1
|
Preuss A, Appel E, Gorb SN, Büsse S. Tanning of the tarsal and mandibular cuticle in adult Anax imperator (Insecta: Odonata) during the emergence sequence. Interface Focus 2024; 14:20230076. [PMID: 38618233 PMCID: PMC11008962 DOI: 10.1098/rsfs.2023.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/22/2024] [Indexed: 04/16/2024] Open
Abstract
The arthropod cuticle offers strength, protection, and lightweight. Due to its limit in expandability, arthropods have to moult periodically to grow. While moulting is beneficial in terms of parasite or toxin control, growth and adaptation to environmental conditions, it costs energy and leaves the soft animal's body vulnerable to injuries and desiccation directly after ecdysis. To investigate the temporal change in sclerotization and pigmentation during and after ecdysis, we combined macrophotography, confocal laser scanning microscopy, scanning electron microscopy and histological sectioning. We analysed the tarsal and mandibular cuticle of the blue emperor dragonfly to compare the progress of tanning for structures that are functionally involved during emergence (tarsus/tarsal claws) with structures whose functionality is required much later (mandibles). Our results show that: (i) the tanning of the tarsal and mandibular cuticle increases during emergence; (ii) the tarsal cuticle tans faster than the mandibular cuticle; (iii) the mandibles tan faster on the aboral than on the oral side; and (iv) both the exo- and the endocuticle are tanned. The change in the cuticle composition of the tarsal and mandibular cuticle reflects the demand for higher mechanical stability of these body parts when holding on to the substrate during emergence and during first walking or hunting attempts.
Collapse
Affiliation(s)
- Anika Preuss
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Esther Appel
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Sebastian Büsse
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
- Department for Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstr. 23, 17489 Greifswald, Germany
| |
Collapse
|
2
|
Ishiguro R, Kawasetsu T, Motoori Y, Paik J, Hosoda K. Earwig-inspired foldable origami wing for micro air vehicle gliding. Front Robot AI 2023; 10:1255666. [PMID: 38023584 PMCID: PMC10665516 DOI: 10.3389/frobt.2023.1255666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Foldable wings serve as an effective solution for reducing the size of micro air vehicles (MAVs) during non-flight phases, without compromising the gliding capacity provided by the wing area. Among insects, earwigs exhibit the highest folding ratio in their wings. Inspired by the intricate folding mechanism in earwig hindwings, we aimed to develop artificial wings with similar high-folding ratios. By leveraging an origami hinge, which is a compliant mechanism, we successfully designed and prototyped wings capable of opening and folding in the wind, which helps reduce the surface area by a factor of seven. The experimental evaluation involved measuring the lift force generated by the wings under Reynolds numbers less than 2.2 × 104. When in the open position, our foldable wings demonstrated increased lift force proportional to higher wind speeds. Properties such as wind responsiveness, efficient folding ratios, and practical feasibility highlight the potential of these wings for diverse applications in MAVs.
Collapse
Affiliation(s)
- Risa Ishiguro
- Adaptive Robotics Laboratory, Division of Systems Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Takumi Kawasetsu
- Adaptive Robotics Laboratory, Division of Systems Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Yutaro Motoori
- Fluid Mechanics Group, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Jamie Paik
- Reconfigurable Robotics Laboratory, Institute of Mechanical Engineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Koh Hosoda
- Adaptive Robotics Laboratory, Division of Systems Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
3
|
Addis CC, Rojas S, Arrieta AF. Connecting the branches of multistable non-Euclidean origami by crease stretching. Phys Rev E 2023; 108:055001. [PMID: 38115478 DOI: 10.1103/physreve.108.055001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/02/2023] [Indexed: 12/21/2023]
Abstract
Non-Euclidean origami is a promising technique for designing multistable deployable structures folded from nonplanar developable surfaces. The impossibility of flat foldability inherent to non-Euclidean origami results in two disconnected solution branches each with the same angular deficiency but opposite handedness. We show that these regions can be connected via "crease stretching," wherein the creases exhibit extensibility in addition to torsional stiffness. We further reveal that crease stretching acts as an energy storage method capable of passive deployment and control. Specifically, we show that in a Miura-Ori system with a single stretchable crease, this is achieved via two unique, easy to realize, equilibrium folding pathways for a certain wide set of parameters. In particular, we demonstrate that this connection mostly preserves the stable states of the non-Euclidean system, while resulting in a third stable state enabled only by the interaction of crease torsion and stretching. Finally, we show that this simplified model can be used as an efficient and robust tool for inverse design of multistable origami based on closed-form predictions that yield the system parameters required to attain multiple, desired stable shapes. This facilitates the implementation of multistable origami for applications in architecture materials, robotics, and deployable structures.
Collapse
Affiliation(s)
- Clark C Addis
- Programmable Structures Lab, School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Salvador Rojas
- Programmable Structures Lab, School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Andres F Arrieta
- Programmable Structures Lab, School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
4
|
Hou D, Zhong Z. Mechanical Behavior of Honeybee Forewing with Flexible Resilin Joints and Stripes. Biomimetics (Basel) 2023; 8:451. [PMID: 37887582 PMCID: PMC10604706 DOI: 10.3390/biomimetics8060451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
The flexibility of insect wings should be considered in the design of bionic micro flapping-wing aircraft. The honeybee is an ideal biomimetic object because its wings are small and possess a concise vein pattern. In this paper, we focus on resilin, an important flexible factor in honeybees' forewings. Both resilin joints and resilin stripes are considered in the finite element model, and their mechanical behaviors are studied comprehensively. Resilin was found to increase the static deflections in chordwise and spanwise directions by 1.4 times and 1.9 times, respectively. In modal analysis, natural frequencies of the first bending and first torsional modes were found to be decreased significantly-especially the latter, which was reduced from 500 Hz to 217 Hz-in terms of resilin joints and stripes, closely approaching flapping frequency. As a result, the rotational angle amplitude in dynamic responses is remarkable, with an amplification ratio of about six. It was also found that resilin joints and stripes together lead to well-cambered sections and improve the stress concentrations in dynamic deformation. As resilin is widespread in insect wings, the study could help our understanding of the flexible mechanism of wing structure and inspire the development of flexible airfoils.
Collapse
Affiliation(s)
- Dan Hou
- Department of Mechanical Engineering, Shanghai Maritime University, Shanghai 201306, China;
| | - Zheng Zhong
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Li CY, Jiao D, Hao XP, Hong W, Zheng Q, Wu ZL. Bistable Joints Enable the Morphing of Hydrogel Sheets with Multistable Configurations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211802. [PMID: 36680376 DOI: 10.1002/adma.202211802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Joints, as a flexing element to connect different parts, are widespread in natural systems. Various joints exist in the body and play crucial roles to execute gestures and gaits. These scenarios have inspired the design of mechanical joints with passive, hard materials, which usually need an external power supply to drive the transformations. The incorporation of soft and active joints provides a modular strategy to devise soft actuators and robots. However, transformations of responsive joints under external stimuli are usually in uni-mode with a pre-determined direction. Here, hydrogel joints capable of folding and twisting transformation in bi-mode are reported, which enable the composite hydrogel to form multiple configurations under constant conditions. These joints have an in-plane gradient structure and comprise stiff, passive gel as the frame and soft, active gel as the actuating unit. Under external stimuli, the response mismatch between different gels leads to out-of-plane folding or twisting deformation with the feature of bistability. These joints can be modularly integrated with other gels to afford complex deformations and multistable configurations. This approach favors selective control of hydrogel's architectures and versatile design of hydrogel devices, as demonstrated by proof-of-concept examples. It shall also merit the development of metamaterials, soft actuators, and robots, etc.
Collapse
Affiliation(s)
- Chen Yu Li
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dejin Jiao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xing Peng Hao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Hong
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
6
|
Shen H, Ji A, Li Q, Li X, Ma Y. Tensile mechanical properties and finite element simulation of the wings of the butterfly Tirumala limniace. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:239-251. [PMID: 35840718 DOI: 10.1007/s00359-022-01556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/28/2022]
Abstract
This study examined the morphological characteristics and mechanical properties of the wings of Tirumala limniace. The wings of this butterfly, including the forewings and hindwings, are composed mainly of a flexible wing membrane and supporting wing veins. Scanning electron microscopy was employed to observe specific positions of the wing membrane and veins and reveal the morphological characteristics. Tensile experiments were conducted to evaluate the mechanical properties of the wings and proved that the multifiber layer structures have a significantly fixed orientation of fiber alignment. A butterfly wing model reconstructed in reverse based on the finite element method was used to analyze the static characteristics of the wing structure in detail. Evaluation of stress and strain after applying uniform loading, perpendicular loading, and torsion revealed that minor wing deformation occurred and was concentrated near the main wing vein, which verifies the steadiness of the butterfly wing structure. Additionally, the flapping of butterfly wings was simulated using computational fluid dynamics to study the flow field near the butterfly wings and the distribution of pressure gradient on the wings. The results confirmed the effect of wing veins on maintaining the flight performance.
