1
|
Chen Y, Lu X, Peng G, Liu S, Wang M, Hou H. A bibliometric analysis of research on PD-1/PD-L1 in urinary tract tumors. Hum Vaccin Immunother 2024; 20:2390727. [PMID: 39385743 PMCID: PMC11469446 DOI: 10.1080/21645515.2024.2390727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 10/12/2024] Open
Abstract
Programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) are key components in immune checkpoint studies across various tumors, including those in the urinary tract. The utilization of PD-1/PD-L1 inhibitors in urinary tract tumors is on the rise. This study provides a comprehensive overview of PD-1/PD-L1 research in urinary tract tumors through bibliometric analysis. A search was conducted in the Web of Science Core Collection (WoSCC) database for academic papers on PD-1/PD-L1 in urinary tract tumors published between January 1, 1999, and September 3, 2022. Tools such as VOSviewer, CiteSpace, and an online bibliometric platform, were used for an in-depth analysis covering countries, institutions, authors, journals, references, and keywords. A total of 1,711 articles on PD-1/PD-L1 in urinary tract tumors were analyzed. The United States led in article contributions, followed by China and Japan. Harvard University was the top institution in this research area. With notable conctributions from Choueiri TK, who authored 48 related articles. The Journal for Immunotherapy of Cancer was the top publisher, and Topalian SL's 2012 publication in The New England Journal of Medicine was the most cited article. Key author keywords included "immunotherapy," "PD-L1," "renal cell carcinoma," "bladder cancer," and "immune checkpoint inhibitors." Notably, research on the role of PD-1/PD-L1 in kidney and bladder cancer has garnered significant attention.
Collapse
Affiliation(s)
- Yongming Chen
- Beijing Hospital National Center of Gerontology Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaojin Lu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Genyuan Peng
- Department of Gastrointestinal Surgery, Shenshan Central Hospital of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shengjie Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huimin Hou
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Quan Y, Zhang H, Wang M, Ping H. UQCRB and LBH are correlated with Gleason score progression in prostate cancer: Spatial transcriptomics and experimental validation. Comput Struct Biotechnol J 2024; 23:3315-3326. [PMID: 39310280 PMCID: PMC11414276 DOI: 10.1016/j.csbj.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Prostate cancer (PCa) is a multifocal disease characterized by genomic and phenotypic heterogeneity within a single gland. In this study, Visium spatial transcriptomics (ST) analysis was applied to PCa tissues with different histological structures to infer the molecular events involved in Gleason score (GS) progression. The spots in tissue sections were classified into various groups using Principal Component Analysis (PCA) and Louvain clustering analysis based on transcriptome data. Anotation of the spots according to GS revealed notable similarities between transcriptomic profiles and histologically identifiable structures. The accuracy of macroscopic GS determination was bioinformatically verified through malignancy-related feature analysis, specifically inferred copy number variation (inferCNV), as well as developmental trajectory analyses, such as diffusion pseudotime (DPT) and partition-based graph abstraction (PAGA). Genes related to GS progression were identified from the differentially expressed genes (DEGs) through pairwise comparisons of groups along a GS gradient. The proteins encoded by the representative oncogenes UQCRB and LBH were found to be highly expressed in advanced-stage PCa tissues. Knockdown of their mRNAs significantly suppressed PCa cell proliferation and invasion. These findings were validated using The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) dataset, as well as through histological and cytological experiments. The results presented here establish a foundation for ST-based evaluation of GS progression and provide valuable insights into the GS progression-related genes UQCRB and LBH.
Collapse
Affiliation(s)
- Yongjun Quan
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| | - Hong Zhang
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| | - Mingdong Wang
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| |
Collapse
|
3
|
Xu Y, Zhang G, Liu Y, Liu Y, Tian A, Che J, Zhang Z. Molecular mechanisms and targeted therapy for the metastasis of prostate cancer to the bones (Review). Int J Oncol 2024; 65:104. [PMID: 39301646 PMCID: PMC11419411 DOI: 10.3892/ijo.2024.5692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024] Open
Abstract
The incidence of prostate cancer (PCa) is increasing, making it one of the prevalent malignancies among men. Metastasis of PCa to the bones poses the greatest danger to patients, potentially resulting in treatment ineffectiveness and mortality. At present, the management of patients with bone metastasis focuses primarily on providing palliative care. Research has indicated that the spread of PCa to the bones occurs through the participation of numerous molecules and their respective pathways. Gaining knowledge regarding the molecular processes involved in bone metastasis may result in the development of innovative and well‑tolerated therapies, ultimately enhancing the quality of life and prognosis of patients. The present article provides the latest overview of the molecular mechanisms involved in the formation of bone metastatic tumors from PCa. Additionally, the clinical outcomes of targeted drug therapies for bone metastasis are thoroughly analyzed. Finally, the benefits and difficulties of targeted therapy for bone metastasis of PCa are discussed, aiming to offer fresh perspectives for treatment.
Collapse
Affiliation(s)
- Yankai Xu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Gang Zhang
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Yuanyuan Liu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Yangyang Liu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Aimin Tian
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Jizhong Che
- Correspondence to: Professor Zhengchao Zhang or Professor Jizhong Che, Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, 717, Jinbu Street, Muping, Yantai, Shandong 264100, P.R. China, E-mail: , E-mail:
| | - Zhengchao Zhang
- Correspondence to: Professor Zhengchao Zhang or Professor Jizhong Che, Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, 717, Jinbu Street, Muping, Yantai, Shandong 264100, P.R. China, E-mail: , E-mail:
| |
Collapse
|
4
|
Dai Q, Peng Y, He P, Wu X. Interactions and communications in the prostate tumour microenvironment: evolving towards effective cancer therapy. J Drug Target 2024:1-21. [PMID: 39445641 DOI: 10.1080/1061186x.2024.2418344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Prostate cancer is one of the most common malignancies in men. The tumour microenvironment (TME) has a critical role in the initiation, progression, and metastasis of prostate cancer. TME contains various cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, immune cells such as macrophages, lymphocytes B and T, natural killer (NK) cells, and other proteins such as extracellular matrix (ECM) components. The interactions and communications between these cells within the TME are crucial for the growth and response of various solid tumours, such as prostate cancer to different anticancer modalities. In this review article, we exemplify the various mechanisms by which the TME influences prostate cancer progression. The roles of different cells, cytokines, chemokines, and growth factors in modulating the immune response and prostate tumour growth will be discussed. The impact of these cells and factors and other ECM components on tumour cell invasion and metastasis will also be discussed. We explain how these interactions in TME can affect the response of prostate cancer to therapy. We also highlight the importance of understanding these interactions to develop novel therapeutic approaches for prostate cancer.
Collapse
Affiliation(s)
- Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Peng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
5
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Lynch C, Arshad M, Katipally RR, Pitroda S, Weichselbaum R. Sharing the Burden: The Case for Definitive Local Therapy in Place of Immune Checkpoint Blockade for Patients With a Low-Volume Burden of Metastatic Disease. J Clin Oncol 2024; 42:3387-3391. [PMID: 39038267 PMCID: PMC11458364 DOI: 10.1200/jco.24.00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 07/24/2024] Open
Abstract
COMMENTARY Sharing the burden of low-volume metastatic cancer between ICB and local treatments.
