1
|
Yoon J, Lee J, Hong SP, Park HJ, Kim J, Lee J, Lee C, Oh SG. Fabrication of biodegradable cellulose acetate nanofibers containing Rose Bengal dye by electrospinning technique and their antiviral efficacy under visible light irradiation. CHEMOSPHERE 2024; 349:140897. [PMID: 38070613 DOI: 10.1016/j.chemosphere.2023.140897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/23/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Biodegradable cellulose acetate (CA) nanofibers containing Rose Bengal (RB) dye were fabricated by electrospinning technique. RB dye, an anionic photosensitizer, has been used in photodynamic therapy due to its excellent biocompatibility and ability to absorb light to generate reactive oxygen species (ROS), but has a decisive disadvantage of water solubility on infection prevention. Firstly, water-insoluble RB dye was synthesized through complexation with cationic ionic liquid (IL) for antiviral agents. The synthesized water-insoluble RB dyes were embedded into biodegradable CA nanofibers by electrospinning. The electrospun nanofibers passed both antiviral test for φx174 virus under visible light irradiation and biodegradability-test using enzymes. The fabricated RB nanofibers absorbed light and generated ROS to inactivate the virus. As a result, the log reduction (-Log10(N/N0)) of φx174 titer under visible light reached a detection limit of 5.00 within 30 min. Also, the fabricated nanofibers were degraded up to 34 wt % in 9 weeks by lipase and cellulase enzymes compared with non-biodegradable nanofibers.
Collapse
Affiliation(s)
- Jinsoo Yoon
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Juri Lee
- School of Chemical Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Pil Hong
- Samsung Research, Samsung Electronics Co., Ltd., Seoul, 06756, Republic of Korea
| | - Hee-Jin Park
- Samsung Research, Samsung Electronics Co., Ltd., Seoul, 06756, Republic of Korea
| | - Joohyun Kim
- School of Chemical Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaeseon Lee
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Changha Lee
- School of Chemical Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seong-Geun Oh
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
2
|
Sun Y, Mazzotta MG, Miller CA, Apprill A, Izallalen M, Mazumder S, Perri ST, Edwards B, Reddy CM, Ward CP. Distinct microbial communities degrade cellulose diacetate bioplastics in the coastal ocean. Appl Environ Microbiol 2023; 89:e0165123. [PMID: 38054734 PMCID: PMC10734458 DOI: 10.1128/aem.01651-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Cellulose diacetate (CDA) is a promising alternative to conventional plastics due to its versatility in manufacturing and low environmental persistence. Previously, our group demonstrated that CDA is susceptible to biodegradation in the ocean on timescales of months. In this study, we report the composition of microorganisms driving CDA degradation in the coastal ocean. We found that the coastal ocean harbors distinct bacterial taxa implicated in CDA degradation and these taxa have not been previously identified in prior CDA degradation studies, indicating an unexplored diversity of CDA-degrading bacteria in the ocean. Moreover, the shape of the plastic article (e.g., a fabric, film, or foam) and plasticizer in the plastic matrix selected for different microbial communities. Our findings pave the way for future studies to identify the specific species and enzymes that drive CDA degradation in the marine environment, ultimately yielding a more predictive understanding of CDA biodegradation across space and time.
Collapse
Affiliation(s)
- Yanchen Sun
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | | | - Carolyn A. Miller
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Amy Apprill
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | | | | | | | | | - Christopher M. Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Collin P. Ward
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
3
|
Tan J, Liang Y, Sun L, Yang Z, Xu J, Dong D, Liu H. Degradation Characteristics of Cellulose Acetate in Different Aqueous Conditions. Polymers (Basel) 2023; 15:4505. [PMID: 38231933 PMCID: PMC10707985 DOI: 10.3390/polym15234505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 01/19/2024] Open
Abstract
Cellulose acetate (CA) is widely used in cigarette filters and packaging films, but due to its acetylation, it is difficult to degrade in the natural environment, and the problem of pollution has become a serious challenge. Understanding the degradation behavior and performance of CA in different environments is the basis and prerequisite for achieving its comprehensive utilization and developing efficient degradation methods. In this study, we investigated the degradation performance of CA in different aqueous environments to evaluate the effects of pH, salinity and microorganisms on CA degradation. The CA tows and films were immersed in HCl, NaOH solution, river water, seawater or homemade seawater for 16 weeks and the degradation mechanism was investigated by the changes in weight loss rate, degree of substitution, hydrophilicity, molecular structure and surface morphology. The results showed that the degradation of CA tow and film were the fastest in NaOH solution; the weight loss rates after 16 weeks were 40.29% and 39.63%, respectively, followed by HCl solution, and the degradation performance of CA tow was better than that of film. After 16 weeks of degradation in river water, seawater and homemade seawater, all the weight loss rates were less than 3%. In summary, this study illustrated that the environmental acidity, basicity and high concentration of inorganic salts had a critical promotion effect on the non-enzymatic hydrolysis of CA, whereas the number and type of microorganisms were the key factors affecting the biodegradation of CA.
