoAI tryptophan oxidation to mono- and dihydroxytryptophan and apoAI lysine modification to chlorolysine and 2-aminoadipic acid. Thus, tyrosine modification of apoAI is not required for its MPO-mediated inhibition of cholesterol acceptor activity.
Collapse
Affiliation(s)
- Dao-Quan Peng
- Department of Cell Biology, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zheng H, Kiss RS, Franklin V, Wang MD, Haidar B, Marcel YL. ApoA-I Lipidation in Primary Mouse Hepatocytes. J Biol Chem 2005; 280:21612-21. [PMID: 15797865 DOI: 10.1074/jbc.m502200200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The liver is the major site of both apolipoprotein A-I (apoA-I) synthesis and ATP-binding cassette transporter A1 (ABCA1) expression. Here, we compare the lipidation with cholesterol and phospholipid of newly synthesized human apoA-I (hapoA-I) using adenoviral vector-mediated endogenous expression or exogenously added hapoA-I in wild type and ABCA1-null hepatocytes. Hepatocytes were labeled with [3H]cholesterol (delivered with LDL or methyl-beta-cyclodextrin), [3H]mevalonate, or [3H]choline. ABCA1 deficiency decreased apoA-I phospholipidation by 80%, but acquisition of de novo synthesized and exogenous cholesterol only decreased by 40-60%. The transfer of de novo synthesized cholesterol to apoA-I was decreased at all time points, but that of exogenously delivered cholesterol was independent of ABCA1 activity at the early time points. Progesterone does not affect apoA-I synthesis or its lipidation but inhibited the early phase of apoA-I cholesterol lipidation in both wild type and ABCA1-null hepatocytes. Fast protein liquid chromatography analysis of medium lipoproteins confirmed that with ABCA1 deficiency, the proportion of secreted high density lipoprotein-associated apoA-I and cholesterol decreased by about 50%. The very low density lipoprotein (VLDL)/LDL size fraction also contained a significant level of cholesterol in ABCA1 deficiency, consistent with the result of immunoprecipitations showing the presence of lipoproteins with both apoA-I and murine apoB. ApoA-I lipidation with newly synthesized cholesterol in ABCA1-null hepatocytes was significantly decreased by brefeldin A and monensin. In conclusion, we demonstrate that: (i) whereas most hepatic phospholipidation of apoA-I is mediated by ABCA1, acquisition of cholesterol depends on active transfer from intracellular compartments by ABCA1-dependent and -independent pathways, both sensitive to progesterone and (ii) there is separate regulation of phospholipid and cholesterol lipidation of apoA-I in hepatocytes.
Collapse
Affiliation(s)
- Hui Zheng
- Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Al-Azzawi F, Wahab M, Sami S, Proudler AJ, Thompson J, Stevenson J. Randomized trial of effects of estradiol in combination with either norethisterone acetate or trimegestone on lipids and lipoproteins in postmenopausal women. Climacteric 2005; 7:292-300. [PMID: 15669554 DOI: 10.1080/13697130400001364] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE This double-blind, randomized, multicenter study was designed to compare the blood lipid profiles in postmenopausal women after treatment with either a combined formulation containing estradiol (2 mg) and trimegestone (TMG 0.25 or 0.5 mg) or a standard hormone therapy (HT) containing estradiol and norethisterone acetate. METHOD The serum concentrations of several lipids and lipoproteins were measured in this study, which was conducted over 13 cycles, each of 28 days. A total of 487 subjects were included, 349 of whom completed the study. RESULTS The circulating concentrations of high density lipoprotein (HDL) cholesterol, HDL2 cholesterol and apolipoprotein (apo) AI increased from baseline in both estradiol/trimegestone groups, whilst levels of HDL3 cholesterol were unchanged. In contrast, in the estradiol/norethisterone acetate group, HDL cholesterol, HDL3 cholesterol and apo AI concentrations were reduced from baseline, while HDL2 cholesterol remained unchanged. Total cholesterol, low density lipoprotein (LDL) cholesterol, lipoprotein(a) and apo-B concentrations were reduced in all treatment groups. The concentration of triglycerides was elevated after treatment with the estradiol/trimegestone combinations but was unchanged after treatment with the estradiol/norethisterone acetate combination. The differences in the lipid pattern between the groups may be explained by the different pharmacological properties of the two progestogens: norethisterone exerts an androgenic effect and opposes the estrogen-induced increase in HDL cholesterol, whilst trimegestone has no androgenic effect and does not oppose the estrogenic effect. CONCLUSION Overall, the results of this study suggest that the use of trimegestone in combination with estradiol may be preferable to norethisterone acetate because of the more favorable HDL and apo AI profile.