Collapse
Affiliation(s)
- Connor Lynch
- University of Chicago Medical Center, Department of Radiation and Cellular Oncology, 5758 S Maryland Ave, MC 9006, Chicago, IL 60637
| | - Muzamil Arshad
- University of Chicago Medical Center, Department of Radiation and Cellular Oncology, 5758 S Maryland Ave, MC 9006, Chicago, IL 60637
| | - Rohan R Katipally
- University of Chicago Medical Center, Department of Radiation and Cellular Oncology, 5758 S Maryland Ave, MC 9006, Chicago, IL 60637
| | - Sean Pitroda
- University of Chicago Medical Center, Department of Radiation and Cellular Oncology, 5758 S Maryland Ave, MC 9006, Chicago, IL 60637
| | - Ralph Weichselbaum
- University of Chicago Medical Center, Department of Radiation and Cellular Oncology, 5758 S Maryland Ave, MC 9006, Chicago, IL 60637
| |
Collapse
|
7
|
Novysedlak R, Guney M, Al Khouri M, Bartolini R, Koumbas Foley L, Benesova I, Ozaniak A, Novak V, Vesely S, Pacas P, Buchler T, Ozaniak Strizova Z. The Immune Microenvironment in Prostate Cancer: A Comprehensive Review. Oncology 2024:1-25. [PMID: 39380471 DOI: 10.1159/000541881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Prostate cancer (PCa) is a malignancy with significant immunosuppressive properties and limited immune activation. This immunosuppression is linked to reduced cytotoxic T cell activity, impaired antigen presentation, and elevated levels of immunosuppressive cytokines and immune checkpoint molecules. Studies demonstrate that cytotoxic CD8+ T cell infiltration correlates with improved survival, while increased regulatory T cells (Tregs) and tumor-associated macrophages (TAMs) are associated with worse outcomes and therapeutic resistance. Th1 cells are beneficial, whereas Th17 cells, producing interleukin-17 (IL-17), contribute to tumor progression. Tumor-associated neutrophils (TANs) and immune checkpoint molecules, such as PD-1/PD-L1 and T cell immunoglobulin-3 (TIM-3) are also linked to advanced stages of PCa. Chemotherapy holds promise in converting the "cold" tumor microenvironment (TME) to a "hot" one by depleting immunosuppressive cells and enhancing tumor immunogenicity. SUMMARY This comprehensive review examines the immune microenvironment in PCa, focusing on the intricate interactions between immune and tumor cells in the TME. It highlights how TAMs, Tregs, cytotoxic T cells, and other immune cell types contribute to tumor progression or suppression and how PCa's low immunogenicity complicates immunotherapy. KEY MESSAGES The infiltration of cytotoxic CD8+ T cells and Th1 cells correlates with better outcomes, while elevated T regs and TAMs promote tumor growth, metastasis, and resistance. TANs and natural killer (NK) cells exhibit dual roles, with higher NK cell levels linked to better prognoses. Immune checkpoint molecules like PD-1, PD-L1, and TIM-3 are associated with advanced disease. Chemotherapy can improve tumor immunogenicity by depleting T regs and myeloid-derived suppressor cells, offering therapeutic promise.
Collapse
Affiliation(s)
- Rene Novysedlak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Miray Guney
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Majd Al Khouri
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Robin Bartolini
- Lausanne Center for Immuno-oncology Toxicities (LCIT), Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lily Koumbas Foley
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Andrej Ozaniak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Vojtech Novak
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Stepan Vesely
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Pavel Pacas
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Tomas Buchler
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Zuzana Ozaniak Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| |
Collapse
|
8
|
Moscardini-Martelli J, Rodríguez-Camacho A, Torres-Ríos JA, Meraz-Soto JM, Flores-Vázquez JG, Hernández-Sánchez LC, Lozano-Ruiz FJ, Maldonado-Magos F, Cid-Sánchez D, Flores-Balcázar CH, Celis-López MÁ, Gutiérrez-Aceves GA, Flores-Vázquez F, Moreno-Jiménez S. A Comprehensive Revision of Radiation Immunotherapy and the Abscopal Effect in Central Nervous System Metastases: Reassessing the Frontier. Curr Issues Mol Biol 2024; 46:11075-11085. [PMID: 39451538 PMCID: PMC11506806 DOI: 10.3390/cimb46100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
Seventy years ago, Robin Mole introduced the concept of the abscopal effect to describe a rare phenomenon. This occurs when local radiation triggers an immune-mediated reduction in tumors outside the treated area but within the same organism. Observing this effect has been linked to improved overall and progression-free survival in patients who experience it. While the abscopal effect was once considered rare, it is now being observed more frequently due to the combination of radiation with immunotherapy. As a result, more researchers are exploring this study area, which shows promise for excellent results. This review focuses explicitly on the immunological implications of activating the abscopal effect through ionizing radiation in the central nervous system and explores the potentially involved immunological pathways.
Collapse
Affiliation(s)
- Júlia Moscardini-Martelli
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (J.M.-M.); (J.A.T.-R.); (J.M.M.-S.); (J.G.F.-V.); (L.C.H.-S.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Alejandro Rodríguez-Camacho
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (J.M.-M.); (J.A.T.-R.); (J.M.M.-S.); (J.G.F.-V.); (L.C.H.-S.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
- Radiotherapy Service, National Cancer Institute, Mexico City 14080, Mexico; (F.J.L.-R.); (F.M.-M.); (D.C.-S.); (C.H.F.-B.)
| | - Jorge Alejandro Torres-Ríos
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (J.M.-M.); (J.A.T.-R.); (J.M.M.-S.); (J.G.F.-V.); (L.C.H.-S.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Juan Marcos Meraz-Soto
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (J.M.-M.); (J.A.T.-R.); (J.M.M.-S.); (J.G.F.-V.); (L.C.H.-S.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - José Guillermo Flores-Vázquez
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (J.M.-M.); (J.A.T.-R.); (J.M.M.-S.); (J.G.F.-V.); (L.C.H.-S.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Laura Crystell Hernández-Sánchez
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (J.M.-M.); (J.A.T.-R.); (J.M.M.-S.); (J.G.F.-V.); (L.C.H.-S.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Francisco Javier Lozano-Ruiz
- Radiotherapy Service, National Cancer Institute, Mexico City 14080, Mexico; (F.J.L.-R.); (F.M.-M.); (D.C.-S.); (C.H.F.-B.)
| | - Federico Maldonado-Magos
- Radiotherapy Service, National Cancer Institute, Mexico City 14080, Mexico; (F.J.L.-R.); (F.M.-M.); (D.C.-S.); (C.H.F.-B.)
| | - Dharely Cid-Sánchez
- Radiotherapy Service, National Cancer Institute, Mexico City 14080, Mexico; (F.J.L.-R.); (F.M.-M.); (D.C.-S.); (C.H.F.-B.)
