1
|
Zhang W, Hong X, Xiao Y, Wang H, Zeng X. Sorafenib resistance and therapeutic strategies in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2025; 1880:189310. [PMID: 40187502 DOI: 10.1016/j.bbcan.2025.189310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/30/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most prevalent and lethal cancers globally. While surgical resection and liver transplantation offer potential cures for early-stage HCC, the majority of patients are diagnosed at advanced stages where such interventions are not viable. Sorafenib, a multi-target kinase inhibitor, has been a cornerstone in the treatment of advanced HCC since its approval in 2007. Despite its significant clinical impact, less than half of the treated patients derive long-term benefits due to the emergence of resistance and associated side effects. This review focuses on the role of sorafenib, an FDA-approved multi-target kinase inhibitor, in treating advanced HCC, discusses the mechanisms underlying its therapeutic effects and associated resistance, and explores additional therapeutic strategies being investigated to improve patient outcomes.
Collapse
Affiliation(s)
- Weijing Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xuechuan Hong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuling Xiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Xiaodong Zeng
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China.
| |
Collapse
|
2
|
Yousef EH, El Gayar AM, El-Magd NFA. Insights into Sorafenib resistance in hepatocellular carcinoma: Mechanisms and therapeutic aspects. Crit Rev Oncol Hematol 2025; 212:104765. [PMID: 40389183 DOI: 10.1016/j.critrevonc.2025.104765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/07/2025] [Accepted: 05/11/2025] [Indexed: 05/21/2025] Open
Abstract
The most prevalent primary hepatic cancer, hepatocellular carcinoma (HCC), has a bad prognosis. HCC prevalence and related deaths have increased in recent decades. Food and Drug Administration (FDA) has licensed Sorafenib as a first-line treatment for individuals with advanced HCC. Despite this, some clinical studies indicate that a significant percentage of liver cancer patients exhibit insensitivity to sorafenib. Furthermore, the overall effectiveness of sorafenib is far from adequate, and the number of patients who benefit from therapy is low. In recent years, many researchers have focused on the mechanisms underlying sorafenib resistance. Acquired resistance to sorafenib in HCC cells has been reported to be facilitated by dysregulation of signal transducer and activator of transcription 3 (STAT3) activation, angiogenesis, autophagy, hypoxia-induced pathways, epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), ferroptosis, and non-coding RNAs (ncRNAs). Recent clinical trials, including comparisons of sorafenib with immune checkpoint inhibitors like tislelizumab, have shown promise in improving patient outcomes. Additionally, combination therapies targeting complementary pathways are under investigation to overcome resistance and enhance treatment efficacy. The limitation of Sorafenib's effectiveness has been partially but not completely clarified. Furthermore, while certain regimens have demonstrated positive results, more clinical trials are required to confirm them. Future research should focus on identifying predictive biomarkers for therapy response, targeting the tumor microenvironment, and exploring novel therapeutic agents and personalized medicine strategies. A deeper understanding of these mechanisms will be essential for developing more effective therapeutic approaches and improving the prognosis of patients with advanced HCC. This article discusses strategies that may be employed to enhance the success of treatment and summarizes new research on the possible pathways that lead to sorafenib resistance.
Collapse
Affiliation(s)
- Eman H Yousef
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Pharmacology and Biochemistry department, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34511, Egypt.
| | - Amal M El Gayar
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nada F Abo El-Magd
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
Khalili-Tanha G, Radisky ES, Radisky DC, Shoari A. Matrix metalloproteinase-driven epithelial-mesenchymal transition: implications in health and disease. J Transl Med 2025; 23:436. [PMID: 40217300 PMCID: PMC11992850 DOI: 10.1186/s12967-025-06447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells, defined by apical-basal polarity and tight intercellular junctions, acquire migratory and invasive properties characteristic of mesenchymal cells. Under normal conditions, EMT directs essential morphogenetic events in embryogenesis and supports tissue repair. When dysregulated, EMT contributes to pathological processes such as organ fibrosis, chronic inflammation, and cancer progression and metastasis. Matrix metalloproteinases (MMPs)-a family of zinc-dependent proteases that degrade structural components of the extracellular matrix-sit at the nexus of this transition by dismantling basement membranes, activating pro-EMT signaling pathways, and cleaving adhesion molecules. When normally regulated, MMPs promote balanced ECM turnover and support the cyclical remodeling necessary for proper development, wound healing, and tissue homeostasis. When abnormally regulated, MMPs drive excessive ECM turnover, thereby promoting EMT-related pathologies, including tumor progression and fibrotic disease. This review provides an integrated overview of the molecular mechanisms by which MMPs both initiate and sustain EMT under physiological and disease conditions. It discusses how MMPs can potentiate EMT through TGF-β and Wnt/β-catenin signaling, disrupt cell-cell junction proteins, and potentiate the action of hypoxia-inducible factors in the tumor microenvironment. It discusses how these pathologic processes remodel tissues during fibrosis, and fuel cancer cell invasion, metastasis, and resistance to therapy. Finally, the review explores emerging therapeutic strategies that selectively target MMPs and EMT, ranging from CRISPR/Cas-mediated interventions to engineered tissue inhibitors of metalloproteinases (TIMPs), and demonstrates how such approaches may suppress pathological EMT without compromising its indispensable roles in normal biology.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
4
|
Sun R, Wu C, Gou Y, Zhao Y, Huang P. Advancements in second-line treatment research for hepatocellular carcinoma. Clin Transl Oncol 2025; 27:837-857. [PMID: 39162977 DOI: 10.1007/s12094-024-03653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, characterized by high incidence and mortality rates. Due to its insidious onset, most patients are diagnosed at an advanced stage, often missing the opportunity for surgical resection. Consequently, systemic treatments play a pivotal role. In recent years, an increasing number of drugs have been approved for first-line systemic treatment of HCC. However, their efficacy is limited, and some patients develop drug resistance after a period of treatment. For such patients, there is currently a lack of standard second-line systemic treatment options. This review summarizes the latest advancements in second-line systemic treatment research for HCC patients who have developed resistance to various first-line systemic treatments, aiming to provide more rational and personalized second-line treatment strategies.
Collapse
Affiliation(s)
- Ruirui Sun
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Chenrui Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Yang Gou
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Yaowu Zhao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Ping Huang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China.
| |
Collapse
|
5
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
6
|
Pol S. [Hepatocellular carcinoma (HCC)]. MEDECINE TROPICALE ET SANTE INTERNATIONALE 2024; 4:mtsi.v4i4.2024.614. [PMID: 40070978 PMCID: PMC11892391 DOI: 10.48327/mtsi.v4i4.2024.614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/15/2024] [Indexed: 03/14/2025]
Abstract
Primary liver cancers are tumors that develop from different liver cells. Hepatocellular carcinoma (HCC), which develops from hepatocytes, accounts for approximately 75-85% of primary liver cancers.HCC is the 6th leading cause of cancer worldwide and the 3rd leading cause of cancer-related death. Its incidence is low in northern Europe, but high in sub-Saharan Africa and the Far East, where both hepatotropic viruses and exposure to mycotoxins are. It complicates cirrhosis in over 90% of cases and is predominantly male.The prevalence of HCC is increasing due to improved diagnostic techniques and criteria, but also to the persistence of hepatitis B virus (HBV) and hepatitis C virus (HCV) infections in adults. A worldwide increase in the incidence of steatopathy makes it the leading cause of liver disease worldwide, associated with alcohol abuse and/or steatohepatitis associated with metabolic dysfunction (MASH), including type 2 diabetes.Chronic hepatotropic viral infections, cirrhosis and chemical carcinogens combine to produce an annual incidence of 2-5% of hepatocellular carcinoma arising from cirrhosis. This justifies biannual surveillance of known cirrhosis, without which late diagnosis limits therapeutic options.Major advances have been made in curative treatment (liver transplantation, surgery, radiodestruction) and palliative treatment (chemo- or radioembolization, sorafenib chemotherapy or immunotherapy), depending on how early HCC is diagnosed (size, number of hepatic or extrahepatic lesions) and the severity of underlying liver disease and associated comorbidities.
Collapse
Affiliation(s)
- Stanislas Pol
- AP-HP. Centre Université Paris Centre, Groupe hospitalier Cochin Port Royal, Département médical universitaire de Cancérologie et spécialités médico-chirurgicales, Service des maladies du foie, Paris, France; Université Paris Cité, F-75006, Paris, France
| |
Collapse
|
7
|
Dong M, Agrawal K, Fan R, Sefik E, Flavell RA, Kluger Y. Scaling deep identifiable models enables zero-shot characterization of single-cell biological states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.11.566161. [PMID: 38014345 PMCID: PMC10680588 DOI: 10.1101/2023.11.11.566161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
How to identify true biological differences across samples while overcoming batch effects has been a persistent challenge in single-cell RNA-seq data analysis, hindering analyses across datasets for transferable biological findings. In this work, we show that scaling up deep identifiable models leads to a surprisingly effective solution for this challenging task. We developed scShift, a deep variational inference framework with theoretical support in disentangling batch-dependent and independent variations. By training the model with compendiums of scRNA-seq atlases, scShift shows remarkable zero-shot capabilities in revealing representations of cell types and biological states in single-cell data while overcoming batch effects. We employed scShift to systematically compare lung fibrosis states across different datasets, tissues and experimental systems. scShift uniquely extrapolates lung fibrosis states to previously unseen post-COVID-19 fibrosis, characterizing universal myeloid-fibrosis signatures, potential repurposing drug targets and fibrosis-associated cell interactions. Evaluations of over 200 trained scShift models demonstrate emergent zero-shot capabilities and a scaling law beyond a transition threshold, with respect to dataset diversity. With its scaling performance on massive single-cell compendiums and exceptional zero-shot capabilities, scShift represents an important advance toward next-generation computational models for single-cell analysis.
Collapse
Affiliation(s)
- Mingze Dong
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Kriti Agrawal
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Rong Fan
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale University, New Haven, CT, USA
- Human and Translational Immunology, Yale University, New Haven, CT, USA
| | - Esen Sefik
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Richard A. Flavell
- Department of Immunobiology, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Yuval Kluger
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Applied Mathematics Program, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Mahmoud E, Abdelhamid D, Youssif BGM, Gomaa HAM, Hayallah AM, Abdel-Aziz M. Design, synthesis, and antiproliferative activity of new indole/1,2,4-triazole/chalcone hybrids as EGFR and/or c-MET inhibitors. Arch Pharm (Weinheim) 2024; 357:e2300562. [PMID: 39219313 DOI: 10.1002/ardp.202300562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 09/04/2024]
Abstract
A novel group of indolyl-1,2,4-triazole-chalcone hybrids was designed, synthesized, and assessed for their anticancer activity. The synthesized compounds exhibited significant antiproliferative activity. Compounds 9a and 9e exhibited significant cancer inhibition with GI50 ranging from 3.69 to 20.40 µM and from 0.29 to >100 µM, respectively. Both compounds displayed a broad spectrum of anticancer activity with selectivity ratios ranging between 0.50-2.78 and 0.25-2.81 at the GI50 level, respectively. The synthesized compounds were also screened for their cytotoxicity by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazol (MTT) assay and for inhibition of epidermal growth factor receptor (EGFR) and c-MET (mesenchymal-epithelial transition factor). Some of the tested compounds exhibited significant inhibition against EGFR and/or c-MET. Compound 9b showed the highest c-MET inhibition (IC50 = 4.70 nM) compared to foretinib (IC50 = 2.5 nM). Compound 9d showed equipotent activity compared with erlotinib against EGFR (IC50 = 0.052 µM) and displayed significant c-MET inhibition with an IC50 value of 4.90 nM.
