1
|
John P, Sriram S, Palanichamy C, Subash PT, Sudandiradoss C. A multifarious bacterial surface display: potential platform for biotechnological applications. Crit Rev Microbiol 2025:1-26. [PMID: 39955766 DOI: 10.1080/1040841x.2025.2461054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
Bacterial-cell surface display represents a novel field of protein engineering, which is grounds for presenting recombinant proteins or peptides on the surface of host cells. This technique is primarily used for endowing cellular activity on the host cells and enables several biotechnological applications. In this review, we comprehensively summarize the speciality of bacterial surface display, specifically in gram-positive and gram-negative organisms and then we depict the practical cases to show the importance of bacterial cell surface display in biomedicine and bioremediation domains. We manifest that among other display systems such as phages and ribosomes, the cell surface display using bacterial cells can be used to avoid the loss of combinatorial protein libraries and also open the possibility of isolating target-binding variants using high-throughput selection platforms. Thus, it is becoming a robust tool for functionalizing microbes to serve as a potential implement for various bioengineering purposes.
Collapse
Affiliation(s)
- Pearl John
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Srineevas Sriram
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Chandresh Palanichamy
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - P T Subash
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C Sudandiradoss
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Marquez CA, Oh CI, Ahn G, Shin WR, Kim YH, Ahn JY. Synergistic vesicle-vector systems for targeted delivery. J Nanobiotechnology 2024; 22:6. [PMID: 38167116 PMCID: PMC10763086 DOI: 10.1186/s12951-023-02275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
With the immense progress in drug delivery systems (DDS) and the rise of nanotechnology, challenges such as target specificity remain. The vesicle-vector system (VVS) is a delivery system that uses lipid-based vesicles as vectors for a targeted drug delivery. When modified with target-probing materials, these vesicles become powerful vectors for drug delivery with high target specificity. In this review, we discuss three general types of VVS based on different modification strategies: (1) vesicle-probes; (2) vesicle-vesicles; and (3) genetically engineered vesicles. The synthesis of each VVS type and their corresponding properties that are advantageous for targeted drug delivery, are also highlighted. The applications, challenges, and limitations of VVS are briefly examined. Finally, we share a number of insights and perspectives regarding the future of VVS as a targeted drug delivery system at the nanoscale.
Collapse
Affiliation(s)
- Christine Ardelle Marquez
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Cho-Im Oh
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Gna Ahn
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Woo-Ri Shin
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St, Philadelphia, PA, 19104, USA
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Ji-Young Ahn
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
3
|
Mi Y, He Y, Mi J, Huang Y, Fan H, Song L, An X, Xu S, Li M, Tong Y. Genetic and Phenotypic Analysis of Phage-Resistant Mutant Fitness Triggered by Phage-Host Interactions. Int J Mol Sci 2023; 24:15594. [PMID: 37958578 PMCID: PMC10648725 DOI: 10.3390/ijms242115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
The emergence of phage-resistant bacterial strains is one of the biggest challenges for phage therapy. However, the emerging phage-resistant bacteria are often accompanied by adaptive trade-offs, which supports a therapeutic strategy called "phage steering". The key to phage steering is to guide the bacterial population toward an evolutionary direction that is favorable for treatment. Thus, it is important to systematically investigate the impacts of phages targeting different bacterial receptors on the fitness of the bacterial population. Herein, we employed 20 different phages to impose strong evolutionary pressure on the host Pseudomonas aeruginosa PAO1 and examined the genetic and phenotypic responses of their phage-resistant mutants. Among these strains with impaired adsorptions, four types of mutations associated with bacterial receptors were identified, namely, lipopolysaccharides (LPSs), type IV pili (T4Ps), outer membrane proteins (OMPs), and exopolysaccharides (EPSs). PAO1, responding to LPS- and EPS-dependent phage infections, mostly showed significant growth impairment and virulence attenuation. Most mutants with T4P-related mutations exhibited a significant decrease in motility and biofilm formation ability, while the mutants with OMP-related mutations required the lowest fitness cost out of the bacterial populations. Apart from fitness costs, PAO1 strains might lose their resistance to antibiotics when counteracting with phages, such as the presence of large-fragment mutants in this study, which may inspire the usage of phage-antibiotic combination strategies. This work provides methods that leverage the merits of phage resistance relative to obtaining therapeutically beneficial outcomes with respect to phage-steering strategies.
Collapse
Affiliation(s)
- Yanze Mi
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
| | - Yile He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
| | - Jinhui Mi
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
| | - Yunfei Huang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
| | - Shan Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Markthaler D, Ghosh R. Computational prediction of extracellular loops of the Por39 outer membrane porin of Rhodospirillum rubrum suitable for epitope surface display. Comput Struct Biotechnol J 2023; 21:2483-2494. [PMID: 37077176 PMCID: PMC10106341 DOI: 10.1016/j.csbj.2023.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Outer membrane porins from Gram-negative bacteria are established vehicles for the production of vaccines. Typically, one or more of the extracellular loops of a porin are replaced by a peptide encoding a foreign epitope, and recombinant porin is then used as a vaccine. However, many host strains are potentially pathogenic, and also produce toxic lipopolysaccharide (LPS), both of which are undesirable for safety reasons. In contrast, the outer membrane porins from photosynthetic, purple bacteria have no known human pathology and produce only weakly toxic LPS. The purple bacterium Rhodospirillum rubrum is well-suited for large-scale biotechnology, and expresses a major porin, Por39, which is a candidate for a vaccine platform. Unfortunately, the atomic structure of Por39 could not be determined so far, and Por39 shows only a weak homology to other porins of known structure, making the assignment of external loops difficult. Here, we construct a knowledge-based model of Por39 using secondary structure constraints from both the low sequence homology to the 2POR porin from Rhodobacter capsulatus, for which the X-ray structure is known, as well as those obtained using secondary structure prediction packages. The secondary structure predictions were used to constrain a three-dimensional model created using the I-TASSER package. The modelling procedure was validated by predicting the structure of 2POR using the same strategy, but excluding the 2POR X-ray structure from the I-TASSER database. The final Por39 model allows three external loops to be defined precisely, and could also be used to obtain an initial model for the closely related Por41 using molecular modelling. These structures provide a good starting point for the insertion of epitopes with vaccine potential.
