1
|
Watanabe S, Shirai M, Kishi M, Ohnishi Y. Involvement of an FNR-like oxygen sensor in Komagataeibacter medellinensis for survival under oxygen depletion. Biosci Biotechnol Biochem 2021; 85:2065-2075. [PMID: 34191007 DOI: 10.1093/bbb/zbab121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/19/2021] [Indexed: 11/13/2022]
Abstract
During acetic acid fermentation, acetic acid bacteria face oxygen depletion stress caused by the vigorous oxidation of ethanol to acetic acid. However, the molecular mechanisms underlying the response to oxygen depletion stress remain largely unknown. Here, we focused on an oxygen-sensing FNR homolog, FnrG, in Komagataeibacter medellinensis. Comparative transcriptomic analysis between the wild-type and fnrG-disrupted strains revealed that FnrG upregulated eight genes (fold change > 3). Recombinant FnrG bound to a specific DNA sequence only when FnrG was reconstituted anaerobically. An operon consisting of acetate kinase and xylulose-5-phosphate/fructose-6-phosphate phosphoketolase genes was found to be an FnrG regulon involved in cell survival under oxygen-limiting conditions. Moreover, a strain that overexpressed these two genes accumulated more acetic acid than the wild-type strain harboring an empty vector. Thus, these two genes could be new targets for the molecular breeding of acetic acid bacteria with high acetic acid productivity.
Collapse
Affiliation(s)
- Seiji Watanabe
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,Central Research Institute, Mizkan Holdings Co. Ltd., 2-6 Nakamura-cho, Handa-shi, Aichi 475-8585, Japan
| | - Mutsunori Shirai
- Department of Microbiology and Immunology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Mikiya Kishi
- Central Research Institute, Mizkan Holdings Co. Ltd., 2-6 Nakamura-cho, Handa-shi, Aichi 475-8585, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Improving the catalytic efficiency and substrate affinity of a novel esterase from marine Klebsiella aerogenes by random and site-directed mutation. World J Microbiol Biotechnol 2021; 37:106. [PMID: 34037848 DOI: 10.1007/s11274-021-03069-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
A novel esterase (EstKa) from marine Klebsiella aerogenes was characterized with hydrolytic activity against p-nitrophenyl caprylate (pNPC, C8) under optimum conditions (50 °C and pH 8.5). After two rounds of mutagenesis, two highly potential mutants (I6E9 and L7B11) were obtained with prominent activity, substrate affinity and thermostability. I6E9 (L90Q/P96T) and L7B11 (A37S/Q100L/S133G/R138C/Q156R) were 1.56- and 1.65-fold higher than EstKa in relative catalytic efficiency. The influence of each amino acid on enzyme activity was explored by site-directed mutation. The mutants Pro96Thr and Gln156Arg showed 1.29- and 1.48-fold increase in catalytic efficiency (Kcat/Km) and 54.4 and 36.2% decrease in substrate affinity (Km), respectively. The compound mutant Pro96Thr/Gln156Arg exhibited 68.9% decrease in Km and 1.41-fold increase in Kcat/Km relative to EstKa. Homology model structure analysis revealed that the replacement of Gln by hydrophilic Arg on the esterase surface improved the microenvironment stability and the activity. The replacement of Pro by Thr enabled the esterase enzyme to retain 90% relative activity after 3 h incubation at 45 °C. Structural analysis confirmed that the formation of a hydrogen bond leads to a notable increase of catalytic efficiency under high temperature conditions.
Collapse
|
3
|
Fricke PM, Klemm A, Bott M, Polen T. On the way toward regulatable expression systems in acetic acid bacteria: target gene expression and use cases. Appl Microbiol Biotechnol 2021; 105:3423-3456. [PMID: 33856535 PMCID: PMC8102297 DOI: 10.1007/s00253-021-11269-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 04/04/2021] [Indexed: 01/06/2023]
Abstract
Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an L-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. KEY POINTS: • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.
Collapse
Affiliation(s)
- Philipp Moritz Fricke
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Angelika Klemm
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
4
|
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018; 35:1547-1549. [PMID: 29722887 DOI: 10.1007/0-387-30745-1_9] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.