Collapse
Affiliation(s)
- Esraa Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Dalia Abdelhamid
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
- Raabe College of Pharmacy, Ohio Northern University, Ohio, USA
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Alaa M Hayallah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, New-Assiut, Egypt
| | - Mohamad Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
9
|
Heumann P, Albert A, Gülow K, Tümen D, Müller M, Kandulski A. Insights in Molecular Therapies for Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1831. [PMID: 38791911 PMCID: PMC11120383 DOI: 10.3390/cancers16101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
We conducted a comprehensive review of the current literature of published data and clinical trials (MEDLINE), as well as published congress contributions and active recruiting clinical trials on targeted therapies in hepatocellular carcinoma. Combinations of different agents and medical therapy along with radiological interventions were analyzed for the setting of advanced HCC. Those settings were also analyzed in combination with adjuvant situations after resection or radiological treatments. We summarized the current knowledge for each therapeutic setting and combination that currently is or has been under clinical evaluation. We further discuss the results in the background of current treatment guidelines. In addition, we review the pathophysiological mechanisms and pathways for each of these investigated targets and drugs to further elucidate the molecular background and underlying mechanisms of action. Established and recommended targeted treatment options that already exist for patients are considered for systemic treatment: atezolizumab/bevacizumab, durvalumab/tremelimumab, sorafenib, lenvatinib, cabozantinib, regorafenib, and ramucirumab. Combination treatment for systemic treatment and local ablative treatment or transarterial chemoembolization and adjuvant and neoadjuvant treatment strategies are under clinical investigation.
Collapse
Affiliation(s)
- Philipp Heumann
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany (K.G.); (D.T.)
| | | | | | | | | | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany (K.G.); (D.T.)
| |
Collapse
|
10
|
Huang Y, Yuan J. Improvement of assessment in surrogate endpoint and safety outcome of single-arm trials for anticancer drugs. Expert Rev Clin Pharmacol 2024; 17:477-487. [PMID: 38632893 DOI: 10.1080/17512433.2024.2344669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Single-arm trials (SATs) and surrogate endpoints were adopted as pivotal evidence for accelerated approval of anticancer drugs for more than 30 years. However, concerns regarding clinical evidence quality in trials, particularly in the SATs of anticancer drugs have increasingly been raised. SAT may not always provide strong evidence due to the lack of control and endpoint of overall survival that is typically present in randomized controlled trials. AREAS COVERED Clinical trial endpoint adjudication is a crucial factor in surrogate outcome measurement to ensure the data quality of the clinical trial of anticancer drugs. In this review, we systematically discuss the characteristics of adjudications in assessments in surrogate endpoint and safety outcome respectively, which are essential for ensuring reliable and transparent outcomes. Endpoint adjudication effectively reduces potential bias and mitigates variance that may be introduced by investigators when analyzing the medical records for the surrogate endpoints. We analyze the advantages and disadvantages of each type of adjudicator and provide a summary of the roles of adjudicators. EXPERT OPINION By suggestion of improving data reliability and transparency in pivotal trials, this review aims to supply a strategy for better clinical investigation for anticancer drugs, ultimately leading to better patient outcomes.
Collapse
Affiliation(s)
- Yafang Huang
- School of General Practice and Continuing Education, Capital Medical University, Beijing, China
| | - Jinqiu Yuan
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Santoro A, Assenat E, Yau T, Delord JP, Maur M, Knox J, Cattan S, Lee KH, Del Conte G, Springfeld C, Leo E, Xyrafas A, Fairchild L, Mardjuadi F, Chan SL. A phase Ib/II trial of capmatinib plus spartalizumab vs. spartalizumab alone in patients with pretreated hepatocellular carcinoma. JHEP Rep 2024; 6:101021. [PMID: 38617599 PMCID: PMC11009449 DOI: 10.1016/j.jhepr.2024.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 04/16/2024] Open
Abstract
Background & aims This phase Ib/II trial evaluated the safety and efficacy of capmatinib in combination with spartalizumab or spartalizumab alone in patients with advanced hepatocellular carcinoma (HCC). Methods Eligible patients who had progressed or were intolerant to sorafenib received escalating doses of capmatinib 200 mg, 300 mg, and 400 mg twice a day (bid) plus spartalizumab 300 mg every 3 weeks (q3w) in the phase Ib study. Once the recommended phase II dose (RP2D) was determined, the phase II study commenced with randomised 1:1 treatment with either capmatinib + spartalizumab (n = 32) or spartalizumab alone (n = 30). Primary endpoints were safety and tolerability (phase Ib) and investigator-assessed overall response rate per RECIST v1.1 for combination vs. single-agent arms using a Bayesian logistic regression model (phase II). Results In phase Ib, the RP2D for capmatinib in combination with spartalizumab was determined to be 400 mg bid. Dose-limiting toxicity consisting of grade 3 diarrhoea was reported in one patient at the capmatinib 400 mg bid + spartalizumab 300 mg q3w dose level. The primary endpoint in the phase II study was not met. The observed overall response rate in the capmatinib + spartalizumab arm was 9.4% vs. 10% in the spartalizumab arm. The most common any-grade treatment-related adverse events (TRAEs, ≥20%) were nausea (37.5%), asthenia and vomiting (28.1% each), diarrhoea, pyrexia, and decreased appetite (25.0% each) in the combination arm; TRAEs ≥10% were pruritus (23.3%), and rash (10.0%) in the spartalizumab-alone arm. Conclusion Capmatinib at 400 mg bid plus spartalizumab 300 mg q3w was established as the RP2D, with manageable toxicities and no significant safety signals, but the combination did not show superior clinical activity compared with spartalizumab single-agent treatment in patients with advanced HCC who had previously been treated with sorafenib. Impact and implications Simultaneous targeting of MET and programmed cell death protein 1 may provide synergistic clinical benefit in patients with advanced HCC. This is the first trial to report a combination of capmatinib (MET inhibitor) and spartalizumab (programmed cell death protein 1 inhibitor) as second-line treatment after sorafenib for advanced HCC. The combination did not show superior clinical activity compared with spartalizumab single-agent treatment in patients with advanced HCC who had previously been treated with sorafenib. The results indicate that there is a clear need to identify a reliable predictive marker of response for HCC and to identify patients with HCC that would benefit from the combination of checkpoint inhibitor +/- targeted therapy. Clinical trial number NCT02795429.
Collapse
Affiliation(s)
- Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele – Milan, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, Milan, Italy
| | - Eric Assenat
- Hopital Arnaud de Villeneuve Montpellier Cedex 5, Herault, France
| | - Thomas Yau
- Department of Medicine, Queen Mary Hospital, Hong Kong, China
| | | | - Michela Maur
- Oncology Unit, AOU Policlinico Modena and University Study of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Kyung-Hun Lee
- Seoul National University Hospital, Seoul, South Korea
| | - Gianluca Del Conte
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Christoph Springfeld
- Nat. Centrum f. Tumorerkrankungen, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Elisa Leo
- Novartis Pharma AG, Basel, Switzerland
| | | | - Lauren Fairchild
- Oncology Data Science, Novartis Institutes for BioMedical Research, Cambridge, USA
| | - Feby Mardjuadi
- Novartis Institutes for Biomedical Research Co., Ltd., Shanghai, China
| | - Stephen L. Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
13
|
Bu L, Ma X, Ji A, Geng K, Feng H, Li L, Zhang A, Cheng Z. Development of a novel 18F-labeled small molecule probe for PET imaging of mesenchymal epithelial transition receptor expression. Eur J Nucl Med Mol Imaging 2024; 51:656-668. [PMID: 37940685 DOI: 10.1007/s00259-023-06495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
The mesenchymal epithelial transition factor (c-Met) is frequently overexpressed in numerous cancers and has served as a validated anticancer target. Inter- and intra-tumor heterogeneity of c-Met, however, challenges the use of anti-MET therapies, highlighting an urgent need to develop an alternative tool for visualizing whole-body c-Met expression quantitatively and noninvasively. Here we firstly reported an 18F labeled, small-molecule quinine compound-based PET probe, 1-(4-(5-amino-7-(trifluoromethyl) quinolin-3-yl) piperazin-1-yl)-2-(fluoro-[18F]) propan-1-one, herein referred as [18F]-AZC. METHODS [18F]-AZC was synthesized via a one-step substitution reaction and characterized by radiochemistry methods. [18F]-AZC specificity and affinity toward c-Met were assessed by cell uptake assay, with or without cold compound [19F]-AZC or commercial c-Met inhibitor blocking. MicroPET/CT imaging and biodistribution studies were conducted in subcutaneous murine xenografts of glioma. Additionally, [18F]-AZC was then further evaluated in orthotopic glioma xenografts, by microPET/CT imaging accompanied with MRI and autoradiography for co-registration of the tumor. Immunofluorescence staining was also carried out to qualitatively evaluate the c-Met expression in tumor tissue, co-localizes with H&E staining. RESULTS This probe shows easy radiosynthesis, high stability in vitro and in vivo, high targeting affinity, and favorable lipophilicity and brain transport coefficient. [18F]-AZC demonstrates excellent tumor imaging properties in vivo and can delineate c-Met positive glioma specifically at 1 h after intravenous injection of the probe. Moreover, favorable correlation was observed between the [18F]-AZC accumulation and the amount of c-Met expression in tumor. CONCLUSION This novel imaging probe could be applied as a valuable tool for management of anti-c-Met therapies in patients in the future.
Collapse
Affiliation(s)
- Lihong Bu
- PET-CT/MRI Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, 94305-5484, USA
| | - Xiaowei Ma
- PET-CT Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Aiyan Ji
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Kaijun Geng
- National Key Laboratory of Innovative Immunotherapy, Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongyan Feng
- PET-CT/MRI Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Li
- PET-CT/MRI Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ao Zhang
- National Key Laboratory of Innovative Immunotherapy, Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, 94305-5484, USA.
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai, 264117, Shandong, China.
| |
Collapse
|
14
|
Qin S, Pan H, Blanc JF, Grando V, Lim HY, Chang XY, O'Brate A, Stroh C, Friese-Hamim M, Albers J, Johne A, Faivre S. Activity of Tepotinib in Hepatocellular Carcinoma With High-Level MET Amplification: Preclinical and Clinical Evidence. JCO Precis Oncol 2024; 8:e2300328. [PMID: 38354329 DOI: 10.1200/po.23.00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 12/11/2023] [Indexed: 02/16/2024] Open
Abstract
PURPOSE MET amplification (METamp) has been reported in 1%-5% of patients with hepatocellular carcinoma (HCC) and may be sensitive to MET inhibition. Tepotinib, a selective MET inhibitor, has shown promising activity in HCC with MET overexpression. We investigated the preclinical and clinical activity of tepotinib in HCC with METamp (MET gene copy number [GCN] ≥5), including high-level METamp (MET GCN ≥10). METHODS Preclinical antitumor activity of tepotinib 100 mg/kg (orally, days 1-5, every 7 days, 3-5 weeks; 3-12 replicates) was evaluated according to METamp status, as determined using the nCounter platform (NanoString), in 37 HCC patient-derived xenografts (PDXs) in immunodeficient mice. Clinical outcomes were evaluated in patients with METamp by fluorescence in situ hybridization who received tepotinib 500 mg (450 mg active moiety) in two phase Ib/II trials in HCC with MET overexpression. RESULTS Across the PDX models, tepotinib induced complete or near-complete tumor regression in the only two models with high-level METamp. Median tumor volume reductions were 100% and 99.8% in models with MET GCN 47.1 and 44.0, respectively. Across the two clinical trials, 15/121 patients had METamp. Disease control was achieved by 11/15 patients with METamp (complete response [CR], n = 1; partial response [PR], n = 4; stable disease [SD], n = 6) and 4/4 with high-level METamp (CR, n = 1; PR, n = 2; SD, n = 1). All three patients with high-level METamp and objective response received treatment for >1 year, including one patient who received first-line tepotinib for >6 years. CONCLUSION High-level METamp may be an oncogenic driver in HCC that is sensitive to MET inhibitors such as tepotinib.