Collapse
Affiliation(s)
- F Al-Azzawi
- Gynaecology Research Unit, Leicester and Warwick Medical School, University of Leicester, Leicester, UK
| | | | | | | | | | | |
Collapse
|
21
|
Le Goff W, Peng DQ, Settle M, Brubaker G, Morton RE, Smith JD. Cyclosporin A traps ABCA1 at the plasma membrane and inhibits ABCA1-mediated lipid efflux to apolipoprotein A-I. Arterioscler Thromb Vasc Biol 2004; 24:2155-61. [PMID: 15358601 DOI: 10.1161/01.atv.0000144811.94581.52] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE ABCA1 mediates cellular cholesterol and phospholipid efflux to apolipoprotein A-I and other apolipoprotein acceptors. In this study, we analyzed the effect of the immunosuppressant cyclosporin A on the ABCA1-mediated lipid effluxes reactions. METHODS AND RESULTS Cyclosporin A acted as a potent inhibitor of ABCA1 activity in several cell lines. Using the RAW264.7 mouse macrophage cell line, in which ABCA1 and its associated cholesterol efflux activity are inducible by cAMP analogues, cyclosporin A inhibition of cholesterol efflux to apolipoprotein A-I was rapidly reversible after its removal from the culture media, implying that ABCA1 levels were not drastically reduced by cyclosporin A. In fact, cyclosporin A treatment decreased ABCA1 turnover and yielded a 2-fold increase in cell-surface ABCA1. Despite the increase in cell-surface ABCA1, cyclosporin A decreased apolipoprotein A-I uptake, resecretion, and degradation in RAW cells. Finally, consistent with the inhibition of ABCA1 in vitro, cyclosporin A treatment induced a 33% reduction of high-density lipoprotein (HDL) levels in mice. CONCLUSIONS ABCA1 inhibition by cyclosporin A supports a role for ABCA1 endocytic trafficking in ABCA1-mediated lipid efflux and could explain in part the low HDL levels observed in some patients with transplants.
Collapse
Affiliation(s)
- Wilfried Le Goff
- Department of Cell Biology NC10, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
22
|
Yamauchi Y, Chang CCY, Hayashi M, Abe-Dohmae S, Reid PC, Chang TY, Yokoyama S. Intracellular cholesterol mobilization involved in the ABCA1/apolipoprotein-mediated assembly of high density lipoprotein in fibroblasts. J Lipid Res 2004; 45:1943-51. [PMID: 15292375 DOI: 10.1194/jlr.m400264-jlr200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Differential regulation has been suggested for cellular cholesterol and phospholipid release mediated by apolipoprotein A-I (apoA-I)/ABCA1. We investigated various factors involved in cholesterol mobilization related to this pathway. ApoA-I induced a rapid decrease of the cellular cholesterol compartment that is in equilibrium with the ACAT-accessible pool in cells that generate cholesterol-rich HDL. Pharmacological and genetic inactivation of ACAT enhanced the apoA-I-mediated cholesterol release through upregulation of ABCA1 and through cholesterol enrichment in the HDL generated. Pharmacological activation of protein kinase C (PKC) also decreased the ACAT-accessible cholesterol pool, not only in the cells that produce cholesterol-rich HDL by apoA-I (i.e., human fibroblast WI-38 cells) but also in the cells that generate cholesterol-poor HDL (mouse fibroblast L929 cells). In L929 cells, the PKC activation caused an increase in apoA-I-mediated cholesterol release without detectable change in phospholipid release and in ABCA1 expression. These results indicate that apoA-I mobilizes intracellular cholesterol for the ABCA1-mediated release from the compartment that is under the control of ACAT. The cholesterol mobilization process is presumably related to PKC activation by apoA-I.
Collapse
Affiliation(s)
- Yoshio Yamauchi
- Biochemistry, Cell Biology, and Metabolism, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Wu CA, Tsujita M, Hayashi M, Yokoyama S. Probucol inactivates ABCA1 in the plasma membrane with respect to its mediation of apolipoprotein binding and high density lipoprotein assembly and to its proteolytic degradation. J Biol Chem 2004; 279:30168-74. [PMID: 15140889 DOI: 10.1074/jbc.m403765200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Probucol has been shown to inhibit the release of cellular lipid by helical apolipoprotein and thereby to reduce plasma high density lipoprotein. We attempted to explore the underlying mechanism for this effect in human fibroblast WI-38. Probucol inhibited the apoA-I-mediated cellular lipid release and binding of apoA-I to the cells in a dose-dependent manner. It did not influence cellular uptake of low density lipoprotein, transport of cholesterol to the cell surface whether de novo synthesized or delivered as low density lipoprotein, and overall cellular content of cholesterol, although biosynthesis of lipids from acetate was somewhat increased. Probucol did not affect the mRNA level of ABCA1, and ABCA1 was recovered along with marker proteins for plasma membrane regardless of the presence of probucol. However, the protein level of ABCA1 increased, and the rate of its decay in the presence of cycloheximide was slower in the probucol-treated cells. ABCA1 in the probucol-treated cells was resistant to digestion by calpain but not by trypsin. We concluded that probucol inactivates ABCA1 in the plasma membrane with respect to its function in mediating binding of and lipid release by apolipoprotein and with respect to proteolytic degradation by calpain.