Collapse
|
5
|
Liao C, Santoscoy MC, Craft J, Anderson C, Soupir ML, Jarboe LR. Allelic variation of Escherichia coli outer membrane protein A: Impact on cell surface properties, stress tolerance and allele distribution. PLoS One 2022; 17:e0276046. [PMID: 36227900 PMCID: PMC9560509 DOI: 10.1371/journal.pone.0276046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Outer membrane protein A (OmpA) is one of the most abundant outer membrane proteins of Gram-negative bacteria and is known to have patterns of sequence variations at certain amino acids-allelic variation-in Escherichia coli. Here we subjected seven exemplar OmpA alleles expressed in a K-12 (MG1655) ΔompA background to further characterization. These alleles were observed to significantly impact cell surface charge (zeta potential), cell surface hydrophobicity, biofilm formation, sensitivity to killing by neutrophil elastase, and specific growth rate at 42°C and in the presence of acetate, demonstrating that OmpA is an attractive target for engineering cell surface properties and industrial phenotypes. It was also observed that cell surface charge and biofilm formation both significantly correlate with cell surface hydrophobicity, a cell property that is increasingly intriguing for bioproduction. While there was poor alignment between the observed experimental values relative to the known sequence variation, differences in hydrophobicity and biofilm formation did correspond to the identity of residue 203 (N vs T), located within the proposed dimerization domain. The relative abundance of the (I, δ) allele was increased in extraintestinal pathogenic E. coli (ExPEC) isolates relative to environmental isolates, with a corresponding decrease in (I, α) alleles in ExPEC relative to environmental isolates. The (I, α) and (I, δ) alleles differ at positions 203 and 251. Variations in distribution were also observed among ExPEC types and phylotypes. Thus, OmpA allelic variation and its influence on OmpA function warrant further investigation.
Collapse
Affiliation(s)
- Chunyu Liao
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, United States of America
| | - Miguel C. Santoscoy
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa United States of America
| | - Julia Craft
- Department of Chemical and Biological Engineering, Biological Materials and Processes (BioMAP) NSF REU Program, Iowa State University, Ames, Iowa, United States of America
| | - Chiron Anderson
- Department of Chemical and Biological Engineering, Biological Materials and Processes (BioMAP) NSF REU Program, Iowa State University, Ames, Iowa, United States of America
| | - Michelle L. Soupir
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Laura R. Jarboe
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, United States of America
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa United States of America
- * E-mail:
| |
Collapse
|
6
|
Hermansen S, Ryoo D, Orwick-Rydmark M, Saragliadis A, Gumbart JC, Linke D. The Role of Extracellular Loops in the Folding of Outer Membrane Protein X (OmpX) of Escherichia coli. Front Mol Biosci 2022; 9:918480. [PMID: 35911955 PMCID: PMC9329534 DOI: 10.3389/fmolb.2022.918480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
The outer membrane of Gram-negative bacteria acts as an additional diffusion barrier for solutes and nutrients. It is perforated by outer membrane proteins (OMPs) that function most often as diffusion pores, but sometimes also as parts of larger cellular transport complexes, structural components of the cell wall, or even as enzymes. These OMPs often have large loops that protrude into the extracellular environment, which have promise for biotechnological applications and as therapeutic targets. Thus, understanding how modifications to these loops affect OMP stability and folding is critical for their efficient application. In this work, the small outer membrane protein OmpX was used as a model system to quantify the effects of loop insertions on OMP folding and stability. The insertions were varied according to both hydrophobicity and size, and their effects were determined by assaying folding into detergent micelles in vitro by SDS-PAGE and in vivo by isolating the outer membrane of cells expressing the constructs. The different insertions were also examined in molecular dynamics simulations to resolve how they affect OmpX dynamics in its native outer membrane. The results indicate that folding of OMPs is affected by both the insert length and by its hydrophobic character. Small insertions sometimes even improved the folding efficiency of OmpX, while large hydrophilic inserts reduced it. All the constructs that were found to fold in vitro could also do so in their native environment. One construct that could not fold in vitro was transported to the OM in vivo, but remained unfolded. Our results will help to improve the design and efficiency of recombinant OMPs used for surface display.
Collapse
Affiliation(s)
- Simen Hermansen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - David Ryoo
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, United States
| | - Marcella Orwick-Rydmark
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Athanasios Saragliadis
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
- *Correspondence: Dirk Linke,
| |
Collapse
|
7
|
Mahdavi SZB, Oroojalian F, Eyvazi S, Hejazi M, Baradaran B, Pouladi N, Tohidkia MR, Mokhtarzadeh A, Muyldermans S. An overview on display systems (phage, bacterial, and yeast display) for production of anticancer antibodies; advantages and disadvantages. Int J Biol Macromol 2022; 208:421-442. [PMID: 35339499 DOI: 10.1016/j.ijbiomac.2022.03.113] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 03/17/2022] [Indexed: 11/05/2022]
Abstract
Antibodies as ideal therapeutic and diagnostic molecules are among the top-selling drugs providing considerable efficacy in disease treatment, especially in cancer therapy. Limitations of the hybridoma technology as routine antibody generation method in conjunction with numerous developments in molecular biology led to the development of alternative approaches for the streamlined identification of most effective antibodies. In this regard, display selection technologies such as phage display, bacterial display, and yeast display have been widely promoted over the past three decades as ideal alternatives to traditional methods. The display of antibodies on phages is probably the most widespread of these methods, although surface display on bacteria or yeast have been employed successfully, as well. These methods using various sizes of combinatorial antibody libraries and different selection strategies possessing benefits in screening potency, generating, and isolation of high affinity antibodies with low risk of immunogenicity. Knowing the basics of each method assists in the design and retrieval process of antibodies suitable for different diseases, including cancer. In this review, we aim to outline the basics of each library construction and its display method, screening and selection steps. The advantages and disadvantages in comparison to alternative methods, and their applications in antibody engineering will be explained. Finally, we will review approved or non-approved therapeutic antibodies developed by employing these methods, which may serve as therapeutic antibodies in cancer therapy.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Maryam Hejazi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Serge Muyldermans
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China..