Collapse
Affiliation(s)
- Shukui Qin
- PLA Cancer Center, Nanjing Bayi Hospital, Nanjing, China
- Cancer Center of Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongming Pan
- Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | | | | | - Ho Yeong Lim
- Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Xin Ying Chang
- Global Clinical Development China, Merck Serono Co., Ltd, Beijing, China, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Aurora O'Brate
- The healthcare business of Merck KGaA, Darmstadt, Germany
| | | | | | - Joachim Albers
- The healthcare business of Merck KGaA, Darmstadt, Germany
| | - Andreas Johne
- The healthcare business of Merck KGaA, Darmstadt, Germany
| | | |
Collapse
|
15
|
Albadari N, Xie Y, Li W. Deciphering treatment resistance in metastatic colorectal cancer: roles of drug transports, EGFR mutations, and HGF/c-MET signaling. Front Pharmacol 2024; 14:1340401. [PMID: 38269272 PMCID: PMC10806212 DOI: 10.3389/fphar.2023.1340401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
In 2023, colorectal cancer (CRC) is the third most diagnosed malignancy and the third leading cause of cancer death worldwide. At the time of the initial visit, 20% of patients diagnosed with CRC have metastatic CRC (mCRC), and another 25% who present with localized disease will later develop metastases. Despite the improvement in response rates with various modulation strategies such as chemotherapy combined with targeted therapy, radiotherapy, and immunotherapy, the prognosis of mCRC is poor, with a 5-year survival rate of 14%, and the primary reason for treatment failure is believed to be the development of resistance to therapies. Herein, we provide an overview of the main mechanisms of resistance in mCRC and specifically highlight the role of drug transports, EGFR, and HGF/c-MET signaling pathway in mediating mCRC resistance, as well as discuss recent therapeutic approaches to reverse resistance caused by drug transports and resistance to anti-EGFR blockade caused by mutations in EGFR and alteration in HGF/c-MET signaling pathway.
Collapse
Affiliation(s)
| | | | - Wei Li
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
16
|
Pourbagheri-Sigaroodi A, Fallah F, Bashash D, Karimi A. Unleashing the potential of gene signatures as prognostic and predictive tools: A step closer to personalized medicine in hepatocellular carcinoma (HCC). Cell Biochem Funct 2024; 42:e3913. [PMID: 38269520 DOI: 10.1002/cbf.3913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/26/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the growing malignancies globally, affecting a myriad of people and causing numerous cancer-related deaths. Despite therapeutic improvements in treatment strategies over the past decades, HCC still remains one of the leading causes of person-years of life lost. Numerous studies have been conducted to assess the characteristics of HCC with the aim of predicting its prognosis and responsiveness to treatment. However, the identified biomarkers have shown limited sensitivity, and the translation of these findings into clinical practice has faced challenges. The development of sequencing techniques has facilitated the exploration of a wide range of genes, leading to the emergence of gene signatures. Although several studies assessed differentially expressed genes in normal and HCC tissues to find the unique gene signature with prognostic value, to date, no study has reviewed the task, and to the best of our knowledge, this review represents the first comprehensive analysis of relevant studies in HCC. Most gene signatures focused on immune-related genes, while others investigated genes related to metabolism, autophagy, and apoptosis. Even though no identical gene signatures were found, NDRG1, SPP1, BIRC5, and NR0B1 were the most extensively studied genes with prognostic value. Finally, despite challenges such as the lack of consistent patterns in gene signatures, we believe that comprehensive analysis of pertinent gene signatures will bring us a step closer to personalized medicine in HCC, where treatment strategies can be tailored to individual patients based on their unique molecular profiles.
Collapse
Affiliation(s)
- Atieh Pourbagheri-Sigaroodi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Karimi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Requeijo C, Bracchiglione J, Meza N, Acosta-Dighero R, Salazar J, Santero M, Meade AG, Quintana MJ, Rodríguez-Grijalva G, Selva A, Solà I, Urrútia G, Bonfill Cosp X, On behalf of Appropriateness of Systemic Oncological Treatments for Advanced Cancer (ASTAC) Research Group. Anticancer Drugs Compared to No Anticancer Drugs in Patients with Advanced Hepatobiliary Cancer: A Mapping Review and Evidence Gap Map. Clin Epidemiol 2023; 15:1069-1085. [PMID: 38025841 PMCID: PMC10644842 DOI: 10.2147/clep.s431498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Despite being commonly recommended, the impact of anticancer drugs (ACDs) on patient-important outcomes beyond survival for advanced hepatobiliary cancers (HBCs) may not have been sufficiently assessed. We aim to identify and map the evidence regarding ACDs versus best supportive care (BSC) for advanced HBCs, considering patient-centered outcomes. Methods In this mapping review, we included systematic reviews, randomized controlled trials, quasi-experimental, and observational studies comparing ACDs (chemotherapy, immunotherapy, biological/targeted therapy) versus BSC for advanced HBCs. We searched MEDLINE (PubMed), EMBASE (Ovid), Cochrane Library, Epistemonikos, PROSPERO and clinicaltrials.gov for eligible studies. Two reviewers performed the screening and data extraction processes. We developed evidence maps for each type of cancer. Results We included 87 studies (60 for advanced liver cancer and 27 for gallbladder or bile duct cancers). Most of the evidence favored ACDs for survival outcomes, and BSC for toxicity. We identified several evidence gaps for non-survival outcomes, including quality of life or quality of end-of-life care. Discussion Patient-important outcomes beyond survival in advanced HBCs are insufficiently assessed by the available evidence. Future studies need to address these gaps to better inform decision-making processes.
Collapse
Affiliation(s)
- Carolina Requeijo
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Javier Bracchiglione
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Interdisciplinary Centre for Health Studies (CIESAL), Valparaiso University, Viña del Mar, Chile
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Nicolás Meza
- Interdisciplinary Centre for Health Studies (CIESAL), Valparaiso University, Viña del Mar, Chile
| | - Roberto Acosta-Dighero
- Interdisciplinary Centre for Health Studies (CIESAL), Valparaiso University, Viña del Mar, Chile
| | - Josefina Salazar
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Marilina Santero
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Adriana-G Meade
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - María Jesús Quintana
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
| | | | - Anna Selva
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Clinical Epidemiology and Cancer Screening, Parc Taulí Hospital Universitari, Parc Taulí Research and Innovation Institute Foundation (I3PT-CERCA), Autonomous University of Barcelona, Sabadell, Spain
| | - Ivan Solà
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Gerard Urrútia
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Xavier Bonfill Cosp
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
| | - On behalf of Appropriateness of Systemic Oncological Treatments for Advanced Cancer (ASTAC) Research Group
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Interdisciplinary Centre for Health Studies (CIESAL), Valparaiso University, Viña del Mar, Chile
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
- Clinical Epidemiology and Cancer Screening, Parc Taulí Hospital Universitari, Parc Taulí Research and Innovation Institute Foundation (I3PT-CERCA), Autonomous University of Barcelona, Sabadell, Spain
| |
Collapse
|
18
|
Motomura K, Kuwano A, Tanaka K, Koga Y, Masumoto A, Yada M. Potential Predictive Biomarkers of Systemic Drug Therapy for Hepatocellular Carcinoma: Anticipated Usefulness in Clinical Practice. Cancers (Basel) 2023; 15:4345. [PMID: 37686621 PMCID: PMC10486942 DOI: 10.3390/cancers15174345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
In the systemic drug treatment of hepatocellular carcinoma, only the tyrosine kinase inhibitor (TKI) sorafenib was available for a period. This was followed by the development of regorafenib as a second-line treatment after sorafenib, and then lenvatinib, a new TKI, proved non-inferiority to sorafenib and became available as a first-line treatment. Subsequently, cabozantinib, another TKI, was introduced as a second-line treatment, along with ramucirumab, the only drug proven to be predictive of therapeutic efficacy when AFP levels are >400 ng/mL. It is an anti-VEGF receptor antibody. More recently, immune checkpoint inhibitors have become the mainstay of systemic therapy and can now be used as a first-line standard treatment for HCC. However, the objective response rate for these drugs is currently only 30% to 40%, and there is a high incidence of side effects. Additionally, there are no practical biomarkers to predict their therapeutic effects. Therefore, this review provides an overview of extensive research conducted on potential HCC biomarkers from blood, tissue, or imaging information that can be used in practice to predict the therapeutic efficacy of systemic therapy before its initiation.
Collapse
Affiliation(s)
- Kenta Motomura
- Department of Hepatology, Iizuka Hospital, 3-83 Yoshio-machi, Iizuka, Fukuoka 820-8505, Japan; (A.K.); (K.T.); (Y.K.); (A.M.); (M.Y.)
| | | | | | | | | | | |
Collapse
|
19
|
Şenol H, Çağman Z, Gençoğlu Katmerlikaya T, Sinan Tokalı F. New Anthranilic Acid Hydrazones as Fenamate Isosteres: Synthesis, Characterization, Molecular Docking, Dynamics & in Silico ADME, in Vitro Anti-Inflammatory and Anticancer Activity Studies. Chem Biodivers 2023; 20:e202300773. [PMID: 37384873 DOI: 10.1002/cbdv.202300773] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
In this study, twenty new anthranilic acid hydrazones 6-9 (a-e) were synthesized and their structures were characterized by Fourier-transform Infrared (FT-IR), Nuclear Magnetic Resonance (1 H-NMR - 13 C-NMR), and High-resolution Mass Spectroscopy (HR-MS). The inhibitory effects of the compounds against COX-II were evaluated. IC50 values of the compounds were found in the range of >200-0.32 μM and compounds 6e, 8d, 8e, 9b, 9c, and 9e were determined to be the most effective inhibitors. Cytotoxic effects of the most potent compounds were investigated against human hepatoblastoma (Hep-G2) and human healthy embryonic kidney (Hek-293) cell lines. Doxorubicin (IC50 : 8.68±0.16 μM for Hep-G2, 55.29±0.56 μM for Hek-293) was used as standard. 8e is the most active compound, with low IC50 against Hep-G2 (4.80±0.04 μM), high against Hek-293 (159.30±3.12), and high selectivity (33.15). Finally, molecular docking and dynamics studies were performed to understand ligand-protein interactions between the most potent compounds and COX II, Epidermal Growth Factor Receptor (EGFR), and Transforming Growth Factor beta II (TGF-βII). The docking scores were calculated in the range of -10.609--6.705 kcal/mol for COX-II, -8.652--7.743 kcal/mol for EGFR, and -10.708--8.596 kcal/mol for TGF-βII.
