1
|
Yanagihara N, Mayumi M, Yoshikawa J, Akuzawa S, Fujii A, Nagano M, Koizumi Y, Maehashi K. Flavor assessment of a lactic fermented vinegar described in Japanese books from the Edo period (1603-1867). Heliyon 2024; 10:e32344. [PMID: 38961972 PMCID: PMC11219324 DOI: 10.1016/j.heliyon.2024.e32344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Aims Rice vinegar is a traditional fermented seasoning in Japan, and its production remained unchanged for over 800 years until the Edo period. However, based on the available information regarding rice vinegar production methods from this period and the results of reproduction experiments, we speculated that unlike the modern-day acetic fermented vinegar, rice vinegar produced during the Edo period was lactic fermented. Main methods: To verify this assumption, we analyzed the flavor components of Honcho, a lactic fermented product prepared using a method described in books, including "Honchoshokkan" from the Edo period, by capillary electrophoresis/time-of-flight mass spectrometry, high-performance liquid chromatography, gas chromatography mass spectrometry, and taste sensor analysis. Sensory evaluation was also conducted to assess validation as a seasoning. Results Honcho contains 2 % lactic acid, which gives it its acidity, and small amounts of other nonvolatile acids, but significantly lower levels of acetic acid (0.188 ± 0.015 g/100 mL, p < 0.01). It contains more than double the free amino acids of Kurozu, a modern rice vinegar, and more glutamic acid. Boiling to remove ethanol from yeast fermentation concentrated the free amino acids 1.5 times. Sensor taste analysis showed Honcho had weaker acidity but stronger umami taste than commercial rice vinegar. The volatile compounds related to acetic acid fermentation were significantly different between Honcho and Kurozu. Boiling increased Honcho's acidity, mainly through non-volatile acids. Significance These findings provide evidence to indicate that Honcho was an acidic seasoning for heat-cooking, which is uncommon in Japanese cuisine today and is mentioned in Edo period books. This seasoning contains many amino acids, implying that it adds umami flavor, not only the sourness of modern vinegar.
Collapse
Affiliation(s)
- Naoyuki Yanagihara
- Yanagihara Cooking School of Traditional Japanese Cuisine, 1-7-4 Akasaka, Minato-ku, Tokyo 107-0052, Japan
- Department of Fermentation Science and Technology, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Maeda Mayumi
- Faculty of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Jun Yoshikawa
- Department of Fermentation Science and Technology, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
- Faculty of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Sayuri Akuzawa
- Faculty of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Akira Fujii
- Sakamoto Kurozu Inc., 21-15, Uenosono-cho, Kagoshima, 890-0052, Japan
| | - Masanobu Nagano
- Sakamoto Kurozu Inc., 21-15, Uenosono-cho, Kagoshima, 890-0052, Japan
| | - Yukimichi Koizumi
- Faculty of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Kenji Maehashi
- Department of Fermentation Science and Technology, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
- Faculty of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| |
Collapse
|
2
|
Liu G, Huang L, Lian J. Alcohol acyltransferases for the biosynthesis of esters. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:93. [PMID: 37264424 DOI: 10.1186/s13068-023-02343-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
Esters are widely used in food, energy, spices, chemical industry, etc., becoming an indispensable part of life. However, their production heavily relies on the fossil energy industry, which presents significant challenges associated with energy shortages and environmental pollution. Consequently, there is an urgent need to identify alternative green methods for ester production. One promising solution is biosynthesis, which offers sustainable and environmentally friendly processes. In ester biosynthesis, alcohol acyltransferases (AATs) catalyze the condensation of acyl-CoAs and alcohols to form esters, enabling the biosynthesis of nearly 100 different kinds of esters, such as ethyl acetate, hexyl acetate, ethyl crotonate, isoamyl acetate, and butyl butyrate. However, low catalytic efficiency and low selectivity of AATs represent the major bottlenecks for the biosynthesis of certain specific esters, which should be addressed with protein molecular engineering approaches before practical biotechnological applications. This review provides an overview of AAT enzymes, including their sequences, structures, active sites, catalytic mechanisms, and metabolic engineering applications. Furthermore, considering the critical role of AATs in determining the final ester products, the current research progresses of AAT modification using protein molecular engineering are also discussed. This review summarized the major challenges and prospects of AAT enzymes in ester biosynthesis.