Collapse
Affiliation(s)
- Huan Shen
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, China
| | - Aihong Ji
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, China.
| | - Qian Li
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, China
| | - Xin Li
- School of Mechanical and Electrical Engineering, Suqian University, Suqian, 223800, China
| | - Yaopeng Ma
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, China
| |
Collapse
|
7
|
Kobayashi S, Maldonado JE, Gaete A, Araya I, Aguado-Norese C, Cumplido N, Díaz S, Espinoza A, Fernández E, Gajardo F, González-Ordenes F, Hauyon K, Maldonado P, Maldonado R, Pochet I, Riveros A, Sandoval P, Sepúlveda-González A, Stuardo C, Tapia-Reyes P, Thornton C, Undurraga S, Varas M, Valdivieso C, Gutiérrez RA, Orellana A, Montecino M, Maass A, González M, Allende ML, Hodar C, Irles P. DNA sequencing in the classroom: complete genome sequence of two earwig (Dermaptera; Insecta) species. Biol Res 2023; 56:6. [PMID: 36797803 PMCID: PMC9935246 DOI: 10.1186/s40659-023-00414-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Despite representing the largest fraction of animal life, the number of insect species whose genome has been sequenced is barely in the hundreds. The order Dermaptera (the earwigs) suffers from a lack of genomic information despite its unique position as one of the basally derived insect groups and its importance in agroecosystems. As part of a national educational and outreach program in genomics, a plan was formulated to engage the participation of high school students in a genome sequencing project. Students from twelve schools across Chile were instructed to capture earwig specimens in their geographical area, to identify them and to provide material for genome sequencing to be carried out by themselves in their schools. RESULTS The school students collected specimens from two cosmopolitan earwig species: Euborellia annulipes (Fam. Anisolabididae) and Forficula auricularia (Fam. Forficulidae). Genomic DNA was extracted and, with the help of scientific teams that traveled to the schools, was sequenced using nanopore sequencers. The sequence data obtained for both species was assembled and annotated. We obtained genome sizes of 1.18 Gb (F. auricularia) and 0.94 Gb (E. annulipes) with the number of predicted protein coding genes being 31,800 and 40,000, respectively. Our analysis showed that we were able to capture a high percentage (≥ 93%) of conserved proteins indicating genomes that are useful for comparative and functional analysis. We were also able to characterize structural elements such as repetitive sequences and non-coding RNA genes. Finally, functional categories of genes that are overrepresented in each species suggest important differences in the process underlying the formation of germ cells, and modes of reproduction between them, features that are one of the distinguishing biological properties that characterize these two distant families of Dermaptera. CONCLUSIONS This work represents an unprecedented instance where the scientific and lay community have come together to collaborate in a genome sequencing project. The versatility and accessibility of nanopore sequencers was key to the success of the initiative. We were able to obtain full genome sequences of two important and widely distributed species of insects which had not been analyzed at this level previously. The data made available by the project should illuminate future studies on the Dermaptera.
Collapse
Affiliation(s)
- Sanae Kobayashi
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Ciencias, Universidad de Chile, 7800003, Santiago, Chile
| | - Jonathan E Maldonado
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Química y Biología, Universidad de Santiago de Chile, 9170022, Santiago, Chile
| | - Alexis Gaete
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- INTA, Universidad de Chile, 7830490, Santiago, Chile
| | - Ingrid Araya
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, 8380494, Independencia, Santiago, Chile
| | - Constanza Aguado-Norese
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- INTA, Universidad de Chile, 7830490, Santiago, Chile
| | - Nicolás Cumplido
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Ciencias, Universidad de Chile, 7800003, Santiago, Chile
| | - Sebastián Díaz
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Ciencias, Universidad de Chile, 7800003, Santiago, Chile
| | - Alonso Espinoza
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Santiago, Chile
| | - Edelmira Fernández
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Ciencias, Universidad de Chile, 7800003, Santiago, Chile
| | - Felipe Gajardo
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Ciencias, Universidad de Chile, 7800003, Santiago, Chile
| | - Felipe González-Ordenes
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Ciencias, Universidad de Chile, 7800003, Santiago, Chile
| | - Khantati Hauyon
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- INTA, Universidad de Chile, 7830490, Santiago, Chile
| | - Piedad Maldonado
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Ciencias, Universidad de Chile, 7800003, Santiago, Chile
| | - Rodrigo Maldonado
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Isabel Pochet
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Aníbal Riveros
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - Paula Sandoval
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ailynne Sepúlveda-González
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- INTA, Universidad de Chile, 7830490, Santiago, Chile
| | - Camila Stuardo
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- INTA, Universidad de Chile, 7830490, Santiago, Chile
| | - Patricio Tapia-Reyes
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Thornton
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Soledad Undurraga
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Macarena Varas
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Ciencias, Universidad de Chile, 7800003, Santiago, Chile
| | - Camilo Valdivieso
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Ciencias, Universidad de Chile, 7800003, Santiago, Chile
| | - Rodrigo A Gutiérrez
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ariel Orellana
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Santiago, Chile
| | - Martín Montecino
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Alejandro Maass
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - Mauricio González
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- INTA, Universidad de Chile, 7830490, Santiago, Chile
| | - Miguel L Allende
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile
- Facultad de Ciencias, Universidad de Chile, 7800003, Santiago, Chile
| | - Christian Hodar
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile.
- INTA, Universidad de Chile, 7830490, Santiago, Chile.
| | - Paula Irles
- Institute of Agri-food, Animal and Environmental Sciences, Universidad de O´Higgins, Rancagua, Chile.
| |
Collapse
|
8
|
Rojas S, Riley KS, Arrieta AF. Multistable bioinspired origami with reprogrammable self-folding. J R Soc Interface 2022; 19:20220426. [PMCID: PMC9554512 DOI: 10.1098/rsif.2022.0426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Origami has emerged as a design paradigm to realize morphing structures with rich kinematic and mechanical properties. Biological examples augment the potential design space by suggesting intriguing routes for achieving self-folding from architected materials. We introduce a class of multistable self-folding origami adaptable after fabrication inspired by the earwig wing. This is achieved by designing bilayer creases that display anisotropic shrinkage in response to external stimulation, enabling a mechanism for prestrain adaptation. We establish a bilayer model for stretchable straight and trapezoidal (β) creases to generate bistable origami structures. We adapt the topology of the structure’s energy landscapes by tuning the fold prestrain level as a function of the stimulation time. The proposed method and model allows for converting flat sheets with arranged facets and prestrained mountain-valley creases into self-folding multistable structures. Introducing multistability from self-folding avoids ambiguous folding branches present in the rich configuration space at the flat state. The obtained crease prestrain programming is leveraged to manufacture a biomimetic earwig wing featuring the complex crease pattern, structural stability and rapid closure of the biological counterpart. The presented method provides a route for encoding prestrain in self-folding origami, the multistability of which is adaptable after fabrication.
Collapse
Affiliation(s)
- Salvador Rojas
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Katherine S. Riley
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Andres F. Arrieta
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Josten B, Gorb SN, Büsse S. The mouthparts of the adult dragonfly Anax imperator (Insecta: Odonata), functional morphology and feeding kinematics. J Morphol 2022; 283:1163-1181. [PMID: 35848446 DOI: 10.1002/jmor.21497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 11/09/2022]
Abstract
Insects evolved differently specialized mouthparts. We study the mouthparts of adult Anax imperator, one of the largest odonates found in Central Europe. Like all adult dragonflies, A. imperator possesses carnivorous-type of biting-chewing mouthparts. To gain insights into the feeding process, behavior and kinematics, living specimens were filmed during feeding using synchronized high-speed videography. Additionally, the maximum angles of movement were measured using a measuring microscope and combined with data from micro-computed tomography (µCT). The resulting visualizations of the 3D-geometry of each mouthpart were used to study their anatomy and complement the existing descriptive knowledge of muscles in A. imperator to date. Furthermore, CLSM-projections allow for estimation of differences in the material composition of the mouthparts' cuticle. By combining all methods, we analyze possible functions and underlying biomechanics of each mouthpart. We also analyzed the concerted movements of the mouthparts; unique behavior of the mouthparts during feeding is active participation by the labrum and distinct movement by the maxillary laciniae. We aim to elucidate the complex movements of the mouthparts and their functioning by combining detailed information on (1) in vivo movement behavior (supplemented with physiological angle approximations), (2) movement ability provided by morphology (morphological movement angles), (3) 3D-anatomy, and (4) cuticle composition estimates. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Benedikt Josten
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Sebastian Büsse
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany
| |
Collapse
|
10
|
Liu HL, Chen S, Chen QD, Pu DQ, Chen ZT, Liu YY, Liu X. The First Mitochondrial Genomes of the Family Haplodiplatyidae (Insecta: Dermaptera) Reveal Intraspecific Variation and Extensive Gene Rearrangement. BIOLOGY 2022; 11:807. [PMID: 35741328 PMCID: PMC9219768 DOI: 10.3390/biology11060807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Haplodiplatyidae is a recently established earwig family with over 40 species representing a single genus, Haplodiplatys Hincks, 1955. The morphology of Haplodiplatyidae has been studied in detail, but its molecular characters remain unclear. In this study, two mitogenomes of Haplodiplatys aotouensis Ma & Chen, 1991, were sequenced based on two samples from Fujian and Jiangxi provinces, respectively. These represent the first mitogenomes for the family Haplodiplatyidae. The next-generation sequencing method and subsequent automatic assembly obtained two mitogenomes. The two mitogenomes of H. aotouensis were generally identical but still exhibit a few sequence differences involving protein-coding genes (PCGs), ribosomal RNA (rRNA) genes, control regions, and intergenic spacers. The typical set of 37 mitochondrial genes was annotated, while many transfer RNA (tRNA) genes were rearranged from their ancestral locations. The calculation of nonsynonymous (Ka) and synonymous (Ks) substitution rates in PCGs indicated the fastest evolving nd4l gene in H. aotouensis. The phylogenetic analyses supported the basal position of Apachyidae but also recovered several controversial clades.
