1
|
Nocchetti M, Piccotti C, Piccinini M, Caponi S, Mattarelli M, Pietrella D, Di Michele A, Ambrogi V. Silver Nanoparticles and Simvastatin-Loaded PLGA-Coated Hydroxyapatite/Calcium Carbonate Scaffolds. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1637. [PMID: 39452973 PMCID: PMC11510553 DOI: 10.3390/nano14201637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
The need to develop synthetic bone substitutes with structures, properties, and functions similar to bone and capable of preventing microbial infections is still an ongoing challenge. This research is focused on the preparation and characterization of three-dimensional porous scaffolds based on hydroxyapatite (HA)-functionalized calcium carbonate loaded with silver nanoparticles and simvastatin (SIMV). The scaffolds were prepared using the foam replica method, with a polyurethane (PU) sponge as a template, followed by successive polymer removal and sintering. The scaffolds were then coated with poly(lactic-co-glycolic) acid (PLGA) to improve mechanical properties and structural integrity, and loaded with silver nanoparticles and SIMV. The scaffolds were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), ATR FT-IR, and silver and SIMV loading. Moreover, the samples were analyzed by Brillouin and Raman microscopy. Finally, in vitro bioactivity, SIMV and silver release, and antimicrobial activity against Staphylococcus aureus and Staphylococcus epidermidis were evaluated. From the Brillouin spectra, samples showed characteristics analogous to those of bone tissue. They exhibited new hydroxyapatite growth, as evidenced by SEM, and good antimicrobial activity against the tested bacteria. In conclusion, the obtained results demonstrate the potential of the scaffolds for application in bone repair.
Collapse
Affiliation(s)
- Morena Nocchetti
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo, 1, 06123 Perugia, Italy; (C.P.); (M.P.)
| | - Chiara Piccotti
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo, 1, 06123 Perugia, Italy; (C.P.); (M.P.)
| | - Michela Piccinini
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo, 1, 06123 Perugia, Italy; (C.P.); (M.P.)
| | - Silvia Caponi
- Istituto Officina dei Materiali, National Research Council (IOM-CNR), Unit of Perugia, c/o Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy;
| | - Maurizio Mattarelli
- Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, 06123 Perugia, Italy; (M.M.); (A.D.M.)
| | - Donatella Pietrella
- Dipartimento di Medicina, Università di Perugia, Piazzale Gambuli, 1, 06132 Perugia, Italy;
| | - Alessandro Di Michele
- Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, 06123 Perugia, Italy; (M.M.); (A.D.M.)
| | - Valeria Ambrogi
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo, 1, 06123 Perugia, Italy; (C.P.); (M.P.)
| |
Collapse
|
2
|
Nocchetti M, Pietrella D, Antognelli C, Di Michele A, Russo C, Giulivi E, Ambrogi V. Alginate microparticles containing silver@hydroxyapatite functionalized calcium carbonate composites. Int J Pharm 2024; 661:124393. [PMID: 38942183 DOI: 10.1016/j.ijpharm.2024.124393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/04/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
This paper focuses on the preparation and characterization of antibacterial alginate microparticles containing silver@hydroxyapatite functionalized calcium carbonate composites for tissue engineering. Microparticles were prepared by cross-linking a silver@composite sodium alginate dispersion with CaCl2. This method showed a very good silver efficiency loading and the presence of silver chloride nanoparticles was detected. Silver free microparticles, containing hydroxyapatite functionalized calcium carbonates and neat alginate microparticles were prepared as well. All microparticles were characterized for water absorption and for in vitro bioactivity by immersion in simulated body fluid (SBF). Finally, antimicrobial and antibiofilm activities as well as cytotoxicity were evaluated. Microparticles containing silver@composites exhibited good antimicrobial and antibiofilm activities against Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Candida albicans, but exerted a certain cytotoxicity against the tested cell models (fibroblasts and osteoblasts). Microparticles containing hydroxyapatite functionalized calcium carbonates were found to be always less cytotoxic, also in comparison to neat alginate microparticles, proving that the presence of the inorganic matrices exerts a protective effect on microparticle cytotoxicity.
Collapse
Affiliation(s)
- Morena Nocchetti
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Perugia 06123, Italy
| | - Donatella Pietrella
- Dipartimento di Medicina e Chirurgia, University of Perugia, Perugia 06129, Italy
| | - Cinzia Antognelli
- Dipartimento di Medicina e Chirurgia, University of Perugia, Perugia 06129, Italy
| | | | - Carla Russo
- Dipartimento di Medicina e Chirurgia, University of Perugia, Perugia 06129, Italy
| | - Elisa Giulivi
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Perugia 06123, Italy
| | - Valeria Ambrogi
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Perugia 06123, Italy.
| |
Collapse
|
3
|
Khurshid Z, Alfarhan MFA, Bayan Y, Mazher J, Adanir N, Dias GJ, Cooper PR, Ratnayake J. Development, physicochemical characterization and in-vitro biocompatibility study of dromedary camel dentine derived hydroxyapatite for bone repair. PeerJ 2023; 11:e15711. [PMID: 37551347 PMCID: PMC10404400 DOI: 10.7717/peerj.15711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/15/2023] [Indexed: 08/09/2023] Open
Abstract
This study aimed to produce hydroxyapatite from the dentine portion of camel teeth using a defatting and deproteinizing procedure and characterize its physicochemical and biocompatibility properties. Biowaste such as waste camel teeth is a valuable source of hydroxyapatite, the main inorganic constituent of human bone and teeth which is frequently used as bone grafts in the biomedical field. Fourier Transform infrared (FTIR), and micro-Raman spectroscopy confirmed the functional groups as-sociated with hydroxyapatite. X-ray diffraction (XRD) studies showed camel dentine-derived hydroxyapatite (CDHA) corresponded with hydroxyapatite spectra. Scanning electron micros-copy (SEM) demonstrated the presence of dentinal tubules measuring from 1.69-2.91 µm. The inorganic phases of CDHA were primarily constituted of calcium and phosphorus, with trace levels of sodium, magnesium, potassium, and strontium, according to energy dispersive X-ray analysis (EDX) and inductively coupled plasma mass spectrometry (ICP-MS). After 28 days of incubation in simulated body fluid (SBF), the pH of the CDHA scaffold elevated to 9.2. in-vitro biocompatibility studies showed that the CDHA enabled Saos-2 cells to proliferate and express the bone marker osteonectin after 14 days of culture. For applications such as bone augmentation and filling bone gaps, CDHA offers a promising material. However, to evaluate the clinical feasibility of the CDHA, further in-vivo studies are required.
Collapse
Affiliation(s)
- Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Oral Science, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | | | - Yasmin Bayan
- Department of Oral Science, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Javed Mazher
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Necdet Adanir
- Department of Restorative Dentistry, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia
| | - George J. Dias
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Paul R. Cooper
- Department of Oral Science, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Jithendra Ratnayake
- Department of Oral Science, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Kylmäoja E, Abushahba F, Holopainen J, Ritala M, Tuukkanen J. Monocyte Differentiation on Atomic Layer-Deposited (ALD) Hydroxyapatite Coating on Titanium Substrate. Molecules 2023; 28:molecules28083611. [PMID: 37110845 PMCID: PMC10143381 DOI: 10.3390/molecules28083611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Hydroxyapatite (HA; Ca10(PO4)6(OH)2) coating of bone implants has many beneficial properties as it improves osseointegration and eventually becomes degraded and replaced with new bone. We prepared HA coating on a titanium substrate with atomic layer deposition (ALD) and compared monocyte differentiation and material resorption between ALD-HA and bone. After stimulation with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL), human peripheral blood monocytes differentiated into resorbing osteoclasts on bovine bone, but non-resorbing foreign body cells were observed on ALD-HA. The analysis of the topography of ALD-HA and bone showed no differences in wettability (water contact angle on ALD-HA 86.2° vs. 86.7° on the bone), but the surface roughness of ALD-HA (Ra 0.713 µm) was significantly lower compared to bone (Ra 2.30 µm). The cellular reaction observed on ALD-HA might be a consequence of the topographical properties of the coating. The absence of resorptive osteoclasts on ALD-HA might indicate inhibition of their differentiation or the need to modify the coating to induce osteoclast differentiation.
Collapse
Affiliation(s)
- Elina Kylmäoja
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - Faleh Abushahba
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| | - Jani Holopainen
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Mikko Ritala
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| |
Collapse
|
5
|
Di Michele A, Nocchetti M, Pietrella D, Latterini L, Quaglia G, Mattu I, Padeletti G, Kaciulis S, Bolli E, Ambrogi V. Ag/Ag 3PO 4 Nanoparticle-Decorated Hydroxyapatite Functionalized Calcium Carbonate: Ultrasound-Assisted Sustainable Synthesis, Characterization, and Antimicrobial Activity. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1338. [PMID: 36836970 PMCID: PMC9962710 DOI: 10.3390/ma16041338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Silver nanoparticles are usually prepared by the reduction of silver cations through chemical and non-sustainable procedures that involve the use of reducing chemical agents. Therefore, many efforts have been made in the search for sustainable alternative methods. Among them, an ultrasound-assisted procedure could be a suitable and sustainable method to afford well-dispersed and nanometric silver particles. This paper describes a sustainable, ultrasound-assisted method using citrate as a reducing agent to prepare silver@hydroxyapatite functionalized calcium carbonate composites. For comparison, an ultrasound-assisted reduction was performed in the presence of NaBH4. The composites obtained in the presence of these two different reducing agents were compared in terms of nanoparticle nature, antimicrobial activity, and cytotoxic activity. The nanoparticle nature was investigated by several techniques, including X-ray powder diffraction, field-emission scanning electron microscopy, transmission electron microscopy, UV-Vis spectroscopic measurements, and X-ray photoemission spectroscopy. Nanoparticles with a predominance of Ag or Ag3PO4 were obtained according to the type of reducing agent used. All composites were tested for antimicrobial and antibiofilm activities against Gram-positive and Gram-negative (Staphylococcus aureus and Pseudomonas aeruginosa, respectively) bacteria and for cytotoxicity towards human skin keratinocytes and human fibroblasts. The nature of the nanoparticles, Ag or Ag3PO4, and their predominance seemed to affect the in vitro silver release and the antimicrobial and antibiofilm activities. The composites obtained by the citrate-assisted reduction gave rise to the best results.