| | | | - Miguel Ángel Celis-López
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (J.M.-M.); (J.A.T.-R.); (J.M.M.-S.); (J.G.F.-V.); (L.C.H.-S.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Guillermo Axayacatl Gutiérrez-Aceves
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (J.M.-M.); (J.A.T.-R.); (J.M.M.-S.); (J.G.F.-V.); (L.C.H.-S.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | | | - Sergio Moreno-Jiménez
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (J.M.-M.); (J.A.T.-R.); (J.M.M.-S.); (J.G.F.-V.); (L.C.H.-S.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
- American British Cowdray Medical Center, Neurological Center, Mexico City 01120, Mexico
| |
Collapse
|
9
|
Zhou C, Jiang J, Xiang X, Liu H, Wu G, Zeng R, Lu T, Zhang M, Shen Y, Hong M, Zhang J. Preclinical investigations and a first-in-human phase 1a trial of JS007, a novel anti-CTLA-4 antibody, in patients with advanced solid tumors. Exp Hematol Oncol 2024; 13:98. [PMID: 39354625 PMCID: PMC11443874 DOI: 10.1186/s40164-024-00567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/21/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Blocking cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) shows substantial antitumor efficacy. Here, we report the preclinical data and outcomes of a first-in-human phase 1a trial of JS007, a novel anti-CTLA-4 antibody, in advanced solid tumors. METHODS In preclinical studies, both in vitro characteristics and in vivo characteristics of JS007 were investigated. The clinical trial included a dose escalation phase and a dose expansion phase. Eligible patients with previously treated advanced solid tumors were enrolled. In the dose escalation phase, JS007 was administered intravenously every 3 weeks at doses of 0.03, 0.3, 1, 3, and 10 mg/kg. Then, 3 and 10 mg/kg were chosen for the dose expansion phase. The primary endpoints included the maximum tolerated dose (MTD) of JS007 based on dose-limiting toxicities (DLTs) and safety. RESULTS JS007 could effectively bind to CTLA-4 and induce an immune response in vitro. Potent in vivo antitumor activity of JS007 was observed. Increased T cell infiltration and T regulatory (Treg) cell depletion in tumor microenvironment of cancer cell xenografts were detected after treated with JS007. Pharmacological analysis in experimental animals showed a dose-proportional increase in exposure. In the clinical trial, a total of 28 patients were treated with JS007 across 5 dose levels. No DLTs occurred. The MTD did not reach at the highest dose tested (10 mg/kg). Twenty-three (82.1%) patients experienced at least one treatment-related adverse event (TRAE). The incidence of Grade ≥ 3 TRAEs was 28.6% (8/28) with alanine aminotransferase increase (7.1%, 2/28) being the most frequently reported TRAE. No severe immune-related adverse event (irAE) occurred. Pharmacological profiles of JS007 in patients were similar to those in animal models. Serum concentration of JS007 showed a dose-dependent escalation, and the half-life of JS007 was 9.4 ~ 12.2 days. Treatment-induced anti-drug antibody was detected in 2 patients. The disease control rate was 50% (14/28), and the median overall survival was 14.7 months. CONCLUSIONS JS007 preliminarily demonstrates good tolerance and encouraging antitumor activity in patients with previously treated advanced solid tumors. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT05049265 (Sep 20, 2021).
Collapse
Affiliation(s)
- Chenfei Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojun Xiang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guowu Wu
- Department of Medical Oncology, Cancer Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Ruichao Zeng
- Shanghai Junshi Biosciences Co., Ltd, Shanghai, China
| | - Tong Lu
- Shanghai Junshi Biosciences Co., Ltd, Shanghai, China
| | - Mengqi Zhang
- Shanghai Junshi Biosciences Co., Ltd, Shanghai, China
| | - Yuteng Shen
- Shanghai Junshi Biosciences Co., Ltd, Shanghai, China
| | - Min Hong
- Shanghai Junshi Biosciences Co., Ltd, Shanghai, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Cornillon P, Bouleftour W, Reynaud T, Pigne G, Maillet D, Hamizi S, Beguinot M. Immunogenicity of radiotherapy on bone metastases from prostate adenocarcinoma: What is the future for the combination with radiotherapy/immunotherapy? TUMORI JOURNAL 2024; 110:319-326. [PMID: 38745528 DOI: 10.1177/03008916241249366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Bone metastatic prostate cancers (PCa) are resistant to usual immunotherapies such as checkpoint inhibitors. The main hypothesis related to this immunoresistance is the lack of antigens to stimulate anti-tumor immunity. External radiation is a potential inducer antigens presentation and thus to immunotherapy proprieties. The aim of this review is to describe the tumor microenvironment specificities, especially in bone metastasis and the immune modifications after radiation therapy on a metastatic castration-resistant PCa population. PCa microenvironment is immunosuppressive because of many tumor factors. The complex interplay between PCa cells and bone microenvironment leads to a 'vicious circle' promoting bone metastasis. Furthermore, the immune and bone systems, are connected through an osteoclastogenic cytokine: the Receptor Activator Nuclear Factor Kappa B ligand. Adapted doses of ionizing radiation play a dual role on the tumor. Indeed, radiotherapy leads to immunogenicity by inducing damage associated with molecular patterns. However, it also induces an immunosuppressive effect by increasing the number of immunosuppressive cells. Interestingly, the abscopal effect could be used to optimize immunotherapy potential, especially on bone metastasis. Radiotherapy and immunotherapy combination is a promising strategy, however further studies are necessary to determine the more efficient types of radiation and to control the abscopal effect.
Collapse
Affiliation(s)
- Pierre Cornillon
- Department of Medical Oncology, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Wafa Bouleftour
- Department of Medical Oncology, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Thomas Reynaud
- Department of Radiotherapy, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Gregoire Pigne
- Department of Radiotherapy, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Denis Maillet
- Department of Medical Oncology, IMMUCARE, Centre Hospitalier Lyon Sud, Institut de Cancérologie des Hospices de Lyon, Pierre-Bénite, France
| | - Salima Hamizi
- Department of Medical Oncology, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Marie Beguinot
- Department of Medical Oncology, Medipole Lyon Villeurbanne Mutualist Clinic, Lyon, France
| |
Collapse
|
11
|
Liu D, Wang L, Guo Y. Advances in and prospects of immunotherapy for prostate cancer. Cancer Lett 2024; 601:217155. [PMID: 39127338 DOI: 10.1016/j.canlet.2024.217155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Immunotherapy has shown promising therapeutic effects in hematological malignancies and certain solid tumors and has emerged as a critical and highly potential treatment modality for cancer. However, prostate cancer falls under the category of immune-resistant cold tumors, for which immunotherapy exhibits limited efficacy in patients with solid tumors. Thus, it is important to gain a deeper understanding of the tumor microenvironment in prostate cancer to facilitate immune system activation and overcome immune suppression to advance immunotherapy for prostate cancer. In this review, we discuss the immunosuppressive microenvironment of prostate cancer, which is characterized by the presence of few tumor-infiltrating lymphocytes, abundant immunosuppressive cells, low immunogenicity, and a noninflammatory phenotype, which significantly influences the efficacy of immunotherapy for prostate cancer. Immunotherapy is mainly achieved by activating the host immune system and overcoming immunosuppression. In this regard, we summarize the therapeutic advances in immune checkpoint blockade, immunogenic cell death, reversal of the immunosuppressive tumor microenvironment, tumor vaccines, immune adjuvants, chimeric antigen receptor T-cell therapy, and overcoming penetration barriers in prostate cancer, with the aim of providing novel research insights and approaches to enhance the effectiveness of immunotherapy for prostate cancer.