Collapse
Affiliation(s)
- Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
- Department of Biology, Temple University, Philadelphia, PA
- Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Glen Stecher
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | - Michael Li
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | - Christina Knyaz
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | - Koichiro Tamura
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Hachioji, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
5
|
Privé F, Kaderbhai NN, Girdwood S, Worgan HJ, Pinloche E, Scollan ND, Huws SA, Newbold CJ. Identification and characterization of three novel lipases belonging to families II and V from Anaerovibrio lipolyticus 5ST. PLoS One 2013; 8:e69076. [PMID: 23950883 PMCID: PMC3741291 DOI: 10.1371/journal.pone.0069076] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/04/2013] [Indexed: 11/19/2022] Open
Abstract
Following the isolation, cultivation and characterization of the rumen bacterium Anaerovibrio lipolyticus in the 1960s, it has been recognized as one of the major species involved in lipid hydrolysis in ruminant animals. However, there has been limited characterization of the lipases from the bacterium, despite the importance of understanding lipolysis and its impact on subsequent biohydrogenation of polyunsaturated fatty acids by rumen microbes. This study describes the draft genome of Anaerovibrio lipolytica 5ST, and the characterization of three lipolytic genes and their translated protein. The uncompleted draft genome was 2.83 Mbp and comprised of 2,673 coding sequences with a G+C content of 43.3%. Three putative lipase genes, alipA, alipB and alipC, encoding 492-, 438- and 248- amino acid peptides respectively, were identified using RAST. Phylogenetic analysis indicated that alipA and alipB clustered with the GDSL/SGNH family II, and alipC clustered with lipolytic enzymes from family V. Subsequent expression and purification of the enzymes showed that they were thermally unstable and had higher activities at neutral to alkaline pH. Substrate specificity assays indicated that the enzymes had higher hydrolytic activity against caprylate (C8), laurate (C12) and myristate (C14).
Collapse
Affiliation(s)
- Florence Privé
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Naheed N. Kaderbhai
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Susan Girdwood
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Hilary J. Worgan
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Eric Pinloche
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Nigel D. Scollan
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Sharon A. Huws
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - C. Jamie Newbold
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Fervidobacterium changbaicum Lip1: identification, cloning, and characterization of the thermophilic lipase as a new member of bacterial lipase family V. Appl Microbiol Biotechnol 2010; 89:1463-73. [DOI: 10.1007/s00253-010-2971-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 10/17/2010] [Accepted: 10/18/2010] [Indexed: 11/26/2022]
|
7
|
A cold-adapted esterase of a novel marine isolate, Pseudoalteromonas arctica: gene cloning, enzyme purification and characterization. Extremophiles 2010; 14:273-85. [PMID: 20217440 DOI: 10.1007/s00792-010-0306-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/22/2010] [Indexed: 12/12/2022]
Abstract
A gene encoding an esterase (estO) was identified and sequenced from a gene library screen of the psychrotolerant bacterium Pseudoalteromonas arctica. Analysis of the 1,203 bp coding region revealed that the deduced peptide sequence is composed of 400 amino acids with a predicted molecular mass of 44.1 kDa. EstO contains a N-terminal esterase domain and an additional OsmC domain at the C-terminus (osmotically induced family of proteins). The highly conserved five-residue motif typical for all alpha/beta hydrolases (G x S x G) was detected from position 104 to 108 together with a putative catalytic triad consisting of Ser(106), Asp(196), and His(225). Sequence comparison showed that EstO exhibits 90% amino acid identity with hypothetical proteins containing similar esterase and OsmC domains but only around 10% identity to the amino acid sequences of known esterases. EstO variants with and without the OsmC domain were produced and purified as His-tag fusion proteins in E. coli. EstO displayed an optimum pH of 7.5 and optimum temperature of 25 degrees C with more than 50% retained activity at the freezing point of water. The thermostability of EstO (50% activity after 5 h at 40 degrees C) dramatically increased in the truncated variant (50% activity after 2.5 h at 90 degrees C). Furthermore, the esterase displays broad substrate specificity for esters of short-chain fatty acids (C(2)-C(8)).