Collapse
Affiliation(s)
- Halil Şenol
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Fatih, 34093, Istanbul, Türkiye
| | - Zeynep Çağman
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Biochemistry, Fatih, 34093, Istanbul, Türkiye
| | - Tuğba Gençoğlu Katmerlikaya
- Bezmialem Vakif University, Institute of Health Sciences, Department of Biotechnology, 34093, İstanbul, Türkiye
| | - Feyzi Sinan Tokalı
- Kafkas University, Kars Vocational School, Department of Material and Material Processing Technologies, 36100, Kars, Türkiye
| |
Collapse
|
20
|
Ji S, Feng L, Fu Z, Wu G, Wu Y, Lin Y, Lu D, Song Y, Cui P, Yang Z, Sang C, Song G, Cai S, Li Y, Lin H, Zhang S, Wang X, Qiu S, Zhang X, Hua G, Li J, Zhou J, Dai Z, Wang X, Ding L, Wang P, Gao D, Zhang B, Rodriguez H, Fan J, Clevers H, Zhou H, Sun Y, Gao Q. Pharmaco-proteogenomic characterization of liver cancer organoids for precision oncology. Sci Transl Med 2023; 15:eadg3358. [PMID: 37494474 PMCID: PMC10949980 DOI: 10.1126/scitranslmed.adg3358] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Organoid models have the potential to recapitulate the biological and pharmacotypic features of parental tumors. Nevertheless, integrative pharmaco-proteogenomics analysis for drug response features and biomarker investigation for precision therapy of patients with liver cancer are still lacking. We established a patient-derived liver cancer organoid biobank (LICOB) that comprehensively represents the histological and molecular characteristics of various liver cancer types as determined by multiomics profiling, including genomic, epigenomic, transcriptomic, and proteomic analysis. Proteogenomic profiling of LICOB identified proliferative and metabolic organoid subtypes linked to patient prognosis. High-throughput drug screening revealed distinct response patterns of each subtype that were associated with specific multiomics signatures. Through integrative analyses of LICOB pharmaco-proteogenomics data, we identified the molecular features associated with drug responses and predicted potential drug combinations for personalized patient treatment. The synergistic inhibition effect of mTOR inhibitor temsirolimus and the multitargeted tyrosine kinase inhibitor lenvatinib was validated in organoids and patient-derived xenografts models. We also provide a user-friendly web portal to help serve the biomedical research community. Our study is a rich resource for investigation of liver cancer biology and pharmacological dependencies and may help enable functional precision medicine.
Collapse
Affiliation(s)
- Shuyi Ji
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Li Feng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zile Fu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Gaohua Wu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yingcheng Wu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Youpei Lin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Dayun Lu
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuanli Song
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Peng Cui
- Burning Rock Biotech, Shanghai 201114, China
| | - Zijian Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Chen Sang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Guohe Song
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Shangli Cai
- Burning Rock Biotech, Shanghai 201114, China
| | | | - Hanqing Lin
- D1 Medical Technology, Shanghai 200235, China
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xiaoying Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Shuangjian Qiu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xiaoming Zhang
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoqiang Hua
- Department of Radiation Oncology, and Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Junqiang Li
- D1 Medical Technology, Shanghai 200235, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhi Dai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital Institute for Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Li Ding
- Department of Medicine, McDonnell Genome Institute, Siteman Cancer Center, Washington University, St. Louis, MO 63108, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NewYork, NY 10029, USA
| | - Daming Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
- Department of Radiation Oncology, and Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
- Current Address: Roche Pharma Research and Early Development (pRED), Basel, Switzerland
| | - Hu Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shanghai Institute of Materia Medica-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiang Gao
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai 200433, China
| |
Collapse
|
21
|
Heo J, Liang JD, Kim CW, Woo HY, Shih IL, Su TH, Lin ZZ, Yoo SY, Chang S, Urata Y, Chen PJ. Safety and dose escalation of the targeted oncolytic adenovirus OBP-301 for refractory advanced liver cancer: Phase I clinical trial. Mol Ther 2023; 31:2077-2088. [PMID: 37060176 PMCID: PMC10362399 DOI: 10.1016/j.ymthe.2023.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/29/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
OBP-301 is an oncolytic adenovirus modified to replicate within cancer cells and lyse them. This open-label, non-comparative, phase I dose-escalation trial aimed to assess its safety and optimal dosage in 20 patients with advanced hepatocellular carcinoma. Good tolerance was shown with a maximum tolerated dose of 6 × 1012 viral particles. The most common treatment-emergent adverse events were influenza-like illness, pyrexia, fatigue, decreased platelet count, abdominal distension, and anemia. Cohorts 4 and 5 had approximately 50% higher levels of CD8+ T cells in the peripheral blood after injection. The best target response occurred in 14 patients, 4 of whom had progressive disease. Multiple intratumoral injections of OBP-301 were well tolerated in patients with advanced hepatocellular carcinoma. The stable disease rate for the injected tumors was greater than the overall response rate, even with no obvious tumor response. OBP-301 might have a greater impact on local response as histological examination revealed that the presence of OBP-301 was consistent with the necrotic area at the injection site. Increased infiltration of CD8+ T cells and <1% PD-L1 expression were observed in tumors after injection. Improved antitumor efficacy might be achieved in future studies via viral injection with volume adjustment and in combination with other immuno-therapeutics.
Collapse
Affiliation(s)
- Jeong Heo
- Department of Internal Medicine, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.
| | - Ja-Der Liang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang Won Kim
- Department of Radiology, College of Medicine, Pusan National University, Busan, Republic of Korea
| | - Hyun Young Woo
- Department of Internal Medicine, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - I-Lun Shih
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Tung-Hung Su
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Zhong-Zhe Lin
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan, Republic of Korea
| | | | | | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
22
|
Gu L, Hickey RJ, Malkas LH. Therapeutic Targeting of DNA Replication Stress in Cancer. Genes (Basel) 2023; 14:1346. [PMID: 37510250 PMCID: PMC10378776 DOI: 10.3390/genes14071346] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/30/2023] Open
Abstract
This article reviews the currently used therapeutic strategies to target DNA replication stress for cancer treatment in the clinic, highlighting their effectiveness and limitations due to toxicity and drug resistance. Cancer cells experience enhanced spontaneous DNA damage due to compromised DNA replication machinery, elevated levels of reactive oxygen species, loss of tumor suppressor genes, and/or constitutive activation of oncogenes. Consequently, these cells are addicted to DNA damage response signaling pathways and repair machinery to maintain genome stability and support survival and proliferation. Chemotherapeutic drugs exploit this genetic instability by inducing additional DNA damage to overwhelm the repair system in cancer cells. However, the clinical use of DNA-damaging agents is limited by their toxicity and drug resistance often arises. To address these issues, the article discusses a potential strategy to target the cancer-associated isoform of proliferating cell nuclear antigen (caPCNA), which plays a central role in the DNA replication and damage response network. Small molecule and peptide agents that specifically target caPCNA can selectively target cancer cells without significant toxicity to normal cells or experimental animals.
Collapse
Affiliation(s)
- Long Gu
- Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Robert J Hickey
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Linda H Malkas
- Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
23
|
Lazzaro A, Hartshorn KL. A Comprehensive Narrative Review on the History, Current Landscape, and Future Directions of Hepatocellular Carcinoma (HCC) Systemic Therapy. Cancers (Basel) 2023; 15:cancers15092506. [PMID: 37173972 PMCID: PMC10177076 DOI: 10.3390/cancers15092506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
We provide a comprehensive review of current approved systemic treatment strategies for advanced hepatocellular carcinoma (HCC), starting with the phase III clinical trial of sorafenib which was the first to definitively show a survival benefit. After this trial, there was an initial period of little progress. However, in recent years, an explosion of new agents and combinations of agents has resulted in a markedly improved outlook for patients. We then provide the authors' current approach to therapy, i.e., "How We Treat HCC". Promising future directions and important gaps in therapy that persist are finally reviewed. HCC is a highly prevalent cancer worldwide and the incidence is growing due not only to alcoholism, hepatitis B and C, but also to steatohepatitis. HCC, like renal cell carcinoma and melanoma, is a cancer largely resistant to chemotherapy but the advent of anti-angiogenic, targeted and immune therapies have improved survival for all of these cancers. We hope this review will heighten interest in the field of HCC therapies, provide a clear outline of the current data and strategy for treatment, and sensitize readers to new developments that are likely to emerge in the near future.
Collapse
Affiliation(s)
- Alexander Lazzaro
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Kevan L Hartshorn
- Section of Hematology Oncology, Boston University Chobanian and Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA
| |
Collapse
|
24
|
Wang Y, Xu H, Yang J, Zhang J. The effectiveness of tivantinib for MET-high hepatocellular carcinoma: A protocol for meta analysis. Medicine (Baltimore) 2023; 102:e32591. [PMID: 37083791 PMCID: PMC10118349 DOI: 10.1097/md.0000000000032591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/15/2022] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The efficacy of tivantinib for MET-high hepatocellular carcinoma remains controversial. We conduct this meta-analysis to explore the efficacy of tivantinib versus placebo for MET-high hepatocellular carcinoma. METHODS We have searched PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases through November 2022 and included randomized controlled trials (RCTs) assessing the efficacy and safety of tivantinib versus placebo for MET-high hepatocellular carcinoma. RESULTS Three RCTs were included in the meta-analysis. Overall, compared with control group for MET-high hepatocellular carcinoma, tivantinib showed no obvious impact on overall survival (hazard ratio [HR] = 0.77; 95% confidence interval [CI] = 0.52-1.13; P = .18) or progression-free survival (HR = 0.78; 95% CI = 0.56-1.08; P = .14). In addition, tivantinib was associated with the increase in grade ≥3 neutropenia (odd ratio [OR] = 11.76; 95% CI = 2.77-49.89; P = .0008) and leukopenia (OR = 14; 95% CI = 1.68-116.82; P = .01), but demonstrated no impact on the incidence of grade ≥ 3 anemia (OR = 2.74; 95% CI = 0.14-53.43; P = .51). CONCLUSIONS Tivantinib may not benefit to the treatment of MET-high hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yubin Wang
- Department of Hepatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Hao Xu
- Department of Hepatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Juan Yang
- Department of Hepatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Juyi Zhang
- Department of Hepatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
25
|
Zhen J, Pan J, Zhou X, Yu Z, Jiang Y, Gong Y, Ding Y, Liu Y, Guo L. FARSB serves as a novel hypomethylated and immune cell infiltration related prognostic biomarker in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:2937-2969. [PMID: 37074800 DOI: 10.18632/aging.204619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/09/2023] [Indexed: 04/20/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a prevalent tumor with high morbidity, and an unfavourable prognosis. FARSB is an aminoacyl tRNA synthase, and plays a key role in protein synthesis in cells. Furthermore, previous reports have indicated that FARSB is overexpressed in gastric tumor tissues and is associated with a poor prognosis and tumorigenesis. However, the function of FARSB in HCC has not been studied. RESULTS The results showed that FARSB mRNA and protein levels were upregulated in HCC and were closely related to many clinicopathological characteristics. Besides, according to multivariate Cox analysis, high FARSB expression was linked with a shorter survival time in HCC and may be an independent prognostic factor. In addition, the FARSB promoter methylation level was negatively associated with the expression of FARSB. Furthermore, enrichment analysis showed that FARSB was related to the cell cycle. And TIMER analysis revealed that the FARSB expression was closely linked to tumor purity and immune cell infiltration. The TCGA and ICGC data analysis suggested that FARSB expression is greatly related to m6A modifier related genes. Potential FARSB-related ceRNA regulatory networks were also constructed. What's more, based on the FARSB-protein interaction network, molecular docking models of FARSB and RPLP1 were constructed. Finally, drug susceptibility testing revealed that FARSB was susceptible to 38 different drugs or small molecules. CONCLUSIONS FARSB can serve as a prognostic biomarker for HCC and provide clues about immune infiltration, and m6A modification.