Collapse
Affiliation(s)
- Deng Liu
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China; Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
12
|
van Wilpe S, Kloots ISH, Slootbeek PHJ, den Brok M, Westdorp H, Franken MD, Coskunturk M, Osinga T, Bloemendal H, Adema G, Smeenk RJ, Nagarajah J, van Ipenburg J, Kroeze LI, Ligtenberg MJL, Schalken J, Gerritsen WR, Mehra N. Ipilimumab with nivolumab in molecularly selected patients with castration-resistant prostate cancer: primary analysis of the phase II INSPIRE trial. Ann Oncol 2024:S0923-7534(24)03999-1. [PMID: 39293514 DOI: 10.1016/j.annonc.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer (mCRPC) typically exhibits resistance to immune checkpoint inhibitors (ICIs). However, a subset of mCRPC patients displays a more immunogenic profile. This study examines efficacy and safety of dual ICI therapy in molecularly selected mCRPC. PATIENTS AND METHODS This single-arm, phase II trial included 69 molecularly selected mCRPC patients with mismatch repair deficiency (dMMR), non-synonymous tumour mutational burden ≥7.1 muts/Mb (hTMB), a BRCA2 mutation (BRCAm), or biallelic CDK12 inactivation (CDK12i). Efficacy was assessed in ICI-naïve patients (cohort A) with RECIST 1.1 (A1) and Prostate Cancer Working Group 3 (A2) measurable disease. Safety was evaluated in cohorts A and B (prior ICI monotherapy). Treatment included nivolumab 3 mg/kg and ipilimumab 1 mg/kg every 3 weeks for four cycles, followed by nivolumab 480 mg every 4 weeks for up to 1 year. The primary endpoint was disease control rate beyond 6 months (DCR > 6), aiming to surpass a DCR > 6 of 22%. RESULTS Patients initiated treatment between January 2021 and February 2024. Cohort A included 65 patients. Of these, 21 had dMMR (32%), 8 had hTMB (12%), 20 had BRCAm (31%), and 16 had CDK12i (25%). DCR > 6 was achieved in 38% of patients [95% confidence interval (CI) 27% to 51%], and was highest in dMMR (81%), followed by hTMB (25%), CDK12i (19%), and BRCAm (15%). Objective response rate in cohort A was 38% (95% CI 22% to 55%) and 47% (95% CI 34% to 60%) exhibited a 50% decline in prostate-specific antigen levels. Median progression-free survival (PFS) was 4.0 months (95% CI 3.5-12.0 months) in cohort A, and 32.7 months (95% CI 21.8 months-not reached) in dMMR patients. Treatment-related adverse events (TRAEs) led to permanent discontinuation in 14 of 69 patients (20%). Grade ≥3 TRAEs occurred in 48% of patients, with diarrhoea and elevated transaminases each in 10%. There was one treatment-related death due to a bowel perforation and a second following euthanasia after grade 4 toxicity. CONCLUSIONS This trial of dual ICIs in molecularly selected mCRPC met its primary endpoint, showing DCR > 6 in 38% of patients. Dual ICIs exhibited modest responses in the hTMB, BRCAm, and CDK12i subgroups, but demonstrated exceptional efficacy in dMMR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - G Adema
- Department of Radiation Oncology
| | | | | | | | | | | | - J Schalken
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - N Mehra
- Department of Medical Oncology.
| |
Collapse
|
13
|
Dong B, Xu JY, Huang Y, Guo J, Dong Q, Wang Y, Li N, Liu Q, Zhang M, Pan Q, Wang H, Jiang J, Chen B, Shen D, Ma Y, Zhai L, Zhang J, Li J, Xue W, Tan M, Qin J. Integrative proteogenomic profiling of high-risk prostate cancer samples from Chinese patients indicates metabolic vulnerabilities and diagnostic biomarkers. NATURE CANCER 2024; 5:1427-1447. [PMID: 39242942 DOI: 10.1038/s43018-024-00820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/01/2024] [Indexed: 09/09/2024]
Abstract
Prostate cancer (PCa) exhibits significant geoethnic disparities as reflected by distinct variations in the cancer genome and disease progression. Here, we perform a comprehensive proteogenomic characterization of localized high-risk PCa utilizing paired tumors and nearby tissues from 125 Chinese male patients, with the primary objectives of identifying potential biomarkers, unraveling critical oncogenic events and delineating molecular subtypes with poor prognosis. Our integrated analysis highlights the utility of GOLM1 as a noninvasive serum biomarker. Phosphoproteomics analysis reveals the crucial role of Ser331 phosphorylation on FOXA1 in regulating FOXA1-AR-dependent cistrome. Notably, our proteomic profiling identifies three distinct subtypes, with metabolic immune-desert tumors (S-III) emerging as a particularly aggressive subtype linked to poor prognosis and BCAT2 catabolism-driven PCa progression. In summary, our study provides a comprehensive resource detailing the unique proteomic and phosphoproteomic characteristics of PCa molecular pathogenesis and offering valuable insights for the development of diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Urology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China.
| | - Yuqi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiacheng Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qun Dong
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqing Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingya Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiang Pan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hanling Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Bairun Chen
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Danqing Shen
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Ma
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Zhang
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China.
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
14
|
Liu MZ, Chen JY, Lyu F, Gao XS, Ma MW, Li XY, Li HZ, Qin SB, Gao Y, Wang PY. Exploring Radiotherapy as a Promising Alternative for Managing Advanced Upper Tract Urothelial Carcinoma: Rescuing Chemotherapy-Intolerant Patients. Clin Genitourin Cancer 2024; 22:102203. [PMID: 39241310 DOI: 10.1016/j.clgc.2024.102203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 09/09/2024]
Abstract
PURPOSE To investigate the safety and effectiveness of radiotherapy for advanced upper tract urothelial carcinoma (UTUC) patients intolerant to chemotherapy. METHODS Data for 21 patients with advanced UTUC intolerant to chemotherapy were retrospectively collected. All patients were treated with conventionally fractionated radiotherapy (50-70 Gy/20-33 f) or partial-SABR boost to the lesions (50-60 Gy/20-25 f with tumor center boosted with 6-8 Gy/f, 3-5 f) for bulky tumors. RESULTS The median age was 75 years (range, 58-87 years). Primary tumor resection was performed for all patients and none underwent metastatic resection. Seventeen (81%) patients had oligometastasis (1-5 metastases) at diagnosis. Eighteen (85.7%) received irradiation to all tumor lesions. Lymph node metastasis was predominant in the whole group (17/21). Other lesions were distributed as local recurrence (7/21), bone metastases (2/21) and abdominal wall/muscle (2/21). The median follow-up time was 38.5 months (interquartile range, 15.2-48.7 months). Rate of local control (LC), progression-free survival (PFS) and overall survival (OS) of the whole group at 1 year were 90%, 46.6%, and 80.4%, respectively. At 3 years, LC, PFS and OS were 65.6%, 26.6%, and 40.9%, respectively. Fourteen patients developed acute mild gastrointestinal toxicity, generally of grade 1-2; 8 patients developed acute grade 1-2 hematological toxicity, consisting mainly of anemia and leukopenia. No grade 3 or higher acute or late toxicities were observed. CONCLUSION For patients with advanced UTUC who are not able to tolerate chemotherapy, radiotherapy is a safe treatment and can achieve good local tumor control.