Collapse
Affiliation(s)
- Gaofei Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
- Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
3
|
Bouchez A, De Vuyst L. Acetic Acid Bacteria in Sour Beer Production: Friend or Foe? Front Microbiol 2022; 13:957167. [PMID: 35992674 PMCID: PMC9386357 DOI: 10.3389/fmicb.2022.957167] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Beer is the result of a multistep brewing process, including a fermentation step using in general one specific yeast strain. Bacterial presence during beer production (or presence in the beer itself) is considered as bad, since bacteria cause spoilage, produce off-flavors, and/or turbidity. Although most problems in the past related to lack of hygiene and/or cleaning, bacteria do still cause problems nowadays. Despite this negative imago, certain bacteria play an irreplaceable role during fermentation and/or maturation of more unique, funky, and especially refreshing sour beers. The term sour beers or sours is not restricted to one definition but covers a wide variety of beers produced via different techniques. This review proposes an uncluttered sour beer classification scheme, which includes all sour beer production techniques and pays special attention to the functional role of acetic acid bacteria. Whereas their oxidation of ethanol and lactate into acetic acid and acetoin usually spoils beer, including sour beers, organoleptically, a controlled growth leads to a desirable acidic flavor in sour beers, such as lambic-style, lambic-based, and red-brown acidic ales.
Collapse
|
4
|
Fricke PM, Klemm A, Bott M, Polen T. On the way toward regulatable expression systems in acetic acid bacteria: target gene expression and use cases. Appl Microbiol Biotechnol 2021; 105:3423-3456. [PMID: 33856535 PMCID: PMC8102297 DOI: 10.1007/s00253-021-11269-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 04/04/2021] [Indexed: 01/06/2023]
Abstract
Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an L-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. KEY POINTS: • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.
Collapse
Affiliation(s)
- Philipp Moritz Fricke
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Angelika Klemm
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
5
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review comprehensively summarises stimulus-cleavable linkers from various research areas and their cleavage mechanisms, thus provides an insightful guideline to extend their potential applications to controlled drug release from nanomaterials.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton
- Victoria 3168
- Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| |
Collapse
|
6
|
De Roos J, Verce M, Weckx S, De Vuyst L. Temporal Shotgun Metagenomics Revealed the Potential Metabolic Capabilities of Specific Microorganisms During Lambic Beer Production. Front Microbiol 2020; 11:1692. [PMID: 32765478 PMCID: PMC7380088 DOI: 10.3389/fmicb.2020.01692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2023] Open
Abstract
Lambic beer production processes are characterized by a temporal succession of well-adapted microbial species. Temporal metagenomic analysis of a Belgian, traditional, lambic beer production process, which was examined microbiologically and metabolomically before, confirmed that the microbial diversity is limited. Moreover, it allowed to link the consumption and production of certain compounds to specific microbial groups or species. Fermentation characteristics, such as the conversion of malic acid into lactic acid and acetoin production, were retrieved and could be attributed to specific microorganisms, namely Pediococcus damnosus and Acetobacter species, respectively. Traits previously ascribed to brewery-specific Dekkera bruxellensis strains were confirmed during the lambic beer production process examined multiphasically; in particular, the higher production of 4-ethylguaiacol compared to 4-ethylphenol was further shown by mass spectrometric analysis. Moreover, the absence of phenolic acid decarboxylase in Brettanomyces custersianus was shown culture-independently and could explain its late occurrence during the maturation phase. Furthermore, the potential of maltooligosaccharide degradation could be ascribed metagenomically to not only Brettanomyces species but also Saccharomyces kudriavzevii, possibly explaining their degradation early in the lambic beer production process. Also, acetic acid bacteria (AAB) seemed to be able to consume maltooligosaccharides via their conversion into trehalose. Furthermore, these AAB possessed esterase genes, potentially capable of forming ethyl acetate, which may contribute to the flavor of lambic beer. Improved knowledge on the reasons behind certain community dynamics and the role of the different microorganisms in terms of potential functionality could improve brewery practices to assure to produce more quality-stable end-products.
