1
|
Merdzo Z, Narmontaite E, Gonzalez-Alfonso JL, Poveda A, Jimenez-Barbero J, Plou FJ, Fernández-Lobato M. Insights into the transglucosylation activity of α-glucosidase from Schwanniomyces occidentalis. Appl Microbiol Biotechnol 2024; 108:443. [PMID: 39153091 PMCID: PMC11330417 DOI: 10.1007/s00253-024-13262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/26/2024] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
The α-glucosidase from Schwanniomyces occidentalis (GAM1p) was expressed in Komagataella phaffii to about 70 mg/L, and its transferase activity studied in detail. Several isomaltooligosaccharides (IMOS) were formed using 200 g/L maltose. The major production of IMOS (81.3 g/L) was obtained when 98% maltose was hydrolysed, of which 34.8 g/L corresponded to isomaltose, 26.9 g/L to isomaltotriose, and 19.6 g/L to panose. The addition of glucose shifted the IMOS synthesis towards products containing exclusively α(1 → 6)-linkages, increasing the production of isomaltose and isomaltotriose about 2-4 fold, enabling the formation of isomaltotetraose, and inhibiting that of panose to about 12 times. In addition, the potential of this enzyme to glycosylate 12 possible hydroxylated acceptors, including eight sugars and four phenolic compounds, was evaluated. Among them, only sucrose, xylose, and piceid (a monoglucosylated derivative of resveratrol) were glucosylated, and the main synthesised products were purified and characterised by MS and NMR. Theanderose, α(1 → 4)-D-glucosyl-xylose, and a mixture of piceid mono- and diglucoside were obtained with sucrose, xylose, and piceid as acceptors, respectively. Maximum production of theanderose reached 81.7 g/L and that of the glucosyl-xylose 26.5 g/L, whereas 3.4 g/L and only 1 g/L were produced of the piceid mono- and diglucoside respectively. KEY POINTS: • Overexpression of a yeast α-glucosidase producing novel molecules. • Yeast enzyme producing the heterooligosaccharides theanderose and glucosyl-xylose. • Glycosylation of the polyphenol piceid by a yeast α-glucosidase.
Collapse
Affiliation(s)
- Zoran Merdzo
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular (UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera, 1. Campus Cantoblanco, 28049, Madrid, Spain
| | - Egle Narmontaite
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular (UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera, 1. Campus Cantoblanco, 28049, Madrid, Spain
| | | | - Ana Poveda
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
| | - Jesus Jimenez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
- Ikerbasque. Basque Foundation for Science, 48009, Bilbao, Spain
| | - Francisco J Plou
- Instituto de Catálisis y Petroleoquímica (CSIC), C/ Marie Curie, 2., 28049, Madrid, Spain
| | - María Fernández-Lobato
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular (UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera, 1. Campus Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
2
|
Garcia-Gonzalez M, Minguet-Lobato M, Plou FJ, Fernandez-Lobato M. Molecular characterization and heterologous expression of two α-glucosidases from Metschnikowia spp, both producers of honey sugars. Microb Cell Fact 2020; 19:140. [PMID: 32652991 PMCID: PMC7353701 DOI: 10.1186/s12934-020-01397-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND α-Glucosidases are widely distributed enzymes with a varied substrate specificity that are traditionally used in biotechnological industries based on oligo- and polysaccharides as starting materials. According to amino acid sequence homology, α-glucosidases are included into two major families, GH13 and GH31. The members of family GH13 contain several α-glucosidases with confirmed hydrolytic activity on sucrose. Previously, a sucrose splitting activity from the nectar colonizing yeast Metschnikowia reukaufii which produced rare sugars with α-(1→1), α-(1→3) and α-(1→6) glycosidic linkages from sucrose was described. RESULTS In this study, genes codifying for α-glucosidases from the nectaries yeast M. gruessii and M. reukaufii were characterised and heterologously expressed in Escherichia coli for the first time. Recombinant proteins (Mg-αGlu and Mr-αGlu) were purified and biochemically analysed. Both enzymes mainly displayed hydrolytic activity towards sucrose, maltose and p-nitrophenyl-α-D-glucopyranoside. Structural analysis of these proteins allowed the identification of common features from the α-amylase family, in particular from glycoside hydrolases that belong to family GH13. The three acidic residues comprising the catalytic triad were identified and their relevance for the protein hydrolytic mechanism confirmed by site-directed mutagenesis. Recombinant enzymes produced oligosaccharides naturally present in honey employing sucrose as initial substrate and gave rise to mixtures with the same products profile (isomelezitose, trehalulose, erlose, melezitose, theanderose and esculose) previously obtained with M. reukaufii cell extracts. Furthermore, the same enzymatic activity was detected with its orthologous Mg-αGlu from M. gruessii. Interestingly, the isomelezitose amounts obtained in reactions mediated by the recombinant proteins, ~ 170 g/L, were the highest reported so far. CONCLUSIONS Mg/Mr-αGlu were heterologously overproduced and their biochemical and structural characteristics analysed. The recombinant α-glucosidases displayed excellent properties in terms of mild reaction conditions, in addition to pH and thermal stability. Besides, the enzymes produced a rare mixture of hetero-gluco-oligosaccharides by transglucosylation, mainly isomelezitose and trehalulose. These compounds are natural constituents of honey which purification from this natural source is quite unviable, what make these enzymes very interesting for the biotechnological industry. Finally, it should be remarked that these sugars have potential applications as food additives due to their suitable sweetness, viscosity and humectant capacity.