Collapse
Affiliation(s)
- Hong-Ling Liu
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Ministry of Agriculture, Chengdu 610066, China; (H.-L.L.); (S.C.); (Q.-D.C.); (D.-Q.P.)
| | - Song Chen
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Ministry of Agriculture, Chengdu 610066, China; (H.-L.L.); (S.C.); (Q.-D.C.); (D.-Q.P.)
| | - Qing-Dong Chen
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Ministry of Agriculture, Chengdu 610066, China; (H.-L.L.); (S.C.); (Q.-D.C.); (D.-Q.P.)
| | - De-Qiang Pu
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Ministry of Agriculture, Chengdu 610066, China; (H.-L.L.); (S.C.); (Q.-D.C.); (D.-Q.P.)
| | - Zhi-Teng Chen
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China;
| | - Yue-Yue Liu
- Analysis and Testing Center, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Xu Liu
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Ministry of Agriculture, Chengdu 610066, China; (H.-L.L.); (S.C.); (Q.-D.C.); (D.-Q.P.)
| |
Collapse
|
11
|
Chi Y, Li Y, Zhao Y, Hong Y, Tang Y, Yin J. Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110384. [PMID: 35172026 DOI: 10.1002/adma.202110384] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Snap-through bistability is often observed in nature (e.g., fast snapping to closure of Venus flytrap) and the life (e.g., bottle caps and hair clippers). Recently, harnessing bistability and multistability in different structures and soft materials has attracted growing interest for high-performance soft actuators and soft robots. They have demonstrated broad and unique applications in high-speed locomotion on land and under water, adaptive sensing and fast grasping, shape reconfiguration, electronics-free controls with a single input, and logic computation. Here, an overview of integrating bistable and multistable structures with soft actuating materials for diverse soft actuators and soft/flexible robots is given. The mechanics-guided structural design principles for five categories of basic bistable elements from 1D to 3D (i.e., constrained beams, curved plates, dome shells, compliant mechanisms of linkages with flexible hinges and deformable origami, and balloon structures) are first presented, alongside brief discussions of typical soft actuating materials (i.e., fluidic elastomers and stimuli-responsive materials such as electro-, photo-, thermo-, magnetic-, and hydro-responsive polymers). Following that, integrating these soft materials with each category of bistable elements for soft bistable and multistable actuators and their diverse robotic applications are discussed. To conclude, perspectives on the challenges and opportunities in this emerging field are considered.
Collapse
Affiliation(s)
- Yinding Chi
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yanbin Li
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yao Zhao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yaoye Hong
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yichao Tang
- School of Mechanical Engineering, Tongji University, Shanghai, 200092, China
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
12
|
Chen ZT. Comparative mitogenomic analysis of two earwigs (Insecta, Dermaptera) and the preliminary phylogenetic implications. Zookeys 2022; 1087:105-122. [PMID: 35437361 PMCID: PMC8891232 DOI: 10.3897/zookeys.1087.78998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/15/2022] [Indexed: 01/02/2023] Open
Abstract
The phylogenetic position and inner relationships of Dermaptera remain unresolved despite the numerous efforts using morphological and molecular data. To facilitate the resolution of problems, this study sequenced the complete mitogenome of Apachyusfeae de Bormans, 1894 (Apachyidae) and the nearly complete mitogenome of Diplatysflavicollis Shiraki, 1907 (Diplatyidae). The 19,029-bp long mitogenome of A.feae exhibited an extra trnV gene and two control regions in addition to the typical set of 37 genes including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, and two ribosomal RNA (rRNA) genes. The 12,950-bp long partially sequenced mitogenome of D.flavicollis was composed of 10 and a partial fragment of PCGs, 18 tRNA genes, two rRNA genes, and a control region. Comparative analysis of available earwig mitogenomes revealed variable mitogenomic structure and extensive gene rearrangements in Dermaptera. The preliminary phylogenetic analyses using Bayesian inference and maximum likelihood methods showed identical results, but the limited sampling and different types of molecular data lead to an apparent incongruence with previous phylogenetic studies.
Collapse
|
13
|
Büsse S, Tröger H, Gorb SN. The toolkit of a hunter – functional morphology of larval mouthparts in a dragonfly. J Zool (1987) 2021. [DOI: 10.1111/jzo.12923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- S. Büsse
- Department of Functional Morphology and Biomechanics Institute of Zoology Kiel University Kiel Germany
| | - H.‐L. Tröger
- Department of Functional Morphology and Biomechanics Institute of Zoology Kiel University Kiel Germany
| | - S. N. Gorb
- Department of Functional Morphology and Biomechanics Institute of Zoology Kiel University Kiel Germany
| |
Collapse
|
14
|
A review: Learning from the flight of beetles. Comput Biol Med 2021; 133:104397. [PMID: 33895456 DOI: 10.1016/j.compbiomed.2021.104397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/10/2021] [Accepted: 04/10/2021] [Indexed: 11/21/2022]
Abstract
Some Coleoptera (popularly referred to as beetles) can fly at a low Reynolds number with their deployable hind wings, which directly enables a low body weight-a good bioinspiration strategy for miniaturization of micro-air vehicles (MAVs). The hind wing is a significant part of the body and has a folding/unfolding mechanism whose unique function benefits from different structures and materials. This review summarizes the actions, factors, and mechanisms of beetle flight and bioinspired MAVs with deployable wings. The elytron controlled by muscles is the protected part for the folded hind wing and influences flight performance. The resilin, the storage material for elasticity, is located in the folding parts. The hind wings' folding/unfolding mechanism and flight performance can be influenced by vein structures of hollow, solid and wrinkled veins, the hemolymph that flows in hollow veins and its hydraulic mechanism, and various mechanical properties of veins. The action of beetle flight includes flapping flight, hovering, gliding, and landing. The hind wing is passively deformed through force and hemolymph, and the attack angle of the hind wing and the nanomechanics of the veins, muscles and mass body determine the flight performance. Based these factors, bioinspired MAVs with a new deployable wing structure and new materials will be designed to be much more effective and miniaturized. The new fuels and energy supply are significant aspects of MAVs.
Collapse
|
15
|
Abstract
AbstractThe insect leg is a multifunctional device, varying tremendously in form and function within Insecta: from a common walking leg, to burrowing, swimming or jumping devices, up to spinning apparatuses or tools for prey capturing. Raptorial forelegs, as predatory striking and grasping devices, represent a prominent example for convergent evolution within insects showing strong morphological and behavioural adaptations for a lifestyle as an ambush predator. However, apart from praying mantises (Mantodea)—the most prominent example of this lifestyle—the knowledge on morphology, anatomy, and the functionality of insect raptorial forelegs, in general, is scarce. Here, we show a detailed morphological description of raptorial forelegs of Mantispa styriaca (Neuroptera), including musculature and the material composition in their cuticle; further, we will discuss the mechanism of the predatory strike. We could confirm all 15 muscles previously described for mantis lacewings, regarding extrinsic and intrinsic musculature, expanding it for one important new muscle—M24c. Combining the information from all of our results, we were able to identify a possible catapult mechanism (latch-mediated spring actuation system) as a driving force of the predatory strike, never proposed for mantis lacewings before. Our results lead to a better understanding of the biomechanical aspects of the predatory strike in Mantispidae. This study further represents a starting point for a comprehensive biomechanical investigation of the convergently evolved raptorial forelegs in insects.
Collapse
|
16
|
Simulation Analysis of the Aerodynamic Performance of a Bionic Aircraft with Foldable Beetle Wings in Gliding Flight. Appl Bionics Biomech 2021; 2020:8843360. [PMID: 33425005 PMCID: PMC7775174 DOI: 10.1155/2020/8843360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/22/2020] [Accepted: 12/12/2020] [Indexed: 11/23/2022] Open
Abstract
Beetles have excellent flight performance. Based on the four-plate mechanism theory, a novel bionic flapping aircraft with foldable beetle wings was designed. It can perform flapping, gliding, wing folding, and abduction/adduction movements with a self-locking function. In order to study the flight characteristics of beetles and improve their gliding performance, this paper used a two-way Fluid-Structure Interaction (FSI) numerical simulation method to focus on the gliding performance of the bionic flapping aircraft. The effects of elastic model, rigid and flexible wing, angle of attack, and velocity on the aerodynamic characteristics of the aircraft in gliding flight are analyzed. It was found that the elastic modulus of the flexible hinges has little effect on the aerodynamic performance of the aircraft. Both the rigid and the flexible wings have a maximum lift-to-drag ratio when the attack angle is 10°. The lift increased with the increase of the gliding speed, and it was found that the lift cannot support the gliding movement at low speeds. In order to achieve gliding, considering the weight and flight performance, the weight of the microair vehicle is controlled at about 3 g, and the gliding speed is guaranteed to be greater than 6.5 m/s. The results of this study are of great significance for the design of bionic flapping aircrafts.
Collapse
|
17
|
Mintchev S, Shintake J, Floreano D. Bioinspired dual-stiffness origami. Sci Robot 2021; 3:3/20/eaau0275. [PMID: 33141731 DOI: 10.1126/scirobotics.aau0275] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022]
Abstract
Origami manufacturing has led to considerable advances in the field of foldable structures with innovative applications in robotics, aerospace, and metamaterials. However, existing origami are either load-bearing structures that are prone to tear and fail if overloaded or resilient soft structures with limited load capability. In this manuscript, we describe an origami structure that displays both high load bearing and high resilience characteristics. The structure, which is inspired by insect wings, consists of a prestretched elastomeric membrane, akin to the soft resilin joints of insect wings, sandwiched between rigid tiles, akin to the rigid cuticles of insect wings. The dual-stiffness properties of the proposed structure are validated by using the origami as an element of a quadcopter frame that can withstand aerodynamic forces within its flight envelope but softens during collisions to avoid permanent damage. In addition, we demonstrate an origami gripper that can be used for rigid grasping but softens to avoid overloading of the manipulated objects.