Collapse
Affiliation(s)
- Jing Zhen
- Second Affiliated Hospital of Nanchang University, Nanchang, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jingying Pan
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yongqi Ding
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yue Liu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Liangyun Guo
- Department of Ultrasonography, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
26
|
Bracchiglione J, Rodríguez-Grijalva G, Requeijo C, Santero M, Salazar J, Salas-Gama K, Meade AG, Antequera A, Auladell-Rispau A, Quintana MJ, Solà I, Urrútia G, Acosta-Dighero R, Bonfill Cosp X. Systemic Oncological Treatments versus Supportive Care for Patients with Advanced Hepatobiliary Cancers: An Overview of Systematic Reviews. Cancers (Basel) 2023; 15:cancers15030766. [PMID: 36765723 PMCID: PMC9913533 DOI: 10.3390/cancers15030766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The trade-off between systemic oncological treatments (SOTs) and UPSC in patients with primary advanced hepatobiliary cancers (HBCs) is not clear in terms of patient-centred outcomes beyond survival. This overview aims to assess the effectiveness of SOTs (chemotherapy, immunotherapy and targeted/biological therapies) versus UPSC in advanced HBCs. METHODS We searched for systematic reviews (SRs) in PubMed, EMBASE, the Cochrane Library, Epistemonikos and PROSPERO. Two authors assessed eligibility independently and performed data extraction. We estimated the quality of SRs and the overlap of primary studies, performed de novo meta-analyses and assessed the certainty of evidence for each outcome. RESULTS We included 18 SRs, most of which were of low quality and highly overlapped. For advanced hepatocellular carcinoma, SOTs showed better overall survival (HR = 0.62, 95% CI 0.55-0.77, high certainty for first-line therapy; HR = 0.85, 95% CI 0.79-0.92, moderate certainty for second-line therapy) with higher toxicity (RR = 1.18, 95% CI 0.87-1.60, very low certainty for first-line therapy; RR = 1.58, 95% CI 1.28-1.96, low certainty for second-line therapy). Survival was also better for SOTs in advanced gallbladder cancer. No outcomes beyond survival and toxicity could be meta-analysed. CONCLUSION SOTs in advanced HBCs tend to improve survival at the expense of greater toxicity. Future research should inform other patient-important outcomes to guide clinical decision making.
Collapse
Affiliation(s)
- Javier Bracchiglione
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Interdisciplinary Centre for Health Studies (CIESAL), Universidad de Valparaíso, Viña del Mar 46383, Chile
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Gerardo Rodríguez-Grijalva
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Carolina Requeijo
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Correspondence:
| | - Marilina Santero
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Josefina Salazar
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Karla Salas-Gama
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Quality, Process and Innovation Direction, Valld’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Adriana-Gabriela Meade
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Alba Antequera
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Ariadna Auladell-Rispau
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - María Jesús Quintana
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departament de Pediatria, d’Obstetrícia i Ginecologia, i Medicina Preventiva i Salut Pública, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ivan Solà
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departament de Pediatria, d’Obstetrícia i Ginecologia, i Medicina Preventiva i Salut Pública, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Urrútia
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departament de Pediatria, d’Obstetrícia i Ginecologia, i Medicina Preventiva i Salut Pública, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Roberto Acosta-Dighero
- Interdisciplinary Centre for Health Studies (CIESAL), Universidad de Valparaíso, Viña del Mar 46383, Chile
| | - Xavier Bonfill Cosp
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departament de Pediatria, d’Obstetrícia i Ginecologia, i Medicina Preventiva i Salut Pública, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
27
|
Damaskos C, Garmpis N, Dimitroulis D, Garmpi A, Psilopatis I, Sarantis P, Koustas E, Kanavidis P, Prevezanos D, Kouraklis G, Karamouzis MV, Marinos G, Kontzoglou K, Antoniou EA. Targeted Therapies for Hepatocellular Carcinoma Treatment: A New Era Ahead-A Systematic Review. Int J Mol Sci 2022; 23:14117. [PMID: 36430594 PMCID: PMC9698799 DOI: 10.3390/ijms232214117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most common malignancies and the third cause of cancer-related death worldwide, with surgery being the best prognostic tool. Among the well-known causative factors of HCC are chronic liver virus infections, chronic virus hepatitis B (HBV) and chronic hepatitis virus C (HCV), aflatoxins, tobacco consumption, and non-alcoholic liver disease (NAFLD). There is a need for the development of efficient molecular markers and alternative therapeutic targets of great significance. In this review, we describe the general characteristics of HCC and present a variety of targeted therapies that resulted in progress in HCC therapy.
Collapse
Affiliation(s)
- Christos Damaskos
- Renal Transplantation Unit, Laiko General Hospital, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Garmpis
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Iason Psilopatis
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Prodromos Kanavidis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Gregory Kouraklis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michail V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Kontzoglou
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstathios A. Antoniou
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
28
|
Wang S, Bai J, Wang K, Guo Y. Carbon fiber paper spray ionization mass spectrometry. Anal Chim Acta 2022; 1232:340477. [DOI: 10.1016/j.aca.2022.340477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/01/2022]
|
29
|
Czogalla B, Dötzer K, Sigrüner N, von Koch FE, Brambs CE, Anthuber S, Frangini S, Burges A, Werner J, Mahner S, Mayer B. Combined Expression of HGFR with Her2/neu, EGFR, IGF1R, Mucin-1 and Integrin α2β1 Is Associated with Aggressive Epithelial Ovarian Cancer. Biomedicines 2022; 10:2694. [PMID: 36359213 PMCID: PMC9687566 DOI: 10.3390/biomedicines10112694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 09/10/2023] Open
Abstract
Hepatocyte growth factor receptor (HGFR), also known as c-mesenchymal-epithelial transition factor (c-MET), plays a crucial role in the carcinogenesis of epithelial ovarian cancer (EOC). In contrast, the mechanisms contributing to aberrant expression of HGFR in EOC are not fully understood. In the present study, the expression of HGFR with its prognostic and predictive role was evaluated immunohistochemically in a cohort of 42 primary ovarian cancer patients. Furthermore, we analyzed the dual expression of HGFR and other druggable biomarkers. In the multivariate Cox regression analysis, high HGFR expression was identified as an independent prognostic factor for a shorter progression-free survival (PFS) (hazard ratio (HR) 2.99, 95% confidence interval (CI95%) 1.01-8.91, p = 0.049) and overall survival (OS) (HR 5.77, CI95% 1.56-21.34, p = 0.009). In addition, the combined expression of HGFR, human epidermal growth factor receptor 2 (Her2/neu), epithelial growth factor receptor (EGFR), insulin-like growth factor 1 (IGF1R), Mucin-1 and Integrin α2β1 further significantly impaired PFS, platinum-free interval (PFI) and OS. Protein co-expression analyses were confirmed by transcriptomic data in a large, independent cohort of patients. In conclusion, new biomarker-directed treatment targets were identified to fight poor prognosis of primary EOC.
Collapse
Affiliation(s)
- Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
| | - Katharina Dötzer
- Department of General, Visceral and Transplant Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Nicole Sigrüner
- Department of General, Visceral and Transplant Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Franz Edler von Koch
- Gynecology and Obstetrics Clinic, Klinikum Dritter Orden, Menzinger Straße 44, 80638 Munich, Germany
| | - Christine E. Brambs
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University Munich, Ismaninger Straße 22, 81675 Munich, Germany
| | - Sabine Anthuber
- Department of Obstetrics and Gynecology, Starnberg Hospital, Oßwaldstraße 1, 82319 Starnberg, Germany
| | - Sergio Frangini
- Department of Obstetrics and Gynecology, Munich Clinic Harlaching, Sanatoriumsplatz 2, 81545 Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
| | - Jens Werner
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
- Department of General, Visceral and Transplant Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
| | - Barbara Mayer
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
- Department of General, Visceral and Transplant Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| |
Collapse
|
30
|
Cerrito L, Ainora ME, Mosoni C, Borriello R, Gasbarrini A, Zocco MA. Prognostic Role of Molecular and Imaging Biomarkers for Predicting Advanced Hepatocellular Carcinoma Treatment Efficacy. Cancers (Basel) 2022; 14:4647. [PMID: 36230569 PMCID: PMC9564154 DOI: 10.3390/cancers14194647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignancy worldwide and the fourth cause of tumor-related death. Imaging biomarkers are based on computed tomography, magnetic resonance, and contrast-enhanced ultrasound, and are widely applied in HCC diagnosis and treatment monitoring. Unfortunately, in the field of molecular biomarkers, alpha-fetoprotein (AFP) is still the only recognized tool for HCC surveillance in both diagnostic and follow-up purposes. Other molecular biomarkers have little roles in clinical practice regarding HCC, mainly for the detection of early-stage HCC, monitoring the response to treatments and analyzing tumor prognosis. In the last decades no important improvements have been achieved in this field and imaging biomarkers maintain the primacy in HCC diagnosis and follow-up. Despite the still inconsistent role of molecular biomarkers in surveillance and early HCC detection, they could play an outstanding role in prognosis estimation and treatment monitoring with a potential reduction in health costs faced by standard radiology. An important challenge resides in identifying sufficiently sensitive and specific biomarkers for advanced HCC for prognostic evaluation and detection of tumor progression, overcoming imaging biomarker sensitivity. The aim of this review is to analyze the current molecular and imaging biomarkers in advanced HCC.
Collapse
Affiliation(s)
- Lucia Cerrito
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Elena Ainora
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Carolina Mosoni
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Raffaele Borriello
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| |
Collapse
|
31
|
Zhang Z, Li D, Yun H, Tong J, Liu W, Chai K, Zeng T, Gao Z, Xie Y. Opportunities and challenges of targeting c-Met in the treatment of digestive tumors. Front Oncol 2022; 12:923260. [PMID: 35978812 PMCID: PMC9376446 DOI: 10.3389/fonc.2022.923260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
At present, a large number of studies have demonstrated that c-Met generally exerts a crucial function of promoting tumor cells proliferation and differentiation in digestive system tumors. c-Met also mediates tumor progression and drug resistance by signaling interactions with other oncogenic molecules and then activating downstream pathways. Therefore, c-Met is a promising target for the treatment of digestive system tumors. Many anti-tumor therapies targeting c-Met (tyrosine kinase inhibitors, monoclonal antibodies, and adoptive immunotherapy) have been developed in treating digestive system tumors. Some drugs have been successfully applied to clinic, but most of them are defective due to their efficacy and complications. In order to promote the clinical application of targeting c-Met drugs in digestive system tumors, it is necessary to further explore the mechanism of c-Met action in digestive system tumors and optimize the anti-tumor treatment of targeting c-Met drugs. Through reading a large number of literatures, the author systematically reviewed the biological functions and molecular mechanisms of c-Met associated with tumor and summarized the current status of targeting c-Met in the treatment of digestive system tumors so as to provide new ideas for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Zhengchao Zhang
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Dong Li
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Heng Yun
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Jie Tong
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Wei Liu
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Keqiang Chai
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Tongwei Zeng
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Zhenghua Gao
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- *Correspondence: Yongqiang Xie, ; Zhenghua Gao,
| | - Yongqiang Xie
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- *Correspondence: Yongqiang Xie, ; Zhenghua Gao,
| |
Collapse
|
32
|
Xiao Y, Zhang B, Cloyd JM, Alaimo L, Xu G, Du S, Mao Y, Pawlik TM. Novel Drug Candidate Prediction for Intrahepatic Cholangiocarcinoma via Hub Gene Network Analysis and Connectivity Mapping. Cancers (Basel) 2022; 14:cancers14133284. [PMID: 35805055 PMCID: PMC9265136 DOI: 10.3390/cancers14133284] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy, and there is a need for effective systemic therapies. Gene expression profile-based analyses may allow for efficient screening of potential drug candidates to serve as novel therapeutics for patients with ICC. The RNA expression profile of ICC and normal biliary epithelial cells were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Function annotation and enrichment pathway analyses of the differentially expressed genes (DEGs) were finished using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A weighted gene co-expression network (WGCN) was constructed by WGCN analysis (WGCNA). Key genes from the DEGs and co-expression gene modules were analyzed to generate a protein-protein interaction (PPI) network. The association between the top 10 screened hub genes and the overall and disease-free survival of ICC patients was examined. The Connectivity Map (cMap) analysis was performed to identify possible drugs for ICC using hub genes. A total of 151 key genes were selected from the overlapping genes of 1287 GSE-DEGs, 8183 TCGA-DEGs and 1226 genes in the mixed modules. A total of 10 hub genes of interest (CTNNB1, SPP1, COL1A2, COL3A1, SMAD3, SRC, VCAN, PKLR, GART, MRPS5) were found analyzing protein-protein interaction. Using the cMap, candidate drugs screened with potential efficacy for ICC included three tyrosine kinase inhibitors (dasatinib, NVP-BHG712, tivantinib), two cannabinoid receptor agonists (palmitoylethanolamide, arachidonamide), two antibiotics (moxifloxacin, amoxicillin), one estrogen receptor agonist (levonorgestrel), one serine/threonine protein kinase inhibitor (MK-2206) and other small molecules. Key genes from network and PPI analysis allowed us to identify potential drugs for ICC. The identification of novel gene expression profiles and related drug screening may accelerate the identification of potential novel drug therapies for ICC.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.X.); (B.Z.); (S.D.); (Y.M.)