Collapse
Affiliation(s)
- Alessandro Di Michele
- Dipartimento di Fisica e Geologia, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Morena Nocchetti
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Donatella Pietrella
- Dipartimento di Medicina e Chirurgia, University of Perugia, Via Gambuli, 1, 06132 Perugia, Italy
| | - Loredana Latterini
- Nano4Light Lab, Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Giulia Quaglia
- Nano4Light Lab, Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Ilaria Mattu
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Giuseppina Padeletti
- Institute for the Study of Nanostructured Materials, ISMN-CNR, Via Salaria Km 29,300, 00015 Rome, Italy
| | - Saulius Kaciulis
- Institute for the Study of Nanostructured Materials, ISMN-CNR, Via Salaria Km 29,300, 00015 Rome, Italy
| | - Eleonora Bolli
- Institute for the Study of Nanostructured Materials, ISMN-CNR, Via Salaria Km 29,300, 00015 Rome, Italy
| | - Valeria Ambrogi
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
6
|
Bielenstein J, Radenković M, Najman S, Liu L, Ren Y, Cai B, Beuer F, Rimashevskiy D, Schnettler R, Alkildani S, Jung O, Schmidt F, Barbeck M. In Vivo Analysis of the Regeneration Capacity and Immune Response to Xenogeneic and Synthetic Bone Substitute Materials. Int J Mol Sci 2022; 23:ijms231810636. [PMID: 36142541 PMCID: PMC9506561 DOI: 10.3390/ijms231810636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Although various studies have investigated differences in the tissue reaction pattern to synthetic and xenogeneic bone substitute materials (BSMs), a lack of knowledge exists regarding the classification of both materials based on the DIN ISO 10993-6 scoring system, as well as the histomorphometrical measurement of macrophage subtypes within their implantation beds. Thus, the present study was conducted to analyze in vivo responses to both xenogeneic and synthetic bone substitute granules. A standardized calvaria implantation model in Wistar rats, in combination with established scoring, histological, histopathological, and histomorphometrical methods, was conducted to analyze the influence of both biomaterials on bone regeneration and the immune response. The results showed that the application of the synthetic BSM maxresorb® induced a higher pro-inflammatory tissue response, while the xenogeneic BSM cerabone® induced a higher anti-inflammatory reaction. Additionally, comparable bone regeneration amounts were found in both study groups. Histopathological scoring revealed that the synthetic BSM exhibited non-irritant scores at all timepoints using the xenogeneic BSM as control. Overall, the results demonstrated the biocompatibility of synthetic BSM maxresorb® and support the conclusion that this material class is a suitable alternative to natural BSM, such as the analyzed xenogeneic material cerabone®, for a broad range of indications.
Collapse
Affiliation(s)
- James Bielenstein
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Milena Radenković
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Stevo Najman
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Luo Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100013, China
| | - Yanru Ren
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Baoyi Cai
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 14197 Berlin, Germany
| | - Florian Beuer
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 14197 Berlin, Germany
| | - Denis Rimashevskiy
- Department of Traumatology and Orthopedics, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Reinhard Schnettler
- University Medical Centre, Justus Liebig University of Giessen, 35390 Giessen, Germany
| | | | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Franziska Schmidt
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 14197 Berlin, Germany
| | - Mike Barbeck
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
- BerlinAnalytix GmbH, 12109 Berlin, Germany
- Correspondence: ; Tel.: +49-176-81022467
| |
Collapse
|
7
|
Bergara-Muguruza L, Mäkelä K, Yrjälä T, Salonen J, Yamashita K, Nakamura M. Surface Electric Fields Increase Human Osteoclast Resorption through Improved Wettability on Carbonate-Incorporated Apatite. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58270-58278. [PMID: 34860490 PMCID: PMC8678988 DOI: 10.1021/acsami.1c14358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/23/2021] [Indexed: 06/02/2023]
Abstract
Osteoclast-mediated bioresorption can be an efficient means of incorporating the dissolution of biomaterials in the bone remodeling process. Because of the compositionally and structurally close resemblance of biomaterials with the natural mineral phases of the bone matrix, synthetic carbonate-substituted apatite (CA) is considered as an ideal biomaterial for clinical use. The present study therefore investigated the effects of electrical polarization on the surface characteristics and interactions with human osteoclasts of hydroxyapatite (HA) and CA. Electrical polarization was found to improve the surface wettability of these materials by increasing the surface free energy, and this effect was maintained for 1 month. Analyses of human osteoclast cultures established that CA subjected to a polarization treatment enhanced osteoclast resorption but did not affect the early differentiation phase or the adherent morphology of the osteoclasts as evaluated by staining. These data suggest that the surface characteristics of the CA promoted osteoclast resorption. The results of this work are expected to contribute to the future design of cell-mediated bioresorbable biomaterials capable of resorption by osteoclasts and of serving as a scaffold for bone regeneration.
Collapse
Affiliation(s)
- Leire Bergara-Muguruza
- Medicity
Research Laboratory, Faculty of Medicine, University of Turku, Tykistökatu 6, 20520 Turku, Finland
| | - Keijo Mäkelä
- Turku
University Hospital, University of Turku, Luolavuorentie 2, 20700 Turku, Finland
| | - Tommi Yrjälä
- Turku
University Hospital, University of Turku, Luolavuorentie 2, 20700 Turku, Finland
- Department
of Anesthesia and Intensive Care, University
of Turku, Luolavuorentie
2, 20700 Turku, Finland
| | - Jukka Salonen
- Medicity
Research Laboratory, Faculty of Medicine, University of Turku, Tykistökatu 6, 20520 Turku, Finland
| | - Kimihiro Yamashita
- Graduate
School of Medical and Dental Science, Tokyo
Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Miho Nakamura
- Medicity
Research Laboratory, Faculty of Medicine, University of Turku, Tykistökatu 6, 20520 Turku, Finland
- Institute
of Biomaterials and Bioengineering, Tokyo
Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 1010062 Japan
- Graduate
School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 9808579 Japan
| |
Collapse
|
8
|
The Granule Size Mediates the In Vivo Foreign Body Response and the Integration Behavior of Bone Substitutes. MATERIALS 2021; 14:ma14237372. [PMID: 34885527 PMCID: PMC8658545 DOI: 10.3390/ma14237372] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
The physicochemical properties of synthetically produced bone substitute materials (BSM) have a major impact on biocompatibility. This affects bony tissue integration, osteoconduction, as well as the degradation pattern and the correlated inflammatory tissue responses including macrophages and multinucleated giant cells (MNGCs). Thus, influencing factors such as size, special surface morphologies, porosity, and interconnectivity have been the subject of extensive research. In the present publication, the influence of the granule size of three identically manufactured bone substitute granules based on the technology of hydroxyapatite (HA)-forming calcium phosphate cements were investigated, which includes the inflammatory response in the surrounding tissue and especially the induction of MNGCs (as a parameter of the material degradation). For the in vivo study, granules of three different size ranges (small = 0.355-0.5 mm; medium = 0.5-1 mm; big = 1-2 mm) were implanted in the subcutaneous connective tissue of 45 male BALB/c mice. At 10, 30, and 60 days post implantationem, the materials were explanted and histologically processed. The defect areas were initially examined histopathologically. Furthermore, pro- and anti-inflammatory macrophages were quantified histomorphometrically after their immunohistochemical detection. The number of MNGCs was quantified as well using a histomorphometrical approach. The results showed a granule size-dependent integration behavior. The surrounding granulation tissue has passivated in the groups of the two bigger granules at 60 days post implantationem including a fibrotic encapsulation, while a granulation tissue was still present in the group of the small granules indicating an ongoing cell-based degradation process. The histomorphometrical analysis showed that the number of proinflammatory macrophages was significantly increased in the small granules at 60 days post implantationem. Similarly, a significant increase of MNGCs was detected in this group at 30 and 60 days post implantationem. Based on these data, it can be concluded that the integration and/or degradation behavior of synthetic bone substitutes can be influenced by granule size.
Collapse
|
9
|
Umemoto S, Furusawa T, Unuma H, Tajika M, Sekino T. In vivo bioresorbability and bone formation ability of sintered highly pure calcium carbonate granules. Dent Mater J 2021; 40:1202-1207. [PMID: 34121021 DOI: 10.4012/dmj.2020-254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Calcium carbonate-based bone substitutes derived from natural coral exoskeleton (aragonite) are resorbed and remodeled faster than calcium phosphate-based substitutes. However, coral species with structures appropriate for use as bone substitutes are very limited. Therefore, it is important to evaluate potential of artificial calcium carbonate ceramics as a bone substitute. In this study, calcium carbonate granules with various porosities and pore sizes were prepared by sintering a highly pure (>99.98%) calcium carbonate powder (calcite), and their resorption properties and bone formation abilities were examined in vivo for the first time. The sintered calcium carbonate was resorbed faster than β-tricalcium phosphate, which has a similar structure. However, sintered calcium carbonate did not promote new bone formation during long-term implantation. Furthermore, both resorption and new bone formation were affected by the pore structure. The optimal structures of the artificially sintered calcium carbonate bone substitute were also discussed.