Collapse
Affiliation(s)
- Cheng-Ai Wu
- Biochemistry, Cell Biology, and Metabolism, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | |
Collapse
|
24
|
Christodoulakos GE, Lambrinoudaki IV, Panoulis CP, Papadias CA, Kouskouni EE, Creatsas GC. Effect of hormone replacement therapy, tibolone and raloxifene on serum lipids, apolipoprotein A1, apolipoprotein B and lipoprotein(a) in Greek postmenopausal women. Gynecol Endocrinol 2004; 18:244-57. [PMID: 15346660 DOI: 10.1080/09513590410001715207] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The aim of this study was to assess the effect of estrogen, two regimens of continuous combined hormone replacement therapy (HRT), tibolone and raloxffene on serum lipid, apolipoprotein A1 and B and lipoprotein(a) levels in Greek postmenopausal women. A total of 350 postmenopausal women were studied in a prospective open design. Women were assigned to one of the following regimens depending on the presence of risk factors for osteoporosis, dimacteric symptoms and an intact uterus: conjugated equine estrogen 0.625 mg (CEE, n = 34), continuous combined CEE 0.625 mg plus medroxyprogesterone acetate (MPA) 5 mg, (n = 80), continuous combined 17beta-estradiol 2 mg plus norethisterone acetate (NETA) 1 mg (n = 58), tibolone 2.5 mg (n = 83) and raloxifene HCl 60 mg (n = 50). Forty-five postmenopausal women with no indications for HRT served as controls. Total cholesterol (TC), low-density lipoprotein (LDL) cholestrol and high-density lipoprotein (HDL) cholesterol, triglyceride (TG), apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB) and lipoprotein(a) (Lp(a)) levels were assessed in each subject at baseline, and at 6 and 12 months of therapy. All therapy regimens lowered TC levels compared to baseline (4.2-8.0% decrease). This effect was more prominent in the subgoup of women with high baseline TC levels (9.1-20.4% decrease). LDL cholesterol decreased significantly in CEE, CEE/MPA and raloxifene groups (-11.2%, -11.9% and -11.0%, respectively). Hypercholesterolemic women exhibited a steeper decrease in LDL cholesterol (10.6-27.8% in all therapy groups). TG levels increased significantly in the CEE and CEE/MPA groups (23.7% and 21.8%, respectively), while estradiol/NETA had no effect on TG levels. Tibolone decreased TG levels markedly, by 20.6%, while raloxifene had no TG-lowering effect. HDL cholesterol and ApoA1 were increased by CEE and CEE/MPA (HDL cholesterol, 7.4% and 11.8%, respectively; ApoA1, 17.8% and 7.9%, respectively) and decreased by tibolone (HDL cholesterol, -13.6%; and ApoA1, -9.9%). All therapy regimens except raloxifene lowered Lp(a) levels, with tibolone having the more pronounced effect (-13.2 to -29.0%). In conclusion, each therapy regimen had a diferent effect on lipid-lipoprotein levels, exerting favorable and unfavorable modifications. Hypercholesterolemic women seemed to benefit more from the cholesterol-lowering effect of estrogen replacement therapy/HRT. The choice for a particular regimen should be based on individual needs, indications and lipid-lipoprotein profile.
Collapse
Affiliation(s)
- G E Christodoulakos
- 2nd Department of Obstetrics and Gynecology, University of Athens, Aretaieion Hospital, Athens, Greece
| | | | | | | | | | | |
Collapse
|
25
|
Smith JD, Le Goff W, Settle M, Brubaker G, Waelde C, Horwitz A, Oda MN. ABCA1 mediates concurrent cholesterol and phospholipid efflux to apolipoprotein A-I. J Lipid Res 2004; 45:635-44. [PMID: 14703508 DOI: 10.1194/jlr.m300336-jlr200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prior studies provide data supporting the notion that ATP binding cassette transporter A1 (ABCA1) promotes lipid efflux to extracellular acceptors in a two-step process: first, ABCA1 mediates phospholipid efflux to an apolipoprotein, and second, this apolipoprotein-phospholipid complex accepts free cholesterol in an ABCA1-independent manner. In the current study using RAW264.7 cells, ABCA1-mediated free cholesterol and phospholipid efflux to apolipoprotein A-I (apoA-I) were tightly coupled to each other both temporally and after treatment with ABCA1 inhibitors. The time course and temperature dependence of ABCA1-mediated lipid efflux to apoA-I support a role for endocytosis in this process. Cyclodextrin treatment of RAW264.7 cells partially inhibited 8Br-cAMP-induced efflux of free cholesterol and phospholipid to apoA-I. ABCA1-expressing cells are more sensitive to cell damage by high-dose cyclodextrin and vanadate, leading to increased lactate dehydrogenase leakage and phospholipid release even in the absence of the acceptor apoA-I. Finally, we could not reproduce a two-step effect on lipid efflux using conditioned medium from ABCA1-expressing cells pretreated with cyclodextrin.