Collapse
Affiliation(s)
- Stefano Mintchev
- Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jun Shintake
- Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.,Department of Mechanical and Intelligent Systems Engineering, School of Informatics and Engineering, University of Electro-Communications, Tokyo 182-8585, Japan
| | - Dario Floreano
- Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
18
|
Phan HV, Park HC. Mechanisms of collision recovery in flying beetles and flapping-wing robots. Science 2020; 370:1214-1219. [DOI: 10.1126/science.abd3285] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/28/2020] [Indexed: 11/02/2022]
Affiliation(s)
- Hoang Vu Phan
- Department of Smart Vehicle Engineering, Konkuk University, Seoul 05029, South Korea
- Artificial Muscle Research Center, Konkuk University, Seoul 05029, South Korea
| | - Hoon Cheol Park
- Department of Smart Vehicle Engineering, Konkuk University, Seoul 05029, South Korea
- Artificial Muscle Research Center, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
19
|
Faber JA, Udani JP, Riley KS, Studart AR, Arrieta AF. Dome-Patterned Metamaterial Sheets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001955. [PMID: 33240759 PMCID: PMC7675196 DOI: 10.1002/advs.202001955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/04/2020] [Indexed: 05/19/2023]
Abstract
The properties of conventional materials result from the arrangement of and the interaction between atoms at the nanoscale. Metamaterials have shifted this paradigm by offering property control through structural design at the mesoscale, thus broadening the design space beyond the limits of traditional materials. A family of mechanical metamaterials consisting of soft sheets featuring a patterned array of reconfigurable bistable domes is reported here. The domes in this metamaterial architecture can be reversibly inverted at the local scale to generate programmable multistable shapes and tunable mechanical responses at the global scale. By 3D printing a robotic gripper with energy-storing skin and a structure that can memorize and compute spatially-distributed mechanical signals, it is shown that these metamaterials are an attractive platform for novel mechanologic concepts and open new design opportunities for structures used in robotics, architecture, and biomedical applications.
Collapse
Affiliation(s)
- Jakob A. Faber
- School of Mechanical EngineeringPurdue University585 Purdue MallWest LafayetteIN47907USA
- Department of MaterialsComplex MaterialsETH ZürichVladimir‐Prelog‐Weg 5Zürich8093Switzerland
| | - Janav P. Udani
- School of Mechanical EngineeringPurdue University585 Purdue MallWest LafayetteIN47907USA
| | - Katherine S. Riley
- School of Mechanical EngineeringPurdue University585 Purdue MallWest LafayetteIN47907USA
| | - André R. Studart
- Department of MaterialsComplex MaterialsETH ZürichVladimir‐Prelog‐Weg 5Zürich8093Switzerland
| | - Andres F. Arrieta
- School of Mechanical EngineeringPurdue University585 Purdue MallWest LafayetteIN47907USA
| |
Collapse
|
20
|
Krings W, Marcé-Nogué J, Karabacak H, Glaubrecht M, Gorb SN. Finite element analysis of individual taenioglossan radular teeth (Mollusca). Acta Biomater 2020; 115:317-332. [PMID: 32853812 DOI: 10.1016/j.actbio.2020.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Molluscs are a highly successful group of invertebrates characterised by a specialised feeding organ called the radula. The diversity of this structure is associated with distinct feeding strategies and ecological niches. However, the precise function of the radula (each tooth type and their arrangement) remains poorly understood. Here for the first time, we use a quantitative approach, Finite-Element-Analysis (FEA), to test hypotheses regarding the function of particular taenioglossan tooth types. Taenioglossan radulae are of special interest, because they are comprised of multiple teeth that are regionally distinct in their morphology. For this study we choose the freshwater gastropod species Spekia zonata, endemic to Lake Tanganyika, inhabiting and feeding on algae attached to rocks. As a member of the African paludomid species flock, the enigmatic origin and evolutionary relationships of this species has received much attention. Its chitinous radula comprises several tooth types with distinctly different shapes. We characterise the tooth's position, material properties and attachment to the radular membrane and use this data to evaluate 18 possible FEA scenarios differing in the above parameters. Our estimations of stress and strain indicate different functional loads for different teeth. We posit that the central and lateral teeth are best suitable for scratching substrate loosening ingesta, whereas the marginals are best suited for gathering food particles. Our successful approach and workflow are readily applicable to other mollusc species.
Collapse
|
21
|
Abstract
Insect wings are living, flexible structures composed of tubular veins and thin wing membrane. Wing veins can contain hemolymph (insect blood), tracheae, and nerves. Continuous flow of hemolymph within insect wings ensures that sensory hairs, structural elements such as resilin, and other living tissue within the wings remain functional. While it is well known that hemolymph circulates through insect wings, the extent of wing circulation (e.g., whether flow is present in every vein, and whether it is confined to the veins alone) is not well understood, especially for wings with complex wing venation. Over the last 100 years, scientists have developed experimental methods including microscopy, fluorescence, and thermography to observe flow in the wings. Recognizing and evaluating the importance of hemolymph movement in insect wings is critical in evaluating how the wings function both as flight appendages, as active sensors, and as thermoregulatory organs. In this review, we discuss the history of circulation in wings, past and present experimental techniques for measuring hemolymph, and broad implications for the field of hemodynamics in insect wings.
Collapse
Affiliation(s)
- Mary K Salcedo
- Department of Biomedical and Mechanical Engineering Virginia Tech, Blacksburg, VA, USA
| | - John J Socha
- Department of Biomedical and Mechanical Engineering Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
22
|
González-Miguéns R, Muñoz-Nozal E, Jiménez-Ruiz Y, Mas-Peinado P, Ghanavi HR, García-París M. Speciation patterns in the Forficula auricularia species complex: cryptic and not so cryptic taxa across the western Palaearctic region. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Forficula auricularia (the European earwig) is possibly a complex of cryptic species. To test this hypothesis, we performed: (1) a phylogeographic study based on fragments of the mitochondrial COI and the nuclear ITS2 markers on a wide geographic sampling, (2) morphometric analyses of lineages present in Spain and (3) niche overlap analyses. We recovered five reciprocally monophyletic ancient phylogroups with unique historical patterns of distribution, climatic niches and diversification. External morphology was conserved and not correlated with speciation events, except in one case. Phylogenetic placement of the morphologically distinct taxon renders F. auricularia paraphyletic. Based on the congruence of the phylogenetic units defined by mtDNA and nuclear sequence data, we conclude that phylogroups have their own historical and future evolutionary trajectory and represent independent taxonomic units. Forficula auricularia is a complex of at least four species: the morphologically diagnosable Forficula aeolica González-Miguéns & García-París sp. nov., and the cryptic taxa: Forficula mediterranea González-Miguéns & García-París sp. nov., Forficula dentataFabricius, 1775stat. nov. and Forficula auriculariaLinnaeus, 1758s.s. We also provide new synonymy for F. dentata.
Collapse
Affiliation(s)
- Rubén González-Miguéns
- Museo Nacional de Ciencias Naturales (MNCN-CSIC). Calle José Gutiérrez Abascal. Madrid, Spain
- Real Jardín Botánico (RJB-CSIC). Plaza de Murillo. Madrid, Spain
| | - Eva Muñoz-Nozal
- Museo Nacional de Ciencias Naturales (MNCN-CSIC). Calle José Gutiérrez Abascal. Madrid, Spain
| | - Yolanda Jiménez-Ruiz
- Museo Nacional de Ciencias Naturales (MNCN-CSIC). Calle José Gutiérrez Abascal. Madrid, Spain
| | - Paloma Mas-Peinado
- Museo Nacional de Ciencias Naturales (MNCN-CSIC). Calle José Gutiérrez Abascal. Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global CIBC-UAM, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin, Madrid, Spain
| | - Hamid R Ghanavi
- Museo Nacional de Ciencias Naturales (MNCN-CSIC). Calle José Gutiérrez Abascal. Madrid, Spain
- Department of Biology, Lund University, Lund, Sweden
| | - Mario García-París
- Museo Nacional de Ciencias Naturales (MNCN-CSIC). Calle José Gutiérrez Abascal. Madrid, Spain
| |
Collapse
|
23
|
Eshghi S, Nooraeefar V, Darvizeh A, Gorb SN, Rajabi H. WingMesh: A Matlab-Based Application for Finite Element Modeling of Insect Wings. INSECTS 2020; 11:insects11080546. [PMID: 32824828 PMCID: PMC7469191 DOI: 10.3390/insects11080546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022]
Abstract
The finite element (FE) method is one of the most widely used numerical techniques for the simulation of the mechanical behavior of engineering and biological objects. Although very efficient, the use of the FE method relies on the development of accurate models of the objects under consideration. The development of detailed FE models of often complex-shaped objects, however, can be a time-consuming and error-prone procedure in practice. Hence, many researchers aim to reach a compromise between the simplicity and accuracy of their developed models. In this study, we adapted Distmesh2D, a popular meshing tool, to develop a powerful application for the modeling of geometrically complex objects, such as insect wings. The use of the burning algorithm (BA) in digital image processing (DIP) enabled our method to automatically detect an arbitrary domain and its subdomains in a given image. This algorithm, in combination with the mesh generator Distmesh2D, was used to develop detailed FE models of both planar and out-of-plane (i.e., three-dimensionally corrugated) domains containing discontinuities and consisting of numerous subdomains. To easily implement the method, we developed an application using the Matlab App Designer. This application, called WingMesh, was particularly designed and applied for rapid numerical modeling of complicated insect wings but is also applicable for modeling purposes in the earth, engineering, mathematical, and physical sciences.
Collapse
Affiliation(s)
- Shahab Eshghi
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, 24118 Kiel, Germany; (S.N.G.); (H.R.)
- Correspondence:
| | - Vahid Nooraeefar
- Faculty of Mechanical Engineering, University of Guilan, Rasht 4199613776, Iran; (V.N.); (A.D.)
| | - Abolfazl Darvizeh
- Faculty of Mechanical Engineering, University of Guilan, Rasht 4199613776, Iran; (V.N.); (A.D.)