| |
Collapse
|
8
|
Lim B, Yin Y, Ye H, Cui Z, Papachristodoulou A, Huang WE. Reprogramming Synthetic Cells for Targeted Cancer Therapy. ACS Synth Biol 2022; 11:1349-1360. [PMID: 35255684 PMCID: PMC9084601 DOI: 10.1021/acssynbio.1c00631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Advances
in synthetic biology enable the reprogramming of bacteria
as smart agents to specifically target tumors and locally release
anticancer drugs in a highly controlled manner. However, the bench-to-bedside
translation of engineered bacteria is often impeded by genetic instability
and the potential risk of uncontrollable replication of engineered
bacteria inside the patient. SimCells (simple cells) are chromosome-free
bacteria controlled by designed gene circuits, which can bypass the
interference of the native gene network in bacteria and eliminate
the risk of bacterial uncontrolled growth. Here, we describe the reprogramming
of SimCells and mini-SimCells to serve as “safe and live drugs”
for targeted cancer therapy. We engineer SimCells to display nanobodies
on the surface for the binding of carcinoembryonic antigen (CEA),
which is an important biomarker found commonly in colorectal cancer
cells. We show that SimCells and mini-SimCells with surface display
of anti-CEA nanobody can specifically bind CEA-expressing Caco2 cancer
cells in vitro while leaving the non-CEA-expressing
SW80 cancer cells untouched. These cancer-targeting SimCells and mini-SimCells
induced cancer cell death in vitro by compromising
the plasma membrane of cancer cells. The cancer-killing effect can
be further enhanced by an aspirin/salicylate inducible gene circuit
that converts salicylate into catechol, a potent anticancer. This
work highlights the potential of SimCells and mini-SimCells for targeted
cancer therapy and lays the foundation for the application of synthetic
biology to medicine.
Collapse
Affiliation(s)
- Boon Lim
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, U.K
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, U.K
| | - Yutong Yin
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, U.K
| | - Hua Ye
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, U.K
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, U.K
| | - Zhanfeng Cui
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, U.K
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, U.K
| | | | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, U.K
| |
Collapse
|
9
|
Hu G, Chen X, Chu W, Ma Z, Miao Y, Luo X, Fu Y. Immunogenic characteristics of the outer membrane phosphoporin as a vaccine candidate against Klebsiella pneumoniae. Vet Res 2022; 53:5. [PMID: 35063026 PMCID: PMC8781355 DOI: 10.1186/s13567-022-01023-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
In recent years, Klebsiella pneumoniae (KP) has caused disease outbreaks in different animals, resulting in serious economic losses and biosafety concerns. Considering the broad antibiotic resistance of KP, vaccines are the most effective tools against infection. However, there is still no KP vaccine available in the veterinary field. Our results indicate that the highly conserved outer membrane phosphoporin (PhoE) of KP is immunogenic in mice and elicits high titers of antibodies that were shown to be specific for PhoE by immunoblotting. Immunization with PhoE also induced robust cell-mediated immunity and elicited the secretion of high levels of IFN-γ and IL-4, suggesting the induction of mixed Th1 and Th2 responses. Sera from PhoE-immunized mice induced significantly higher complement-mediated lysis of KP cells than did sera from the PBS control mice. Finally, mice immunized with PhoE were significantly protected against KP challenge, with better survival and a reduced visceral bacterial load. Our data underscore the great potential of PhoE as a novel candidate antigen for a vaccine against KP infection.
Collapse
Affiliation(s)
- Gaowei Hu
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Xue Chen
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Wenhui Chu
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Zhe Ma
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Yingjie Miao
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Xi Luo
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Yongqian Fu
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China.
| |
Collapse
|
10
|
Feng L, Gao L, Sauer DF, Ji Y, Cui H, Schwaneberg U. Fe(III)-complex mediated bacterial cell surface immobilization of eGFP and enzymes. Chem Commun (Camb) 2021; 57:4460-4463. [PMID: 33949502 DOI: 10.1039/d1cc01575c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a facile and reversible method to immobilize a broad range of His6-tagged proteins on the E. coli cell surface through Fe(iii)-metal complexes. A His6-tagged eGFP and four His6-tagged enzymes were successfully immobilized on the cell surface. Additionally, a hydrogel sheath around E. coli cells was generated by immobilized His6-tagged HRP.
Collapse
Affiliation(s)
- Lilin Feng
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Liang Gao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Daniel F Sauer
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Yu Ji
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Haiyang Cui
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany. and DWI - Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, 52074, Aachen, Germany
| |
Collapse
|
11
|
Li R, Zhou T, Khan A, Ling Z, Sharma M, Feng P, Ali G, Saif I, Wang H, Li X, Liu P. Feed-additive of bioengineering strain with surface-displayed laccase degrades sulfadiazine in broiler manure and maintains intestinal flora structure. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124440. [PMID: 33302188 DOI: 10.1016/j.jhazmat.2020.124440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Sulfonamide antibiotics (SAs) are excreted into the ecosystem unchanged through feces and urine because of their low adsorption and degradation in the guts of humans and animals. In this study, a novel whole-cell biocatalyst with fungal laccase on the cell surface of Escherichia coli Nissle 1917 was developed to degrade sulfadiazine (SDZ). Engineered strain EcN-IL showed laccase enzyme activity of 2 ± 1 U/mg dry weight of cell and degraded 37 ± 1% of SDZ at temperature 40 °C and pH 5 within 3 h in vitro. Strain EcN-IL with 500 mg/kg of SDZ was employed as a food supplement to feed chicken broilers, which can reduce the residue of SDZ in broiler manure by 58 ± 2% and also reduced dysbiosis of the gut microbiota due to overuse of antibiotics. The genetically engineered EcN-IL has laid a foundation for degrading SDZ in broilers and their manure.
Collapse
Affiliation(s)
- Rong Li
- Gansu Key Laboratory of Biomonitoring and Biorer mediation for Environment Pollution. School of Life Science, Lanzhou University, 222, South Tianshui rd, Lanzhou 730000 Gansu, PR China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222, Tianshuinan Road, Lanzhou, Gansu 730000, PR China.
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222, Tianshuinan Road, Lanzhou, Gansu 730000, PR China.