Collapse
Affiliation(s)
- Jonathan D Smith
- Department of Cell Biology NC10, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Sahoo D, Trischuk TC, Chan T, Drover VAB, Ho S, Chimini G, Agellon LB, Agnihotri R, Francis GA, Lehner R. ABCA1-dependent lipid efflux to apolipoprotein A-I mediates HDL particle formation and decreases VLDL secretion from murine hepatocytes. J Lipid Res 2004; 45:1122-31. [PMID: 14993246 DOI: 10.1194/jlr.m300529-jlr200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High levels of expression of the ATP binding cassette transporter A1 (ABCA1) in the liver and the need to over- or underexpress hepatic ABCA1 to impact plasma HDL levels in mice suggest a major role of the liver in HDL formation and in determining circulating HDL levels. Cultured murine hepatocytes were used to examine the role of hepatic ABCA1 in mediating the lipidation of apolipoprotein A-I (apoA-I) for HDL particle formation. Exogenous apoA-I stimulated cholesterol efflux to the medium from wild-type hepatocytes, but not from ABCA1-deficient (abca1(-/-)) hepatocytes. ApoA-I induced the formation of new HDL particles and enhanced the lipidation of endogenously secreted murine apoA-I in ABCA1-expressing but not abca1(-/-) hepatocytes. ABCA1-dependent cholesterol mobilization to apoA-I increased new cholesterol synthesis, indicating depletion of the regulatory pool of hepatocyte cholesterol during HDL formation. Secretion of triacylglycerol and apoB was decreased following apoA-I incubation with ABCA1-expressing but not abca1(-/-) hepatocytes. These results support a major role for hepatocyte ABCA1 in generating a critical pool of HDL precursor particles that enhance further HDL generation and passive cholesterol mobilization in the periphery. The results also suggest that diversion of hepatocyte cholesterol into the "reverse" cholesterol transport pathway diminishes cholesterol availability for apoB-containing lipoprotein secretion by the liver.
Collapse
Affiliation(s)
- Daisy Sahoo
- Departments of Pediatrics, CIHR Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sugimoto K, Tsujita M, Wu CA, Suzuki K, Yokoyama S. An inhibitor of acylCoA: cholesterol acyltransferase increases expression of ATP-binding cassette transporter A1 and thereby enhances the ApoA-I-mediated release of cholesterol from macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1636:69-76. [PMID: 14984740 DOI: 10.1016/j.bbalip.2003.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 12/16/2003] [Accepted: 12/19/2003] [Indexed: 10/26/2022]
Abstract
The effect of inhibition of acylCoA: cholesterol acyltransferase (ACAT) was studied on high density lipoprotein (HDL) metabolism. An inhibitor of ACAT, MCC-147, was given mouse peritoneal macrophages and expression of ATP-binding cassette transporter A1 (ABCA1) was examined. ABCA1 was increased both at the mRNA and protein levels, only when the cells are cholesterol-loaded and thereby the inhibitor decreased esterified cholesterol and increased unesterified cholesterol. In this condition, the ACAT inhibitor increased reversible binding of apoA-I to the cells and enhanced apoA-I-mediated release of cellular cholesterol and phospholipid, but did not influence nonspecific cellular cholesterol efflux to lipid microemulsion. It was therefore concluded that the ACAT inhibitor increased the release of cholesterol from the cholesterol-loaded macrophages by increasing the expression of ABCA1, putatively through shifting cholesterol distribution from the esterified to the free compartments.
Collapse
Affiliation(s)
- Kanami Sugimoto
- Research Laboratory II, Pharmaceuticals Research Division, Mitsubishi Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | | | | | | | | |
Collapse
|
28
|
Suzuki S, Nishimaki-Mogami T, Tamehiro N, Inoue K, Arakawa R, Abe-Dohmae S, Tanaka AR, Ueda K, Yokoyama S. Verapamil increases the apolipoprotein-mediated release of cellular cholesterol by induction of ABCA1 expression via Liver X receptor-independent mechanism. Arterioscler Thromb Vasc Biol 2004; 24:519-25. [PMID: 14726413 DOI: 10.1161/01.atv.0000117178.94087.ba] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Release of cellular cholesterol and phospholipid mediated by helical apolipoprotein and ATP-binding cassette transporter (ABC) A1 is a major source of plasma HDL. We investigated the effect of calcium channel blockers on this reaction. METHODS AND RESULTS Expression of ABCA1, apoA-I-mediated cellular lipid release, and HDL production were enhanced in cAMP analogue-treated RAW264 cells by verapamil, and similar effects were also observed with other calcium channel blockers. The verapamil treatment resulted in rapid increase in ABCA1 protein and its mRNA, but not the ABCG1 mRNA, another target gene product of the nuclear receptor liver X receptor (LXR). By using the cells transfected with a mouse ABCA1 promoter-luciferase construct (-1238 to +57bp), verapamil was shown to enhance the transcriptional activity. However, it did not increase transcription of LXR response element-driven luciferase vector. CONCLUSIONS The data demonstrated that verapamil increases ABCA1 expression through LXR-independent mechanism and thereby increases apoA-I-mediated cellular lipid release and production of HDL.