| | - Baoluhe Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.X.); (B.Z.); (S.D.); (Y.M.)
| | - Jordan M. Cloyd
- Department of Surgery, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA; (J.M.C.); (L.A.)
| | - Laura Alaimo
- Department of Surgery, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA; (J.M.C.); (L.A.)
| | - Gang Xu
- Department of Liver Surgery and Liver Transplant Center, West China Hospital of Sichuan University, Chengdu 610040, China;
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.X.); (B.Z.); (S.D.); (Y.M.)
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.X.); (B.Z.); (S.D.); (Y.M.)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA; (J.M.C.); (L.A.)
- Correspondence: ; Tel.: +1-614-293-8701
| |
Collapse
|
33
|
Griffiths CD, Zhang B, Tywonek K, Meyers BM, Serrano PE. Toxicity Profiles of Systemic Therapies for Advanced Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5:e2222721. [PMID: 35849393 PMCID: PMC9295000 DOI: 10.1001/jamanetworkopen.2022.22721] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/02/2022] [Indexed: 11/14/2022] Open
Abstract
Importance The recent development of targeted therapy and immunotherapy has made neoadjuvant therapy an attractive option for patients with hepatocellular carcinoma (HCC). However, surgeons are concerned that adverse effects of neoadjuvant therapy with these agents could lead to delayed or even cancelled surgeries. Objective To summarize the current evidence regarding toxicity profiles for tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) among patients with HCC. Data Sources Medline, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) were searched from January 1990 and December 2021. Study Selection Single-group, placebo-controlled, and dual-agent clinical trials comparing TKIs and ICIs in patients with HCC were eligible for inclusion. Data Extraction and Synthesis Following the Preferred Reporting Items in Systematic Reviews and Meta-analysis guideline, 2 reviewers independently extracted data. A random-effects model was used. Main Outcomes and Measures The primary outcome was the proportion of patients with clinically significant liver-related adverse events. Secondary outcomes included the proportion of patients who experienced clinically relevant (grade 3 or higher) adverse events and significant adverse events (ie, those that were life threatening, required hospitalization, or prolonged disability) as well as the risk ratio (RR) of these complications. Results Overall, 30 studies with 12 921 patients were included. Patients had a mean (range) age of 62 (18-89) years; a mean (SD) 84% (3) were male; a mean (SD) 82% (16) had Barcelona Clinic Liver Cancer stage C HCC; and a mean (SD) 97% (6) had Childs A cirrhosis. Overall, 21% (95% CI, 16%-26%) of patients receiving TKIs had liver toxic effects compared with 28% (95% CI, 21%-35%) of patients receiving ICIs. Severe adverse events occurred in 46% (95% CI, 40%-51%) of patients receiving TKIs compared with 24% (95% CI, 13%-35%) of patients receiving ICIs. Compared with patients receiving sorafenib, other TKIs were associated with similar rates of liver toxic effects (RR, 1.06; 95% CI, 0.92-1.24) but higher rates of severe adverse events (RR, 1.24; 95% CI, 1.07-1.44). Comparing ICIs with sorafenib, there were similar rates of liver toxic effects (RR, 1.10; 95% CI, 0.86-1.40) and severe adverse events (RR, 1.19; 95% CI, 0.95-1.50). Conclusions and Relevance In this systematic review and meta-analysis, serious adverse events were lower with ICIs than with TKIs, while liver toxic effects were similar. Combination therapy with novel ICIs is an appealing option in trials of neoadjuvant therapy for patients with HCC, requiring evaluation in preoperative trials.
Collapse
Affiliation(s)
| | - Betty Zhang
- Department of Anesthesia, University of Ottawa, Ottawa, Ontario, Canada
| | - Kasia Tywonek
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Brandon M. Meyers
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Pablo E. Serrano
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Division of General Surgery, Juravinski Hospital, Hamilton, Ontario, Canada
| |
Collapse
|
34
|
Application of Tivantinib for Hepatocellular Carcinoma: A Meta-Analysis Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1976788. [PMID: 35711496 PMCID: PMC9197645 DOI: 10.1155/2022/1976788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/09/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022]
Abstract
Objectives The efficacy of tivantinib may have some potential in treating MET-high hepatocellular carcinoma, and we aim to compare tivantinib with placebo for the treatment of MET-high hepatocellular carcinoma. Methods Several databases including PubMed, Cochrane Library, Web of Science, EBSCO, and EMbase have been systematically searched through March 2022, and we included studies regarding the treatment of MET-high hepatocellular carcinoma by using tivantinib versus placebo. Results We finally include three RCTs. In comparison with placebo for MET-high hepatocellular carcinoma, tivantinib reveals no significant influence on overall survival (P=0.21), progression-free survival (P=0.13), time to progression (P=0.38), or grade ≥3 anemia (P=0.50) but increases the incidence of grade ≥3 neutropenia (P=0.04). Conclusions Tivantinib may provide no additional benefits for MET-high hepatocellular carcinoma.
Collapse
|
35
|
Yang F, Deng K, Zheng H, Liu Z, Zheng Y. Progress of targeted and immunotherapy for hepatocellular carcinoma and the application of next-generation sequencing. Ann Hepatol 2022; 27:100677. [PMID: 35093601 DOI: 10.1016/j.aohep.2022.100677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023]
Abstract
Hepatocellular carcinoma (HCC), leading cancer worldwide, has a high degree of genetic heterogeneity; next-generation sequencing (NGS) technology has contributed significantly to the discovery of driving genes as well as high-frequency mutations in HCC. The detection of gene alterations may allow us to predict prognosis and adverse drug reactions for individuals, paving the way for personalized medicine in HCC patients. In this review, we summarized the common systemic therapy regimens for HCC and the predictive efficacy of genetic biomarkers on the prognosis of patients under these treatments. Finally, we put forward a future perspective on the potential of NGS technology for the guidance of targeted therapy and immunotherapy in HCC.
Collapse
Affiliation(s)
- Fan Yang
- Department of liver surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China
| | - Kaige Deng
- Department of liver surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China
| | - Haoran Zheng
- Department of liver surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China
| | - Zhenting Liu
- Department of liver surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China
| | - Yongchang Zheng
- Department of liver surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China.
| |
Collapse
|
36
|
Muhammed A, D'Alessio A, Enica A, Talbot T, Fulgenzi CAM, Nteliopoulos G, Goldin RD, Cortellini A, Pinato DJ. Predictive biomarkers of response to immune checkpoint inhibitors in hepatocellular carcinoma. Expert Rev Mol Diagn 2022; 22:253-264. [PMID: 35236211 DOI: 10.1080/14737159.2022.2049244] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is the most common primary liver cancer and fourth leading cause of cancer death. While drug discovery to improve disease survival was historically poor, there is now evidence of significant potential for immune checkpoint inhibitors (ICPIs) in treatment of the disease, and indeed such drug approvals are beginning to emerge. AREAS COVERED HCC typically arises in the context of cirrhosis and chronic liver disease (CLD), and HCC exhibits significant biological heterogeneity, in part reflecting the broad range of aetiologies of CLD. Different classes and combinations of ICPI-based therapy exist, but not all patients will respond and predictive biomarkers are not yet available to guide clinician decision making, unlike some other cancer types. In this review, we discuss the emerging biomarkers for ICPI sensitivity in HCC, including tumour genomic features, perturbation of the gut microbiome and systemic inflammatory markers. EXPERT OPINION Additional profiling studies are required to appreciate existing trends with clinical outcome and to further drive clinical studies in disease stratification by response. This will only be possible within collaborative and international efforts, especially regarding biopsy collection. A close collaboration between basic scientists and clinicians will be the key to shape the next future of HCC biomarker research.
Collapse
Affiliation(s)
| | - Antonio D'Alessio
- Department of Surgery & Cancer, Imperial College London, UK.,Department of Biomedical Sciences, Humanitas University, Italy
| | - Andrei Enica
- Department of Surgery & Cancer, Imperial College London, UK
| | - Thomas Talbot
- Department of Surgery & Cancer, Imperial College London, UK
| | - Claudia Angela Maria Fulgenzi
- Department of Surgery & Cancer, Imperial College London, UK.,Division of Medical Oncology, Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | | | | | | | - David J Pinato
- Department of Surgery & Cancer, Imperial College London, UK.,Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
37
|
Dong Y, Xu J, Sun B, Wang J, Wang Z. MET-Targeted Therapies and Clinical Outcomes: A Systematic Literature Review. Mol Diagn Ther 2022; 26:203-227. [PMID: 35266116 PMCID: PMC8942886 DOI: 10.1007/s40291-021-00568-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 12/17/2022]
Abstract
Introduction Numerous therapeutic agents specifically targeting the mesenchymal-epithelial transition (MET) oncogene are being developed. Objective The aim of the current review was to systematically identify and analyze clinical trials that have evaluated MET inhibitors in various cancer types and to provide an overview of their clinical outcomes. Methods An electronic literature search was carried out in the PubMed and Embase databases to identify published clinical trials related to MET inhibitors. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement was followed for the systematic appraisal of the literature. Data related to clinical outcomes, including progression-free survival, overall survival, objective response rate, and overall tumor response, were extracted. Results In total, 49 publications were included. Among these, 51.02% were phase II studies, 14.28% were randomized controlled trials, three were phase III studies, two were prospective observational studies, and the remainder were either phase I or Ib studies. The majority (44.89%) of articles reported the clinical outcomes of MET inhibitors, including small molecules, monoclonal antibodies, and other agents, in patients with non-small-cell lung cancer (NSCLC) harboring MET alterations. MET amplification, overexpression, and MET exon 14 skipping mutations were the major MET alteration types reported across the included studies. Clinical responses/outcomes varied considerably. Conclusion This systematic literature review provides an overview of the literature available in Embase and PubMed regarding MET-targeted therapies. MET-selective tyrosine kinase inhibitors (TKIs) (capmatinib, tepotinib, and savolitinib) may become a new standard of care in NSCLC, specifically with MET exon 14 skipping mutations. A combination of MET TKIs with epidermal growth factor receptor (EGFR) TKIs (osimertinib + savolitinib, tepotinib + gefitinib) may be a potential solution for MET-driven EGFR TKI resistance. Further, MET alteration (MET amplification/overexpression) may be an actionable target in gastric cancer and papillary renal cell carcinoma.