Collapse
Affiliation(s)
- Jiao Tan
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China;
| | - Yinchun Liang
- Nantong Cellulose·Fibers Company Co., Ltd., Nantong 226008, China
| | - Lihui Sun
- Nantong Cellulose·Fibers Company Co., Ltd., Nantong 226008, China
| | - Zhanping Yang
- Nantong Cellulose·Fibers Company Co., Ltd., Nantong 226008, China
| | - Jingjing Xu
- Nantong Cellulose·Fibers Company Co., Ltd., Nantong 226008, China
| | - Dejun Dong
- Nantong Cellulose·Fibers Company Co., Ltd., Nantong 226008, China
| | - Huan Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China;
| |
Collapse
|
4
|
Application of bacterial cellulose film as a biodegradable and antimicrobial packaging material. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.matpr.2020.01.201] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Watabe Y, Suzuki Y, Koike S, Shimamoto S, Kobayashi Y. Cellulose acetate, a new candidate feed supplement for ruminant animals: In vitro evaluations. J Dairy Sci 2018; 101:10929-10938. [DOI: 10.3168/jds.2018-14969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/16/2018] [Indexed: 11/19/2022]
|
6
|
Gontijo de Melo P, Fornazier Borges M, Afonso Ferreira J, Vicente Barbosa Silva M, Ruggiero R. Bio-Based Cellulose Acetate Films Reinforced with Lignin and Glycerol. Int J Mol Sci 2018; 19:ijms19041143. [PMID: 29642634 PMCID: PMC5979573 DOI: 10.3390/ijms19041143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 11/16/2022] Open
Abstract
Two sets of four cellulose acetate (degree of substitution = 2.2) were incorporated with lignin extracted from the macaúba endocarp, before and after being chemically modified to sodium carboxymethyl-lignin and aluminum carboxymethyl-lignin, respectively. The eight membranes were prepared by the casting method after dissolution in acetone and embedded with lignins (0.1% w/w), one without modification (CAc-Lig) and two chemically modified (CAc-CMLNa) and (CAc-CMLAl), compared to membranes of pure acetate (CAc). In group II, in the four membranes prepared, glycerol was added (10% w/w) as a plasticizer. The membranes were characterized by a number of techniques: thermal (differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)), morphological (scanning electron microscope (SEM) and atomic force microscopy (AFM)), structural (X-ray powder diffraction (XRD)), hydrophobic (contact angle and water vapor permeability), and thermomechanical (dynamic thermal mechanical analysis and tensile tests). The results show that despite some incompatibility with the cellulose acetate, the incorporation of the lignin in a concentration of 0.1% w/w acts as a reinforcement in the membrane, greatly increasing the tension rupture of the material. The presence of glycerol in a concentration of 10% w/w also acts as a reinforcement in all membranes, in addition to increasing the tension rupture. In this study, glycerol and acetate both increased the compatibility of the membranes.
Collapse
Affiliation(s)
| | | | | | | | - Reinaldo Ruggiero
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia MG 38408-902, Brazil.
| |
Collapse
|
7
|
Hama S, Nakano K, Onodera K, Nakamura M, Noda H, Kondo A. Saccharification behavior of cellulose acetate during enzymatic processing for microbial ethanol production. BIORESOURCE TECHNOLOGY 2014; 157:1-5. [PMID: 24514162 DOI: 10.1016/j.biortech.2014.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/29/2013] [Accepted: 01/02/2014] [Indexed: 06/03/2023]
Abstract
This study was conducted to realize the potential application of cellulose acetate to enzymatic processing, followed by microbial ethanol fermentation. To eliminate the effect of steric hindrance of acetyl groups on the action of cellulase, cellulose acetate was subjected to deacetylation in the presence of 1N sodium hydroxide and a mixture of methanol/acetone, yielding 88.8-98.6% at 5-20% substrate loadings during a 48h saccharification at 50°C. Ethanol fermentation using Saccharomyces cerevisiae attained a high yield of 92.3% from the initial glucose concentration of 44.2g/L; however, a low saccharification yield was obtained at 35°C, decreasing efficiency during simultaneous saccharification and fermentation (SSF). Presaccharification at 50°C prior to SSF without increasing the total process time attained the ethanol titers of 19.8g/L (5% substrate), 38.0g/L (10% substrate), 55.9g/L (15% substrate), and 70.9g/L (20% substrate), which show a 12.0-16.2% improvement in ethanol yield.