Collapse
Affiliation(s)
- Shogo Suzuki
- Department of Biochemistry, Cell Biology, and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Arakawa R, Hayashi M, Remaley AT, Brewer BH, Yamauchi Y, Yokoyama S. Phosphorylation and stabilization of ATP binding cassette transporter A1 by synthetic amphiphilic helical peptides. J Biol Chem 2003; 279:6217-20. [PMID: 14701850 DOI: 10.1074/jbc.c300553200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate structural requirement of helical apolipoprotein to phosphorylate and stabilize ATP-binding cassette transporter A1 (ABCA1), synthetic peptides (Remaley, A. T., Thomas, F., Stonik, J. A., Demosky, S. J., Bark, S. E., Neufeld, E. B., Bocharov, A. V., Vishnyakova, T. G., Patterson, A. P., Eggerman, T. L., Santamarina-Fojo, S., and Brewer, H. B. (2003) J. Lipid Res. 44, 828-836) were examined for these activities. L37pA, an L amino acid peptide that contains two class-A amphiphilic helices, and D37pA, the same peptide with all D amino acids, both removed cholesterol and phospholipid from differentiated THP-1 cells more than apolipoproteins (apos) A-I, A-II, and E. Both peptides also mediated lipid release from human fibroblasts WI-38 similar to apoA-I. L2D37pA, an L-peptide whose valine and tyrosine were replaced with D amino acids also promoted lipid release from WI-38 but less so with THP-1, whereas L3D37pA, in which alanine, lysine, and asparatic acid were replaced with D amino acids was ineffective in lipid release for both cell lines. ABCA1 protein in THP-1 and WT-38 was stabilized against proteolytic degradation by apoA-I, apoA-II, and apoE and by all the peptides tested except for L3D37pA, and ABCA1 phosphorylation closely correlated with its stabilization. The analysis of the relationship among these parameters indicated that removal of phospholipid triggers signals for phosphorylation and stabilization of ABCA1. We thus concluded that an amphiphilic helical motif is the minimum structural requirement for a protein to stabilize ABCA1 against proteolytic degradation.
Collapse
Affiliation(s)
- Reijiro Arakawa
- Biochemistry, Cell Biology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8 601, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Yamauchi Y, Hayashi M, Abe-Dohmae S, Yokoyama S. Apolipoprotein A-I activates protein kinase C alpha signaling to phosphorylate and stabilize ATP binding cassette transporter A1 for the high density lipoprotein assembly. J Biol Chem 2003; 278:47890-7. [PMID: 12952980 DOI: 10.1074/jbc.m306258200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) plays an essential role in the helical apolipoprotein-mediated assembly of high density lipoprotein, and the apolipoporteins stabilize ABCA1 against calpain-mediated degradation during the reaction ((2002) J. Biol. Chem. 277, 22426-22429). Protein kinase C (PKC) inhibitors suppressed both ABCA1 stabilization and cellular lipid release mediated by apolipoprotein A-I (apoA-I) but not ABCA1 increase by calpain inhibitors. The increase of ABCA1 and the cellular lipid release by apoA-I were both suppressed by a phosphatidylcholine phospholipase C (PC-PLC) inhibitor but not by the inhibitors of phosphatidylinositol-PLC and phosphatidylinositol 3-kinase. A protein phosphatase inhibitor further enhanced the ABCA1 increase by apoA-I. Biochemical and microscopic evidence indicated that apoA-I activated PKC alpha, and phosphorylation of ABCA1 was directly demonstrated by apoA-I via PKC. Finally, digestion of sphingomyelin increased ABCA1, and a PC-PLC inhibitor suppressed it. We conclude that apoA-I activates PKC alpha by PC-PLC-mediated generation of diacylglycerol initiated by the removal of cellular sphingomyelin ((2002) J. Biol. Chem. 277, 44709-44714), and subsequently phosphorylates and stabilizes ABCA1.
Collapse
Affiliation(s)
- Yoshio Yamauchi
- Department of Biochemistry, Cell Biology, and Metabolism, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | |
Collapse
|
31
|
Abe-Dohmae S, Ikeda Y, Matsuo M, Hayashi M, Okuhira KI, Ueda K, Yokoyama S. Human ABCA7 supports apolipoprotein-mediated release of cellular cholesterol and phospholipid to generate high density lipoprotein. J Biol Chem 2003; 279:604-11. [PMID: 14570867 DOI: 10.1074/jbc.m309888200] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein-mediated release of cellular cholesterol and phospholipids was induced in HEK293 cells by expressing human ATP-binding cassette transporter A7 (ABCA7) and ABC transporter A1 (ABCA1) proteins, whether transient or stable, to generate cholesterol-rich high density lipoprotein (HDL). Green fluorescent protein (GFP) attached at their C termini did not influence the lipid release reactions. Transfected ABCA7-GFP induced apolipoprotein-mediated assembly of cholesterol-containing HDL also in L929 cells, which otherwise generate only cholesterol-deficient HDL with their endogenous ABCA1. Time-dependent release of cholesterol and phospholipid by apolipoprotein A (apoA)-I was parallel both with ABCA1 and with ABCA7 when highly expressed in HEK293 cells, but dose-dependent profiles of lipid release on apoA-I and apoA-II were somewhat different between ABCA1 and ABCA7. Analyses of the stable clones with ABCA1-GFP (293/2c) and ABCA7-GFP (293/6c) by using the same vector indicated some differences in regulation of their activities by protein kinase modulators. Dibutyryl cyclic AMP increased ABCA1-GFP and the release of cholesterol and phospholipid in 293/2c but increased neither ABCA7-GFP nor the lipid release in 293/6c. Expression of ABCA1-GFP- and apoA-I-mediated lipid release were enhanced in parallel by phorbol 12-myristate 13-acetate (PMA) in 293/2c cells. In contrast, the same treatment of 293/6c increased ABCA7-GFP, but apoA-I-mediated lipid release was significantly suppressed. Despite these different responses to PMA, all of the effects of PMA were reversed by a specific protein kinase C inhibitor Gö6976, suggesting that the changes were in fact due to protein kinase C activation. A thiol protease inhibitor, N-acetyl-Leu-Leu-norleucinal, increased the protein levels of ABCA1-GFP in 293/2c and ABCA7-GFP in 293/6c, indicating their common degradation pathway. The data indicated that human ABCA7 would compensate the function of ABCA1 for release of cell cholesterol in a certain condition(s), but post-transcriptional regulation of their activity is different.