Collapse
Affiliation(s)
- Shota Umemoto
- Shiraishi Central Laboratories Co., Ltd.,The Institute of Scientific and Industrial Research, Osaka University
| | - Toshitake Furusawa
- Tohoku Oral Implant Association.,Graduate School of Science and Engineering, Yamagata University
| | - Hidero Unuma
- Tohoku Oral Implant Association.,Graduate School of Science and Engineering, Yamagata University
| | | | - Tohru Sekino
- The Institute of Scientific and Industrial Research, Osaka University
| |
Collapse
|
10
|
He T, Liu W, Cao L, Liu Y, Zou Z, Zhong Y, Wang H, Mo Y, Peng S, Shuai C. CircRNAs and LncRNAs in Osteoporosis. Differentiation 2020; 116:16-25. [PMID: 33157509 DOI: 10.1016/j.diff.2020.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/16/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a systemic bone disease with bone fragility and increased fracture risk. The non-coding RNAs (ncRNAs) have appeared as important regulators of cellular signaling and pertinent human diseases. Studies have demonstrated that circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) are involved in the progression of osteoporosis through a variety of pathways, and are considered as targets for the prophylaxis and treatment of osteoporosis. Based on an in-depth understanding of their roles and mechanisms in osteoporosis, we summarize the functions and molecular mechanisms of circRNAs and lncRNAs involved in the progression of osteoporosis and provide some new insights for the prognosis, diagnosis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Tiantian He
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Institute of Metabolism and Endocrinology, The Second Xiang-Ya Hospital, Central South University, 410011, Changsha, Hunan, People's Republic of China
| | - Lihua Cao
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Liu
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zi Zou
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yancheng Zhong
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haihua Wang
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuqing Mo
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Cijun Shuai
- Jiangxi University of Science and Technology, Ganzhou, 341000, China; State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, 410083, China.
| |
Collapse
|
11
|
Bohner M, Santoni BLG, Döbelin N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater 2020; 113:23-41. [PMID: 32565369 DOI: 10.1016/j.actbio.2020.06.022] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022]
Abstract
β-tricalcium phosphate (β-TCP) is one the most used and potent synthetic bone graft substitute. It is not only osteoconductive, but also osteoinductive. These properties, combined with its cell-mediated resorption, allow full bone defects regeneration. Its clinical outcome is sometimes considered to be "unpredictable", possibly due to a poor understanding of β-TCP physico-chemical properties: β-TCP crystallographic structure is not fully uncovered; recent results suggest that sintered β-TCP is coated with a Ca-rich alkaline phase; β-TCP apatite-forming ability and osteoinductivity may be enhanced by a hydrothermal treatment; β-TCP grain size and porosity are strongly modified by the presence of minute amounts of β-calcium pyrophosphate or hydroxyapatite impurities. The aim of the present article is to provide a critical, but still rather comprehensive review of the current state of knowledge on β-TCP, with a strong focus on its synthesis and physico-chemical properties, and their link to the in vivo response. STATEMENT OF SIGNIFICANCE: The present review documents the richness, breadth, and interest of the research devoted to β-tricalcium phosphate (β-TCP). β-TCP is synthetic, osteoconductive, osteoinductive, and its resorption is cell-mediated, thus making it one of the most potent bone graft substitutes. This comprehensive review reveals that there are a number of aspects, such as surface chemistry, crystallography, or stoichiometry deviations, that are still poorly understood. As such, β-TCP is still an exciting scientific playground despite a 50 year long history and > 200 yearly publications.
Collapse
|
12
|
Yuan X, Han L, Lin H, Guo Z, Huang Y, Li S, Long T, Tang W, Tian W, Long J. The role of antimiR-26a-5p/biphasic calcium phosphate in repairing rat femoral defects. Int J Mol Med 2019; 44:857-870. [PMID: 31257525 PMCID: PMC6658005 DOI: 10.3892/ijmm.2019.4249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Although miRNAs have been implicated in the osteogenic differentiation of stem cells, their role in bone repair and reconstruction in tissue‑engineered bone grafts remains unclear. We previously reported that microRNA (miR)‑26a‑5p inhibited the osteogenic differentiation of adipose‑derived mesenchymal stem cells (ADSCs), and that antimiR‑26a‑5p exerted the opposite effect. In the present study, the role of miR‑26a‑5p‑ and antimiR‑26a‑5p‑modified ADSCs combined with biphasic calcium phosphate (BCP) scaffolds was evaluated in a rat femur defect model. The aim of the present study was to improve the understanding of the role of miR‑26a‑5p in bone regeneration in vivo, as well as to provide a new method to optimize the osteogenic ability of BCPs. ADSCs were infected with Lv‑miR‑26a‑5p, Lv‑miR‑NC, Lv‑antimiR‑26a‑5p or Lv‑antimiR‑NC respectively, and then combined with BCP scaffolds to repair rat femoral defects. Using X‑rays, micro‑computed tomography and histology at 2, 4, and 8 weeks postoperatively, the quantity and rate of bone regeneration were analyzed, revealing that they were the highest in animals treated with antimiR‑26a‑5p and the lowest in the miR‑26a‑5p treatment group. The expression levels of osteocalcin, collagen I, Runt‑related transcription factor 2, Wnt family member 5A and calmodulin‑dependent protein kinase II proteins were positively correlated with the bone formation rate. Taken together, the present results demonstrated that miR‑26a‑5p inhibited bone formation while antimiR‑26a‑5p accelerated bone formation via the Wnt/Ca2+ signaling pathway. Therefore, antimiR‑26a‑5p‑modified ADSCs combined with BCP scaffolds may be used to construct an effective tissue‑engineering bone graft for bone repair and reconstruction.
Collapse
Affiliation(s)
- Xiaoyan Yuan
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Aesthetic Medicine, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610017
| | - Lu Han
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Zeyou Guo
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Yanling Huang
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Shasha Li
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Ting Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Wei Tang
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Weidong Tian
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Jie Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| |
Collapse
|
13
|
Shiwaku Y, Tsuchiya K, Xiao L, Suzuki O. Effect of calcium phosphate phases affecting the crosstalk between osteoblasts and osteoclasts in vitro. J Biomed Mater Res A 2019; 107:1001-1013. [PMID: 30684383 DOI: 10.1002/jbm.a.36626] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/12/2018] [Indexed: 11/08/2022]
Abstract
Previous studies have reported that octacalcium phosphate (OCP) enhances osteoblast differentiation and osteoclast formation during the hydrolysis process to hydroxyapatite (HA). However, the crystal phases that affect the crosstalk between osteoclasts and osteoblasts are unknown, which should determine the bone substitute material's property of OCP. The present study was designed to investigate whether the chemical composition and crystal structure of calcium phosphates affect osteoclast formation and the osteoclast-osteoblast crosstalk. Biodegradable β-tricalcium phosphate (β-TCP) was used as the control material. Osteoclasts were cultured on HA/OCP or HA/TCP disks and their cellular responses were assessed. Both OCP and β-TCP had a similar ability to create multinucleated osteoclasts. However, OCP promoted the expression of complement component 3a (C3a), a positive coupling factor, in osteoclasts, whereas β-TCP enhanced that of EphrinB2 (EfnB2) and collagen triple helix repeat containing 1 (Cthrc1). During osteoclast culture, phosphate ions were released from the crystals, and OCP-HA conversion was advanced in HA/OCP mixtures and OCP. X-ray diffraction analysis revealed no remarkable changes in the crystal structures of HA/TCP mixtures and β-TCP before and after osteoclast culture. These results indicate that the distinct chemical environment induced by the calcium phosphate phases affects the crosstalk between osteoclasts and osteoblasts. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1001-1013, 2019.
Collapse
Affiliation(s)
- Yukari Shiwaku
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kaori Tsuchiya
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Linghao Xiao
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
14
|
Zhu W, Ma Q, Borg S, Öhman Mägi C, Weng X, Engqvist H, Xia W. Cemented injectable multi-phased porous bone grafts for the treatment of femoral head necrosis. J Mater Chem B 2019. [DOI: 10.1039/c9tb00238c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cemented injectable multi-phased porous bone grafts for the treatment of femoral head necrosis.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Orthopedics
- Peking Union Medical College Hospital
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100730
- China
| | - Qi Ma
- Department of Orthopedics
- Peking Union Medical College Hospital
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100730
- China
| | - Sebastian Borg
- Applied Materials Science
- Department of Engineering Science
- Uppsala University
- Uppsala 75121
- Sweden
| | - Caroline Öhman Mägi
- Applied Materials Science
- Department of Engineering Science
- Uppsala University
- Uppsala 75121
- Sweden
| | - Xisheng Weng
- Department of Orthopedics
- Peking Union Medical College Hospital
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100730
- China
| | - Håkan Engqvist
- Applied Materials Science
- Department of Engineering Science
- Uppsala University
- Uppsala 75121
- Sweden
| | - Wei Xia
- Applied Materials Science
- Department of Engineering Science
- Uppsala University
- Uppsala 75121
- Sweden
| |
Collapse
|
15
|
Rößler S, Heinemann C, Kruppke B, Wagner AS, Wenisch S, Wiesmann HP, Hanke T. Manipulation of osteoclastogenesis: Bioactive multiphasic silica/collagen composites and their effects of surface and degradation products. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:265-276. [PMID: 30274058 DOI: 10.1016/j.msec.2018.07.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 05/12/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
The intent of the present study was to demonstrate that multiphasic silica/collagen xerogels are able to manipulate cellular processes. These xerogels were prepared by a sol-gel approach allowing the incorporation of mineral phases. The resulting nanocomposites are designed as biomaterial for bone regeneration. Human osteoclasts derived from peripheral blood mononuclear cells were cultured both indirectly and directly, either in presence of different xerogel types or on their surface, to investigate the factor with the main influence on osteoclastogenesis. To this end, the incorporation of a third phase to silica/collagen xerogels was used to affect osteoclastogenesis. In cell culture, ambient ion conditions controlled by both the degradation products of the xerogel and the bioactivity-dependent ion release and reprecipitation were shown to have the main effect on osteoclast specific enzyme tartrate-resistant acid phosphatase (TRAP) 5b. Late stage of osteoclastogenesis characterized by resorption was strongly dependent on the xerogels composition. Surface chemistry of the xerogels was displayed to play an important role in osteoclast resorption. Biphasic silica/collagen xerogels and triphasic xerogels with calcium carbonate offered widespread resorbed areas, whereas hydroxyapatite containing xerogels showed distinctly reduced resorption. The incorporation of strontium carbonate and phosphate, respectively, as third phase changed TRAP 5b activity dose-dependently and inhibited resorption within 21 days. Quantitative evaluation on osteoclast differentiation was carried out using biochemical methods (TRAP 5b, cathepsin K) and was supported by confocal laser scanning microscopy and scanning electron microscopy (SEM). Qualitative estimation of resorption was carried out by SEM.