Collapse
|
8
|
Ruiz C, Falcocchio S, Pastor FIJ, Saso L, Diaz P. Helicobacter pylori EstV: identification, cloning, and characterization of the first lipase isolated from an epsilon-proteobacterium. Appl Environ Microbiol 2007; 73:2423-31. [PMID: 17293528 PMCID: PMC1855603 DOI: 10.1128/aem.02215-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial lipases are attracting an enormous amount of attention due to their wide biotechnological applications and due to their roles as virulence factors in some bacteria. Helicobacter pylori is a significant and widespread pathogen which produces a lipase(s) and phospholipases that seem to play a role in mucus degradation and the release of proinflammatory and cytotoxic compounds. However, no H. pylori lipase(s) has been isolated and described previously. Therefore, a search for putative lipase-encoding genes was performed by comparing the amino acid sequences of 53 known lipolytic enzymes with the deduced proteome of H. pylori. As a result, we isolated, cloned, purified, and characterized EstV, a novel lipolytic enzyme encoded by open reading frame HP0739 of H. pylori 26695, and classified it in family V of the bacterial lipases. This enzyme has the properties of a small, cell-bound carboxylesterase (EC 3.1.1.1) that is active mostly with short-chain substrates and does not exhibit interfacial activation. EstV is stable and does not require additional cofactors, and the maximum activity occurs at 50 degrees C and pH 10. This unique enzyme is the first lipase isolated from H. pylori that has been described, and it might contribute to ulcer development, as inhibition by two antiulcer substances (beta-aescin and glycyrrhizic acid) suggests. EstV is also the first lipase from an epsilon-proteobacterium to be described. Furthermore, this enzyme is a new member of family V, probably the least-known family of bacterial lipases, and the first lipase of this family for which kinetic behavior, inhibition by natural substances, and other key biochemical features are reported.
Collapse
Affiliation(s)
- Cristian Ruiz
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | | | | | |
Collapse
|
9
|
Kashima Y, Iijima M, Nakano T, Tayama K, Koizumi Y, Udaka S, Yanagida F. Role of intracellular esterases in the production of esters by Acetobacter pasteurianus. J Biosci Bioeng 2005; 89:81-3. [PMID: 16232703 DOI: 10.1016/s1389-1723(00)88055-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/1999] [Accepted: 10/01/1999] [Indexed: 11/16/2022]
Abstract
Esters are the major flavor compounds produced by Acetobacter sp. during vinegar production. The two genes encoding the esterases in the bacteria were disrupted, and the effects of the disruptions studied. When cultured in the presence of ethanol, the est1 gene-disrupted mutant (DE1K) did not produce any ethyl acetate or isoamyl acetate. However, the disruption of est2 did not affect the ester production. Ethyl acetate production by N-23 (pME122P) and DE1K (pME122P), which contain est1, was 1.7-fold higher than that by the wild type, N-23. On analyzing the relationship between ethyl acetate production and the extracellular ethanol and acetic acid concentrations, we found that the highest amount of ethyl acetate was produced when the molar ratio of ethanol and acetic acid was 1:1. These results indicate that the ester production by Acetobacter sp. is mostly catalyzed by the intracellular esterase, esterase-1, with ethanol and acetic acid used as the substrates.
Collapse
Affiliation(s)
- Y Kashima
- Department of Fermentation Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Kiatpapan P, Kobayashi H, Sakaguchi M, Ono H, Yamashita M, Kaneko Y, Murooka Y. Molecular characterization of Lactobacillus plantarum genes for beta-ketoacyl-acyl carrier protein synthase III (fabH) and acetyl coenzyme A carboxylase (accBCDA), which are essential for fatty acid biosynthesis. Appl Environ Microbiol 2001; 67:426-33. [PMID: 11133475 PMCID: PMC92595 DOI: 10.1128/aem.67.1.426-433.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes for subunits of acetyl coenzyme A carboxylase (ACC), which is the enzyme that catalyzes the first step in the synthesis of fatty acids in Lactobacillus plantarum L137, were cloned and characterized. We identified six potential open reading frames, namely, manB, fabH, accB, accC, accD, and accA, in that order. Nucleotide sequence analysis suggested that fabH encoded beta-ketoacyl-acyl carrier protein synthase III, that the accB, accC, accD, and accA genes encoded biotin carboxyl carrier protein, biotin carboxylase, and the beta and alpha subunits of carboxyltransferase, respectively, and that these genes were clustered. The organization of acc genes was different from that reported for Escherichia coli, for Bacillus subtilis, and for Pseudomonas aeruginosa. E. coli accB and accD mutations were complemented by the L. plantarum accB and accD genes, respectively. The predicted products of all five genes were confirmed by using the T7 expression system in E. coli. The gene product of accB was biotinylated in E. coli. Northern and primer extension analyses demonstrated that the five genes in L. plantarum were regulated polycistronically in an acc operon.
Collapse
Affiliation(s)
- P Kiatpapan
- Department of Biotechnology, Graduate School of Engineering, Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|