Collapse
Affiliation(s)
- Sumiko Abe-Dohmae
- Biochemistry, Molecular Biology and Metabolism 1, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Choi HY, Karten B, Chan T, Vance JE, Greer WL, Heidenreich RA, Garver WS, Francis GA. Impaired ABCA1-dependent lipid efflux and hypoalphalipoproteinemia in human Niemann-Pick type C disease. J Biol Chem 2003; 278:32569-77. [PMID: 12813037 DOI: 10.1074/jbc.m304553200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cholesterol trafficking defect in Niemann-Pick type C (NPC) disease leads to impaired regulation of cholesterol esterification, cholesterol synthesis, and low density lipoprotein receptor activity. The ATP-binding cassette transporter A1 (ABCA1), which mediates the rate-limiting step in high density lipoprotein (HDL) particle formation, is also regulated by cell cholesterol content. To determine whether the Niemann-Pick C1 protein alters the expression and activity of ABCA1, we determined the ability of apolipoprotein A-I (apoA-I) to deplete pools of cellular cholesterol and phospholipids in human fibroblasts derived from NPC1+/+, NPC1+/-, and NPC1-/- subjects. Efflux of low density lipoprotein-derived, non-lipoprotein, plasma membrane, and newly synthesized pools of cell cholesterol by apoA-I was diminished in NPC1-/- cells, as was efflux of phosphatidylcholine and sphingomyelin. NPC1+/- cells showed intermediate levels of lipid efflux compared with NPC1+/+ and NPC1-/- cells. Binding of apoA-I to cholesterol-loaded and non-cholesterol-loaded cells was highest for NPC1+/- cells, with NPC1+/+ and NPC1-/- cells showing similar levels of binding. ABCA1 mRNA and protein levels increased in response to cholesterol loading in NPC1+/+ and NPC1+/- cells but showed low levels at base line and in response to cholesterol loading in NPC1-/- cells. Consistent with impaired ABCA1-dependent lipid mobilization to apoA-I for HDL particle formation, we demonstrate for the first time decreased plasma HDL-cholesterol levels in 17 of 21 (81%) NPC1-/- subjects studied. These results indicate that the cholesterol trafficking defect in NPC disease results in reduced activity of ABCA1, which we suggest is responsible for the low HDL-cholesterol in the majority of NPC subjects and partially responsible for the overaccumulation of cellular lipids in this disorder.
Collapse
Affiliation(s)
- Hong Y Choi
- Department of Medicine and the Canadian Institutes of Health Research Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Creatsas G, Christodoulakos G, Lambrinoudaki I, Panoulis C, Chondros C, Patramanis P. Serum lipids and apolipoproteins in Greek postmenopausal women: association with estrogen, estrogen-progestin, tibolone and raloxifene therapy. J Endocrinol Invest 2003; 26:545-51. [PMID: 12952369 DOI: 10.1007/bf03345218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim of this study was to assess lipid and apolipoprotein levels in postmenopausal women taking various regimens of replacement therapy or no therapy. Seven hundred forty-eight postmenopausal women followed in the Menopause Clinic of the 2nd Department of Obstetrics and Gynecology, University of Athens, Aretaieion Hospital, were studied in a cross-sectional design. Women were either non-users of replacement therapy (no. = 511) or users of one of the following regimens: conjugated equine estrogen 0.625 mg (CEE, no. = 34), CEE 0.625 mg plus medroxyprogesterone acetate 5 mg (CEE/MPA, no. = 60), 17beta-estradiol 2 mg plus norethisterone acetate 1 mg (E2/NETA, no. = 44), tibolone 2.5 mg (no. = 84), raloxifene HCI 60 mg (no. = 51). Total cholesterol (TC), LDL-cholesterol (LDL-C) and HDL-cholesterol (HDL-C), triglycerides (TG), apolipoprotein A1 (ApoA1) and apolipoprotein B (ApoB) levels were assessed. Women were grouped according to replacement regimen and mean levels of lipid and apolipoproteins were compared between groups. Women in the raloxifene group were older and longer menopaused. After adjustment for age and duration of menopause, TG levels were significantly lower in the tibolone and E2/NETA groups (75 and 89.9 mg/dl, respectively) compared to non-users. TC was lower in all therapy groups, but the difference acquired significance only in the E2/NETA (207.8 mg/dl), compared to non-users (231.5 mg/dl). LDL-C levels were significantly lower in the CEE (133.8 mg/dl), CEE/MPA (130.4 mg/dl) and raloxifene group (129.9 mg/dl) compared to non-users (151.9 mg/dl). There was no difference in HDL-C levels between users and non-users (58.9 mg/dl) except for the tibolone group where HDL-C was significantly lower (48.6 mg/dl). ApoA1 levels were significantly higher in the CEE/MPA group (194.4 mg/dl) and significantly lower in the tibolone group (141.6 mg/dl) compared to non-users (170.4 mg/dl). No difference was detected between groups concerning ApoB levels. In conclusion, tibolone therapy is associated with lower TG levels as well as lower HDL and ApoA1 levels. ERT, continuous combined estrogen-progestin therapy (HRT) and raloxifene are associated with lower LDL-C levels. Among continuous combined HRT users, CEE/MPA is associated with higher ApoA1 levels, while E2/NETA with lower TG levels. Large prospective randomized studies are required to validate these results.