Collapse
Affiliation(s)
- S Rößler
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technical University Dresden, Budapester Str. 27, D-01069 Dresden, Germany.
| | - C Heinemann
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technical University Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| | - B Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technical University Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| | - A S Wagner
- Department of Veterinary Clinical Science, Small Animal Clinic c/o Institute of Veterinary-Anatomy, -Histology and -Embryology, University Giessen, Frankfurter Str. 98, D-35392 Giessen, Germany
| | - S Wenisch
- Department of Veterinary Clinical Science, Small Animal Clinic c/o Institute of Veterinary-Anatomy, -Histology and -Embryology, University Giessen, Frankfurter Str. 98, D-35392 Giessen, Germany
| | - H P Wiesmann
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technical University Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| | - T Hanke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technical University Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| |
Collapse
|
16
|
Rodríguez AP, Sánchez MA, Felice B, Zamora ML, Tsujigiwa H, Takabatake K, Kawai H, Nakano K, Nagatsuka H. In Vitro Efficacy of CaCO 3 Content in CaTiO 3– CaCO 3 Composites for Bone Growth. J HARD TISSUE BIOL 2018. [DOI: 10.2485/jhtb.27.250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Andrea Paola Rodríguez
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
- Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Universidad Nacional de Tucumán, Consejo Nacional de Investigaciones Científicas y Técnicas
| | - María Alejandra Sánchez
- Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Universidad Nacional de Tucumán, Consejo Nacional de Investigaciones Científicas y Técnicas
| | - Betiana Felice
- Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Universidad Nacional de Tucumán, Consejo Nacional de Investigaciones Científicas y Técnicas
| | - Martín Lucas Zamora
- Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Universidad Nacional de Tucumán, Consejo Nacional de Investigaciones Científicas y Técnicas
| | - Hidetsugu Tsujigiwa
- Department of Life Science, Faculty of Science, Okayama University of Science
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
| |
Collapse
|
17
|
Pirosa A, Gottardi R, Alexander PG, Tuan RS. Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology. Stem Cell Res Ther 2018; 9:112. [PMID: 29678192 PMCID: PMC5910611 DOI: 10.1186/s13287-018-0847-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The production of veritable in-vitro models of bone tissue is essential to understand the biology of bone and its surrounding environment, to analyze the pathogenesis of bone diseases (e.g., osteoporosis, osteoarthritis, osteomyelitis, etc.), to develop effective therapeutic drug screening, and to test potential therapeutic strategies. Dysregulated interactions between vasculature and bone cells are often related to the aforementioned pathologies, underscoring the need for a bone model that contains engineered vasculature. Due to ethical restraints and limited prediction power of animal models, human stem cell-based tissue engineering has gained increasing relevance as a candidate approach to overcome the limitations of animals and to serve as preclinical models for drug testing. Since bone is a highly vascularized tissue, the concomitant development of vasculature and mineralized matrix requires a synergistic interaction between osteogenic and endothelial precursors. A number of experimental approaches have been used to achieve this goal, such as the combination of angiogenic factors and three-dimensional scaffolds, prevascularization strategies, and coculture systems. In this review, we present an overview of the current models and approaches to generate in-vitro stem cell-based vascularized bone, with emphasis on the main challenges of vasculature engineering. These challenges are related to the choice of biomaterials, scaffold fabrication techniques, and cells, as well as the type of culturing conditions required, and specifically the application of dynamic culture systems using bioreactors.
Collapse
Affiliation(s)
- Alessandro Pirosa
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
- Ri.MED Foundation, Via Bandiera 11, Palermo, 90133 Italy
| | - Peter G. Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| |
Collapse
|
18
|
Kowal TJ, Hahn NC, Eider S, Marzillier JY, Fodera DM, Thamma U, Jain H, Falk MM. New bioactive glass scaffolds with exceptional qualities for bone tissue regeneration: response of osteoblasts and osteoclasts. ACTA ACUST UNITED AC 2018; 13:025005. [PMID: 29033393 DOI: 10.1088/1748-605x/aa9385] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tissue regeneration is a significantly improved alternative to tissue replacement by implants. It requires porous bioscaffolds for the restoration of natural tissue rather than relying on bio-inactive, often metallic implants. Recently, we developed technology for fabricating novel, nano-macroporous bioactive 'tailored amorphous multi-porous (TAMP)' hard tissue scaffolds using a 70 mol% SiO2-30 mol% CaO model composition. The TAMP silicate scaffolds, fabricated by a modified sol-gel process, have shown excellent biocompatibility via the rapid formation of hydroxyapatite in biological fluids as well as in early tests with bone forming cells. Here we report an in depth investigation of the response of MC3T3-E1 pre-osteoblast cells and bone marrow derived (BMD) osteoclasts to these TAMP scaffolds. Light and electron microscopic imaging, gene and protein expression, and enzyme activity analyses demonstrate that MC3T3-E1 pre-osteoblasts adhere, proliferate, colonize, and differentiate on and inside the bioactive TAMP scaffolds. Additionally, BMD precursor cells mature into active osteoclasts and remodel the scaffold, highlighting the exceptional qualities of this novel scaffold material for bone tissue regeneration.
Collapse
Affiliation(s)
- Tia J Kowal
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Shahbazi S, Zamanian A, Pazouki M, Jafari Y. Introducing an attractive method for total biomimetic creation of a synthetic biodegradable bioactive bone scaffold based on statistical experimental design. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [PMID: 29525086 DOI: 10.1016/j.msec.2017.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new total biomimetic technique based on both the water uptake and degradation processes is introduced in this study to provide an interesting procedure to fabricate a bioactive and biodegradable synthetic scaffold, which has a good mechanical and structural properties. The optimization of effective parameters to scaffold fabrication was done by response surface methodology/central composite design (CCD). With this method, a synthetic scaffold was fabricated which has a uniform and open-interconnected porous structure with the largest pore size of 100-200μm. The obtained compressive ultimate strength of ~35MPa and compression modulus of 58MPa are similar to some of the trabecular bone. The pore morphology, size, and distribution of the scaffold were characterized using a scanning electron microscope and mercury porosimeter. Fourier transform infrared spectroscopy, EDAX and X-ray diffraction analyses were used to determine the chemical composition, Ca/P element ratio of mineralized microparticles, and the crystal structure of the scaffolds, respectively. The optimum biodegradable synthetic scaffold based on its raw materials of polypropylene fumarate, hydroxyethyl methacrylate and nano bioactive glass (PPF/HEMA/nanoBG) as 70/30wt/wt%, 20wt%, and 1.5wt/wt% (PHB.732/1.5) with desired porosity, pore size, and geometry were created by 4weeks immersion in SBF. This scaffold showed considerable biocompatibility in the ranging from 86 to 101% for the indirect and direct contact tests and good osteoblast cell attachment when studied with the bone-like cells.
Collapse
Affiliation(s)
- Sara Shahbazi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Alborz, Iran
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Alborz, Iran.
| | - Mohammad Pazouki
- Department of Energy, Materials and Energy Research Center, Karaj, Alborz, Iran
| | - Yaser Jafari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
20
|
Oryan A, Alidadi S, Bigham-Sadegh A. Dicalcium Phosphate Anhydrous: An Appropriate Bioceramic in Regeneration of Critical-Sized Radial Bone Defects in Rats. Calcif Tissue Int 2017; 101:530-544. [PMID: 28761974 DOI: 10.1007/s00223-017-0309-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/22/2017] [Indexed: 01/28/2023]
Abstract
The present study aimed to evaluate and compare the effectiveness of composites of calcium phosphates including β-tri calcium phosphate (β-TCP), dicalcium phosphate anhydrous (DCPA, monetite), mono-calcium phosphate monohydrate (MCPM), and hydroxyapatite (HA) with the chitosan-gelatin-platelet gel (CGP) on the healing of experimentally induced critical size radial bone defects in rats after 8 weeks of injury. Eighty bilateral bone defects were created in the radial bones of 40 adult male Sprague-Dawley rats. The defects were either left empty (untreated or defect group), or treated with autograft, CGP, CGP-DCP, CGP-TCP, CGP/β-TCP/DCPA (CGP-TD), CGP-TD/MCPM (CGP-TDM), and CGP-TDM/HA (CGP-TDMH) scaffolds. The injured forelimbs were evaluated by radiography, gross morphology, three-dimensional computed tomography scanning, histopathology, histomorphometry, scanning electron microscopy, and biomechanical testing. The materials were analyzed using X-ray diffraction to verify the crystalline nature of their structures, and their crystallinity was revealed based on the diffraction peaks achieved from the XRD analysis. The best results were achieved by the CGP-DCP scaffold and the autograft. The CGP-TCP and CGP-TDMH scaffolds were not degraded, while the CGP-DCP, CGP-TDM, CGP-TD, and CGP scaffolds were biodegraded and enhanced bone formation compared with the CGP-TCP and CGP-TDMH groups (P < 0.05). Overall, the CGP-DCP treated defects showed significant improvement in bone formation and union, bone volume, maximum load, and stiffness compared to the CGP group (P < 0.05). It could be concluded that the CGP-DCP scaffold can be considered as a suitable substitute to autograft. In fact, this study demonstrated that DCPA or monetite has high healing potential due to its biocompatibility, biodegradability and biomechanical, osteoconductive and osteoinductive properties of this bioceramic.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Soodeh Alidadi
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amin Bigham-Sadegh
- Department of Surgery and Radiology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
21
|
Pascaretti-Grizon F, Guillaume B, Terranova L, Arbez B, Libouban H, Chappard D. Maxillary Sinus Lift with Beta-Tricalcium Phosphate (β-TCP) in Edentulous Patients: A Nanotomographic and Raman Study. Calcif Tissue Int 2017; 101:280-290. [PMID: 28447119 DOI: 10.1007/s00223-017-0280-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/10/2017] [Indexed: 01/06/2023]
Abstract
Sinus lift elevation restores bone mass at the maxilla in edentulate patients before the placement of dental implants. It consists of opening the lateral side of the sinus and grafting beta-tricalcium phosphate granules (β-TCP) under the olfactory membrane. Bone biopsies were obtained in five patients after 60 weeks. They were embedded undecalcified in poly(methyl methacrylate) (pMMA); blocks were analyzed by nanocomputed tomography (nanoCT); specific areas were studied by Raman microspectroscopy. Remnants of β-TCP were osseointegrated and covered with mineralized bone; osteoid tissue was also filling the inner porosity. Macrophages having engulfed numerous β-TCP grains were observed in marrow spaces. β-TCP was identified by nanoCT as osseointegrated particles and as granules in the cytoplasm of macrophages. Raman microspectroscopy permitted to compare the spectra of β-TCP and bone in different areas. The ratio of the ~820 cm-1 band of pMMA (-CH2 groups) on the ν1 phosphate band at 960 cm-1 reflected tissue hydration because water was substituted by MMA during histological processing. In bone, the ratio of the ~960 cm-1 phosphate to the amide 1 band and the ratio ν2 phosphate band by the 1240-1250 amide III band reflect the mineralization degree. Specific bands of β-TCP were found in osseointegrated β-TCP granules and in the grains phagocytized by the macrophages. The hydration degree was maximal for β-TCP phagocytized by macrophages. Raman microspectroscopy associated with nanoCT is a powerful tool in the analysis of the biomaterial degradation and osseointegration.