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, 24118 Kiel, Germany; (S.N.G.); (H.R.)
| | - Hamed Rajabi
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, 24118 Kiel, Germany; (S.N.G.); (H.R.)
| |
Collapse
|
24
|
Gorb SN, Gorb EV. Insect-inspired architecture to build sustainable cities. CURRENT OPINION IN INSECT SCIENCE 2020; 40:62-70. [PMID: 32604053 DOI: 10.1016/j.cois.2020.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/04/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Materials, structures, surfaces and buildings of insects are of a great scientific interest, but such basic knowledge about the functional principles of these structures is also highly relevant for technical applications, especially in architecture. Some of the greatest challenges for today's architecture are multifunctionality, energy saving and sustainability - problems that insects have partially solved during their evolution. Entomologists have collected a huge amount of information about the structure and function of such living constructions and surfaces. This information can be utilized in order to mimic them for applications in architecture. The main technology areas, in which insect-inspired ideas can be applied, are the following: (1) new materials, (2) constructions, (3) surfaces, (4) adhesives and bonding technology, (5) optics and photonics. A few selected examples are discussed in this short review, but having more than one million described insect species as a source for inspiration, one might expect many more ideas from entomology for insect-inspired biomimetics in architecture. The incorporation of additional knowledge from insect biology into architecture will improve performance of future buildings. However, biologists still do not have a complete understanding of structure-function relationship of insect materials and construction. Hence, many technological areas will benefit from additional basic entomology research. Also the screening for new inspirations from insects is likely to remain an important research field in the near future.
Collapse
Affiliation(s)
- Stanislav N Gorb
- Department Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Elena V Gorb
- Department Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany.
| |
Collapse
|
25
|
Abstract
We report a geometrical drawing method enabling to reproduce the complex wing-folding pattern of earwigs. Although the earwig wing has unique properties with an outstanding potential for engineering, such as an extreme compactness when fully creased or self-folding behavior, its design process had not been resolved, which limited practical applications. We provide the means of reconfiguring the modeled earwig wing to satisfy flexible designing needs, including a dedicated software. The new method can also reconstruct the wing folding of Paleozoic earwig relatives, which provides the rare chance to infer evolutionary patterns based on spatial (morphofunctional) constraints. This research represents a step toward using the earwig wing as a model for artificial deployable structures of various sizes and materials. Technologies to fold structures into compact shapes are required in multiple engineering applications. Earwigs (Dermaptera) fold their fanlike hind wings in a unique, highly sophisticated manner, granting them the most compact wing storage among all insects. The structural and material composition, in-flight reinforcement mechanisms, and bistable property of earwig wings have been previously studied. However, the geometrical rules required to reproduce their complex crease patterns have remained uncertain. Here we show the method to design an earwig-inspired fan by considering the flat foldability in the origami model, as informed by X-ray microcomputed tomography imaging. As our dedicated designing software shows, the earwig fan can be customized into artificial deployable structures of different sizes and configurations for use in architecture, aerospace, mechanical engineering, and daily use items. Moreover, the proposed method is able to reconstruct the wing-folding mechanism of an ancient earwig relative, the 280-million-year-old Protelytron permianum. This allows us to propose evolutionary patterns that explain how extant earwigs acquired their wing-folding mechanism and to project hypothetical, extinct transitional forms. Our findings can be used as the basic design guidelines in biomimetic research for harnessing the excellent engineering properties of earwig wings, and demonstrate how a geometrical designing method can reveal morphofunctional evolutionary constraints and predict plausible biological disparity in deep time.
Collapse
|
26
|
Krishna S, Cho M, Wehmann HN, Engels T, Lehmann FO. Wing Design in Flies: Properties and Aerodynamic Function. INSECTS 2020; 11:E466. [PMID: 32718051 PMCID: PMC7469158 DOI: 10.3390/insects11080466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 11/29/2022]
Abstract
The shape and function of insect wings tremendously vary between insect species. This review is engaged in how wing design determines the aerodynamic mechanisms with which wings produce an air momentum for body weight support and flight control. We work out the tradeoffs associated with aerodynamic key parameters such as vortex development and lift production, and link the various components of wing structure to flight power requirements and propulsion efficiency. A comparison between rectangular, ideal-shaped and natural-shaped wings shows the benefits and detriments of various wing shapes for gliding and flapping flight. The review expands on the function of three-dimensional wing structure, on the specific role of wing corrugation for vortex trapping and lift enhancement, and on the aerodynamic significance of wing flexibility for flight and body posture control. The presented comparison is mainly concerned with wings of flies because these animals serve as model systems for both sensorimotor integration and aerial propulsion in several areas of biology and engineering.
Collapse
Affiliation(s)
| | | | | | | | - Fritz-Olaf Lehmann
- Department of Animal Physiology, Institute of Biosciences, University of Rostock, 18059 Rostock, Germany; (S.K.); (M.C.); (H.-N.W.); (T.E.)
| |
Collapse
|
27
|
Baek SM, Yim S, Chae SH, Lee DY, Cho KJ. Ladybird beetle–inspired compliant origami. Sci Robot 2020; 5:5/41/eaaz6262. [DOI: 10.1126/scirobotics.aaz6262] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/20/2020] [Indexed: 02/01/2023]
Abstract
Origami can enable structures that are compact and lightweight. The facets of an origami structure in traditional designs, however, are essentially nondeformable rigid plates. Therefore, implementing energy storage and robust self-locking in these structures can be challenging. We note that the intricately folded wings of a ladybird beetle can be deployed rapidly and effectively sustain aerodynamic forces during flight; these abilities originate from the geometry and deformation of a specialized vein in the wing of this insect. We report compliant origami inspired by the wing vein in ladybird beetles. The deformation and geometry of the compliant facet enables both large energy storage and self-locking in a single origami joint. On the basis of our compliant origami, we developed a deployable glider module for a multimodal robot. The glider module is compactly foldable, is rapidly deployable, and can effectively sustain aerodynamic forces. We also apply our compliant origami to enhance the energy storage capacity of the jumping mechanism in a jumping robot.
Collapse
Affiliation(s)
- Sang-Min Baek
- Soft Robotics Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Mechanical and Aerospace Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, Republic of Korea
| | - Sojung Yim
- Soft Robotics Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Mechanical and Aerospace Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, Republic of Korea
| | - Soo-Hwan Chae
- Soft Robotics Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Mechanical and Aerospace Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, Republic of Korea
| | - Dae-Young Lee
- Soft Robotics Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Mechanical and Aerospace Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, Republic of Korea
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Kyu-Jin Cho
- Soft Robotics Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Mechanical and Aerospace Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Lau HK, Rattan S, Fu H, Garcia CG, Barber DM, Kiick KL, Crosby AJ. Micromechanical Properties of Microstructured Elastomeric Hydrogels. Macromol Biosci 2020; 20:e1900360. [DOI: 10.1002/mabi.201900360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Hang Kuen Lau
- Department of Materials Science and Engineering University of Delaware 201 DuPont Hall Newark DE 19716 USA
| | - Shruti Rattan
- Polymer Science and Engineering Department University of Massachusetts Amherst 120 Governors Drive Amherst MA 01003 USA
| | - Hongbo Fu
- Polymer Science and Engineering Department University of Massachusetts Amherst 120 Governors Drive Amherst MA 01003 USA
| | - Cristobal G. Garcia
- Department of Materials Science and Engineering University of Delaware 201 DuPont Hall Newark DE 19716 USA
| | - Dylan M. Barber
- Polymer Science and Engineering Department University of Massachusetts Amherst 120 Governors Drive Amherst MA 01003 USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering University of Delaware 201 DuPont Hall Newark DE 19716 USA
- Delaware Biotechnology Institute 15 Innovation Way Newark DE 19711 USA
| | - Alfred J. Crosby
- Polymer Science and Engineering Department University of Massachusetts Amherst 120 Governors Drive Amherst MA 01003 USA
| |
Collapse
|
29
|
Li X, Guo C. Structural characteristics analysis of the hind wings in a bamboo weevil ( Cyrtotrachelus buqueti). IET Nanobiotechnol 2020; 13:850-856. [PMID: 31625526 DOI: 10.1049/iet-nbt.2018.5409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The finite element method is a powerful tool for evaluating the experimental results. It can help to study the flight mechanism of insects and the structural characteristics of flying wings. Therefore, the research object based on the hind wings of Cyrtotrachelus buqueti (C. buqueti) was completed here. A finite element model with a length of 45 mm in the spanwise direction and a 16 mm width in the chordwise direction were established. We used a three-dimensional (3D) scanner to scan a real hind wing to obtain point cloud images. The physical model of the hind wing was carried out by using both the software Imageware and Unigraphics NX. To quantify the quality of the finite element model of the hind wing, the material properties of the wing membranes and veins were conducted by the tensile testing machine. The structural static properties of the hind wing, including static characteristics analysis and natural vibration modal analysis, were analysed by ANSYS; the stress and deflection under uniformly distributed load, bending moment, and torque were, respectively, shown. It was found that the model only had a small deformation, which shows that the hind wings of C. buqueti have excellent structural properties.
Collapse
Affiliation(s)
- Xin Li
- Jiangsu Key Laboratory of Bionic Functional Materials, Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Ce Guo
- Jiangsu Key Laboratory of Bionic Functional Materials, Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China.
| |
Collapse
|
30
|
Frantsevich L, Shumakova I, Gladun D. Mechanical and optical properties of the femoral chordotonal organ in beetles (Coleoptera). ACTA ACUST UNITED AC 2019; 222:jeb.203968. [PMID: 31558586 DOI: 10.1242/jeb.203968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/20/2019] [Indexed: 11/20/2022]
Abstract
The femoral chordotonal organ (FCO) in beetles differs from that in orthopterids in the origin of its apodeme: it originates directly from the tibia in the latter, but amidst the tendon of the extensor muscle in the former. In many beetles, the apodeme pops up from the tendon as a short sclerite (arculum). It turns distally upon bending of the tibia. The turn of the arculum is several times more than the turn of the tibia, and the arculum is connected to the FCO. This system behaves as a high-pass filter with a time constant close to the step period. Various aspects of the arculum have been studied previously, including its shape in various taxa, its biomechanics, matched neural activity in the FCO, as well as evolutionary aspects. The results of previous studies, published in 1985-2003 in Russian, are inaccessible to most foreign readers. However, original texts and the list of studied species (>350) are now available online. Recently, we minimized the system to three components: the proximal tibial ledge, the tendon and the arculum. The elastic tendon contains resilin. In four model species, the arculum readily turned upon stretching of the tendon. Turning was video recorded. The force of approximately 0.005 N, applied to a tendon approximately 0.25 mm in size, is enough for the utmost turn of the arculum. The arculum turned also upon local deformations close to its base. The ability to turn vanished after incision between the arculum and the distal part of the extensor apodeme. A mechanical model of an amplifier is proposed. The apodeme includes optically active structures, which behave differently in polarized light.