Collapse
Affiliation(s)
- Ming-Zhu Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China; Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jia-Yan Chen
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Feng Lyu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Xian-Shu Gao
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China.
| | - Ming-Wei Ma
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Xiao-Ying Li
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Hong-Zhen Li
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Shang-Bin Qin
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Yan Gao
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Pei-Yan Wang
- School of Information, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Romero Fernandez J, Cordoba Largo S, Benlloch Rodriguez R, Gil Haro B. The Effects of Gynecological Tumor Irradiation on the Immune System. Cancers (Basel) 2024; 16:2804. [PMID: 39199577 PMCID: PMC11352652 DOI: 10.3390/cancers16162804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Radiobiology has evolved from a mechanistic model based on DNA damage and response factors into a more complex model that includes effects on the immune system and the tumor microenvironment (TME). Irradiation has an immunomodulatory effect that can manifest as increased anti-tumor immunity or immunosuppression. Irradiation promotes an inflammatory microenvironment through the release of pro-inflammatory cytokines and endothelial damage, which recruit immune system cells to the irradiated area. Radiation-induced immunogenic cell death (ICD), characterized by the release of damage-associated molecular patterns (DAMPs) and tumor antigens, triggers an anti-tumor immune response of both innate and adaptive immunity. Anti-tumor immunity can manifest at a distance from the irradiated area, a phenomenon known as the abscopal effect (AE), which involves dendritic cells and CD8+ T cells. Irradiation also produces an immunosuppressive effect mediated by tumor-associated macrophages (TAMs) and regulatory T lymphocytes (Tregs), which counterbalances the immunostimulatory effect. In this work, we review the mechanisms involved in the radiation-induced immune response, which support the combined treatment of RT and immunotherapy, focusing, where possible, on gynecologic cancer.
Collapse
Affiliation(s)
- Jesus Romero Fernandez
- Radiation Oncology Department, Hospital Universitario Puerta de Hierro, C. Joaquín Rodrigo 1, 28222 Majadahonda, Spain; (S.C.L.); (R.B.R.); (B.G.H.)
| | | | | | | |
Collapse
|
16
|
Jiang J, Xu Y, Chen D, Li J, Zhu X, Pan J, Zhang L, Cheng P, Huang J. Pan-cancer analysis of immune checkpoint receptors and ligands in various cells in the tumor immune microenvironment. Aging (Albany NY) 2024; 16:11683-11728. [PMID: 39120585 PMCID: PMC11346784 DOI: 10.18632/aging.206053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
Drugs that target immune checkpoint have become the most popular weapon in cancer immunotherapy, yet only have practical benefits for a small percentage of patients. Tumor cells constantly interact with their microenvironment, which is made up of a variety of immune cells as well as endothelial cells and fibroblasts. Immune checkpoint expression and blocked signaling of immune cells in the tumor microenvironment (TME) are key to tumor progression. In this study, we perform deliberation convolution on the TCGA database for human lung, breast, and colorectal cancer to infer crosstalk between immune checkpoint receptors (ICRs) and ligands (ICLs) in TME of pan-carcinogenic solid tumor types, validated by flow cytometry. Analysis of immune checkpoints showed that there was little variation between different tumor types. It showed that CD160, LAG3, TIGIT were found to be highly expressed in CD8+ T cells instead of CD4+ T cells, PD-L1, PD-L2, CD86, LGALS9, TNFRSF14, LILRB4 and other ligands were highly expressed on macrophages, FVR, NECTIN2, FGL1 were highly expressed on Epithelial cells, CD200 was highly expressed in Endothelial cells, and CD80 was highly expressed in CD8 High expression on T cells. Overall, our study provides a new resource for the expression of immune checkpoints in TME on various types of cells. Significance: This study provides immune checkpoint expression of immune cells of multiple cancer types to infer immune mechanisms in the tumor microenvironment and provide ideas for the development of new immune checkpoint-blocking drugs.
Collapse
Affiliation(s)
- Jiahuan Jiang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Thyroid Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Yazhang Xu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Di Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jiaxin Li
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Xiaoling Zhu
- Department of Colorectal Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Leyi Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Pu Cheng
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 310009, China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
17
|
Moore C, Naraine I, Zhang T. Complete remission following pembrolizumab in a man with mCRPC with both microsatellite instability and BRCA2 mutation. Oncologist 2024; 29:716-720. [PMID: 38920278 PMCID: PMC11299937 DOI: 10.1093/oncolo/oyae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Prostate cancer is one of the most prevalent malignancies in men. In the United States, 1 in 8 men will be diagnosed with prostate cancer in their lifetime. Specifically, studies have delved into male subgroups that present a heightened risk for prostate cancer. Despite such high prevalence, prostate cancer can be heterogeneous and carry complexities that manifest differently between individuals. Metastatic hormone-sensitive prostate cancer (mHSPC) often has an abbreviated, aggressive disease course, and can have varying presentations with different molecular profiles that determine response/resistance to the approved treatments targeting the androgen-receptor pathway (eg, enzalutamide, apalutamide, darolutamide, and abiraterone acetate). We present a case of mHSPC quickly progressing to mCRPC, found to have microsatellite instability in mCRPC and excellent response to pembrolizumab, which raises the critical issues of early molecular testing and treatments personalized for the individual patient.