Collapse
Affiliation(s)
- Florence Pascaretti-Grizon
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France
| | - Bernard Guillaume
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France
- CFI, Collège Français d'Implantologie, 6, rue de Rome, 75005, Paris, France
| | - Lisa Terranova
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France
| | - Baptiste Arbez
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France
| | - Hélène Libouban
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France
| | - Daniel Chappard
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France.
- GEROM - NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, 49933, Angers Cedex, France.
| |
Collapse
|
22
|
Marashi-Najafi F, Khalil-Allafi J, Etminanfar M. Biocompatibility of hydroxyapatite coatings deposited by pulse electrodeposition technique on the Nitinol superelastic alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:278-286. [DOI: 10.1016/j.msec.2017.03.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/28/2017] [Accepted: 03/09/2017] [Indexed: 10/20/2022]
|
23
|
Dall'Oca C, Maluta T, Micheloni GM, Cengarle M, Morbioli G, Bernardi P, Sbarbati A, Degl'Innocenti D, Lavini F, Magnan B. The biocompatibility of bone cements: progress in methodological approach. Eur J Histochem 2017; 61:2673. [PMID: 28735526 PMCID: PMC5432939 DOI: 10.4081/ejh.2017.2673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 12/31/2022] Open
Abstract
The ideal bone graft substitute should have certain properties and there are many studies dealing with mixture of polymethylmetacrilate (PMMA) and ß-tricalciumphospate (ß-TCP) presenting the best characteristics of both. Scanning Electron Microscopy (SEM), for ultra-structural data, resulted a very reliable in vivo model to better understand the bioactivity of a cement and to properly evaluate its suitability for a particular purpose. The present study aims to further improve the knowledge on osteointegration development, using both parameters obtained with the Environmental Scanning Electron Microscopy (ESEM) and focused histological examination. Two hybrid bone graft substitute were designed among ceramic and polymer-based bone graft substitutes. Based on ß-TCP granules sizes, they were created with theoretical different osteoconductive properties. An acrylic standard cement was chosen as control. Cements were implanted in twelve New Zealand White (NZW) rabbits, which were sacrificed at 1, 2, 3, 6, 9 and 12 months after cement implantation. Histological samples were prepared with an infiltration process of LR white resin and then specimens were studied by X-rays, histology and Environmental Scanning Electron Microscopy (ESEM). Comparing the resulting data, it was possible to follow osteointegration’s various developments resulting from different sizes of ß-TCP granules. In this paper, we show that this evaluation process, together with ESEM, provides further important information that allows to follow any osteointegration at every stage of develop.
Collapse
|
24
|
Bouler J, Pilet P, Gauthier O, Verron E. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater 2017; 53:1-12. [PMID: 28159720 DOI: 10.1016/j.actbio.2017.01.076] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/04/2017] [Accepted: 01/27/2017] [Indexed: 12/23/2022]
Abstract
Autologous bone graft is considered as the gold standard in bone reconstructive surgery. However, the quantity of bone available is limited and the harvesting procedure requires a second surgical site resulting in severe complications. Due to these limits, scientists and clinicians have considered alternatives to autologous bone graft. Calcium phosphates (CaPs) biomaterials including biphasic calcium phosphate (BCP) ceramics have proven efficacy in numerous clinical indications. Their specific physico-chemical properties (HA/TCP ratio, dual porosity and subsequent interconnected architecture) control (regulate/condition) the progressive resorption and the bone substitution process. By describing the most significant biological responses reported in the last 30years, we review the main events that made their clinical success. We also discuss about their exciting future applications as osteoconductive scaffold for delivering various bioactive molecules or bone cells in bone tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE Nowadays, BCPs are definitely considered as the gold standard of bone substitutes in bone reconstructive surgery. Among the numerous clinical studies in literature demonstrating the performance of BCP, Passuti et al. and Randsford et al. studies largely contributed to the emergence of the BCPs. It could be interesting to come back to the main events that made their success and could explain their large adhesion from scientists to clinicians. This paper aims to review the most significant biological responses reported in the last 30years, of these BCP-based materials. We also discuss about their exciting future applications as osteoconductive scaffold for delivering various bioactive molecules or bone cells in bone tissue engineering and regenerative medicine.
Collapse
|
25
|
Cao L, Li X, Zhou X, Li Y, Vecchio KS, Yang L, Cui W, Yang R, Zhu Y, Guo Z, Zhang X. Lightweight Open-Cell Scaffolds from Sea Urchin Spines with Superior Material Properties for Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9862-9870. [PMID: 28252933 DOI: 10.1021/acsami.7b01645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sea urchin spines (Heterocentrotus mammillatus), with a hierarchical open-cell structure similar to that of human trabecular bone and superior mechanical property (compressive strength ∼43.4 MPa) suitable for machining to shape, were explored for potential applications of bone defect repair. Finite element analyses reveal that the compressive stress concentrates along the dense growth rings and dissipates through strut structures of the stereoms, indicating that the exquisite mesostructures play an important role in high strength-to-weight ratios. The fracture strength of magnesium-substituted tricalcium phosphate (β-TCMP) scaffolds produced by hydrothermal conversion of urchin spines is about 9.3 MPa, comparable to that of human trabecular bone. New bone forms along outer surfaces of β-TCMP scaffolds after implantation in rabbit femoral defects for one month and grows into the majority of the inner open-cell spaces postoperation in three months, showing tight interface between the scaffold and regenerative bone tissue. Fusion of beagle lumbar facet joints using a Ti-6Al-4V cage and β-TCMP scaffold can be completed within seven months with obvious biodegradation of the β-TCMP scaffold, which is nearly completely degraded and replaced by newly formed bone ten months after implantation. Thus, sea urchin spines suitable for machining to shape have advantages for production of biodegradable artificial grafts for bone defect repair.
Collapse
Affiliation(s)
- Lei Cao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
| | - Xiaokang Li
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, Shaanxi 710032, China
| | - Xiaoshu Zhou
- Department of Orthopedics, The First Hospital of China Medical University , Shenyang, Liaoning 110001, China
| | - Yong Li
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, Shaanxi 710032, China
| | - Kenneth S Vecchio
- NanoEngineering Department, University of California, San Diego , La Jolla, California 92093, United States
| | - Lina Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
| | - Wei Cui
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
| | - Rui Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
- School of Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Yue Zhu
- Department of Orthopedics, The First Hospital of China Medical University , Shenyang, Liaoning 110001, China
| | - Zheng Guo
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, Shaanxi 710032, China
| | - Xing Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
- School of Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|
26
|
Igeta K, Kuwamura Y, Horiuchi N, Nozaki K, Shiraishi D, Aizawa M, Hashimoto K, Yamashita K, Nagai A. Morphological and functional changes in
RAW
264 macrophage‐like cells in response to a hydrated layer of carbonate‐substituted hydroxyapatite. J Biomed Mater Res A 2017; 105:1063-1070. [DOI: 10.1002/jbm.a.35997] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/10/2016] [Accepted: 01/04/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Kazuki Igeta
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University2‐3‐10 Kanda‐SurugadaiChiyoda‐ku, Tokyo 101‐0062 Japan
- Department of Applied Chemistry, School of Science and TechnologyMeiji University1‐1‐1 Higashimita, Tama‐kuKawasakiKanagawa 214‐8571 Japan
| | - Yuta Kuwamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University2‐3‐10 Kanda‐SurugadaiChiyoda‐ku, Tokyo 101‐0062 Japan
- Department of Life and Environmental SciencesChiba Institute of Technology2‐17‐1 TsudanumaNarashino, Chiba 275‐0016 Japan
| | - Naohiro Horiuchi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University2‐3‐10 Kanda‐SurugadaiChiyoda‐ku, Tokyo 101‐0062 Japan
| | - Kosuke Nozaki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University2‐3‐10 Kanda‐SurugadaiChiyoda‐ku, Tokyo 101‐0062 Japan
| | - Daichi Shiraishi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University2‐3‐10 Kanda‐SurugadaiChiyoda‐ku, Tokyo 101‐0062 Japan
- Department of Life and Environmental SciencesChiba Institute of Technology2‐17‐1 TsudanumaNarashino, Chiba 275‐0016 Japan
| | - Mamoru Aizawa
- Department of Applied Chemistry, School of Science and TechnologyMeiji University1‐1‐1 Higashimita, Tama‐kuKawasakiKanagawa 214‐8571 Japan
| | - Kazuaki Hashimoto
- Department of Life and Environmental SciencesChiba Institute of Technology2‐17‐1 TsudanumaNarashino, Chiba 275‐0016 Japan
| | - Kimihiro Yamashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University2‐3‐10 Kanda‐SurugadaiChiyoda‐ku, Tokyo 101‐0062 Japan
| | - Akiko Nagai
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University2‐3‐10 Kanda‐SurugadaiChiyoda‐ku, Tokyo 101‐0062 Japan
| |
Collapse
|
27
|
Clarke SA, Martin J, Nelson J, Hornez JC, Bohner M, Dunne N, Buchanan F. Surrogate Outcome Measures of In Vitro Osteoclast Resorption of β Tricalcium Phosphate. Adv Healthc Mater 2017; 6. [PMID: 27930865 DOI: 10.1002/adhm.201600947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/01/2016] [Indexed: 01/12/2023]
Abstract
Introduction of porosity to calcium phosphate scaffolds for bone repair has created a new challenge when measuring bioresorption in vitro, rendering traditional outcome measures redundant. The aim of this study is to identify a surrogate endpoint for use with 3D scaffolds. Murine RAW 264.7 cells are cultured on dense discs of β-tricalcium phosphate in conditions to stimulate osteoclast (OC) formation. Multinucleated OCs are visible from day 6 with increases at days 8 and 10. Resorption pits are first observed at day 6 with much larger pits visible at days 8, 10, and 12. The concentration of calcium ions in the presence of cells is significantly higher than cell-free cultures at days 3 and 9. Using linear regression analysis, Ca ion release could account for 35.9% of any subsequent change in resorption area. The results suggest that Ca ion release is suitable to measure resorption of a beta-tricalcium phosphate ceramic substrate in vitro. This model could replace the more accepted resorption pit assay in circumstances where quantification of pits is not possible, e.g., when characterizing 3D tissue engineered bone scaffolds.