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222, Tianshuinan Road, Lanzhou, Gansu 730000, PR China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222, Tianshuinan Road, Lanzhou, Gansu 730000, PR China
| | - Monika Sharma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222, Tianshuinan Road, Lanzhou, Gansu 730000, PR China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222, Tianshuinan Road, Lanzhou, Gansu 730000, PR China
| | - Gohar Ali
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222, Tianshuinan Road, Lanzhou, Gansu 730000, PR China
| | - Irfan Saif
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222, Tianshuinan Road, Lanzhou, Gansu 730000, PR China
| | - Haoyang Wang
- McMaster University, 303-2, 1100 Main Street West, Hamilton, Ontario, Canada
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222, Tianshuinan Road, Lanzhou, Gansu 730000, PR China.
| | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Biorer mediation for Environment Pollution. School of Life Science, Lanzhou University, 222, South Tianshui rd, Lanzhou 730000 Gansu, PR China.
| |
Collapse
|
12
|
Surface Display Technology for Biosensor Applications: A Review. SENSORS 2020; 20:s20102775. [PMID: 32414189 PMCID: PMC7294428 DOI: 10.3390/s20102775] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Surface display is a recombinant technology that expresses target proteins on cell membranes and can be applied to almost all types of biological entities from viruses to mammalian cells. This technique has been used for various biotechnical and biomedical applications such as drug screening, biocatalysts, library screening, quantitative assays, and biosensors. In this review, the use of surface display technology in biosensor applications is discussed. In detail, phage display, bacterial surface display of Gram-negative and Gram-positive bacteria, and eukaryotic yeast cell surface display systems are presented. The review describes the advantages of surface display systems for biosensor applications and summarizes the applications of surface displays to biosensors.
Collapse
|
13
|
Zhou XF, Zhang CL, Gao XP, Wang WL, He ZF, Jiang FY, Pang YL, Li JH, Ren XJ, Zhou HB, Tan GQ, Lyu JX, Wang W. A simple and rapid protein purification method based on cell-surface display of SUMO-fused recombinant protein and Ulp1 protease. AMB Express 2020; 10:65. [PMID: 32266507 PMCID: PMC7138890 DOI: 10.1186/s13568-020-00999-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/26/2020] [Indexed: 11/23/2022] Open
Abstract
The development of novel methods for highly efficient protein purification remains a research focus in the biotechnology field because conventional purification approaches, including affinity purification, gel filtration, and ion-exchange chromatography, require complex manipulation steps and are costly. Here, we describe a simple and rapid protein purification strategy in which the SUMO tag and Ulp1 protease are surface-displayed separately on Escherichia coli cells. After protein induction, the cells are harvested, resuspended in cleavage buffer, and incubated together for cleavage. In this approach, the surface-displayed Ulp1 cleaves the membrane-anchored SUMO fusion protein, resulting in the release of the target protein from the C-terminal of SUMO into the solution. The bacterial cells harboring SUMO and Ulp1 on their surfaces can be easily removed by centrifugation. To evaluate the purification method, we used red fluorescent protein (mCherry). Purified mCherry protein (7.72 ± 1.05 mg from 1 L of bacterial culture) was obtained after only 30 min of incubation. The protein purity was higher than 80%, and could be further improved (> 90%) by simple ultrafiltration. This study offers a promising and simple strategy for the purification of recombinant protein in its native form that requires only cleavage and centrifugation steps.
Collapse
|
14
|
Chen T, Wang K, Chi X, Zhou L, Li J, Liu L, Zheng Q, Wang Y, Yu H, Gu Y, Zhang J, Li S, Xia N. Construction of a bacterial surface display system based on outer membrane protein F. Microb Cell Fact 2019; 18:70. [PMID: 30971255 PMCID: PMC6458713 DOI: 10.1186/s12934-019-1120-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/03/2019] [Indexed: 11/16/2022] Open
Abstract
Background Bacterial surface display systems were developed to surface expose heterologous proteins or peptides for different applications, such as peptide libraries screening and live bacterial vaccine design. Various outer membrane proteins, such as outer membrane protein A (OmpA), OmpC and outer membrane pore protein E precursor (PhoE), have been used as carriers for surface display, fused to the proteins or peptides of interest in Gram-negative bacteria. Here, we investigated the utility of constitutively expressed OmpF for the display of foreign immune epitopes on the Escherichia coli cell surface and then compared it with plasmid-induced expression of OmpF and OmpC. Results Enhanced expression of OmpF was linked to a mutation in the OmpF promoter sequence. This mutation rendered OmpF an ideal carrier protein for the enriched display of a target of interest on the bacterial surface. To this end, we grafted two peptides, harboring important epitopes of the hepatitis B virus (HBV) S antigen and human papilloma virus (HPV) L2 protein, onto OmpF of E. coli by genome editing. The resultant fused OmpF proteins were constitutively expressed in the edited E. coli and purified by membrane component extraction. The epitope that displayed on the bacterial surface was verified by SDS-PAGE, western blotting, flow cytometry, and immunoelectron microscopy of the intact bacteria. We further compared this constitutive expression with plasmid-induced expression of OmpF and OmpC in bacterial cells using the same methods for verification. We found that plasmid-induced expression is much less efficient than constitutive expression of OmpF from the bacterial genome. Conclusions Enhanced expression of OmpF in a plasmid-independent manner provides an amenable way to display epitopes on the bacterial surface and sheds light on ways to engineer bacteria for biotechnological applications. Electronic supplementary material The online version of this article (10.1186/s12934-019-1120-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Kaihang Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xin Chi
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Lizhi Zhou
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jiajia Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Liqin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Qingbing Zheng
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yingbin Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hai Yu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, 361102, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
15
|
Park JY, Kim YH, Min J. CO2 reduction and organic compounds production by photosynthetic bacteria with surface displayed carbonic anhydrase and inducible expression of phosphoenolpyruvate carboxylase. Enzyme Microb Technol 2017; 96:103-110. [DOI: 10.1016/j.enzmictec.2016.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 11/30/2022]
|
16
|
Sungkeeree P, Whangsuk W, Dubbs J, Mongkolsuk S, Loprasert S. Biodegradation of endocrine disrupting dibutyl phthalate by a bacterial consortium expressing Sphingobium sp. SM42 esterase. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Evaluation of zraP gene expression characteristics and construction of a lead (Pb) sensing and removal system in a recombinant Escherichia coli. Biotechnol Lett 2014; 37:659-64. [PMID: 25433463 DOI: 10.1007/s10529-014-1732-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
Abstract
A ZraP-based lead sensing and removal system was constructed in E. coli. It was regulated by the ZraS/ZraR two-component system. The expression profile of the zraP gene towards extracellular lead was studied via real-time PCR. A dual-function bacterial system was also designed to express GFP and OmpC-lead binding peptide under the control of zraP for the simultaneous sensing and adsorption of environmental lead without additional manipulation. The constructed bacterial system can emit fluorescence and it adsorbed a maximum of 487 µmol lead/g cell DCW. From a study of artificial wastewater, the constructed bacteria adsorbed lead highly selectively (427 µmol lead/g cell DCW) among other metal ions. The newly-constructed dual function bacterial system can be applied for the development of an efficient process for the removal of lead from polluted wastes.