Collapse
Affiliation(s)
- Leonid Frantsevich
- Schmalhausen-Institute of Zoology, National Academy of Sciences of Ukraine, Kiev 01601, Ukraine
| | - Irina Shumakova
- Institute for Evolutionary Ecology, National Academy of Sciences of Ukraine, Kiev 03143, Ukraine
| | - Dmytro Gladun
- Institute for Evolutionary Ecology, National Academy of Sciences of Ukraine, Kiev 03143, Ukraine
| |
Collapse
|
31
|
Unfolding Crease Patterns Inspired by Insect Wings and Variations of the Miura-ori with a Single Vein. Biomimetics (Basel) 2019; 4:biomimetics4030045. [PMID: 31284477 PMCID: PMC6784296 DOI: 10.3390/biomimetics4030045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 11/20/2022] Open
Abstract
In many disciplines, professionals are interested in folding patterns for their packing and shape changing capabilities. Many insects have folded wings fitting to their body morphology that can unfold to fly, support their weight and withstand external forces. This paper focuses on the main characteristics emerging from folding patterns inspired and adapted from both insect wings and Miura-ori patterns, along with the actuation mechanism. Pneumatic actuators, similar to the venations on insect wings, are used to unfold these patterns. Depending on one vein’s placement, its inflation can unfold models with many creases. While a single vein cannot fold the model back, a snapping behavior, observed in some folding patterns, could be used to trigger the folding mechanism of a model. By presenting the characteristics of each folding pattern studied in this work, one could come forth with an application and choose the most efficient folding patterns based on the most suitable characteristics for this application. These folding patterns can then be optimized to address specific requirements by adapting their different parameters.
Collapse
|
32
|
Bäumler F, Büsse S. Resilin in the flight apparatus of Odonata (Insecta)-cap tendons and their biomechanical importance for flight. Biol Lett 2019; 15:20190127. [PMID: 31064308 PMCID: PMC6548727 DOI: 10.1098/rsbl.2019.0127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/15/2019] [Indexed: 11/12/2022] Open
Abstract
In Odonata, a direct flight mechanism with specialized tendons evolved. One particular adaptation, the implementation of the rubber-like protein resilin in these cap tendons, might be of major importance. Although resilin was first described in one tendon of Odonata, to our knowledge no comprehensive study about the presence of resilin in the thorax exists yet. We investigated various species of Odonata, using µCT, dissection and fluorescence microscopy. Here we show a complete mapping of the odonatan pterothorax, regarding the presence of tendons and their properties. Thus, 20-21 cap tendons in the pterothorax of Odonata show the presence of resilin. While performing outstanding and often-aggressive flight manoeuvres, resilin can provide shock absorption against mechanical damage from strong impacts. It may further improve the wear and fatigue resistance owing to resilin's damping behaviour. Additionally, resilin in tendons can absorb and return kinetic energy to restore muscles to their original shape after contracting and help in maintaining self-oscillation of the flight muscles. Here, the material distribution within the direct flight system of Odonata and the biomechanical importance and possible function of resilin are discussed. These results are an important step towards the understanding of the complex form-material-function interplay of the insect cuticle.
Collapse
Affiliation(s)
| | - Sebastian Büsse
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, D-24118 Kiel, Germany
| |
Collapse
|
33
|
Hasan J, Roy A, Chatterjee K, Yarlagadda PKDV. Mimicking Insect Wings: The Roadmap to Bioinspiration. ACS Biomater Sci Eng 2019; 5:3139-3160. [DOI: 10.1021/acsbiomaterials.9b00217] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jafar Hasan
- Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia
| | - Anindo Roy
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560 012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560 012, India
| | - Prasad K. D. V. Yarlagadda
- Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia
| |
Collapse
|
34
|
Li X, Guo C, Li L. Functional morphology and structural characteristics of the hind wings of the bamboo weevil Cyrtotrachelus buqueti (Coleoptera, Curculionidae). Anim Cells Syst (Seoul) 2019; 23:143-153. [PMID: 30949402 PMCID: PMC6440521 DOI: 10.1080/19768354.2019.1592020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 10/24/2018] [Accepted: 11/14/2018] [Indexed: 11/18/2022] Open
Abstract
Research data of the microstructure and surface morphology of insect wings have been used to help design micro air vehicles (MAV) and coating materials. The present study aimed to examine the microstructure and morphology of the hind wings of Cyrtotrachelus buqueti using inverted fluorescence microscopy (IFM), scanning electron microscopy (SEM), and a mechanical testing system. IFM was used to investigate the distribution of resilin in the hind wing, and SEM was performed to assess the functional characteristics and cross-sectional microstructure of the wings. Moreover, mechanical properties regarding the intersecting location of folding lines and the bending zone (BZ) were examined. Resilin, a rubber-like protein, was found in several mobile joints and in veins walls that are connected to the wing membranes. Taken together, structural data, unfolding motions, and results of tensile testing suggest two conclusions on resilin in the hind wing of C. buqueti: firstly, the resilin distribution is likely associated with specific folding mechanisms of the hind wings, and secondly, resilin occurs at positions where additional elasticity is needed, such as in the bending zone, in order to prevent structural damage during repeated folding and unfolding of the hind wings. The functional significance of resilin joints may shed light on the evolutionary relationship between morphological and structural hind wing properties.
Collapse
Affiliation(s)
- Xin Li
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China.,Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Ce Guo
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Longhai Li
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China.,Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| |
Collapse
|
35
|
King RE, Lau HK, Zhang H, Sidhu I, Christensen MB, Fowler EW, Li L, Jia X, Kiick KL, Thibeault SL. Biocompatibility and Viscoelastic Properties of Injectable Resilin-Like Polypeptide and Hyaluronan Hybrid Hydrogels in Rabbit Vocal Folds. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 5:373-386. [DOI: 10.1007/s40883-019-00094-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Wehmann HN, Heepe L, Gorb SN, Engels T, Lehmann FO. Local deformation and stiffness distribution in fly wings. Biol Open 2019; 8:8/1/bio038299. [PMID: 30642916 PMCID: PMC6361194 DOI: 10.1242/bio.038299] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mechanical properties of insect wings are essential for insect flight aerodynamics. During wing flapping, wings may undergo tremendous deformations, depending on the wings’ spatial stiffness distribution. We here show an experimental evaluation of wing stiffness in three species of flies using a micro-force probe and an imaging method for wing surface reconstruction. Vertical deflection in response to point loads at 11 characteristic points on the wing surface reveals that average spring stiffness of bending lines between wing hinge and point loads varies ∼77-fold in small fruit flies and up to ∼28-fold in large blowflies. The latter result suggests that local wing deformation depends to a considerable degree on how inertial and aerodynamic forces are distributed on the wing surface during wing flapping. Stiffness increases with an increasing body mass, amounting to ∼0.6 Nm−1 in fruit flies, ∼0.7 Nm−1 in house flies and ∼2.6 Nm−1 in blowflies for bending lines, running from the wing base to areas near the center of aerodynamic pressure. Wings of house flies have a ∼1.4-fold anisotropy in mean stiffness for ventral versus dorsal loading, while anisotropy is absent in fruit flies and blowflies. We present two numerical methods for calculation of local surface deformation based on surface symmetry and wing curvature. These data demonstrate spatial deformation patterns under load and highlight how veins subdivide wings into functional areas. Our results on wings of living animals differ from previous experiments on detached, desiccated wings and help to construct more realistic mechanical models for testing the aerodynamic consequences of specific wing deformations. Summary: We determined mechanical properties of wings under load in three fly species. Fly wings broadly deform similar to homogenous beams. Veins and joints shape wing mechanics and govern wing deformation during flapping flight.
Collapse
Affiliation(s)
- Henja-Niniane Wehmann
- Department of Animal Physiology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, Rostock 18059, Germany
| | - Lars Heepe
- Department of Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Christian-Albrechts-Platz, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Christian-Albrechts-Platz, 24118 Kiel, Germany
| | - Thomas Engels
- Laboratoire de métérologie dynamique, Department Géosciences, Ecole Normale Supérieure and PSL, Paris, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Fritz-Olaf Lehmann
- Department of Animal Physiology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, Rostock 18059, Germany
| |
Collapse
|
37
|
Li L, Stiadle JM, Levendoski EE, Lau HK, Thibeault SL, Kiick KL. Biocompatibility of injectable resilin-based hydrogels. J Biomed Mater Res A 2018; 106:2229-2242. [PMID: 29611890 PMCID: PMC6030450 DOI: 10.1002/jbm.a.36418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/21/2018] [Accepted: 03/21/2018] [Indexed: 12/25/2022]
Abstract
Vocal folds are connective tissues housed in the larynx, which can be subjected to various injuries and traumatic stimuli that lead to aberrant tissue structural alterations and fibrotic-induced biomechanical stiffening observed in patients with voice disorders. Much effort has been devoted to generate soft biomaterials that are injectable directly to sites of injury. To date, materials applied toward these applications have been largely focused on natural extracellular matrix-derived materials such as collagen, fibrin or hyaluronic acid; these approaches have suffered from the fact that materials are not sufficiently robust mechanically nor offer sufficient flexibility to modulate material properties for targeted injection. We have recently developed multiple resilin-inspired elastomeric hydrogels that possess similar mechanical properties as those reported for vocal fold tissues, and that also show promising in vitro cytocompatibility and in vivo biocompatibility. Here we report studies that test the delivery of resilin-based hydrogels through injection to the subcutaneous tissue in a wild-type mice model; histological and genetic expression outcomes were monitored. The rapid kinetics of crosslinking enabled facile injection and ensured the rapid transition of the viscous resilin precursor solution to a solid-like hydrogel in the subcutaneous space in vivo; the materials exhibited storage shear moduli in the range of 1000-2000 Pa when characterized through oscillatory rheology. Histological staining and gene expression profiles suggested minimal inflammatory profiles three weeks after injection, thereby demonstrating the potential suitability for site-specific in vivo injection of these elastomeric materials. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2229-2242, 2018.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Jeanna M. Stiadle
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, 5136 WIMR, 1111 Highland Ave, Madison, WI, 53792, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Elizabeth E. Levendoski
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, 5136 WIMR, 1111 Highland Ave, Madison, WI, 53792, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Hang K. Lau
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Susan L. Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, 5136 WIMR, 1111 Highland Ave, Madison, WI, 53792, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE, 19711, USA
| |
Collapse
|
38
|
Zhao J, Xu M, Liang Y, Yan S, Niu W. Influence of hydrodynamic pressure and vein strength on the super-elasticity of honeybee wings. JOURNAL OF INSECT PHYSIOLOGY 2018; 109:100-106. [PMID: 30006106 DOI: 10.1016/j.jinsphys.2018.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
The wings of honeybees (Apis mellifera L.) usually produce bending and torsional deformations during flapping wing movement. These deformations endow honeybees with perfect aerodynamic control to escape predators and exploit scattered resources. However, the mechanisms by which honeybee wings recover from large deformations are unclear. This study demonstrates that honeybee wings are super-elastic that they can recover rapidly from one extreme contorted state to their original position. A comparative experiment is conducted to evaluate the difference in super-elastic recovery between attached and detached wings. Results show that the structural stiffness of wings is affected by the reticulate vein and the haemolymph pressure generated by the blood circulation. Further analysis indicates that the haemolymph pressure can increase the stiffness of honeybee wings, especially that of the subcostal veins. This phenomenon shortens the recovery time of wing deflection behaviour.