Collapse
Affiliation(s)
- Susan A. Clarke
- School of Nursing and Midwifery; Medical Biology Centre; 97, Lisburn Road Belfast BT9 7BL UK
| | - Joanne Martin
- School of Mechanical and Aerospace Engineering; Queen's University Belfast; Ashby Building, Stranmillis Rd Belfast BT9 5AH UK
| | - John Nelson
- School of Biological Sciences; Queens University Belfast; MBC, 97 Lisburn Rd Belfast BT9 7BL UK
| | | | - Marc Bohner
- Skeletal Substitutes Group; RMS Foundation; Bischmattstr. 12 CH-2544 Bettlach Switzerland
| | - Nicholas Dunne
- School of Mechanical and Aerospace Engineering; Queen's University Belfast; Ashby Building, Stranmillis Rd Belfast BT9 5AH UK
| | - Fraser Buchanan
- School of Mechanical and Aerospace Engineering; Queen's University Belfast; Ashby Building, Stranmillis Rd Belfast BT9 5AH UK
| |
Collapse
|
28
|
Zhou W, Zhang J, Lin K, Chen F. Comparison between mandibular and femur derived bone marrow stromal cells: osteogenic and angiogenic potentials in vitro and bone repairing ability in vivo. RSC Adv 2017. [DOI: 10.1039/c7ra07139f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
M-BMSCs contains stronger osteogenic and angiogenic potentials, and better bone repairing ability.
Collapse
Affiliation(s)
- Wenhui Zhou
- Department of Orthodontics
- School & Hospital of Stomatology
- Tongji University
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Shanghai 200072
| | - Jinkai Zhang
- Department of Orthodontics
- School & Hospital of Stomatology
- Tongji University
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Shanghai 200072
| | - Kaili Lin
- School & Hospital of Stomatology
- Tongji University
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Shanghai 200072
- China
| | - Fengshan Chen
- Department of Orthodontics
- School & Hospital of Stomatology
- Tongji University
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Shanghai 200072
| |
Collapse
|
29
|
In vitro study of a new biodegradable nanocomposite based on poly propylene fumarate as bone glue. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1201-9. [DOI: 10.1016/j.msec.2016.08.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/05/2016] [Accepted: 08/12/2016] [Indexed: 12/21/2022]
|
30
|
Zhong Q, Li W, Su X, Li G, Zhou Y, Kundu SC, Yao J, Cai Y. Degradation pattern of porous CaCO 3 and hydroxyapatite microspheres in vitro and in vivo for potential application in bone tissue engineering. Colloids Surf B Biointerfaces 2016; 143:56-63. [DOI: 10.1016/j.colsurfb.2016.03.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/23/2016] [Accepted: 03/06/2016] [Indexed: 12/31/2022]
|
31
|
Yuan B, Chen Y, Lin H, Song Y, Yang X, Tang H, Xie E, Hsu T, Yang X, Zhu X, Zhang K, Zhang X. Processing and Properties of Bioactive Surface-Porous PEKK. ACS Biomater Sci Eng 2016; 2:977-986. [PMID: 33429506 DOI: 10.1021/acsbiomaterials.6b00103] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bo Yuan
- National
Engineering Research Center for Biomaterials, Sichuan University, Biomaterials Building, No. 29 Wangjiang Road, Chengdu, China 610064
| | - Yangmei Chen
- National
Engineering Research Center for Biomaterials, Sichuan University, Biomaterials Building, No. 29 Wangjiang Road, Chengdu, China 610064
| | - Hai Lin
- National
Engineering Research Center for Biomaterials, Sichuan University, Biomaterials Building, No. 29 Wangjiang Road, Chengdu, China 610064
| | - Yueming Song
- Department
of Orthopedic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, China 610041
| | - Xi Yang
- Department
of Orthopedic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, China 610041
| | - Hai Tang
- Department
of Orthopedics, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Beijing, China 100050
| | - En Xie
- Department
of Spine Surgery, Hong-Hui Hospital, Xi’an Jiaotong University, College of Medicine, No. 555 Youyi East Road, Xi’an China 710054
| | - Tim Hsu
- Polymics Ltd., 2215 High Tech
Road, State College, Pennsylvania 16803, United States
| | - Xiao Yang
- National
Engineering Research Center for Biomaterials, Sichuan University, Biomaterials Building, No. 29 Wangjiang Road, Chengdu, China 610064
| | - Xiangdong Zhu
- National
Engineering Research Center for Biomaterials, Sichuan University, Biomaterials Building, No. 29 Wangjiang Road, Chengdu, China 610064
| | - Kai Zhang
- National
Engineering Research Center for Biomaterials, Sichuan University, Biomaterials Building, No. 29 Wangjiang Road, Chengdu, China 610064
| | - Xingdong Zhang
- National
Engineering Research Center for Biomaterials, Sichuan University, Biomaterials Building, No. 29 Wangjiang Road, Chengdu, China 610064
| |
Collapse
|
32
|
Ratnayake JTB, Mucalo M, Dias GJ. Substituted hydroxyapatites for bone regeneration: A review of current trends. J Biomed Mater Res B Appl Biomater 2016; 105:1285-1299. [DOI: 10.1002/jbm.b.33651] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 01/03/2023]
Affiliation(s)
| | - Michael Mucalo
- Chemistry Department; School of Science, Faculty of Science and Engineering, University of Waikato; Hamilton New Zealand
| | - George J. Dias
- Department of Anatomy; School of Medical Sciences, University of Otago; Dunedin 9054 New Zealand
| |
Collapse
|
33
|
Shiwaku Y, Neff L, Nagano K, Takeyama KI, de Bruijn J, Dard M, Gori F, Baron R. The Crosstalk between Osteoclasts and Osteoblasts Is Dependent upon the Composition and Structure of Biphasic Calcium Phosphates. PLoS One 2015; 10:e0132903. [PMID: 26193362 PMCID: PMC4507990 DOI: 10.1371/journal.pone.0132903] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/22/2015] [Indexed: 11/18/2022] Open
Abstract
Biphasic calcium phosphates (BCPs), consisting of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), exhibit good biocompatibility and osteoconductivity, maintaining a balance between resorption of the biomaterial and formation of new bone. We tested whether the chemical composition and/or the microstructure of BCPs affect osteoclasts (OCs) differentiation and/or their ability to crosstalk with osteoblasts (OBs). To this aim, OCs were cultured on BCPs with HA content of 5, 20 or 60% and their differentiation and activity were assessed. We found that OC differentiation is partially impaired by increased HA content, but not by the presence of micropores within BCP scaffolds, as indicated by TRAP staining and gene profile expression. We then investigated whether the biomaterial-induced changes in OC differentiation also affect their ability to crosstalk with OBs and regulate OB function. We found that BCPs with low percentage of HA favored the expression of positive coupling factors, including sphingosine-kinase 1 (SPHK1) and collagen triple helix repeat containing 1 (Cthrc1). In turn, the increase of these secreted coupling factors promotes OB differentiation and function. All together our studies suggest that the chemical composition of biomaterials affects not only the differentiation and activity of OCs but also their potential to locally regulate bone formation.
Collapse
Affiliation(s)
- Yukari Shiwaku
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States of America
| | - Lynn Neff
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States of America
| | - Kenichi Nagano
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States of America
| | - Ken-Ichi Takeyama
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States of America
| | | | - Michel Dard
- Department of Periodontology and Implant Dentistry, New York University College of Dentistry, New York, NY, United States of America
| | - Francesca Gori
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States of America
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States of America
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
34
|
Young PS, Tsimbouri PM, Gadegaard N, Meek RMD, Dalby MJ. Osteoclastogenesis/osteoblastogenesis using human bone marrow-derived cocultures on nanotopographical polymer surfaces. Nanomedicine (Lond) 2015; 10:949-57. [PMID: 25867859 DOI: 10.2217/nnm.14.146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Optimised nanotopography with controlled disorder (NSQ50) has been shown to stimulate osteogenesis and new bone formation in vitro. Following osteointegration the implant interface must undergo constant remodeling without inducing immune response. AIM We aimed to assess the effect of nanotopography on bone remodelling using osteoclast and osteoblast cocultures. MATERIALS & METHODS We developed a novel osteoblast/osteoclast coculture using solely human bone marrow derived mesenchymal and hematopeotic progenitor cells without extraneous supplementation. The coculture was been applied to NSQ50 or flat control polycarbonate substrates and assessed using immunohistochemical and immunofluorescent microscopy, scanning electron microscopy and quantitative reverse-transcription PCR methods. RESULTS These confirm the presence of mature osteoclasts, osteoblasts and bone formation in coculture. Osteoblast differentiation increased on NSQ50, with no significant difference in osteoclast differentiation. CONCLUSION Controlled disorder nanotopography appears to be selectively bioactive. We recommend this coculture method to be a better in vitro approximation of the osseous environment encountered by implants.