Collapse
Affiliation(s)
- Martin Garcia-Gonzalez
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid. C/Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain
| | - Marina Minguet-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid. C/Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC, C/Marie Curie, 2. Cantoblanco, 28049, Madrid, Spain
| | - Maria Fernandez-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid. C/Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
3
|
Garcia‐Gonzalez M, Plou FJ, Cervantes FV, Remacha M, Poveda A, Jiménez‐Barbero J, Fernandez‐Lobato M. Efficient production of isomelezitose by a glucosyltransferase activity in Metschnikowia reukaufii cell extracts. Microb Biotechnol 2019; 12:1274-1285. [PMID: 31576667 PMCID: PMC6801145 DOI: 10.1111/1751-7915.13490] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/23/2022] Open
Abstract
Metschnikowia reukaufii is a widespread yeast able to grow in the plants' floral nectaries, an environment of extreme conditions with sucrose concentrations exceeding 400 g l-1 , which led us into the search for enzymatic activities involved in this sugar use/transformation. New oligosaccharides were produced by transglucosylation processes employing M. reukaufii cell extracts in overload-sucrose reactions. These products were purified and structurally characterized by MS-ESI and NMR techniques. The reaction mixture included new sugars showing a great variety of glycosidic bonds including α-(1→1), α-(1→3) and α-(1→6) linkages. The main product synthesized was the trisaccharide isomelezitose, whose maximum concentration reached 81 g l-1 , the highest amount reported for any unmodified enzyme or microbial extract. In addition, 51 g l-1 of the disaccharide trehalulose was also produced. Both sugars show potential nutraceutical and prebiotic properties. Interestingly, the sugar mixture obtained in the biosynthetic reactions also contained oligosaccharides such as esculose, a rare trisaccharide with no previous NMR structure elucidation, as well as erlose, melezitose and theanderose. All the sugars produced are naturally found in honey. These compounds are of biotechnological interest due to their potential food, cosmeceutical and pharmaceutical applications.
Collapse
Affiliation(s)
- Martin Garcia‐Gonzalez
- Centro de Biología Molecular Severo OchoaDepartamento de Biología Molecular (UAM‐CSIC)Universidad Autónoma de MadridCampus Cantoblanco28049MadridSpain
| | | | | | - Miguel Remacha
- Centro de Biología Molecular Severo OchoaDepartamento de Biología Molecular (UAM‐CSIC)Universidad Autónoma de MadridCampus Cantoblanco28049MadridSpain
| | - Ana Poveda
- Centro de Investigación Cooperativa en BiocienciasParque Científico Tecnológico de Bizkaia48160DerioBiscaySpain
| | - Jesús Jiménez‐Barbero
- Centro de Investigación Cooperativa en BiocienciasParque Científico Tecnológico de Bizkaia48160DerioBiscaySpain
| | - Maria Fernandez‐Lobato
- Centro de Biología Molecular Severo OchoaDepartamento de Biología Molecular (UAM‐CSIC)Universidad Autónoma de MadridCampus Cantoblanco28049MadridSpain
| |
Collapse
|
4
|
Dong Z, Tang C, Lu Y, Yao L, Kan Y. Microbial Oligo‐α‐1,6‐Glucosidase: Current Developments and Future Perspectives. STARCH-STARKE 2019. [DOI: 10.1002/star.201900172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zixing Dong
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor and Henan Key Laboratory of Ecological Security for Water Region of Mid‐line of South‐to‐NorthNanyang Normal University Nanyang 473061 P. R. China
| | - Cunduo Tang
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor and Henan Key Laboratory of Ecological Security for Water Region of Mid‐line of South‐to‐NorthNanyang Normal University Nanyang 473061 P. R. China
| | - Yunfeng Lu
- School of Life Science and TechnologyNanyang Normal University Nanyang 473061 P. R. China
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor and Henan Key Laboratory of Ecological Security for Water Region of Mid‐line of South‐to‐NorthNanyang Normal University Nanyang 473061 P. R. China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor and Henan Key Laboratory of Ecological Security for Water Region of Mid‐line of South‐to‐NorthNanyang Normal University Nanyang 473061 P. R. China
| |
Collapse
|
5
|
Côté GL, Skory CD. Isomelezitose formation by glucansucrases. Carbohydr Res 2017; 439:57-60. [PMID: 28110079 DOI: 10.1016/j.carres.2017.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 02/03/2023]
Abstract
Several glucansucrases were surveyed for their ability to produce isomelezitose, a trisaccharide with the structure α-D-glucopyranosyl (1 → 6) β-D-fructofuranosyl (2 ↔ 1) α-D-glucopyranoside. Nearly all strains tested, with one exception, produced at least trace levels of isomelezitose. Yields were low but significant, ranging from less than 1% to approximately 5% based on sucrose. This trisaccharide may arise in either of two ways: glucopyranosyl transfer to the 6Fru-OH position of sucrose, or to the anomeric OH position of isomaltulose. This study indicates that isomelezitose formation may be a general phenomenon of many glucansucrase reactions.