Collapse
Affiliation(s)
- Jieliang Zhao
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Mengdi Xu
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China; Robot and Protein Kinematics Laboratory, Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Youjian Liang
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Shaoze Yan
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China.
| | - Wendong Niu
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
39
|
Bergmann P, Richter S, Glöckner N, Betz O. Morphology of hindwing veins in the shield bug Graphosoma italicum (Heteroptera: Pentatomidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:375-390. [PMID: 29684555 DOI: 10.1016/j.asd.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
Light, fluorescence, and electron microscopy were applied to cross sections and -breakage and whole-mount preparations of the anterior hindwing vein of the shield bug Graphosoma italicum. These analyses were complemented by investigations of the basal part of the forewing Corium and Clavus. The integration of structural, histological, and fluorescence data revealed a complex arrangement of both rigid and elastic structures in the wall of wing veins and provided insights into the constitution of transition zones between rigid and elastic regions. Beneath the exocuticular layers, which are continuous with the dorsal and ventral cuticle of the wing membrane, the lumen of the veins is encompassed by a mesocuticular layer, an internal circular exocuticular layer, and an internal longitudinal endocuticular layer. Separate parallel lumina within the anterior longitudinal vein of the hindwing, arranged side-by-side rostro-caudally, suggest that several veins have fused in the phylogenetic context of vein reduction in the pentatomid hindwing. Gradual structural transition zones and resilin enrichment between sclerotized layers of the vein wall and along the edges of the claval furrow are interpreted as mechanical adaptations to enhance the reliability and durability of the mechanically stressed wing veins.
Collapse
Affiliation(s)
- Paavo Bergmann
- Electron Microscopy Center, Biology, University of Konstanz, Germany; Evolutionary Biology of Invertebrates, Institute of Evolution and Ecology, University of Tübingen, Germany.
| | - Sandra Richter
- Center for Plant Molecular Biology, University of Tübingen, Germany
| | - Nina Glöckner
- Center for Plant Molecular Biology, University of Tübingen, Germany
| | - Oliver Betz
- Evolutionary Biology of Invertebrates, Institute of Evolution and Ecology, University of Tübingen, Germany
| |
Collapse
|
40
|
Büsse S, Gorb SN. Material composition of the mouthpart cuticle in a damselfly larva (Insecta: Odonata) and its biomechanical significance. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172117. [PMID: 30110404 PMCID: PMC6030260 DOI: 10.1098/rsos.172117] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/01/2018] [Indexed: 05/25/2023]
Abstract
Odonata larvae are key predators in their habitats. They catch prey with a unique and highly efficient apparatus, the prehensile mask. The mandibles and maxillae, however, play the lead in handling and crushing the food. The material composition of the cuticle in the biomechanical system of the larval mouthparts has not been studied so far. We used confocal laser scanning microscopy (CLSM) to detect material gradients in the cuticle by differences in autofluorescence. Our results show variations of materials in different areas of the mouthparts: (i) resilin-dominated pads within the membranous transition between the labrum and the anteclypeus, which support mobility and might provide shock absorption, an adaptation against mechanical damage; (ii) high degrees of sclerotization in the incisivi of the mandibles, where high forces occur when crushing the prey's body wall. The interaction of the cuticle geometry, the material composition and the related musculature determine the complex concerted movements of the mouthparts. The material composition influences the strength, mobility and durability of the cuticular components of the mouthparts. Applying CLSM for extracting information about material composition and material properties of arthropod cuticles will considerably help improve finite-element modelling studies.
Collapse
Affiliation(s)
- Sebastian Büsse
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| | | |
Collapse
|
41
|
Schroeder TBH, Houghtaling J, Wilts BD, Mayer M. It's Not a Bug, It's a Feature: Functional Materials in Insects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705322. [PMID: 29517829 DOI: 10.1002/adma.201705322] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/15/2017] [Indexed: 05/25/2023]
Abstract
Over the course of their wildly successful proliferation across the earth, the insects as a taxon have evolved enviable adaptations to their diverse habitats, which include adhesives, locomotor systems, hydrophobic surfaces, and sensors and actuators that transduce mechanical, acoustic, optical, thermal, and chemical signals. Insect-inspired designs currently appear in a range of contexts, including antireflective coatings, optical displays, and computing algorithms. However, as over one million distinct and highly specialized species of insects have colonized nearly all habitable regions on the planet, they still provide a largely untapped pool of unique problem-solving strategies. With the intent of providing materials scientists and engineers with a muse for the next generation of bioinspired materials, here, a selection of some of the most spectacular adaptations that insects have evolved is assembled and organized by function. The insects presented display dazzling optical properties as a result of natural photonic crystals, precise hierarchical patterns that span length scales from nanometers to millimeters, and formidable defense mechanisms that deploy an arsenal of chemical weaponry. Successful mimicry of these adaptations may facilitate technological solutions to as wide a range of problems as they solve in the insects that originated them.
Collapse
Affiliation(s)
- Thomas B H Schroeder
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI, 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Jared Houghtaling
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| |
Collapse
|
42
|
Faber JA, Arrieta AF, Studart AR. Bioinspired spring origami. Science 2018; 359:1386-1391. [PMID: 29567709 DOI: 10.1126/science.aap7753] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/30/2018] [Indexed: 11/02/2022]
Abstract
Origami enables folding of objects into a variety of shapes in arts, engineering, and biological systems. In contrast to well-known paper-folded objects, the wing of the earwig has an exquisite natural folding system that cannot be sufficiently described by current origami models. Such an unusual biological system displays incompatible folding patterns, remains open by a bistable locking mechanism during flight, and self-folds rapidly without muscular actuation. We show that these notable functionalities arise from the protein-rich joints of the earwig wing, which work as extensional and rotational springs between facets. Inspired by this biological wing, we establish a spring origami model that broadens the folding design space of traditional origami and allows for the fabrication of precisely tunable, four-dimensional-printed objects with programmable bioinspired morphing functionalities.
Collapse
Affiliation(s)
- Jakob A Faber
- Complex Materials, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Andres F Arrieta
- Programmable Structures Lab, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
43
|
Kovalev A, Filippov A, Gorb SN. Slow viscoelastic response of resilin. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:409-417. [PMID: 29368167 DOI: 10.1007/s00359-018-1248-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
Abstract
The high importance of resilin in invertebrate biomechanics is widely known. It is generally assumed to be an almost perfect elastomer in different tissues. Whereas mechanical properties of resilin were previously determined mainly in tension, here we aimed at studying its mechanical properties in compression. Microindentation of resilin from the wing hinge of Locusta migratoria revealed the clear viscoelastic response of resilin: about a quarter of the mechanical response was assigned to a viscous component in our experiments. Mechanical properties were characterized using a generalized Maxwell model with two characteristic time constants, poroelasticity theory, and alternatively using a 1D model with just one characteristic time constant. Slow viscous responses with 1.7 and 16 s characteristic times were observed during indentation. These results demonstrate that the locust flight system is adapted to both fast and slow mechanical processes. The fast highly elastic process is related to the flight function and the slow viscoelastic process may be related to the wing folding.
Collapse
Affiliation(s)
- Alexander Kovalev
- Department Functional Morphology and Biomechanics, Zoological Institute of the Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany.
| | - Alexander Filippov
- Department Functional Morphology and Biomechanics, Zoological Institute of the Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany.,Donetsk Institute for Physics and Engineering, National Academy of Science, Donetsk, 340114, Ukraine
| | - Stanislav N Gorb
- Department Functional Morphology and Biomechanics, Zoological Institute of the Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany
| |
Collapse
|
44
|
Abstract
ABSTRACT
Insects represent more than 60% of all multicellular life forms, and are easily among the most diverse and abundant organisms on earth. They evolved functional wings and the ability to fly, which enabled them to occupy diverse niches. Insects of the hyper-diverse orders show extreme miniaturization of their body size. The reduced body size, however, imposes steep constraints on flight ability, as their wings must flap faster to generate sufficient forces to stay aloft. Here, we discuss the various physiological and biomechanical adaptations of the thorax in flies which enabled them to overcome the myriad constraints of small body size, while ensuring very precise control of their wing motion. One such adaptation is the evolution of specialized myogenic or asynchronous muscles that power the high-frequency wing motion, in combination with neurogenic or synchronous steering muscles that control higher-order wing kinematic patterns. Additionally, passive cuticular linkages within the thorax coordinate fast and yet precise bilateral wing movement, in combination with an actively controlled clutch and gear system that enables flexible flight patterns. Thus, the study of thoracic biomechanics, along with the underlying sensory-motor processing, is central in understanding how the insect body form is adapted for flight.