Collapse
Affiliation(s)
- G Creatsas
- 2nd Department of Obstetrics and Gynecology, University of Athens, Aretaieion Hospital, Athens
| | | | | | | | | | | |
Collapse
|
34
|
Yamauchi Y, Abe-Dohmae S, Yokoyama S. Differential regulation of apolipoprotein A-I/ATP binding cassette transporter A1-mediated cholesterol and phospholipid release. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1585:1-10. [PMID: 12457709 DOI: 10.1016/s1388-1981(02)00304-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We compared apolipoprotein A-I (apoA-I)-mediated release of cellular cholesterol and phospholipid among several fibroblast cell lines. ApoA-I induced phospholipid release from WI-38, MRC-5, BALB/3T3, L929 and CHO-K1, but not from COS-7, while cholesterol was released only from WI-38, MRC-5 and BALB/3T3 without correlation to the cellular cholesterol content. The reaction consequently generated cholesterol-rich high density lipoprotein (HDL) with WI-38, MRC-5 and BALB/3T3, cholesterol-poor HDL with L929 and CHO-K1, and no HDL from COS-7. In contrast, diffusion-mediated cholesterol efflux to cyclodextrin took place with all the cell lines tested in proportion to the cellular free cholesterol content. While caveolin-1 was expressed in all of these cell lines, ATP-binding cassette transporter (ABC) A1 was detected in all but COS-7. We concluded that (1) fibroblasts were categorized into three groups with respect to the interaction with apoA-I, (i) those to produce cholesterol-rich HDL, (ii) cholesterol-poor HDL and (iii) no HDL; (2) ABCAl was required for the assembly of HDL from phospholipid among the cell lines tested; (3) caveolin-1 alone did not induce cholesterol incorporation into the HDL generated.
Collapse
Affiliation(s)
- Yoshio Yamauchi
- Biochemistry, Cell Biology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, 467-8601, Nagoya, Japan
| | | | | |
Collapse
|
35
|
Ohama T, Hirano KI, Zhang Z, Aoki R, Tsujii KI, Nakagawa-Toyama Y, Tsukamoto K, Ikegami C, Matsuyama A, Ishigami M, Sakai N, Hiraoka H, Ueda K, Yamashita S, Matsuzawa Y. Dominant expression of ATP-binding cassette transporter-1 on basolateral surface of Caco-2 cells stimulated by LXR/RXR ligands. Biochem Biophys Res Commun 2002; 296:625-30. [PMID: 12176027 DOI: 10.1016/s0006-291x(02)00853-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ATP-binding cassette transporter-1 (ABCA1) is a cause of Tangier disease, which is a familial deficiency of plasma high density lipoproteins (HDL). This molecule is known to be expressed in the multiple tissues and organs including small intestines, liver, and macrophages in the blood vessels. Recent in vivo studies suggested that ABCA1 plays some roles in the flux of cholesterol in the intestines. One of the major questions to understand the roles of ABCA1 in the intestines is the expression pattern in the intestinal epithelial cells. To address this issue, we have investigated the expression and regulation of ABCA1 in Caco-2 cells cultured on Transwell as a model, especially focusing on possible polarized expression of ABCA1. The expression of ABCA1 was up-regulated during the differentiation and under the stimulation of LXR/RXR by the addition of 9-cis-retinoic acid (9-cis-RA) and 22-R-hydroxycholesterol (22-OH). Apolipoprotein-AI-mediated cholesterol efflux was dominant toward the basolateral side of polarized cells when stimulated by 9-cis-RA and 22-OH. The cell surface biotinylation experiment followed by Western blot analyses demonstrated a markedly dominant expression of ABCA1 on the basolateral surface, which was clearly confirmed by the confocal laser scanning microscopy. In conclusion, the present study demonstrates that ABCA1 is dominantly expressed on the basolateral surface of Caco-2 cells tested, suggesting that this molecule may play a role in the basolateral movement of cholesterol at least when stimulated by LXR/RXR ligands.