Collapse
Affiliation(s)
- Yiting Dong
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan-jia-yuan South Lane, Chaoyang District, Beijing, 100021, China
| | - Jiachen Xu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan-jia-yuan South Lane, Chaoyang District, Beijing, 100021, China
| | - Boyang Sun
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan-jia-yuan South Lane, Chaoyang District, Beijing, 100021, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan-jia-yuan South Lane, Chaoyang District, Beijing, 100021, China.
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan-jia-yuan South Lane, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
38
|
The Emerging Role of c-Met in Carcinogenesis and Clinical Implications as a Possible Therapeutic Target. JOURNAL OF ONCOLOGY 2022; 2022:5179182. [PMID: 35069735 PMCID: PMC8776431 DOI: 10.1155/2022/5179182] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023]
Abstract
Background c-MET is a receptor tyrosine kinase receptor (RTK) for the hepatocyte growth factor (HGF). The binding of HGF to c-MET regulates several cellular functions: differentiation, proliferation, epithelial cell motility, angiogenesis, and epithelial-mesenchymal transition (EMT). Moreover, it is known to be involved in carcinogenesis. Comprehension of HGF-c-MET signaling pathway might have important clinical consequences allowing to predict prognosis, response to treatment, and survival rates based on its expression and dysregulation. Discussion. c-MET represents a useful molecular target for novel engineered drugs. Several clinical trials are underway for various solid tumors and the development of new specific monoclonal antibodies depends on the recent knowledge about the definite c-MET role in each different malignance. Recent clinical trials based on c-MET molecular targets result in good safety profile and represent a promising therapeutic strategy for solid cancers, in monotherapy or in combination with other target drugs. Conclusion The list of cell surface receptors crosslinking with the c-MET signaling is constantly growing, highlighting the importance of this pathway for personalized target therapy. Research on the combination of c-MET inhibitors with other drugs will hopefully lead to discovery of new effective treatment options.
Collapse
|
39
|
Fogli S, Tabbò F, Capuano A, Re MD, Passiglia F, Cucchiara F, Scavone C, Gori V, Novello S, Schmidinger M, Danesi R. The expanding family of c-Met inhibitors in solid tumors: a comparative analysis of their pharmacologic and clinical differences. Crit Rev Oncol Hematol 2022; 172:103602. [DOI: 10.1016/j.critrevonc.2022.103602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
|
40
|
Neutrophils: Driving inflammation during the development of hepatocellular carcinoma. Cancer Lett 2021; 522:22-31. [PMID: 34517084 DOI: 10.1016/j.canlet.2021.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
The relationship between immune and inflammatory responses in hepatocellular carcinoma (HCC) has garnered significant interest. In the peripheral blood and tumour microenvironment (TME), neutrophils, which are innate immune cells, crucially respond to various inflammatory factors, leading to tumour progression. To some extent, they affect the clinical treatment strategy and survival among HCC patients. A high circulating neutrophil-to-lymphocyte ratio is a reliable factor that can be used to predict poor outcomes in HCC patients. However, the mechanisms underlying the protumoural effects of circulating neutrophils remain poorly understood. Besides, the distinct role and function of neutrophils at the site of HCC remain relatively unclear, which is partially attributed to their substantial heterogeneity compared with other immune cells. In this review, we firstly discuss the current information available, detailing distinct subsets, functional phenotypes, and the impact of circulating and tumour-infiltrating neutrophils on tumourigenesis in HCC. Furthermore, we describe recent pre-clinical and clinical studies concerning neutrophils for evaluating the feasibility of targeting diverse protumoural aspects to improve therapeutic efficacy, thus paving the way for neutrophil-based treatment, especially in combination with immunotherapy.
Collapse
|
41
|
Zhao S, Wu W, Jiang H, Ma L, Pan C, Jin C, Mo J, Wang L, Wang K. Selective Inhibitor of the c-Met Receptor Tyrosine Kinase in Advanced Hepatocellular Carcinoma: No Beneficial Effect With the Use of Tivantinib? Front Immunol 2021; 12:731527. [PMID: 34804015 PMCID: PMC8600564 DOI: 10.3389/fimmu.2021.731527] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Advanced hepatocellular carcinoma (HCC) remains a formidable health challenge worldwide, with a 5-year survival rate of 2.4% in patients with distant metastases. The hepatocyte growth factor/cellular-mesenchymal-epithelial transition (HGF/c-Met) signaling pathway represents an encouraging therapeutic target for progressive HCC. Tivantinib, a non-adenosine triphosphate-competitive c-Met inhibitor, showed an attractive therapeutic effect on advanced HCC patients with high MET-expression in phase 2 study but failed to meet its primary endpoint of prolonging the overall survival (OS) in two phase 3 HCC clinical trials. Seven clinical trials have been registered in the "ClinicalTrials.gov" for investigating the safety and efficacy of tivantinib in treating advanced or unresectable HCC. Eight relevant studies have been published with results. The sample size ranged from 20 to 340 patients. The methods of tivantinib administration and dosage were orally 120/240/360 mg twice daily. MET overexpression was recorded at 34.6% to 100%. Two large sample phase 3 studies (the METIV-HCC study of Australia and European population and the JET-HCC study of the Japanese population) revealed that tivantinib failed to show survival benefits in advanced HCC. Common adverse events with tivantinib treatment include neutropenia, ascites, rash, and anemia, etc. Several factors may contribute to the inconsistency between the phase 2 and phase 3 studies of tivantinib, including the sample size, drug dosing, study design, and the rate of MET-High. In the future, high selective MET inhibitors combined with a biomarker-driven patient selection may provide a potentially viable therapeutic strategy for patients with advanced HCC.
Collapse
Affiliation(s)
- Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Weizhou Wu
- Department of Urology, Maoming People's Hospital, Maoming, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Lei Ma
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Chengyi Pan
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Liezhi Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
42
|
Eso Y. MET amplification as a potential therapeutic target against hepatocellular carcinoma. Hepatol Res 2021; 51:1093-1094. [PMID: 34724292 DOI: 10.1111/hepr.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Affiliation(s)
- Yuji Eso
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
Chen Q, Xie C, Feng K, Huang H, Xiong C, Lin T, Wang W, Xu M, Yang X, Zhong C. Response to crizotinib in a patient with MET-amplified hepatocellular carcinoma. Hepatol Res 2021; 51:1164-1169. [PMID: 33991153 DOI: 10.1111/hepr.13664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
AIMS Molecular profiling of hepatocellular carcinoma (HCC) has helped identify actionable genomic alterations that could guide therapeutic decision-making and clinical trial enrollment. However, in clinical practice, next-generation sequencing (NGS) is not extensively used in routine clinical care to identify patients with HCC who are likely to benefit from genome-directed targeted therapies. METHODS Here, we describe the case of a 66-year-old man with advanced HCC. After rapid progression on transarterial chemoembolization, the tissue sample obtained from biopsy was subjected to NGS to verify whether precision therapy was an option. RESULTS Our analysis revealed high MET amplification. The patient received crizotinib (250 mg, bid) and showed a remarkable response. CONCLUSIONS Our case report suggests NGS could help identify patients with high MET amplification in HCC who were likely to benefit from MET inhibitors; moreover, this requires further investigation in clinical trials.
Collapse
Affiliation(s)
- Qinglian Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunfeng Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kunliang Feng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haijun Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengming Xiong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tengjiao Lin
- Medical Department, OrigiMed Co., Ltd, Shanghai, China
| | - Wenjing Wang
- Medical Department, OrigiMed Co., Ltd, Shanghai, China
| | - Mian Xu
- Medical Department, OrigiMed Co., Ltd, Shanghai, China
| | - Xianwei Yang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
44
|
Moldogazieva NT, Zavadskiy SP, Sologova SS, Mokhosoev IM, Terentiev AA. Predictive biomarkers for systemic therapy of hepatocellular carcinoma. Expert Rev Mol Diagn 2021; 21:1147-1164. [PMID: 34582293 DOI: 10.1080/14737159.2021.1987217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the third cancer-related cause of death worldwide. In recent years, several systemic therapy drugs including sorafenib, lenvatinib, regorafenib, cabozantinib, ramucicurab, nivilumab, and pembrolizumab have been approved by FDA for advanced HCC. However, their insufficient efficacy, toxicity, and drug resistance require clinically applicable and validated predictive biomarkers.Areas covered: Our review covers the recent advancements in the identification of proteomic/genomic/epigenomic/transcriptomic biomarkers for predicting HCC treatment efficacy with the use of multi-kinase inhibitors (MKIs), CDK4/6 inhibitors, and immune checkpoint inhibitors (ICIs). Alpha-fetoprotein, des-carboxyprothrombin, vascular endothelial growth factor, angiopoietin-2, and dysregulated MTOR, VEGFR2, c-KIT, RAF1, PDGFRβ have the potential of proteomic/genomic biomarkers for sorafenib treatment. Alanine aminotransferase, aspartate aminotransferase, and albumin-bilirubin grade can predict the efficacy of other MKIs. Rb, p16, and Ki-67, and genes involved in cell cycle regulation, CDK1-4, CCND1, CDKN1A, and CDKN2A have been proposed for CD4/6 inhibitors, while dysregulated TERT, CTNNB1, TP53 FGF19, and TP53 are found to be predictors for ICI efficacy.Expert opinion: There are still limited clinically applicable and validated predictive biomarkers to identify HCC patients who benefit from systemic therapy. Further prospective biomarker validation studies for HCC personalized systemic therapy are required.
Collapse
Affiliation(s)
- Nurbubu T Moldogazieva
- Laboratory of Bioinformatics, Institute of Translational Medicine and Biotechnology, I.m. Sechenov First Moscow State Medical University (Sechenov University);, Moscow, Russia
| | - Sergey P Zavadskiy
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.m. Sechenov First Moscow State Medical University (Sechenov University), Russia, Russia
| | - Susanna S Sologova
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.m. Sechenov First Moscow State Medical University (Sechenov University), Russia, Russia
| | - Innokenty M Mokhosoev
- Department of Biochemistry and Molecular Biology, N.i. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.i. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
45
|
Hou Y, Xie H, Dou G, Yang W, Ge J, Zhou B, Ren J, Li J, Wang J, Zhang Z, Wang X. Computational study on novel natural inhibitors targeting c-MET. Medicine (Baltimore) 2021; 100:e27171. [PMID: 34559105 PMCID: PMC8462629 DOI: 10.1097/md.0000000000027171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 01/05/2023] Open
Abstract
This study was designed to select ideal lead compounds and preclinical drug candidates http://dict.youdao.com/w/eng/preclinical_drug_candidate/javascript:void (0); with inhibitory effect on c-MET from the drug library (ZINC database).A battery of computer-aided virtual techniques was used to identify possible inhibitors of c-MET. A total of 17,931 ligands were screened from the ZINC15 database. LibDock is applied for structure-based screening followed by absorption, distribution, metabolic, and excretion, and toxicity prediction. Molecular docking was conducted to confirm the binding affinity mechanism between the ligand and c-MET. Molecular dynamics simulations were used to assess the stability of ligand-c-MET complexes.Two new natural compounds ZINC000005879645 and ZINC000002528509 were found to bind to c-MET in the ZINC database, showing higher binding affinity. In addition, they were predicted to have lower rodent carcinogenicity, Ames mutagenicity, developmental toxicity potential, and high tolerance to cytochrome P4502D6. Molecular dynamics simulation shows that ZINC000005879645 and ZINC000002528509 have more favorable potential energies with c-MET, which could exist stably in the natural environment.This study suggests that ZINC000005879645 and ZINC000002528509 are ideal latent inhibitors of c-MET targeting. As drug candidates, these 2 compounds have low cytotoxicity and hepatotoxicity as well as important implications for the design and improvement of c-MET target drugs.