Collapse
|
18
|
Autodisplay of an archaeal γ-lactamase on the cell surface of Escherichia coli using Xcc_Est as an anchoring scaffold and its application for preparation of the enantiopure antiviral drug intermediate (-) vince lactam. Appl Microbiol Biotechnol 2014; 98:6991-7001. [PMID: 24756321 DOI: 10.1007/s00253-014-5704-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/30/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
At present, autotransporter protein mediated surface display has opened a new dimension in the development of whole-cell biocatalysts. Here, we report the identification of a novel autotransporter Xcc_Est from Xanthomonas campestris pv campestris 8004 by bioinformatic analysis and application of Xcc_Est as an anchoring motif for surface display of γ-lactamase (Gla) from thermophilic archaeon Sulfolobus solfataricus P2 in Escherichia coli. The localization of γ-lactamase in the cell envelope was monitored by Western blot, activity assay and flow cytometry analysis. Either the full-length or truncated Xcc_Est could efficiently transport γ-lactamase to the cell surface. Compared with the free enzyme, the displayed γ-lactamase exhibited optimum temperature of 30 °C other than 90 °C, with a substantial decrease of 60 °C. Under the preparation system, the engineered E. coli with autodisplayed γ-lactamase converted 100 g racemic vince lactam to produce 49.2 g (-) vince lactam at 30 °C within 4 h. By using chiral HPLC, the ee value of the produced (-) vince lactam was determined to be 99.5 %. The whole-cell biocatalyst exhibited excellent stability under the operational conditions. Our results indicate that the E. coli with surface displayed γ-lactamase is an efficient and economical whole cell biocatalyst for preparing the antiviral drug intermediate (-) vince lactam at mild temperature, eliminating expensive energy cost performed at high temperature.
Collapse
|
19
|
Ceremuga I, Seweryn E, Bednarz-Misa I, Pietkiewicz J, Jermakow K, Banaś T, Gamian A. Enolase-like protein present on the outer membrane of Pseudomonas aeruginosa binds plasminogen. Folia Microbiol (Praha) 2014; 59:391-7. [PMID: 24671511 PMCID: PMC4133640 DOI: 10.1007/s12223-014-0311-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/18/2014] [Indexed: 11/27/2022]
Abstract
Pseudomonas aeruginosa is one of the pathogenic bacteria which utilize binding of the host plasminogen (Plg) to promote their invasion throughout the host tissues. In the present study, we confirmed that P. aeruginosa exhibits binding affinity for human plasminogen. Furthermore, we showed that the protein detected on the cell wall of P. aeruginosa and binding human plasminogen is an enolase-like protein. The hypothesis that alpha-enolase, a cytoplasmatic glycolytic enzyme, resides also on the cell surface of the bacterium was supported by electron microscopy analysis. The plasminogen-binding activity of bacterial cell wall outer membrane enolase-like protein was examined by immunoblotting assay.
Collapse
Affiliation(s)
- Ireneusz Ceremuga
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland,
| | | | | | | | | | | | | |
Collapse
|
20
|
Development of a cell surface display system in a magnetotactic bacterium, "Magnetospirillum magneticum" AMB-1. Appl Environ Microbiol 2008; 74:3342-8. [PMID: 18378651 DOI: 10.1128/aem.02276-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial cell surface display is a widely used technology for bioadsorption and for the development of a variety of screening systems. Magnetotactic bacteria are unique species of bacteria due to the presence of magnetic nanoparticles within them. These intracellular, nanosized (50 to 100 nm) magnetic nanoparticles enable the cells to migrate and be manipulated by magnetic force. In this work, using this unique characteristic and based on whole-genomic and comprehensive proteomic analyses of these bacteria, a cell surface display system has been developed by expressing hexahistidine residues within the outer coiled loop of the membrane-specific protein (Msp1) of the "Magnetospirillum magneticum" (proposed name) AMB-1 bacterium. The optimal display site of the hexahistidine residues was successfully identified via secondary structure prediction, immunofluorescence microscopy, and heavy metal binding assay. The established AMB-1 transformant showed high immunofluorescence response, high Cd(2+) binding, and high recovery efficiency in comparison to those of the negative control when manipulated by magnetic force.
Collapse
|
21
|
Zenteno-Cuevas R, Huerta-Yepez S, Reyes-Leyva J, Hernández-Jáuregui P, González-Bonilla C, Ramírez-Mendoza H, Agundis C, Zenteno E. Identification of potential B cell epitope determinants by computer techniques, in hemagglutinin-neuraminidase from the porcine rubulavirus La Piedad Michoacan. Viral Immunol 2007; 20:250-60. [PMID: 17603842 DOI: 10.1089/vim.2006.0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Hemagglutinin-neuraminidase (HN) from porcine rubulavirus La Piedad Michoacan (RvpLPM) is one of the most antigenic proteins known, and is responsible for virus-host cell interaction. We analyzed the amino acid sequence of HN, using computer-assisted techniques to identify B cell epitopes. From a pool of 18 possible antigenic peptides, we evaluated the antigenicity of the 2 peptides with the highest scores and the 1 with lowest score. Antibodies from RvpLPM-infected pigs recognized the synthesized HN-A, HN-B, and HN-R peptides (optical density [OD]: 0.33 +/- 0.02 for HN-A, 0.20 +/- 0.02 for HN-B, and 0.07 +/- 0.01 for HN-R); bovine serum albumin-coupled HN-A and HN-B induced rabbit anti-RvpLPM antibodies (OD: 0.39 +/- 0.01 for HN-A and 0.35 +/- 0.02 for HN-B). Loop 5 from the outer membrane protein, OmpC, from Salmonella typhi was replaced with HN-B; this protein was then expressed in Escherichia coli UH302. BALB/c mice were challenged intraperitoneally or orogastrically with the fusion protein expressed in E. coli and murine antibodies obtained from both types of administration inhibited virus-hemagglutinating activity, as did the antibodies from RvpLPM-infected swine. These results suggest that HN-A and HN-B are peptides involved in RvpLPM cell carbohydrate recognition, and could therefore be considered potential targets for vaccine and diagnostic procedures development.
Collapse
|
22
|
Smith SGJ, Mahon V, Lambert MA, Fagan RP. A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol Lett 2007; 273:1-11. [PMID: 17559395 DOI: 10.1111/j.1574-6968.2007.00778.x] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The OmpA outer membrane protein of Escherichia coli and other enterobacteria is a multifaceted protein. This protein is expressed to very high levels and ompA is tightly regulated at the posttranscriptional level. It can function as an adhesin and invasin, participate in biofilm formation, act as both an immune target and evasin, and serves as a receptor for several bacteriophages. Many of these properties are due to four short protein loops that emanate from the protein to the outside of the cell. Herein it is described how the structure of this protein relates to its many functions.