Collapse
Affiliation(s)
- Casey Moore
- Division of Hematology and Oncology, Department of Internal Medicine, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-8852, United States
| | - Isabel Naraine
- Division of Hematology and Oncology, Department of Internal Medicine, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-8852, United States
| | - Tian Zhang
- Division of Hematology and Oncology, Department of Internal Medicine, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-8852, United States
| |
Collapse
|
18
|
Lynch C, Pitroda SP, Weichselbaum RR. Radiotherapy, immunity, and immune checkpoint inhibitors. Lancet Oncol 2024; 25:e352-e362. [PMID: 39089313 DOI: 10.1016/s1470-2045(24)00075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 08/03/2024]
Abstract
Radiotherapy exerts immunostimulatory and immunosuppressive effects, both locally, within the irradiated tumour microenvironment, and systemically, outside the radiation field. Inspired by preclinical data that showed synergy between radiotherapy and immune checkpoint inhibitors, multiple clinical trials were initiated with the hypothesis that combined treatment with radiotherapy and immune checkpoint inhibitors could stimulate a robust systemic immune response and improve clinical outcomes. However, despite early optimism, radioimmunotherapy trials in the curative and metastatic settings have met with little success. In this Review, we summarise the immunostimulatory effects of radiotherapy that provided the theoretical basis for trials of combination radiotherapy and immune checkpoint inhibitors. We also discuss findings from clinical trials incorporating radiotherapy and immune checkpoint inhibitors and examine the success of these trials in the context of the immunosuppressive effects of radiotherapy. We conclude by highlighting targets for relieving radiotherapy-induced immunosuppression with the goal of enhancing the combined effects of radiotherapy and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Connor Lynch
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Sean P Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
19
|
Passelli K, Repáraz D, Kinj R, Herrera FG. Strategies for overcoming tumour resistance to immunotherapy: harnessing the power of radiation therapy. Br J Radiol 2024; 97:1378-1390. [PMID: 38833685 PMCID: PMC11256940 DOI: 10.1093/bjr/tqae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized cancer treatment; yet their efficacy remains variable across patients. This review delves into the intricate interplay of tumour characteristics contributing to resistance against ICI therapy and suggests that combining with radiotherapy holds promise. Radiation, known for its ability to trigger immunogenic cell death and foster an in situ vaccination effect, may counteract these resistance mechanisms, enhancing ICI response and patient outcomes. However, particularly when delivered at high-dose, it may trigger immunosuppressive mechanism and consequent side-effects. Notably, low-dose radiotherapy (LDRT), with its capacity for tumour reprogramming and reduced side effects, offers the potential for widespread application. Preclinical and clinical studies have shown encouraging results in this regard.
Collapse
Affiliation(s)
- Katiuska Passelli
- Centre Hospitalier Universitaire Vaudoise, Service of Radiation Oncology, Department of Oncology, University of Lausanne, AGORA Center for Cancer Research, Swiss Cancer Center Leman, 1012-Lausanne, Switzerland
| | - David Repáraz
- Centre Hospitalier Universitaire Vaudoise, Service of Radiation Oncology, Department of Oncology, University of Lausanne, AGORA Center for Cancer Research, Swiss Cancer Center Leman, 1012-Lausanne, Switzerland
| | - Remy Kinj
- Centre Hospitalier Universitaire Vaudoise, Service of Radiation Oncology, Department of Oncology, University of Lausanne, 1012-Lausanne, Switzerland
| | - Fernanda G Herrera
- Centre Hospitalier Universitaire Vaudois, Service of Radiation Oncology and Service of Immuno-oncology, Department of Oncology, University of Lausanne, Ludwig Institute for Cancer Research, Agora Center for Cancer Research, Swiss Cancer Center Leman, 1012-Lausanne, Switzerland
| |
Collapse
|
20
|
Yang J, Xiong X, Zheng W, Xu H, Liao X, Wei Q, Yang L. The roles of tertiary lymphoid structures in genitourinary cancers: molecular mechanisms, therapeutic strategies, and clinical applications. Int J Surg 2024; 110:5007-5021. [PMID: 38978471 PMCID: PMC11325987 DOI: 10.1097/js9.0000000000001939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
The presence of tertiary lymphoid structures (TLSs) associated with distinct treatment efficacy and clinical prognosis has been identified in various cancer types. However, the mechanistic roles and clinical implications of TLSs in genitourinary (GU) cancers remain incompletely explored. Despite their potential role as predictive markers described in numerous studies, it is essential to comprehensively evaluate the characteristics of TLSs, including drivers of formation, structural foundation, cellular compositions, maturation stages, molecular features, and specific functionality to maximize their positive impacts on tumor-specific immunity. The unique contributions of these structures to cancer progression and biology have fueled interest in these structures as mediators of antitumor immunity. Emerging data are trying to explore the effects of therapeutic interventions targeting TLSs. Therefore, a better understanding of the molecular and phenotypic heterogeneity of TLSs may facilitate the development of TLSs-targeting therapeutic strategies to obtain optimal clinical benefits for GU cancers in the setting of immunotherapy. In this review, the authors focus on the phenotypic and functional heterogeneity of TLSs in cancer progression, current therapeutic interventions targeting TLSs and the clinical implications and therapeutic potential of TLSs in GU cancers.
Collapse
Affiliation(s)
- Jie Yang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Nguyen CB, Reimers MA, Perera C, Abida W, Chou J, Feng FY, Antonarakis ES, McKay RR, Pachynski RK, Zhang J, Reichert ZR, Palmbos PL, Caram ME, Vaishampayan UN, Heath EI, Hopkins AC, Cieslik MP, Wu YM, Robinson D, Baladandayuthapani V, Chinnaiyan AM, Alva AS. Evaluating Immune Checkpoint Blockade in Metastatic Castration-Resistant Prostate Cancers with Deleterious CDK12 Alterations in the Phase 2 IMPACT Trial. Clin Cancer Res 2024; 30:3200-3210. [PMID: 38787530 PMCID: PMC11293970 DOI: 10.1158/1078-0432.ccr-24-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE CDK12 inactivation in metastatic castration-resistant prostate cancer (mCRPC) may predict immunotherapy responses. This phase 2 trial evaluated the efficacy of immune checkpoint inhibitor (ICI) therapy in patients with CDK12-altered mCRPC. PATIENTS AND METHODS Eligible patients had mCRPC with deleterious CDK12 alterations and any prior therapies except ICI. Cohort A received ipilimumab (1 mg/kg) with nivolumab (3 mg/kg) every 3 weeks for up to four cycles, followed by nivolumab 480 mg every 4 weeks. Cohort C received nivolumab alone 480 mg every 4 weeks. Patients with CDK12-altered nonprostate tumors were enrolled in cohort B and not reported. The primary endpoint was a 50% reduction in PSA (PSA50). Key secondary endpoints included PSA progression-free survival, overall survival, objective response rate, and safety. RESULTS PSA was evaluable in 23 patients in cohort A and 14 in cohort C. Median lines of prior therapy were two in cohorts A and C, including any prior novel hormonal agent (74% and 79%) and chemotherapy (57% and 36%). The PSA50 rate was 9% [95% confidence interval (CI), 1%-28%] in cohort A with two responders; neither had microsatellite instability or a tumor mutational burden >10 mutations/megabase. No PSA50 responses occurred in cohort C. Median PSA progression-free survival was 7.0 months (95% CI, 3.6-11.4) in cohort A and 4.5 months (95% CI, 3.4-13.8) in cohort C. Median overall survival was 9.0 months (95% CI, 6.2-12.3) in cohort A and 13.8 months (95% CI, 3.6-not reached) in cohort C. CONCLUSIONS There was minimal activity with ICI therapy in patients with CDK12-altered mCRPC.