Collapse
Affiliation(s)
- Gregory L Côté
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA.
| | - Christopher D Skory
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA
| |
Collapse
|
6
|
Mechanism-Oriented Redesign of an Isomaltulose Synthase to an Isomelezitose Synthase by Site-Directed Mutagenesis. Chembiochem 2011; 13:149-56. [DOI: 10.1002/cbic.201100576] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Indexed: 11/07/2022]
|
7
|
Nimpiboon P, Nakapong S, Pichyangkura R, Ito K, Pongsawasdi P. Synthesis of a novel prebiotic trisaccharide by a type I α-glucosidase from B. licheniformis strain TH4-2. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
|
9
|
Okada M, Nakayama T, Noguchi A, Yano M, Hemmi H, Nishino T, Ueda T. Site-specific mutagenesis at positions 272 and 273 of the Bacillus sp. SAM1606 α-glucosidase to screen mutants with altered specificity for oligosaccharide production by transglucosylation. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1381-1177(01)00071-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Frandsen TP, Palcic MM, Svensson B. Substrate recognition by three family 13 yeast alpha-glucosidases. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:728-34. [PMID: 11856334 DOI: 10.1046/j.0014-2956.2001.02714.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Important hydrogen bonding interactions between substrate OH-groups in yeast alpha-glucosidases and oligo-1,6-glucosidase from glycoside hydrolase family 13 have been identified by measuring the rates of hydrolysis of methyl alpha-isomaltoside and its seven monodeoxygenated analogs. The transition-state stabilization energy, DeltaDeltaG, contributed by the individual OH-groups was calculated from the activities for the parent and the deoxy analogs, respectively, according to DeltaDeltaG = -RT ln[(Vmax/Km)analog/(Vmax/Km)parent]. This analysis of the energetics gave DeltaDeltaG values for all three enzymes ranging from 16.1 to 24.0 kJ.mol-1 for OH-2', -3', -4', and -6', i.e. the OH-groups of the nonreducing sugar ring. These OH-groups interact with enzyme via charged hydrogen bonds. In contrast, OH-2 and -3 of the reducing sugar contribute to transition-state stabilization, by 5.8 and 4.1 kJ.mol-1, respectively, suggesting that these groups participate in neutral hydrogen bonds. The OH-4 group is found to be unimportant in this respect and very little or no contribution is indicated for all OH-groups of the reducing-end ring of the two alpha-glucosidases, probably reflecting their exposure to bulk solvent. The stereochemical course of hydrolysis by these three members of the retaining family 13 was confirmed by directly monitoring isomaltose hydrolysis using 1H NMR spectroscopy. Kinetic analysis of the hydrolysis of methyl 6-S-ethyl-alpha-isomaltoside and its 6-R-diastereoisomer indicates that alpha-glucosidase has 200-fold higher specificity for the S-isomer. Substrate molecular recognition by these alpha-glucosidases are compared to earlier findings for the inverting, exo-acting glucoamylase from Aspergillus niger and a retaining alpha-glucosidase of glycoside hydrolase family 31, respectively.
Collapse
Affiliation(s)
- Torben P Frandsen
- Department of Chemistry, Carlsberg Laboratory, Copenhagen Valby, Denmark
| | | | | |
Collapse
|