Collapse
Affiliation(s)
- Stephen G J Smith
- Department of Clinical Microbiology, Trinity College Dublin, St James's Hospital, Dublin, Ireland.
| | | | | | | |
Collapse
|
23
|
Cisneros DA, Muller DJ, Daud SM, Lakey JH. An approach to prepare membrane proteins for single-molecule imaging. Angew Chem Int Ed Engl 2007; 45:3252-6. [PMID: 16634099 DOI: 10.1002/anie.200504506] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- David A Cisneros
- Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 49, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
24
|
Sergeeva A, Kolonin MG, Molldrem JJ, Pasqualini R, Arap W. Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev 2006; 58:1622-54. [PMID: 17123658 PMCID: PMC1847402 DOI: 10.1016/j.addr.2006.09.018] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 09/29/2006] [Indexed: 01/17/2023]
Abstract
Recognition of molecular diversity of cell surface proteomes in disease is essential for the development of targeted therapies. Progress in targeted therapeutics requires establishing effective approaches for high-throughput identification of agents specific for clinically relevant cell surface markers. Over the past decade, a number of platform strategies have been developed to screen polypeptide libraries for ligands targeting receptors selectively expressed in the context of various cell surface proteomes. Streamlined procedures for identification of ligand-receptor pairs that could serve as targets in disease diagnosis, profiling, imaging and therapy have relied on the display technologies, in which polypeptides with desired binding profiles can be serially selected, in a process called biopanning, based on their physical linkage with the encoding nucleic acid. These technologies include virus/phage display, cell display, ribosomal display, mRNA display and covalent DNA display (CDT), with phage display being by far the most utilized. The scope of this review is the recent advancements in the display technologies with a particular emphasis on molecular mapping of cell surface proteomes with peptide phage display. Prospective applications of targeted compounds derived from display libraries in the discovery of targeted drugs and gene therapy vectors are discussed.
Collapse
Affiliation(s)
- Anna Sergeeva
- Department of Blood and Marrow Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Mikhail G. Kolonin
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Jeffrey J. Molldrem
- Department of Blood and Marrow Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Renata Pasqualini
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Wadih Arap
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| |
Collapse
|
25
|
Visudtiphole V, Chalton DA, Hong Q, Lakey JH. Determining OMP topology by computation, surface plasmon resonance and cysteine labelling: the test case of OMPG. Biochem Biophys Res Commun 2006; 351:113-7. [PMID: 17055462 DOI: 10.1016/j.bbrc.2006.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 10/03/2006] [Indexed: 10/24/2022]
Abstract
Bacterial outer-membrane proteins (OMP) are important in pathogenicity and the recently solved structure of OmpG provides an excellent test case for topological predictions since it is monomeric. Here we compare the results of applying several computerised structure prediction algorithms to the sequence of OmpG. Furthermore, we probe the OmpG topology by both an established chemical labelling approach and a new method which combines epitope insertion and surface plasmon resonance. The computational approaches are broadly accurate but the exact choice of the number of beta strands remains difficult. The algorithms also tend to predict the entire beta strand rather than just the transmembrane region. Epitope insertion clearly pinpoints exposed loops but its utility in defining buried or periplasmic sites is less clear cut. Cysteine-mutant labelling is largely confined to exposed residues but one periplasmic cysteine may be labelled by reagents entering via the OmpG pore.
Collapse
Affiliation(s)
- Virak Visudtiphole
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle NE2 4HH, UK
| | | | | | | |
Collapse
|
26
|
Rice JJ, Schohn A, Bessette PH, Boulware KT, Daugherty PS. Bacterial display using circularly permuted outer membrane protein OmpX yields high affinity peptide ligands. Protein Sci 2006; 15:825-36. [PMID: 16600968 PMCID: PMC2242469 DOI: 10.1110/ps.051897806] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A bacterial display methodology was developed for N- and C-terminal display and demonstrated to enable rapid screening of very large peptide libraries with high precision and efficiency. To overcome limitations of insertional fusion display libraries, a new scaffold was developed through circular permutation of the Escherichia coli outer membrane protein OmpX that presents both N and C termini on the external cell surface. Circularly permuted OmpX (CPX) display was directly compared to insertional fusion display by screening comparable peptide libraries in each format using magnetic and fluorescence activated cell sorting. CPX display enabled in situ measurement of dissociation rate constants with improved accuracy and, consequently, improved affinity discrimination during screening and ranking of isolated clones. Using streptavidin as a model target, bacterial display yielded the well-characterized HP(Q)/(M) motif obtained previously using several alternative peptide display systems, as well as three additional motifs (L(I)/(V) CQNVCY, CGWMY(F)/(Y)xEC, ERCWYVMHWPCNA). Using CPX display, a very high affinity streptavidin-binding peptide was isolated having a dissociation rate constant k(off) = 0.002sec(-1) even after grafting to the C terminus of an unrelated protein. Comparison of individual clones obtained from insertional fusion and terminal fusion libraries suggests that the N-terminal display yields sequences with greater diversity, affinity, and modularity. CPX bacterial display thus provides a highly effective method for screening peptide libraries to rapidly generate ligands with high affinity and specificity.
Collapse
Affiliation(s)
- Jeffrey J Rice
- Department of Chemical Engineering, University of California, Santa Brabara, 93106, USA
| | | | | | | | | |
Collapse
|
27
|
Cisneros DA, Muller DJ, Daud SM, Lakey JH. An Approach To Prepare Membrane Proteins for Single-Molecule Imaging. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200504506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Kumar PD, Krishnaswamy S. Overexpression, refolding, and purification of the major immunodominant outer membrane porin OmpC from Salmonella typhi: characterization of refolded OmpC. Protein Expr Purif 2005; 40:126-33. [PMID: 15721780 DOI: 10.1016/j.pep.2004.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2004] [Revised: 12/11/2004] [Indexed: 10/25/2022]
Abstract
The major immunodominant integral outer membrane protein C (OmpC) from Salmonella typhi Ty21a was overexpressed, without the signal peptide, in Escherichia coli. The protein aggregates as inclusion bodies (IBs) in the cytoplasm. OmpC from IBs was solubilized with 4 M urea and refolded. This involved rapid dilution of unfolded OmpC into a refolding buffer containing polyoxyethylene-9-lauryl ether (C(12)E(9)) and glycerol. The refolded OmpC (rfOmpC) was shown to be structurally similar to the native OmpC by SDS-PAGE, Western blotting, tryptic digestion, ultrafiltration, circular dichroism, and fluorescence spectroscopic techniques. Crystals of rfOmpC were obtained in preliminary crystallization trials. The rfOmpC also sets a stage for rational design by recombinant DNA technology for vaccine design and high resolution structure determination.