Collapse
Affiliation(s)
- Peter S Young
- Centre for Cell Engineering, University of Glasgow, G12 8QQ, Glasgow, UK
| | | | | | | | | |
Collapse
|
35
|
Friederichs RJ, Brooks RA, Ueda M, Best SM. In vitroosteoclast formation and resorption of silicon-substituted hydroxyapatite ceramics. J Biomed Mater Res A 2015; 103:3312-22. [DOI: 10.1002/jbm.a.35470] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/21/2015] [Accepted: 03/26/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Robert J. Friederichs
- Department of Materials Science & Metallurgy; University of Cambridge; 27 Charles Babbage Road Cambridge CB3 0FS United Kingdom
| | - Roger A. Brooks
- Division of Trauma & Orthopaedic Surgery; Box 180, Addenbrooke's Hospital; Hills Road Cambridge CB2 0QQ United Kingdom
| | - Masato Ueda
- Faculty of Chemistry; Materials & Bioengineering; Department of Chemistry & Materials Engineering; Kansai University; 3-3-35 Yamate-Cho Suita, Osaka 564-8680 Japan
| | - Serena M. Best
- Department of Materials Science & Metallurgy; University of Cambridge; 27 Charles Babbage Road Cambridge CB3 0FS United Kingdom
| |
Collapse
|
36
|
Morelli S, Salerno S, Holopainen J, Ritala M, De Bartolo L. Osteogenic and osteoclastogenic differentiation of co-cultured cells in polylactic acid-nanohydroxyapatite fiber scaffolds. J Biotechnol 2015; 204:53-62. [PMID: 25858154 DOI: 10.1016/j.jbiotec.2015.03.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 01/07/2023]
Abstract
The design of bone substitutes involves the creation of a microenvironment supporting molecular cross-talk between cells and scaffolds during tissue formation and remodelling. Bone remodelling process includes the cooperation of bone-building cells and bone-resorbing cells. In this paper we developed polylactic acid (PLA) and composite PLA-nanohydroxyapatite (nHA) scaffolds with 20 and 50wt.% of nHA by electrospinning technique to be used in bone tissue engineering. The developed scaffolds have different fiber diameter, porosity with interconnected pores and mechanical properties. Taking cues from the bone environment features we investigated the differentiation of human mesenchymal stem cells (hMSCs) from bone marrow in osteoblasts and the osteoclastogenesis in the developed scaffolds in homotypic and in co-culture up to 46 days. PLA and composite PLA-nHA scaffolds induced osteogenic and osteoclastogenic differentiation. Both osteoblasts and osteoclasts displayed high expression of specific markers (osteopontin, osteocalcin, RANK, RANKL) and functions such as secretion of ALP, cathepsin K and TRAP activity on composite scaffolds especially on PLA-nHA containing 20wt.% of nHA. The heterotypic interactions between osteoblasts and osteoclasts co-cultured in the developed scaffolds triggered their functional differentiation and activation.
Collapse
Affiliation(s)
- Sabrina Morelli
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, via P. Bucci cubo 17/C, I-87030 Rende, CS Italy
| | - Simona Salerno
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, via P. Bucci cubo 17/C, I-87030 Rende, CS Italy
| | - Jani Holopainen
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, PO Box 55, FI-00014 Helsinki, Finland
| | - Mikko Ritala
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, PO Box 55, FI-00014 Helsinki, Finland
| | - Loredana De Bartolo
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, via P. Bucci cubo 17/C, I-87030 Rende, CS Italy.
| |
Collapse
|
37
|
Araujo A, Cook LM, Lynch CC, Basanta D. An integrated computational model of the bone microenvironment in bone-metastatic prostate cancer. Cancer Res 2014; 74:2391-401. [PMID: 24788098 DOI: 10.1158/0008-5472.can-13-2652] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bone metastasis will impact most men with advanced prostate cancer. The vicious cycle of bone degradation and formation driven by metastatic prostate cells in bone yields factors that drive cancer growth. Mechanistic insights into this vicious cycle have suggested new therapeutic opportunities, but complex temporal and cellular interactions in the bone microenvironment make drug development challenging. We have integrated biologic and computational approaches to generate a hybrid cellular automata model of normal bone matrix homeostasis and the prostate cancer-bone microenvironment. The model accurately reproduces the basic multicellular unit bone coupling process, such that introduction of a single prostate cancer cell yields a vicious cycle similar in cellular composition and pathophysiology to models of prostate-to-bone metastasis. Notably, the model revealed distinct phases of osteolytic and osteogenic activity, a critical role for mesenchymal stromal cells in osteogenesis, and temporal changes in cellular composition. To evaluate the robustness of the model, we assessed the effect of established bisphosphonate and anti-RANKL therapies on bone metastases. At approximately 100% efficacy, bisphosphonates inhibited cancer progression while, in contrast with clinical observations in humans, anti-RANKL therapy fully eradicated metastases. Reducing anti-RANKL yielded clinically similar results, suggesting that better targeting or dosing could improve patient survival. Our work establishes a computational model that can be tailored for rapid assessment of experimental therapies and delivery of precision medicine to patients with prostate cancer with bone metastases.
Collapse
Affiliation(s)
- Arturo Araujo
- Authors' Affiliations: Departments of Integrated Mathematical Oncology and Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | | | | |
Collapse
|
38
|
Pourdanesh F, Jebali A, Hekmatimoghaddam S, Allaveisie A. In vitro and in vivo evaluation of a new nanocomposite, containing high density polyethylene, tricalcium phosphate, hydroxyapatite, and magnesium oxide nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 40:382-8. [DOI: 10.1016/j.msec.2014.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 01/22/2014] [Accepted: 04/07/2014] [Indexed: 11/28/2022]
|
39
|
Bone substitute material composition and morphology differentially modulate calcium and phosphate release through osteoclast-like cells. Int J Oral Maxillofac Surg 2014; 43:514-21. [DOI: 10.1016/j.ijom.2013.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/10/2013] [Accepted: 10/17/2013] [Indexed: 11/23/2022]
|
40
|
Detsch R, Boccaccini AR. The role of osteoclasts in bone tissue engineering. J Tissue Eng Regen Med 2014; 9:1133-49. [PMID: 24478169 DOI: 10.1002/term.1851] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 09/18/2013] [Accepted: 10/20/2013] [Indexed: 12/13/2022]
Abstract
The success of scaffold-based bone regeneration approaches strongly depends on the performance of the biomaterial utilized. Within the efforts of regenerative medicine towards a restitutio ad integrum (i.e. complete reconstruction of a diseased tissue), scaffolds should be completely degraded within an adequate period of time. The degradation of synthetic bone substitute materials involves both chemical dissolution (physicochemical degradation) and resorption (cellular degradation by osteoclasts). Responsible for bone resorption are osteoclasts, cells of haematopoietic origin. Osteoclasts play also a crucial role in bone remodelling, which is essential for the regeneration of bone defects. There is, however, surprisingly limited knowledge about the detailed effects of osteoclasts on biomaterials degradation behaviour. This review covers the relevant fundamental knowledge and progress made in the field of osteoclast activity related to biomaterials used for bone regeneration. In vitro studies with osteoclastic precursor cells on synthetic bone substitute materials show that there are specific parameters that inhibit or enhance resorption. Moreover, analyses of the bone-material interface reveal that biomaterials composition has a significant influence on their degradation in contact with osteoclasts. Crystallinity, grain size, surface bioactivity and density of the surface seem to have a less significant effect on osteoclastic activity. In addition, the topography of the scaffold surface can be tailored to affect the development and spreading of osteoclast cells. The present review also highlights possible areas on which future research is needed and which are relevant to enhance our understanding of the complex role of osteoclasts in bone tissue engineering.
Collapse
Affiliation(s)
- Rainer Detsch
- Institute of Biomaterials, University of Erlangen-Nuremberg, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Germany
| |
Collapse
|
41
|
Pilia M, Guda T, Pollot BE, Aguero V, Appleford MR. Local microarchitecture affects mechanical properties of deposited extracellular matrix for osteonal regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 35:122-33. [PMID: 24411360 DOI: 10.1016/j.msec.2013.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/23/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
Abstract
Multiple biomimetic approaches have been attempted to accelerate the regeneration of functional bone tissue. While most synthetic scaffolds are designed to mimic the architecture of trabecular bone, in the current study, cortical bone-like extracellular matrix was regenerated in vitro within organized structures. Biphasic calcium phosphate (BCaP) and hydroxyapatite (HAp) scaffolds were developed with longitudinal microchannels (250 μm diameter) that resembled native osteons in cortical bone. BCaP and HAp scaffolds had a compressive strength of 7.61±1.42 and 9.98±0.61 MPa respectively. The constructs were investigated in vitro to evaluate the organization and stiffness of the extracellular matrix (ECM) formed by human fetal osteoblasts (HFObs) cultured inside the microchannels. The ECM deposited on the BCaP scaffolds was found to have a higher micro-hardness (h) (1.93±0.40 GPa) than the ECM formed within the HAp microchannels (h=0.80±0.20 GPa) (p<0.05) or native bone (h=0.47-0.74 GPa). ECM deposition within the microchannels resembled osteoid organization and showed a significant increase in both osteoid area and thickness after 24 days (p<0.001). These observations indicate that controlled microarchitecture, specifically cylindrical microchannels, plays a fundamental role in stimulating the appropriate cellular response aimed at recreating organized, cortical bone-like matrix. These findings open the door for researchers to develop a new generation of cortical bone scaffolds that can restore strong, organized bone.