Collapse
Affiliation(s)
- Jonas De Roos
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
7
|
Dong H, Pang L, Cong H, Shen Y, Yu B. Application and design of esterase-responsive nanoparticles for cancer therapy. Drug Deliv 2019; 26:416-432. [PMID: 30929527 PMCID: PMC6450553 DOI: 10.1080/10717544.2019.1588424] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles have been developed for tumor treatment due to the enhanced permeability and retention effects. However, lack of specific cancer cells selectivity results in low delivery efficiency and undesired side effects. In that case, the stimuli-responsive nanoparticles system designed for the specific structure and physicochemical properties of tumors have attracted more and more attention of researchers. Esterase-responsive nanoparticle system is widely used due to the overexpressed esterase in tumor cells. For a rational designed esterase-responsive nanoparticle, ester bonds and nanoparticle structures are the key characters. In this review, we overviewed the design of esterase-responsive nanoparticles, including ester bonds design and nano-structure design, and analyzed the fitness of each design for different application. In the end, the outlook of esterase-responsive nanoparticle is looking forward.
Collapse
Affiliation(s)
- Haonan Dong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
| | - Long Pang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong, P.R. China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong, P.R. China
| |
Collapse
|
8
|
Kruis AJ, Bohnenkamp AC, Patinios C, van Nuland YM, Levisson M, Mars AE, van den Berg C, Kengen SW, Weusthuis RA. Microbial production of short and medium chain esters: Enzymes, pathways, and applications. Biotechnol Adv 2019; 37:107407. [DOI: 10.1016/j.biotechadv.2019.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/24/2019] [Accepted: 06/09/2019] [Indexed: 12/12/2022]
|
9
|
Van Kerrebroeck S, Comasio A, Harth H, De Vuyst L. Impact of starter culture, ingredients, and flour type on sourdough bread volatiles as monitored by selected ion flow tube-mass spectrometry. Food Res Int 2018; 106:254-262. [DOI: 10.1016/j.foodres.2017.12.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022]
|
10
|
Temporal and Spatial Distribution of the Acetic Acid Bacterium Communities throughout the Wooden Casks Used for the Fermentation and Maturation of Lambic Beer Underlines Their Functional Role. Appl Environ Microbiol 2018; 84:AEM.02846-17. [PMID: 29352086 DOI: 10.1128/aem.02846-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/16/2018] [Indexed: 12/24/2022] Open
Abstract
Few data have been published on the occurrence and functional role of acetic acid bacteria (AAB) in lambic beer production processes, mainly due to their difficult recovery and possibly unknown role. Therefore, a novel aseptic sampling method, spanning both the spatial and temporal distributions of the AAB and their substrates and metabolites, was combined with a highly selective medium and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) as a high-throughput dereplication method followed by comparative gene sequencing for their isolation and identification, respectively. The AAB (Acetobacter species more than Gluconobacter species) proliferated during two phases of the lambic beer production process, represented by Acetobacter orientalis during a few days in the beginning of the fermentation and Acetobacter pasteurianus from 7 weeks until 24 months of maturation. Competitive exclusion tests combined with comparative genomic analysis of all genomes of strains of both species available disclosed possible reasons for this successive dominance. The spatial analysis revealed that significantly higher concentrations of acetic acid (from ethanol) and acetoin (from lactic acid) were produced at the tops of the casks, due to higher AAB counts and a higher metabolic activity of the AAB species at the air/liquid interface during the first 6 months of lambic beer production. In contrast, no differences in AAB species diversity occurred throughout the casks.IMPORTANCE Lambic beer is an acidic beer that is the result of a spontaneous fermentation and maturation process. Acidic beers are currently attracting attention worldwide. Part of the acidity of these beers is caused by acetic acid bacteria (AAB). However, due to their difficult recovery, they were never investigated extensively regarding their occurrence, species diversity, and functional role in lambic beer production. In the present study, a framework was developed for their isolation and identification using a novel aseptic sampling method in combination with matrix-assisted laser desorption ionization-time of flight mass spectrometry as a high-throughput dereplication technique followed by accurate molecular identification. The sampling method applied enabled us to take spatial differences into account regarding both enumerations and metabolite production. In this way, it was shown that more AAB were present and more acetic acid was produced at the air/liquid interface during a major part of the lambic beer production process. Also, two different AAB species were encountered, namely, Acetobacter orientalis at the beginning and Acetobacter pasteurianus in a later stage of the production process. This developed framework could also be applied for other fermentation processes.