Collapse
Affiliation(s)
- P D Kumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625 021, India
| | | |
Collapse
|
29
|
Jechlinger W, Haller C, Resch S, Hofmann A, Szostak MP, Lubitz W. Comparative immunogenicity of the hepatitis B virus core 149 antigen displayed on the inner and outer membrane of bacterial ghosts. Vaccine 2005; 23:3609-17. [PMID: 15855021 DOI: 10.1016/j.vaccine.2004.11.078] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 11/17/2004] [Indexed: 11/17/2022]
Abstract
Two membrane compartments of Escherichia coli ghosts, representing empty bacterial cell envelopes, were investigated as carriers of foreign antigens. By subcutaneous immunisation of mice the immunogenicity of bacterial ghosts carrying the Hepatitis B virus core 149 protein (HBcAg-149) as model antigen anchored either in the inner or the outer membrane of E. coli was compared. Both systems induced significant immune responses against the foreign target antigen, the HBcAg-149, in mice. Results indicate that bacterial ghosts provide an excellent carrier system for antigen delivery.
Collapse
Affiliation(s)
- Wolfgang Jechlinger
- Institute of Microbiology and Genetics, Section Microbiology and Biotechnology, University of Vienna, UZA II, 2B522, Althanstrasse 14, A-1090 Wien, Austria.
| | | | | | | | | | | |
Collapse
|
30
|
Galdiero M, Tortora A, Damiano N, Vitiello M, Longanella A, Galdiero E. Induction of cytokine mRNA expression in U937 cells by Salmonella typhimurium porins is regulated by different phosphorylation pathways. Med Microbiol Immunol 2003; 194:13-23. [PMID: 14628144 DOI: 10.1007/s00430-003-0209-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Lipopolysaccharide (LPS) and porins of Gram-negative outer membranes are the main pathogenic factors implicated in the clinical syndrome of septic shock. The biological activity of porins and LPS are similar, but they occur by different mechanisms. It seems that porins act through different intracellular pathways with respect to LPS. In this study we analyzed the role of several inhibitors of the MEK/ERK signal pathway on the induction of proinflammatory and immunological cytokines in U937 cell line stimulated by Salmonella typhimurium porins and compared it to the cytokine induction after LPS stimulation. We investigated the effects of p38 MAP kinase inhibitor SB-203580, MEK/ERK kinase inhibitor PD-098059 and Raf-1 inhibitor forskolin, and demonstrated that they modulate cytokine mRNA expression in a different manner as a consequence of the use of porins or LPS as stimuli. TNF-alpha and IL-1beta mRNA expression is decreased by PD-098059 after stimulation with LPS but not with porins in differentiated U937 cells. IL-10 mRNA expression is inhibited by SB-203580 and PD-098059 after stimulation with porins in U937 cells. IL-6 and IL-8 mRNA expression is not changed by PD-098059 or SB-203580, after stimulation either with porins or LPS. Furthermore, mRNA expression of the studied cytokines, except for GM-CSF, is not changed using forskolin.
Collapse
Affiliation(s)
- Marilena Galdiero
- Dipartimento di Medicina Sperimentale, Facoltà di Medicina e Chirurgia, Seconda Università degli Studi di Napoli, via De Crecchio, Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Taschner S, Meinke A, von Gabain A, Boyd AP. Selection of peptide entry motifs by bacterial surface display. Biochem J 2002; 367:393-402. [PMID: 12144529 PMCID: PMC1222908 DOI: 10.1042/bj20020164] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2002] [Revised: 05/02/2002] [Accepted: 07/26/2002] [Indexed: 12/16/2022]
Abstract
Surface display technologies have been established previously to select peptides and polypeptides that interact with purified immobilized ligands. In the present study, we designed and implemented a surface display-based technique to identify novel peptide motifs that mediate entry into eukaryotic cells. An Escherichia coli library expressing surface-displayed peptides was combined with eukaryotic cells and the gentamicin protection assay was performed to select recombinant E. coli, which were internalized into eukaryotic cells by virtue of the displayed peptides. To establish the proof of principle of this approach, the fibronectin-binding motifs of the fibronectin-binding protein A of Staphylococcus aureus were inserted into the E. coli FhuA protein. Surface expression of the fusion proteins was demonstrated by functional assays and by FACS analysis. The fibronectin-binding motifs were shown to mediate entry of the bacteria into non-phagocytic eukaryotic cells and brought about the preferential selection of these bacteria over E. coli expressing parental FhuA, with an enrichment of 100000-fold. Four entry sequences were selected and identified using an S. aureus library of peptides displayed in the FhuA protein on the surface of E. coli. These sequences included novel entry motifs as well as integrin-binding Arg-Gly-Asp (RGD) motifs and promoted a high degree of bacterial entry. Bacterial surface display is thus a powerful tool to effectively select and identify entry peptide motifs.
Collapse
Affiliation(s)
- Sabine Taschner
- InterCell Biomedizinische Forschungs- und Entwicklungs-AG, Rennweg 95B, Vienna A-1030, Austria
| | | | | | | |
Collapse
|
32
|
Chen W, Georgiou G. Cell-Surface display of heterologous proteins: From high-throughput screening to environmental applications. Biotechnol Bioeng 2002; 79:496-503. [PMID: 12209821 DOI: 10.1002/bit.10407] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A variety of expression systems for the display of either short peptides or fully folded proteins on E.coli and, to a lesser extent, on Gram-positive bacteria have been developed. The expression of proteins on the surface of microbial cells has proved extremely important for numerous applications ranging from combinatorial library screening and protein engineering, to whole cell biocatalysts and adsorbants for bioremediation purposes.