Collapse
Affiliation(s)
- Tanvi Deora
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bellary Road, Bangalore, Karnataka 560065, India
| | - Namrata Gundiah
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sanjay P. Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bellary Road, Bangalore, Karnataka 560065, India
| |
Collapse
|
45
|
Rajabi H, Shafiei A, Darvizeh A, Gorb SN. Resilin microjoints: a smart design strategy to avoid failure in dragonfly wings. Sci Rep 2016; 6:39039. [PMID: 27966641 PMCID: PMC5155300 DOI: 10.1038/srep39039] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/17/2016] [Indexed: 12/02/2022] Open
Abstract
Dragonflies are fast and manoeuvrable fliers and this ability is reflected in their unique wing morphology. Due to the specific lightweight structure, with the crossing veins joined by rubber-like resilin patches, wings possess strong deformability but can resist high forces and large deformations during aerial collisions. The computational results demonstrate the strong influence of resilin-containing vein joints on the stress distribution within the wing. The presence of flexible resilin in the contact region of the veins prevents excessive bending of the cross veins and significantly reduces the stress concentration in the joint.
Collapse
Affiliation(s)
- H Rajabi
- Institute of Zoology, Functional Morphology and Biomechanics, Christian-Albrechts-University, Kiel, Germany
| | - A Shafiei
- Department of Mechanical Engineering, University of Guilan, Rasht, Iran
| | - A Darvizeh
- Department of Mechanical Engineering, Anzali Branch, Islamic Azad University, Bandar Anzali, Iran
| | - S N Gorb
- Institute of Zoology, Functional Morphology and Biomechanics, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
46
|
Li L, Stiadle JM, Lau HK, Zerdoum AB, Jia X, Thibeault SL, Kiick KL. Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration. Biomaterials 2016; 108:91-110. [PMID: 27619243 PMCID: PMC5035639 DOI: 10.1016/j.biomaterials.2016.08.054] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 01/01/2023]
Abstract
Vocal folds are soft laryngeal connective tissues with distinct layered structures and complex multicomponent matrix compositions that endow phonatory and respiratory functions. This delicate tissue is easily damaged by various environmental factors and pathological conditions, altering vocal biomechanics and causing debilitating vocal disorders that detrimentally affect the daily lives of suffering individuals. Modern techniques and advanced knowledge of regenerative medicine have led to a deeper understanding of the microstructure, microphysiology, and micropathophysiology of vocal fold tissues. State-of-the-art materials ranging from extracecullar-matrix (ECM)-derived biomaterials to synthetic polymer scaffolds have been proposed for the prevention and treatment of voice disorders including vocal fold scarring and fibrosis. This review intends to provide a thorough overview of current achievements in the field of vocal fold tissue engineering, including the fabrication of injectable biomaterials to mimic in vitro cell microenvironments, novel designs of bioreactors that capture in vivo tissue biomechanics, and establishment of various animal models to characterize the in vivo biocompatibility of these materials. The combination of polymeric scaffolds, cell transplantation, biomechanical stimulation, and delivery of antifibrotic growth factors will lead to successful restoration of functional vocal folds and improved vocal recovery in animal models, facilitating the application of these materials and related methodologies in clinical practice.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jeanna M Stiadle
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Hang K Lau
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Aidan B Zerdoum
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| | - Susan L Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA.
| |
Collapse
|
47
|
Michels J, Appel E, Gorb SN. Functional diversity of resilin in Arthropoda. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1241-1259. [PMID: 27826498 PMCID: PMC5082342 DOI: 10.3762/bjnano.7.115] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/15/2016] [Indexed: 05/12/2023]
Abstract
Resilin is an elastomeric protein typically occurring in exoskeletons of arthropods. It is composed of randomly orientated coiled polypeptide chains that are covalently cross-linked together at regular intervals by the two unusual amino acids dityrosine and trityrosine forming a stable network with a high degree of flexibility and mobility. As a result of its molecular prerequisites, resilin features exceptional rubber-like properties including a relatively low stiffness, a rather pronounced long-range deformability and a nearly perfect elastic recovery. Within the exoskeleton structures, resilin commonly forms composites together with other proteins and/or chitin fibres. In the last decades, numerous exoskeleton structures with large proportions of resilin and various resilin functions have been described. Today, resilin is known to be responsible for the generation of deformability and flexibility in membrane and joint systems, the storage of elastic energy in jumping and catapulting systems, the enhancement of adaptability to uneven surfaces in attachment and prey catching systems, the reduction of fatigue and damage in reproductive, folding and feeding systems and the sealing of wounds in a traumatic reproductive system. In addition, resilin is present in many compound eye lenses and is suggested to be a very suitable material for optical elements because of its transparency and amorphousness. The evolution of this remarkable functional diversity can be assumed to have only been possible because resilin exhibits a unique combination of different outstanding properties.
Collapse
Affiliation(s)
- Jan Michels
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1–9, D-24118 Kiel, Germany
| | - Esther Appel
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1–9, D-24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1–9, D-24118 Kiel, Germany
| |
Collapse
|
48
|
A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-to-Steel Joints. MATERIALS 2016; 9:ma9070566. [PMID: 28773688 PMCID: PMC5456843 DOI: 10.3390/ma9070566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/20/2016] [Accepted: 07/01/2016] [Indexed: 11/16/2022]
Abstract
There are a great variety of joint types used in nature which can inspire engineering joints. In order to design such biomimetic joints, it is at first important to understand how biological joints work. A comprehensive literature review, considering natural joints from a mechanical point of view, was undertaken. This was used to develop a taxonomy based on the different methods/functions that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several glass fibre reinforced plastic (GFRP) to steel adhesively bonded joint configurations. The transition zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element model was used to identify the optimum variation in material stiffness that minimises potential failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to the standard joints.
Collapse
|
49
|
Deiters J, Kowalczyk W, Seidl T. Simultaneous optimisation of earwig hindwings for flight and folding. Biol Open 2016; 5:638-44. [PMID: 27113958 PMCID: PMC4874351 DOI: 10.1242/bio.016527] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/07/2016] [Indexed: 11/20/2022] Open
Abstract
Earwig wings are highly foldable structures that lack internal muscles. The behaviour and shape changes of the wings during flight are yet unknown. We assume that they meet a great structural challenge to control the occurring deformations and prevent the wing from collapsing. At the folding structures especially, the wing could easily yield to the pressure. Detailed microscopy studies reveal adaptions in the structure and material which are not relevant for folding purposes. The wing is parted into two structurally different areas with, for example, a different trend or stiffness of the wing veins. The storage of stiff or more flexible material shows critical areas which undergo great changes or stress during flight. We verified this with high-speed video recordings. These reveal the extent of the occurring deformations and their locations, and support our assumptions. The video recordings reveal a dynamical change of a concave flexion line. In the static unfolded state, this flexion line blocks a folding line, so that the wing stays unfolded. However, during flight it extends and blocks a second critical folding line and prevents the wing from collapsing. With these results, more insight in passive wing control, especially within high foldable structures, is gained.
Collapse
Affiliation(s)
- Julia Deiters
- Westphalian Institute for Biomimetics, Westphalian University of Applied Science, Muensterstr. 265, Bocholt 43697, Germany Department of Mechanics and Robotics, University of Duisburg-Essen, Lotharstr. 1, Duisburg 47057, Germany
| | - Wojciech Kowalczyk
- Department of Mechanics and Robotics, University of Duisburg-Essen, Lotharstr. 1, Duisburg 47057, Germany
| | - Tobias Seidl
- Westphalian Institute for Biomimetics, Westphalian University of Applied Science, Muensterstr. 265, Bocholt 43697, Germany
| |
Collapse
|
50
|
Naegle MA, Mugleston JD, Bybee SM, Whiting MF. Reassessing the phylogenetic position of the epizoic earwigs (Insecta: Dermaptera). Mol Phylogenet Evol 2016; 100:382-390. [PMID: 27033951 DOI: 10.1016/j.ympev.2016.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 02/03/2016] [Accepted: 03/11/2016] [Indexed: 01/05/2023]
Abstract
Dermaptera is a relatively small order of free-living insects that typically feed on detritus and other plant material. However, two earwig lineages - Arixeniidae and Hemimeridae - are epizoic on Cheiromeles bats and Beamys and Cricetomys rats respectively. Both of these epizoic families are comprised of viviparous species. The monophyly of these epizoic lineages and their placement within dermapteran phylogeny has remained unclear. A phylogenetic analyses was performed on a diverse sample of 47 earwig taxa for five loci (18S rDNA, 28S rDNA, COI, Histone 3, and Tubulin Alpha I). Our results support two independent origins of the epizoic lifestyle within Dermaptera, with Hemimeridae and Arixeniidae each derived from a different lineage of Spongiphoridae. Our analyses places Marava, a genus of spongiphorids that includes free-living but viviparous earwigs, as sister group to Arixeniidae, suggesting that viviparity evolved prior to the shift to the epizoic lifestyle. Additionally, our results support the monophyly of Forficulidae and Chelisochidae and the paraphyly of Labiduridae, Pygidicranidae, Spongiphoridae, and Anisolabididae.
Collapse
Affiliation(s)
- Michael A Naegle
- Department of Biology and M. L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602, USA.
| | - Joseph D Mugleston
- Department of Biology and M. L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602, USA
| | - Seth M Bybee
- Department of Biology and M. L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602, USA
| | - Michael F Whiting
- Department of Biology and M. L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|