Collapse
Affiliation(s)
- Charles B. Nguyen
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI
| | | | - Chamila Perera
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Wassim Abida
- Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jonathan Chou
- Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA
| | - Felix Y. Feng
- Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA
| | | | - Rana R. McKay
- Moores Cancer Center, University of California San Diego, San Diego, CA
| | | | | | | | - Phillip L. Palmbos
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI
| | - Megan E.V. Caram
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI
| | | | | | - Alexander C. Hopkins
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Marcin P. Cieslik
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Dan Robinson
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI
| | | | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Ajjai S. Alva
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
22
|
Ota Y, Inagaki R, Nagai Y, Hirose Y, Murata M, Yamamoto S. TLR7 agonist, DSP-0509, with radiation combination therapy enhances anti-tumor activity and modulates T cell dependent immune activation. BMC Immunol 2024; 25:48. [PMID: 39054418 PMCID: PMC11270965 DOI: 10.1186/s12865-024-00643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND TLR7 is a key player in the antiviral immunity. TLR7 signaling activates antigen-presenting cells including DCs and macrophages. This activation results in the adaptive immunity including T cells and B cells. Therefore, TLR7 is an important molecule of the immune system. Based on these observations, TLR7 agonists considered to become a therapy weaponize the immune system against cancer. Radiation therapy (RT) is one of the standard cancer therapies and is reported to modulate the tumor immune response. In this study, we aimed to investigate the anti-tumor activity in combination of TLR7 agonist, DSP-0509, with RT and underlying mechanism. RESULT We showed that anti-tumor activity is enhanced by combining RT with the TLR7 agonist DSP-0509 in the CT26, LM8, and 4T1 inoculated mice models. We found that once- weekly (q1w) dosing of DSP-0509 rather than biweekly (q2w) dosing is needed to achieve superior anti-tumor activities in CT26 model. Spleen cells from the mice in RT/DSP-0509 combination treatment group showed increased tumor lytic activity, inversely correlated with tumor volume, as measured by the chromium-release cytotoxicity assay. We also found the level of cytotoxic T lymphocytes (CTLs) increased in the spleens of completely cured mice. When the mice completely cured by combination therapy were re-challenged with CT26 cells, all mice rejected CT26 cells but accepted Renca cells. This rejection was not observed with CD8 depletion. Furthermore, levels of splenic effector memory CD8 T cells were increased in the combination therapy group. To explore the factors responsible for complete cure by combination therapy, we analyzed peripheral blood leukocytes (PBLs) mRNA from completely cured mice. We found that Havcr2low, Cd274low, Cd80high, and Il6low were a predictive signature for the complete response to combination therapy. An analysis of tumor-derived mRNA showed that combination of RT and DSP-0509 strongly increased the expression of anti-tumor effector molecules including Gzmb and Il12. CONCLUSION These data suggest that TLR7 agonist, DSP-0509, can be a promising concomitant when used in combination with RT by upregulating CTLs activity and gene expression of effector molecules. This combination can be an expecting new radio-immunotherapeutic strategy in clinical trials.
Collapse
Affiliation(s)
- Yosuke Ota
- Cancer Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan.
| | | | - Yasuhiro Nagai
- Cancer Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan
| | - Yuko Hirose
- Cancer Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan
| | - Masashi Murata
- Cancer Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan
| | | |
Collapse
|
23
|
Astašauskaitė S, Kupčinskaitė-Noreikienė R, Zaborienė I, Vaičiūnienė R, Vanagas T, Pranys D, Poškienė L, Juozaitytė E. Multiorgan Toxicity from Dual Checkpoint Inhibitor Therapy, Resulting in a Complete Response-A Case Report. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1129. [PMID: 39064558 PMCID: PMC11278757 DOI: 10.3390/medicina60071129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Immunotherapy treatment with checkpoint inhibitors (ICIs) has led to a breakthrough in the treatment of oncological diseases. Despite its clinical effectiveness, this treatment differs from others, such as cytotoxic chemotherapy, in that it causes immune-related adverse events. This type of toxicity can affect any organ or organ system of the body. We present a literature review and a rare clinical case from our clinical practice, in which a patient with metastatic clear cell renal carcinoma was treated with a single dose of dual checkpoint blockade (cytotoxic T-lymphocyte-4 (CTLA-4) and programmed death-1 (PD-1)) and simultaneously diagnosed with colitis, hepatitis, and nephritis. After early immunosuppressive treatment with the glucocorticoids, complete organ function recovery was achieved. The follow-up revealed a sustained complete response lasting more than a year.
Collapse
Affiliation(s)
- Skaistė Astašauskaitė
- Institute of Oncology, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Rita Kupčinskaitė-Noreikienė
- Institute of Oncology, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Inga Zaborienė
- Department of Radiology, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Rūta Vaičiūnienė
- Department of Nephrology, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Tomas Vanagas
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Darius Pranys
- Department of Pathology, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Lina Poškienė
- Department of Pathology, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Elona Juozaitytė
- Institute of Oncology, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
24
|
Dagar G, Gupta A, Shankar A, Chauhan R, Macha MA, Bhat AA, Das D, Goyal R, Bhoriwal S, Pandita RK, Prasad CP, Sarkar PS, Pandita TK, Singh M. The future of cancer treatment: combining radiotherapy with immunotherapy. Front Mol Biosci 2024; 11:1409300. [PMID: 39044839 PMCID: PMC11263218 DOI: 10.3389/fmolb.2024.1409300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
Radiotherapy (RT) and immunotherapy (IT) are the powerful tools for cancer treatment which act through the stimulation of immune response, and evidence suggest that combinatorial actions of these therapies may augment each other's beneficial effect through complex synergistic mechanisms. These molecular strategies are designed to target rapidly dividing cancer cells by either directly or indirectly inducing DNA damage. However, when cells detect DNA damage, they activate a range of signalling pathways known as the DNA damage response (DDR) to repair. Strategies are being developed to interfere with the DDR pathways in cancer cells to ensure their damage-induced degeneration. The stability of a cell's genetic material is largely dependent on the efficacy of DNA repair and therefore, an in-depth understanding of DNA damages and repair mechanism(s) in cancer cells is important to develop a promising therapeutic strategies for ensuring the efficacy of damage-induced tumor cell death. In recent years, a wide range of small molecule drugs have been developed which are currently being employed to combat the DNA repair deficiencies associated with tumor cells. Sequential or concurrent use of these two modalities significantly enhances the anti-tumor response, however with a concurrent probability of increased incidence of symptomatic adverse effects. With advent of newer IT agents, and administration of higher doses of radiation per fraction, such effects are more difficult to predict owing to the paucity of randomized trial data. It is well established that anti cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4), anti- Programmed cell death protein 1(PD-1), anti-Programmed cell death one ligand 1 (PD-L1) can be safely administered with RT and many studies have demonstrated survival benefit with such combination for patients with metastatic malignancy. However, the biology of radioimmunotherapy (RT/IT) is still an open area where research need to be focused to determine optimum dosage specially the interaction of the RT/IT pathways to determine optimum dosing schedule. In the current article we have summarised the possible intracellular immunological events that might be triggered when RT and IT modalities are combined with the DDR antagonists and highlighted present clinical practices, outcome, and toxicity profile of this novel treatment strategy.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashna Gupta
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Abhishek Shankar
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Chauhan
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu And Kashmir, India
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Dayasagar Das
- Department of Medicine, NYU Langone Health, New York City, NY, United States
| | - Rajeev Goyal
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Sandeep Bhoriwal
- Department of Surgical Oncology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Raj K. Pandita
- Center for Genomics and Precision Medicine, Texas A and M College of Medicine, Houston, TX, United States
| | - Chandra Prakash Prasad
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Partha S. Sarkar
- Department of Neurobiology and Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A and M College of Medicine, Houston, TX, United States
| | - Mayank Singh
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
25
|
Wang L, Lynch C, Pitroda SP, Piffkó A, Yang K, Huser AK, Liang HL, Weichselbaum RR. Radiotherapy and immunology. J Exp Med 2024; 221:e20232101. [PMID: 38771260 PMCID: PMC11110906 DOI: 10.1084/jem.20232101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
The majority of cancer patients receive radiotherapy during the course of treatment, delivered with curative intent for local tumor control or as part of a multimodality regimen aimed at eliminating distant metastasis. A major focus of research has been DNA damage; however, in the past two decades, emphasis has shifted to the important role the immune system plays in radiotherapy-induced anti-tumor effects. Radiotherapy reprograms the tumor microenvironment, triggering DNA and RNA sensing cascades that activate innate immunity and ultimately enhance adaptive immunity. In opposition, radiotherapy also induces suppression of anti-tumor immunity, including recruitment of regulatory T cells, myeloid-derived suppressor cells, and suppressive macrophages. The balance of pro- and anti-tumor immunity is regulated in part by radiotherapy-induced chemokines and cytokines. Microbiota can also influence radiotherapy outcomes and is under clinical investigation. Blockade of the PD-1/PD-L1 axis and CTLA-4 has been extensively investigated in combination with radiotherapy; we include a review of clinical trials involving inhibition of these immune checkpoints and radiotherapy.