Collapse
Affiliation(s)
- Wilfred Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside 92521, USA
| | | |
Collapse
|
33
|
Terrettaz S, Ulrich WP, Vogel H, Hong Q, Dover LG, Lakey JH. Stable self-assembly of a protein engineering scaffold on gold surfaces. Protein Sci 2002; 11:1917-25. [PMID: 12142446 PMCID: PMC2373681 DOI: 10.1110/ps.0206102] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The outer membrane protein OmpF from Escherichia coli is a member of a large family of beta-barrel membrane proteins. Some, like OmpF, are pore-forming proteins whilse others are active transporters or enzymes. We have previously shown that the receptor-binding domain (R-domain) of the toxin colicin N binds with high affinity to OmpF reconstituted into tethered lipid bilayers on gold electrodes. The binding can be measured by surface plasmon resonance (SPR) and ion channel blockage (impedance spectroscopy, IS). In this paper we report the use of a mutant OmpF-E183C in which a single cysteine had been introduced on a short periplasmic turn. OmpF-E183C binds directly to gold surfaces and creates high-density protein layers by self-assembly from detergent solution. When the gold surface is pretreated with beta-mercaptoethanol and thiolipids are added after the protein immobilisation step, the protein is shown, by Fourier transform infrared spectroscopy (FTIR), to retain its beta-rich structure. Furthermore, we could also measure R-domain binding by SPR and IS, confirming the functional reconstitution of a self-assembled membrane protein monolayer at the gold surface. Because these beta-barrel proteins are recognized protein engineering scaffolds, the method provides a generic method for the simple self-assembly of protein interfaces from aqueous solution.
Collapse
Affiliation(s)
- Samuel Terrettaz
- Institute of Biomolecular Sciences, Swiss Federal Institute of Technology Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
34
|
Loregian A, Marsden HS, Palù G. Protein-protein interactions as targets for antiviral chemotherapy. Rev Med Virol 2002; 12:239-62. [PMID: 12125015 DOI: 10.1002/rmv.356] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most cellular and viral processes depend on the coordinated formation of protein-protein interactions. With a better understanding of the molecular biology and biochemistry of human viruses it has become possible to screen for and detect inhibitors with activity against specific viral functions and to develop new approaches for the treatment of viral infections. A novel strategy to inhibit viral replication is based on the disruption of viral protein-protein complexes by peptides that mimic either face of the interaction between subunits. Peptides and peptide mimetics capable of dissociating protein-protein interactions have such exquisite specificity that they hold great promise as the next generation of therapeutic agents. This review is focused on recent developments using peptides and small molecules to inhibit protein-protein interactions between cellular and/or viral proteins with comments on the practicalities of transforming chemical leads into derivatives with the characteristics desired of medicinal compounds.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35121 Padova, Italy
| | | | | |
Collapse
|
35
|
Hoischen C, Fritsche C, Gumpert J, Westermann M, Gura K, Fahnert B. Novel bacterial membrane surface display system using cell wall-less L-forms of Proteus mirabilis and Escherichia coli. Appl Environ Microbiol 2002; 68:525-31. [PMID: 11823186 PMCID: PMC126673 DOI: 10.1128/aem.68.2.525-531.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a novel membrane surface display system that allows the anchoring of foreign proteins in the cytoplasmic membrane (CM) of stable, cell wall-less L-form cells of Escherichia coli and Proteus mirabilis. The reporter protein, staphylokinase (Sak), was fused to transmembrane domains of integral membrane proteins from E. coli (lactose permease LacY, preprotein translocase SecY) and P. mirabilis (curved cell morphology protein CcmA). Both L-form strains overexpressed fusion proteins in amounts of 1 to 100 microg ml(-1), with higher expression for those with homologous anchor motifs. Various experimental approaches, e.g., cell fractionation, Percoll gradient purification, and solubilization of the CM, demonstrated that the fusion proteins are tightly bound to the CM and do not form aggregates. Trypsin digestion, as well as electron microscopy of immunogold-labeled replicas, confirmed that the protein was localized on the outside surface. The displayed Sak showed functional activity, indicating correct folding. This membrane surface display system features endotoxin-poor organisms and can provide a novel platform for numerous applications.
Collapse
Affiliation(s)
- Christian Hoischen
- Department of Molecular Biology, Institute of Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Jolodar A, Miller DJ. Construction and expression of aspartic protease from Onchocerca volvulus* as ompA fusion protein in a mutant strain of Salmonella typhimurium. Genet Mol Biol 2002. [DOI: 10.1590/s1415-47572002000100018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Abbas Jolodar
- Shahid Chamran University, Iran; Bernhard Nocht Institute for Tropical Medicine, Germany
| | | |
Collapse
|
37
|
Christmann A, Wentzel A, Meyer C, Meyers G, Kolmar H. Epitope mapping and affinity purification of monospecific antibodies by Escherichia coli cell surface display of gene-derived random peptide libraries. J Immunol Methods 2001; 257:163-73. [PMID: 11687250 DOI: 10.1016/s0022-1759(01)00461-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report a method for the precise mapping of linear epitopes by presenting a peptide library on the surface of Escherichia coli cells. A random library of gene fragments derived from the classical swine fever virus (CSFV) envelope protein E(rns) was generated by DNAse I cleavage and cloned into a specially designed bacterial surface display vector. A carboxyterminally truncated intimin, an adhesin from enteropathogenic E. coli, serves as a carrier protein to present foreign peptides on the surface of E. coli K12 cells. Epitope-presenting cells were isolated by immunofluorescence staining of the bacterial cell population with monoclonal anti-E(rns) antibodies followed by fluorescence-activated cell sorting (FACS). Nucleotide sequence analysis of the coding sequence for the cloned target gene fragments of a few FACS-positive clones allowed the identification of the respective epitope sequence. A major linear antigenic determinant of the E(rns) protein could be identified by epitope mapping with a polyclonal anti-E(rns) serum. Furthermore, the high-density surface display of intimin-peptide fusions allowed us to use epitope-presenting bacteria directly as whole cell adsorbants for affinity purification of monospecific antibodies. Monospecific antibodies directed against the carboxyterminal fragment of E(rns) were isolated and used for immunostaining of transfected BHK-21 cells to validate the transient expression of E(rns). This demonstrates that gene-fragment libraries displayed on E. coli cells as fusion proteins with intimin are useful tools for rapid mapping of linear epitopes recognized by monoclonal antibodies (MAbs) and polyclonal sera and for the affinity purification of monospecific antibodies by adsorption to the E. coli surface exposed antigenic peptide.
Collapse
Affiliation(s)
- A Christmann
- Abteilung Molekulare Genetik und Präparative Molekularbiologie, Georg-August-Universität Göttingen, Grisebachstrasse 8, D-37077, Göttingen, Germany
| | | | | | | | | |
Collapse
|