Collapse
Affiliation(s)
- Shinji Hama
- Bio-energy Corporation, Research and Development Laboratory, 2-9-7 Minaminanamatsu, Amagasaki 660-0053, Japan
| | - Kohsuke Nakano
- Bio-energy Corporation, Research and Development Laboratory, 2-9-7 Minaminanamatsu, Amagasaki 660-0053, Japan
| | - Kaoru Onodera
- Bio-energy Corporation, Research and Development Laboratory, 2-9-7 Minaminanamatsu, Amagasaki 660-0053, Japan
| | - Masashi Nakamura
- Bio-energy Corporation, Research and Development Laboratory, 2-9-7 Minaminanamatsu, Amagasaki 660-0053, Japan
| | - Hideo Noda
- Bio-energy Corporation, Research and Development Laboratory, 2-9-7 Minaminanamatsu, Amagasaki 660-0053, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
8
|
|
9
|
Yan C, Zhang J, Lv Y, Yu J, Wu J, Zhang J, He J. Thermoplastic Cellulose-graft-poly(l-lactide) Copolymers Homogeneously Synthesized in an Ionic Liquid with 4-Dimethylaminopyridine Catalyst. Biomacromolecules 2009; 10:2013-8. [DOI: 10.1021/bm900447u] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chenghu Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Engineering Plastics (KLEP), Joint Laboratory of Polymer Science and Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinming Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Engineering Plastics (KLEP), Joint Laboratory of Polymer Science and Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuxia Lv
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Engineering Plastics (KLEP), Joint Laboratory of Polymer Science and Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Engineering Plastics (KLEP), Joint Laboratory of Polymer Science and Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Engineering Plastics (KLEP), Joint Laboratory of Polymer Science and Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Engineering Plastics (KLEP), Joint Laboratory of Polymer Science and Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiasong He
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Engineering Plastics (KLEP), Joint Laboratory of Polymer Science and Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
10
|
He J, Tang Y, Wang SY. Alkaline treatment of diacetate fibers and subsequent cellulase degradation. J Appl Polym Sci 2007. [DOI: 10.1002/app.27373] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Teramoto Y, Nishio Y. Biodegradable Cellulose Diacetate-graft-poly(l-lactide)s: Enzymatic Hydrolysis Behavior and Surface Morphological Characterization. Biomacromolecules 2003; 5:407-14. [PMID: 15003000 DOI: 10.1021/bm034453i] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzymatic hydrolysis of selected copolymers of cellulose diacetate-graft-poly(L-lactide)s (CDA-g-PLLAs) were conducted with proteinase K for film specimens, which were solely quenched from the molten state or, further, annealed at temperatures below or above their glass transition temperatures. The hydrolysis rates depended seriously on the thermal history, as well as on the graft modification. Especially, the heat treatment, followed by physical aging or crystallization of the originally amorphous materials, was a key factor to control subtly their enzymatic degradation behavior. Atomic force microscopy revealed that the enzymatic hydrolysis transformed the surface of the respective films into a more undulated one with a number of fine protuberances, for example, of several hundred nanometers in height and a few micrometers in width. Attenuated total reflection FTIR spectroscopy ensured selective release of lactyl units from the surface region. In visual appearance, some degraded films exhibited even an iridescent color due to an effect of interference of visible light reflected on the surface. These observations suggest a conception of "spatiotemporally controlled degradation", leading to a new method not only for regulation of the overall rate of degradation but also for fine surface abrasion of polymer materials.
Collapse
Affiliation(s)
- Yoshikuni Teramoto
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
12
|
Wirth S, Ulrich A. Cellulose-degrading potentials and phylogenetic classification of carboxymethyl-cellulose decomposing bacteria isolated from soil. Syst Appl Microbiol 2002; 25:584-91. [PMID: 12583719 DOI: 10.1078/07232020260517724] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In a previous study, culturable carboxymethyl-cellulose (CMC) decomposing soil bacteria isolated from different sampling positions across an agricultural encatchment have been classified into 31 pattern groups by digestion of amplified 16S rDNA using a single restriction enzyme (Ulrich and Wirth: Microb. Ecol. 37, 238-247, 1999). In order to reveal relationships between phylogenetic diversity and phenotypic functions, a further differentiation of two selected site-specific pattern groups (I and H) was performed, resulting in a sub-classification of four and three ARDRA groups, respectively. Based on sequencing a representative isolate of each ARDRA group, the isolates were assigned to the genus Streptomyces. The ARDRA groups were dispersed across various clades of the genus with a direct affiliation to species known for cellulolytic activity in one group, only. The isolates differed in potentials to degrade colloidal, native or highly crystalline cellulose derivatives. Out of 39 isolates, 11 were capable of degrading all substrates, 17 were restricted to degrade CMC only, and 11 were active decomposers of exclusively both CMC and colloidal cellulose. In most cases, the genetic classification of the isolates corresponded with groupings based on cellulose degrading capabilities. Thus, isolates of four ARDRA groups were restricted to the degradation of CMC, while two further isolates which efficiently degraded all cellulose derivatives formed two separate ARDRA groups. The major ARDRA group, however; displayed a high variability of degradation capabilities. The study of additional phenotypic features revealed a broad potential to decompose a set of various carbon substrates, which matched the phylogenetic classification in several cases.
Collapse
Affiliation(s)
- Stephan Wirth
- ZALF-Centre for Agricultural Landscape and Land Use Research, Institute of Primary Production and Microbial Ecology, Müncheberg, Germany.
| | | |
Collapse
|
13
|
|