Collapse
|
11
|
Zheng Y, Chang Y, Xie S, Song J, Wang M. Impacts of bioprocess engineering on product formation by Acetobacter pasteurianus. Appl Microbiol Biotechnol 2018; 102:2535-2541. [DOI: 10.1007/s00253-018-8819-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 11/24/2022]
|
12
|
Overview on mechanisms of acetic acid resistance in acetic acid bacteria. World J Microbiol Biotechnol 2015; 31:255-63. [PMID: 25575804 DOI: 10.1007/s11274-015-1799-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.
Collapse
|
13
|
Flavour formation in fungi: characterisation of KlAtf, the Kluyveromyces lactis orthologue of the Saccharomyces cerevisiae alcohol acetyltransferases Atf1 and Atf2. Appl Microbiol Biotechnol 2008; 78:783-92. [DOI: 10.1007/s00253-008-1366-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 01/10/2008] [Accepted: 01/12/2008] [Indexed: 10/22/2022]
|
14
|
Verstrepen KJ, Van Laere SDM, Vanderhaegen BMP, Derdelinckx G, Dufour JP, Pretorius IS, Winderickx J, Thevelein JM, Delvaux FR. Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol 2003; 69:5228-37. [PMID: 12957907 PMCID: PMC194970 DOI: 10.1128/aem.69.9.5228-5237.2003] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Volatile aroma-active esters are responsible for the fruity character of fermented alcoholic beverages such as beer and wine. Esters are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction. In order to investigate and compare the roles of the known Saccharomyces cerevisiae alcohol acetyltransferases, Atf1p, Atf2p and Lg-Atf1p, in volatile ester production, the respective genes were either deleted or overexpressed in a laboratory strain and a commercial brewing strain. Subsequently, the ester formation of the transformants was monitored by headspace gas chromatography and gas chromatography combined with mass spectroscopy (GC-MS). Analysis of the fermentation products confirmed that the expression levels of ATF1 and ATF2 greatly affect the production of ethyl acetate and isoamyl acetate. GC-MS analysis revealed that Atf1p and Atf2p are also responsible for the formation of a broad range of less volatile esters, such as propyl acetate, isobutyl acetate, pentyl acetate, hexyl acetate, heptyl acetate, octyl acetate, and phenyl ethyl acetate. With respect to the esters analyzed in this study, Atf2p seemed to play only a minor role compared to Atf1p. The atf1Delta atf2Delta double deletion strain did not form any isoamyl acetate, showing that together, Atf1p and Atf2p are responsible for the total cellular isoamyl alcohol acetyltransferase activity. However, the double deletion strain still produced considerable amounts of certain other esters, such as ethyl acetate (50% of the wild-type strain), propyl acetate (50%), and isobutyl acetate (40%), which provides evidence for the existence of additional, as-yet-unknown ester synthases in the yeast proteome. Interestingly, overexpression of different alleles of ATF1 and ATF2 led to different ester production rates, indicating that differences in the aroma profiles of yeast strains may be partially due to mutations in their ATF genes.
Collapse
Affiliation(s)
- Kevin J Verstrepen
- Centre for Malting and Brewing Science, Department of Food and Microbial Technology, Katholieke Universiteit Leuven, B-3001 Louvain (Heverlee), Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|