Collapse
Affiliation(s)
- M Pilia
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| | - T Guda
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - B E Pollot
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - V Aguero
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - M R Appleford
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
42
|
van de Watering FCJ, Laverman P, Cuijpers VM, Gotthardt M, Bronkhorst EM, Boerman OC, Jansen JA, van den Beucken JJJP. The biological performance of injectable calcium phosphate/PLGA cement in osteoporotic rats. Biomed Mater 2013; 8:035012. [DOI: 10.1088/1748-6041/8/3/035012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Ferreira JR, Padilla R, Urkasemsin G, Yoon K, Goeckner K, Hu WS, Ko CC. Titanium-enriched hydroxyapatite-gelatin scaffolds with osteogenically differentiated progenitor cell aggregates for calvaria bone regeneration. Tissue Eng Part A 2013; 19:1803-16. [PMID: 23495972 DOI: 10.1089/ten.tea.2012.0520] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Adequate bony support is the key to re-establish both function and esthetics in the craniofacial region. Autologous bone grafting has been the gold standard for regeneration of problematic large bone defects. However, poor graft availability and donor-site complications have led to alternative bone tissue-engineering approaches combining osteoinductive biomaterials and three-dimensional cell aggregates in scaffolds or constructs. The goal of the present study was to generate novel cell aggregate-loaded macroporous scaffolds combining the osteoinductive properties of titanium dioxide (TiO2) with hydroxyapatite-gelatin nanocomposites (HAP-GEL) for regeneration of craniofacial defects. Here we investigated the in vivo applicability of macroporous (TiO2)-enriched HAP-GEL scaffolds with undifferentiated and osteogenically differentiated multipotent adult progenitor cell (MAPC and OD-MAPC, respectively) aggregates for calvaria bone regeneration. The silane-coated HAP-GEL with and without TiO2 additives were polymerized and molded to produce macroporous scaffolds. Aggregates of the rat MAPC were precultured, loaded into each scaffold, and implanted to rat calvaria critical-size defects to study bone regeneration. Bone autografts were used as positive controls and a poly(lactic-co-glycolic acid) (PLGA) scaffold for comparison purposes. Preimplanted scaffolds and calvaria bone from pig were tested for ultimate compressive strength with an Instron 4411(®) and for porosity with microcomputerized tomography (μCT). Osteointegration and newly formed bone (NFB) were assessed by μCT and nondecalcified histology, and quantified by calcium fluorescence labeling. Results showed that the macroporous TiO2-HAP-GEL scaffold had a comparable strength relative to the natural calvaria bone (13.8±4.5 MPa and 24.5±8.3 MPa, respectively). Porosity was 1.52±0.8 mm and 0.64±0.4 mm for TiO2-HAP-GEL and calvaria bone, respectively. At 8 and 12 weeks postimplantation into rat calvaria defects, greater osteointegration and NFB were significantly present in the TiO2-enriched HAP-GEL constructs with OD-MAPCs, compared to the undifferentiated MAPC-loaded constructs, cell-free HAP-GEL with and without titanium, and PLGA scaffolds. The tissue-engineered TiO2-enriched HAP-GEL constructs with OD-MAPC aggregates present a potential useful therapeutic approach for calvaria bone regeneration.
Collapse
Affiliation(s)
- João R Ferreira
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Nakamura M, Hentunen T, Salonen J, Nagai A, Yamashita K. Characterization of bone mineral-resembling biomaterials for optimizing human osteoclast differentiation and resorption. J Biomed Mater Res A 2013; 101:3141-51. [PMID: 23554241 DOI: 10.1002/jbm.a.34621] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/12/2013] [Accepted: 01/14/2013] [Indexed: 12/31/2022]
Abstract
Bioresorption is a biological mechanism by which biomaterials are resorbed and thereby disappear from implantation sites partially or completely over a period of time. Osteoclast-medicated bioresorption is a possible new advantage to incorporate material degradation into remodeling in bone metabolism process. The purpose of this study was to investigate the osteoclastogenesis and bioresorption of synthesized calcium phosphate materials. Differentiation into mature human osteoclasts on carbonated hydroxyapatite (CA) was significantly enhanced compared to hydroxyapatite (HA) and β-tricalcium phosphate, based on the quantitative gene expressions of molecular markers for osteoclast differentiation. Osteoclasts adhered and differentiated into giant multinuclear TRAP-positive cells on every type of synthesized sample based on the histological analysis. Morphological observations using fluorescence and quantitative analysis revealed that the actin rings of osteoclasts on CA were thick, small in diameter and co-localized with vinculin, similar to the rings found on bone slices. In contrast, the actin rings of osteoclasts on HA and culture dishes were thin and large in diameter. Scanning electron microscopic images and quantitative analysis indicated that the resorption pits on CA were significantly deeper than those on HA due to the enhanced tight sealing ability between osteoclasts and their substrate.
Collapse
Affiliation(s)
- Miho Nakamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 1010062, Japan
| | | | | | | | | |
Collapse
|
45
|
Reichert C, Götz W, Reimann S, Keilig L, Hagner M, Bourauel C, Jäger A. Resorption behavior of a nanostructured bone substitute: in vitro investigation and clinical application. J Orofac Orthop 2013; 74:165-74. [DOI: 10.1007/s00056-012-0136-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/02/2012] [Indexed: 11/30/2022]
|
46
|
Midha S, van den Bergh W, Kim TB, Lee PD, Jones JR, Mitchell CA. Bioactive glass foam scaffolds are remodelled by osteoclasts and support the formation of mineralized matrix and vascular networks in vitro. Adv Healthc Mater 2013. [PMID: 23184651 DOI: 10.1002/adhm.201200140] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Remodelling of scaffolds and new bone formation is critical for effective bone regeneration. Herein is reported the first demonstration of resorption pits due to osteoclast activity on the surface of sol-gel bioactive glass foam scaffolds. Bioactive glass foam scaffolds are known to have osteogenic potential and suitable pore networks for bone regeneration. Degradation of the scaffolds is known to be initially solution mediated, but for effective bone regeneration, remodelling of the scaffold by osteoclasts and vascularisation of the scaffold is necessary. The culture of C7 macrophages on a bioactive glass scaffold induces the cells to differentiate into (TRAP(+ve) ) osteoclasts. They then form distinctive resorption pits within 3 weeks, while MC3T3-E1 pre-osteoblasts deposit mineralized osteoid on their surfaces in co-culture. The scaffolds are of the 70S30C (70 mol% SiO2 , 30 mol% CaO) composition, with modal pore and interconnect diameters of 373 μm and 172 μm respectively (quantified by X-ray micro-tomography and 3D image analysis). The release of soluble silica and calcium ions from 70S30C scaffolds induces an increase in osteoblast numbers as determined via the MTT assay. Scaffolds also support growth of endothelial cells on their surface and tube formation (characteristic of functional microvasculature) following 4 days in culture. This data supports the hypothesis that 70S30C bioactive glass scaffolds promote the differentiation of the 3 main cell types involved in vascularized bone regeneration.
Collapse
Affiliation(s)
- Swati Midha
- Centre for Molecular Biosciences, University of Ulster at Coleraine, BT52 1SA, UK
| | | | | | | | | | | |
Collapse
|
47
|
Calcite as a bone substitute. Comparison with hydroxyapatite and tricalcium phosphate with regard to the osteoblastic activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:490-8. [DOI: 10.1016/j.msec.2012.09.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 09/14/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
|
48
|
Shepherd JH, Shepherd DV, Best SM. Substituted hydroxyapatites for bone repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2335-2347. [PMID: 22389101 DOI: 10.1007/s10856-012-4598-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/17/2012] [Indexed: 05/31/2023]
Abstract
Calcium phosphates such as hydroxyapatite have a wide range of applications both in bone grafts and for the coating of metallic implants, largely as a result of their chemical similarity to the mineral component of bone. However, to more accurately mirror the chemistry, various substitutions, both cationic (substituting for the calcium) and anionic (substituting for the phosphate or hydroxyl groups) have been produced. Significant research has been carried out in the field of substituted apatites and this paper aims to summarise some of the key effect of substitutions including magnesium, zinc, strontium, silicon and carbonate on physical and biological characteristics. Even small substitutions have been shown to have very significant effects on thermal stability, solubility, osteoclastic and osteoblastic response in vitro and degradation and bone regeneration in vivo.
Collapse
Affiliation(s)
- Jennifer H Shepherd
- Department of Materials Science and Metallurgy, University of Cambridge, New Museum's Site, Pembroke Street, Cambridge CB2 3QZ, UK.
| | | | | |
Collapse
|
49
|
Fox K, Tran PA, Tran N. Recent advances in research applications of nanophase hydroxyapatite. Chemphyschem 2012; 13:2495-506. [PMID: 22467406 DOI: 10.1002/cphc.201200080] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Indexed: 02/02/2023]
Abstract
Hydroxyapatite, the main inorganic material in natural bone, has been used widely for orthopaedic applications. Due to size effects and surface phenomena at the nanoscale, nanophase hydroxyapatite possesses unique properties compared to its bulk-phase counterpart. The high surface-to-volume ratio, reactivities, and biomimetic morphologies make nano-hydroxyapatite more favourable in applications such as orthopaedic implant coating or bone substitute filler. Recently, more efforts have been focused on the possibility of combining hydroxyapatite with other drugs and materials for multipurpose applications, such as antimicrobial treatments, osteoporosis treatments and magnetic manipulation. To build more effective nano-hydroxyapatite and composite systems, the particle synthesis processes, chemistry, and toxicity have to be thoroughly investigated. In this Minireview, we report the recent advances in research regarding nano-hydroxyapatite. Synthesis routes and a wide range of applications of hydroxyapatite nanoparticles will be discussed. The Minireview also addresses several challenges concerning the biosafety of the nanoparticles.
Collapse
Affiliation(s)
- Kate Fox
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | |
Collapse
|
50
|
Zhang Z, Egaña JT, Reckhenrich AK, Schenck TL, Lohmeyer JA, Schantz JT, Machens HG, Schilling AF. Cell-based resorption assays for bone graft substitutes. Acta Biomater 2012; 8:13-9. [PMID: 21971416 DOI: 10.1016/j.actbio.2011.09.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 01/28/2023]
Abstract
The clinical utilization of resorbable bone substitutes has been growing rapidly during the last decade, creating a rising demand for new resorbable biomaterials. An ideal resorbable bone substitute should not only function as a load-bearing material but also integrate into the local bone remodeling process. This means that these bone substitutes need to undergo controlled resorption and then be replaced by newly formed bone structures. Thus the assessment of resorbability is an important first step in predicting the in vivo clinical function of bone substitute biomaterials. Compared with in vivo assays, cell-based assays are relatively easy, reproducible, inexpensive and do not involve the suffering of animals. Moreover, the discovery of RANKL and M-CSF for osteoclastic differentiation has made the differentiation and cultivation of human osteoclasts possible and, as a result, human cell-based bone substitute resorption assays have been developed. In addition, the evolution of microscopy technology allows advanced analyses of the resorption pits on biomaterials. The aim of the current review is to give a concise update on in vitro cell-based resorption assays for analyzing bone substitute resorption. For this purpose models using different cells from different species are compared. Several popular two-dimensional and three-dimensional optical methods used for resorption assays are described. The limitations and advantages of the current ISO degradation assay in comparison with cell-based assays are discussed.
Collapse
|