Collapse
Affiliation(s)
- Tohru Ohama
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Arakawa R, Yokoyama S. Helical apolipoproteins stabilize ATP-binding cassette transporter A1 by protecting it from thiol protease-mediated degradation. J Biol Chem 2002; 277:22426-9. [PMID: 11950847 DOI: 10.1074/jbc.m202996200] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette transporter (ABC) A1 was increased by apolipoprotein A-I without an increase of its message in THP-1 cells. The pulse label study demonstrated that apoA-I retarded degradation of ABCA1. Similar changes were demonstrated by apoA-II, but the effect of high density lipoprotein was almost negligible on the basis of equivalent protein concentration. Thiol protease inhibitors (leupeptin and N-acetyl-Leu-Leu-norleucinal (ALLN)) increased ABCA1 and slowed its decay in the cells, whereas none of the proteosome-specific inhibitor lactacystin, other protease inhibitors, or the lysosomal inhibitor NH(4)Cl showed such effects. The effects of apoA-I and ALLN were additive for the increase of ABCA1, and the apoA-I-mediated cellular lipid release was enhanced by ALLN. The data suggest that ABCA1 is rapidly degraded by a thiol protease(s) in the cells unless helical apolipoproteins in their lipid-free form stabilize ABCA1 by protecting it from protease-mediated degradation.
Collapse
Affiliation(s)
- Reijiro Arakawa
- Biochemistry, Cell Biology, and Metabolism, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | | |
Collapse
|
37
|
Nishida Y, Hirano K, Tsukamoto K, Nagano M, Ikegami C, Roomp K, Ishihara M, Sakane N, Zhang Z, Tsujii Ki KI, Matsuyama A, Ohama T, Matsuura F, Ishigami M, Sakai N, Hiraoka H, Hattori H, Wellington C, Yoshida Y, Misugi S, Hayden MR, Egashira T, Yamashita S, Matsuzawa Y. Expression and functional analyses of novel mutations of ATP-binding cassette transporter-1 in Japanese patients with high-density lipoprotein deficiency. Biochem Biophys Res Commun 2002; 290:713-21. [PMID: 11785958 DOI: 10.1006/bbrc.2001.6219] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ATP-binding cassette transporter-1 (ABCA1) gene is mutated in patients with familial high-density lipoprotein deficiency (FHD). In order to know the molecular basis for FHD, we characterized three different ABCA1 mutations associated with FHD (G1158A/A255T, C5946T/R1851X, and A5226G/N1611D) with respect to their expression in the passaged fibroblasts from the patients and in the cells transfected with the mutated cDNAs. Fibroblasts from the all patients showed markedly decreased cholesterol efflux to apolipoprotein (apo)-Al. In the fibroblasts homozygous for G1158A/A255T, the immunoreactive mass of ABCA1 could not be detected, even when stimulated by 9-cis-retinoic acid and 22-R-hydroxycholesterol. In the fibroblasts homozygous for C5946T/R1851X, ABCA1 mRNA was comparable. Because the mutant ABCA1 protein (R1851X) was predicted to lack the epitope for the antibody used, we transfected FLAG-tagged truncated mutant (R1851X/ABCA1-FLAG) cDNA into Cos-7 cells, showing that the mutant protein expression was markedly reduced. The expression of N1611D ABCA1 protein was comparable in both fibroblasts and overexpressing cells, although cholesterol efflux from the cells was markedly reduced. These data indicated that, in the three patients investigated, the abnormalities and dysfunction of ABCA1 occurred at the different levels, providing important information about the expression, regulation, and function of ABCA1.
Collapse
Affiliation(s)
- Yoshiharu Nishida
- Department of Internal Medicine and Molecular Science, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chen W, Sun Y, Welch C, Gorelik A, Leventhal AR, Tabas I, Tall AR. Preferential ATP-binding cassette transporter A1-mediated cholesterol efflux from late endosomes/lysosomes. J Biol Chem 2001; 276:43564-9. [PMID: 11559713 DOI: 10.1074/jbc.m107938200] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, ATP-binding cassette transporter A1 (ABCA1), the defective molecule in Tangier disease, has been shown to stimulate phospholipid and cholesterol efflux to apolipoprotein A-I (apoA-I); however, little is known concerning the cellular cholesterol pools that act as the source of cholesterol for ABCA1-mediated efflux. We observed a higher level of isotopic and mass cholesterol efflux from mouse peritoneal macrophages labeled with [(3)H]cholesterol/acetyl low density lipoprotein (where cholesterol accumulates in late endosomes and lysosomes) compared with cells labeled with [(3)H]cholesterol with 10% fetal bovine serum, suggesting that late endosomes/lysosomes act as a preferential source of cholesterol for ABCA1-mediated efflux. Consistent with this idea, macrophages from Niemann-Pick C1 mice that have an inability to exit cholesterol from late endosomes/lysosomes showed a profound defect in cholesterol efflux to apoA-I. In contrast, phospholipid efflux to apoA-I was normal in Niemann-Pick C1 macrophages, as was cholesterol efflux following plasma membrane cholesterol labeling. These results suggest that cholesterol deposited in late endosomes/lysosomes preferentially acts as a source of cholesterol for ABCA1-mediated cholesterol efflux.
Collapse
Affiliation(s)
- W Chen
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|