Collapse
Affiliation(s)
- Yuanyuan Hou
- Clinical College, Jilin University, Changchun, China
| | - Haoqun Xie
- Clinical College, Jilin University, Changchun, China
| | - Gaojing Dou
- Department of Breast Surgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Wenzhuo Yang
- Clinical College, Jilin University, Changchun, China
| | - Junliang Ge
- Clinical College, Jilin University, Changchun, China
| | - Baolin Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, China
| | - Junan Ren
- Clinical College, Jilin University, Changchun, China
| | - Juncheng Li
- Clinical College, Jilin University, Changchun, China
| | - Jing Wang
- Clinical College, Jilin University, Changchun, China
| | - Zhiyun Zhang
- Clinical College, Jilin University, Changchun, China
| | - Xinhui Wang
- Department of Oncology, First People's Hospital of Xinxiang, Xinxiang, China
| |
Collapse
|
46
|
Meyers BM, Knox JJ, Cosby R, Beecroft JR, Chan KKW, Coburn N, Feld JJ, Jonker D, Mahmud A, Ringash J. Non-surgical management of advanced hepatocellular carcinoma: A systematic review by Cancer Care Ontario. CANADIAN LIVER JOURNAL 2021; 4:257-274. [PMID: 35992253 PMCID: PMC9202767 DOI: 10.3138/canlivj-2020-0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/23/2021] [Indexed: 08/12/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is a global health problem, accounting for 4.7% of all new cancer cases and 8.2% of all cancer deaths worldwide in 2018. Resection and transplantation are the only modalities that offer a cure for HCC; however, most patients are diagnosed at an advanced stage, precluding these curative treatments. A number of local (ie, ablative therapies) and/or local-regional therapies (ie, chemo-embolization) are used and followed by systemic therapy for advanced or progressive disease. Other treatments are available, but their efficacy compared with these standards is not well known. Methods Literature searches (1/2000 to 1/2020 or 1/2005 to 1/2020, depending on the specific systematic review question) were conducted, including MEDLINE, Embase and the Cochrane Database of Systematic Reviews. Results Over 30,000 articles were identified. In total, 49 studies were included in the systematic review. Conclusions There is no evidence to support the addition of sorafenib to any local or regional therapy. First-line systemic therapy options for unresectable or metastatic HCC include sorafenib, lenvatinib, and atezolizumab + bevacizumab. Regorafenib or cabozantinib provide survival benefits when given as second-line treatment.
Collapse
Affiliation(s)
- Brandon M Meyers
- Juravinski Cancer Centre, Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | | | - Roxanne Cosby
- Program in Evidence-Based Care, Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - JR Beecroft
- Mount Sinai Hospital, Department of Medical Imaging, Toronto, Ontario, Canada
| | - Kelvin KW Chan
- Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Natalie Coburn
- Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Jordan J Feld
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Derek Jonker
- Ottawa Hospital Cancer Centre, Ottawa, Ontario, Canada
| | - Aamer Mahmud
- Cancer Centre of Southeastern Ontario, Kingston, Ontario, Canada
| | - Jolie Ringash
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Niu M, Yi M, Li N, Wu K, Wu K. Advances of Targeted Therapy for Hepatocellular Carcinoma. Front Oncol 2021; 11:719896. [PMID: 34381735 PMCID: PMC8350567 DOI: 10.3389/fonc.2021.719896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common and fatal malignancies, which is a significant global health problem. The clinical applicability of traditional surgery and other locoregional therapies is limited, and these therapeutic strategies are far from satisfactory in improving the outcomes of advanced HCC. In the past decade, targeted therapy had made a ground-breaking progress in advanced HCC. Those targeted therapies exert antitumor effects through specific signals, including anti-angiogenesis or cell cycle progression. As a standard systemic therapy option, it tremendously improves the survival of this devastating disease. Moreover, the combination of targeted therapy with immune checkpoint inhibitor (ICI) has demonstrated more potent anticancer effects and becomes the hot topic in clinical studies. The combining medications bring about a paradigm shift in the treatment of advanced HCC. In this review, we presented all approved targeted agents for advanced HCC with an emphasis on their clinical efficacy, summarized the advances of multi-target drugs in research for HCC and potential therapeutic targets for drug development. We also discussed the exciting results of the combination between targeted therapy and ICI.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Kongju Wu
- Department of Nursing, Medical School of Pingdingshan University, Pingdingshan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
48
|
Meng W, Chen T. Association between the HGF/c‑MET signaling pathway and tumorigenesis, progression and prognosis of hepatocellular carcinoma (Review). Oncol Rep 2021; 46:191. [PMID: 34278495 DOI: 10.3892/or.2021.8142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive and lethal malignancies with a rising incidence, and is characterized by rapid progression, frequent metastasis, late diagnosis, high postoperative recurrence and poor prognosis. Therefore, novel treatment strategies for HCC, particularly advanced HCC, are urgently required. The hepatocyte growth factor (HGF)/c‑mesenchymal‑epithelial transition receptor (c‑MET) axis is a key signaling pathway in HCC and is strongly associated with its highly malignant features. Available treatments based on HGF/c‑MET inhibition may prolong the lifespan of patients with HCC; however, they do not achieve the desired therapeutic effects. The aim of the present article was to review the basic knowledge regarding the role of the HGF/c‑MET signaling pathway in HCC, and examine the association between the HGF/c‑MET signaling pathway and the tumorigenesis, progression and prognosis of HCC.
Collapse
Affiliation(s)
- Wei Meng
- School of Medicine, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Tao Chen
- School of Medicine, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| |
Collapse
|
49
|
Decaens T, Barone C, Assenat E, Wermke M, Fasolo A, Merle P, Blanc JF, Grando V, Iacobellis A, Villa E, Trojan J, Straub J, Bruns R, Berghoff K, Scheele J, Raymond E, Faivre S. Phase 1b/2 trial of tepotinib in sorafenib pretreated advanced hepatocellular carcinoma with MET overexpression. Br J Cancer 2021; 125:190-199. [PMID: 33824476 PMCID: PMC8292404 DOI: 10.1038/s41416-021-01334-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND This Phase 1b/2 study evaluated tepotinib, a highly selective MET inhibitor, in US/European patients with sorafenib pretreated advanced hepatocellular carcinoma (aHCC) with MET overexpression. METHODS Eligible adults had aHCC, progression after ≥4 weeks of sorafenib, and, for Phase 2 only, MET overexpression. Tepotinib was administered once daily at 300 or 500 mg in Phase 1b ('3 + 3' design), and at the recommended Phase 2 dose (RP2D) in Phase 2. Primary endpoints were dose-liming toxicities (DLTs; Phase 1b) and 12-week investigator-assessed progression-free survival (PFS; Phase 2). RESULTS In Phase 1b (n = 17), no DLTs occurred and the RP2D was confirmed as 500 mg. In Phase 2 (n = 49), the primary endpoint was met: 12-week PFS was 63.3% (90% CI: 50.5-74.7), which was significantly greater than the predefined null hypothesis of ≤15% (one-sided binomial exact test: P < 0.0001). Median time to progression was 4 months. In Phase 2, 28.6% of patients had treatment-related Grade ≥3 adverse events, including peripheral oedema and lipase increase (both 6.1%). CONCLUSIONS Tepotinib was generally well tolerated and the RP2D (500 mg) showed promising efficacy and, therefore, a positive benefit-risk balance in sorafenib pretreated aHCC with MET overexpression. TRIAL REGISTRATION ClinicalTrials.gov: NCT02115373.
Collapse
Affiliation(s)
- Thomas Decaens
- University Grenoble Alpes, Department of Hepato-Gastroenterology and Digestive Oncology, CHU Grenoble Alpes, Institute for Advanced Biosciences INSERM U1209, Grenoble, France.
| | - Carlo Barone
- Medical Oncology, Policlinico Universitario A. Gemelli, Roma, Italy
| | - Eric Assenat
- Medical Oncology, CHU Saint Eloi, Montpellier, France
| | - Martin Wermke
- NCT/UCC Early Clinical Trial Unit, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | | | - Philippe Merle
- Service d'Hépato-Gastro-Entérologie, Hôpital de la Croix Rousse, Lyon, France
| | - Jean-Frédéric Blanc
- Service d'Hépato-Gastroentérologie et d'Oncologie Digestive, Groupe Hospitalier Haut-Lévêque, CHU Bordeaux, Pessac, France
| | | | - Angelo Iacobellis
- Reparto di Gastroenterologia ed Endoscopia Digestiva, Ospedale Casa Sollievo della Sofferenza IRCCS, San Giovanni Rotondo, Italy
| | - Erica Villa
- Division of Gastroenterology Policlinico di Modena, Modena, Italy
| | - Joerg Trojan
- Gastrointestinal Oncology, Goethe University Hospital, Frankfurt, Germany
| | - Josef Straub
- Clinical Biomarker & Companion Diagnostics, Merck KGaA, Darmstadt, Germany
| | - Rolf Bruns
- Biostatistics, Merck KGaA, Darmstadt, Germany
| | - Karin Berghoff
- Global Patient Safety Innovation, Merck KGaA, Darmstadt, Germany
| | - Juergen Scheele
- Global Clinical Development Oncology, Merck KGaA, Darmstadt, Germany
| | - Eric Raymond
- Medical Oncology, Paris-St Joseph Hospital, Paris, France
| | - Sandrine Faivre
- Medical Oncology, Saint-Louis Hospital & Paris 7 University, Paris, France
| |
Collapse
|
50
|
Yang S, Yao B, Wu L, Liu Y, Liu K, Xu P, Zheng Y, Deng Y, Zhai Z, Wu Y, Li N, Zhang D, Kang H, Dai Z. Ubiquitin-related molecular classification and risk stratification of hepatocellular carcinoma. Mol Ther Oncolytics 2021; 21:207-219. [PMID: 34095460 PMCID: PMC8138213 DOI: 10.1016/j.omto.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
The roles of ubiquitin-related genes in hepatocellular carcinoma (HCC) have not been thoroughly investigated. This study aimed to systematically examine ubiquitin-related genes and identify subtypes and stratify prognosis of HCC by using ubiquitin-related signatures. Survival, biological processes, tumor microenvironment (TME), and genomic alterations of the HCC subtypes were investigated. Patients with HCC were classified into two subtypes (clusters 1 and 2) with distinct survival outcomes, pathways, and genomic alterations. Cluster 2 had better prognosis than did cluster 1. Hepatitis B, hepatitis C, Janus tyrosine kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, and natural killer cell-mediated cytotoxicity were enriched in cluster 1. Moreover, cluster 2 had a higher immune score and immune cell infiltrations, whereas cluster 1 had a lower immune score and immune infiltrations. Additionally, mutations, amplifications, and deletions among the phosphatidylinositol 3-kinase (PI3K)-AKT, p53, and receptor tyrosine kinase (RTK)-RAS pathways more frequently occurred in cluster 1, while those among the Hippo, MYC, and Notch signaling pathways were found in cluster 2. Finally, a prognostic signature, consisting of eight ubiquitin-related genes, was established and validated. In brief, our study established a new classification and developed a prognostic signature for HCC.
Collapse
Affiliation(s)
- Si Yang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Liming Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yuanxing Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Kang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Peng Xu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Yi Zheng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Yujiao Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Zhen Zhai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Ying Wu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Na Li
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Dai Zhang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|