Collapse
Affiliation(s)
- Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Connor Lynch
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Sean P. Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - András Piffkó
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Amy K. Huser
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Hua Laura Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Deutsch E, Levy A. Eradicating gross tumor disease: a prerequisite for efficient radioimmunotherapy? J Natl Cancer Inst 2024; 116:1008-1011. [PMID: 38539049 DOI: 10.1093/jnci/djae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 03/18/2024] [Indexed: 07/06/2024] Open
Abstract
Radiation therapy may induce off-target antitumor "abscopal" immunostimulatory and immunosuppressive effects. Several preclinical and early clinical studies revealed promising results when combining radiation therapy with immunostimulatory agents. Most radioimmunotherapy randomized trials showed disappointing results in patients with advanced tumors. In contrast, outcomes were encouraging when immunotherapy was delivered on top of gross disease elimination with curative-intent radiation therapy. In this review, we highlight available results from randomized trials and discuss the potential impact of overall tumor burden on the observed efficacy of radioimmunotherapy.
Collapse
Affiliation(s)
- Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, INSERM U1030, Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, INSERM U1030, Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| |
Collapse
|
27
|
Aparicio AM, Tidwell RSS, Yadav SS, Chen JS, Zhang M, Liu J, Guo S, Pilié PG, Yu Y, Song X, Vundavilli H, Jindal S, Zhu K, Viscuse PV, Lebenthal JM, Hahn AW, Soundararajan R, Corn PG, Zurita AJ, Subudhi SK, Zhang J, Wang W, Huff C, Troncoso P, Allison JP, Sharma P, Logothetis CJ. A Modular Trial of Androgen Signaling Inhibitor Combinations Testing a Risk-Adapted Strategy in Patients with Metastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2024; 30:2751-2763. [PMID: 38683200 PMCID: PMC11216872 DOI: 10.1158/1078-0432.ccr-23-3740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/13/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE To determine the efficacy and safety of risk-adapted combinations of androgen signaling inhibitors and inform disease classifiers for metastatic castration-resistant prostate cancers. PATIENTS AND METHODS In a modular, randomized phase II trial, 192 men were treated with 8 weeks of abiraterone acetate, prednisone, and apalutamide (AAPA; module 1) and then allocated to modules 2 or 3 based on satisfactory (≥50% PSA decline from baseline and <5 circulating tumor cell/7.5 mL) versus unsatisfactory status. Men in the former were randomly assigned to continue AAPA alone (module 2A) or with ipilimumab (module 2B). Men in the latter group had carboplatin + cabazitaxel added to AAPA (module 3). Optional baseline biopsies were subjected to correlative studies. RESULTS Median overall survival (from allocation) was 46.4 [95% confidence interval (CI), 39.2-68.2], 41.4 (95% CI, 33.3-49.9), and 18.7 (95% CI, 14.3-26.3) months in modules 2A (n = 64), 2B (n = 64), and 3 (n = 59), respectively. Toxicities were within expectations. Of 192 eligible patients, 154 (80.2%) underwent pretreatment metastatic biopsies. The aggressive-variant prostate cancer molecular profile (defects in ≥2 of p53, RB1, and PTEN) was associated with unsatisfactory status. Exploratory analyses suggested that secreted phosphoprotein 1-positive and insulin-like growth factor-binding protein 2-positive macrophages, druggable myeloid cell markers, and germline pathogenic mutations were enriched in the unsatisfactory group. CONCLUSIONS Adding ipilimumab to AAPA did not improve outcomes in men with androgen-responsive metastatic castration-resistant prostate cancer. Despite the addition of carboplatin + cabazitaxel, men in the unsatisfactory group had shortened survivals. Adaptive designs can enrich for biologically and clinically relevant disease subgroups to contribute to the development of marker-informed, risk-adapted therapy strategies in men with prostate cancer.
Collapse
Affiliation(s)
- Ana M. Aparicio
- Department of Genitourinary Medical Oncology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rebecca S. S. Tidwell
- Department of Biostatistics; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shalini S. Yadav
- Department of Immunology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiun-Sheng Chen
- Department of Immunology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Miao Zhang
- Department of Anatomical Pathology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jingjing Liu
- Department of Genomic Medicine; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shuai Guo
- Department of Bioinformatics and Computational Biology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patrick G. Pilié
- Department of Genitourinary Medical Oncology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yao Yu
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Xingzhi Song
- Department of Genomic Medicine; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Haswanth Vundavilli
- Department of Bioinformatics and Computational Biology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sonali Jindal
- Department of Immunology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keyi Zhu
- Department of Anatomical Pathology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul V. Viscuse
- Department of Genitourinary Medical Oncology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Justin M. Lebenthal
- Department of Genitourinary Medical Oncology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew W. Hahn
- Department of Genitourinary Medical Oncology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amado J. Zurita
- Department of Genitourinary Medical Oncology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sumit K. Subudhi
- Department of Genitourinary Medical Oncology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianhua Zhang
- Department of Genomic Medicine; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chad Huff
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Patricia Troncoso
- Department of Anatomical Pathology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James P. Allison
- Department of Immunology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Immunology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology; University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
28
|
Yennurajalingam S, Thomas L, Stanton PA, Lu Z, de Moraes AR, Bruera E. Cancer-related fatigue among patients with advanced cancer receiving immune-checkpoint inhibitors: a prospective study. Support Care Cancer 2024; 32:459. [PMID: 38918253 DOI: 10.1007/s00520-024-08643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE The aim of this study was to determine the frequency and factors associated with severity of cancer related fatigue (CRF) as assessed by Functional Assessment of Cancer Illness Therapy-Fatigue (FACIT-F), prior to, and during 12 weeks of immune-checkpoint inhibitors (ICIs). We also explored the effects of ICIs on fatigue dimensions and interference with daily activities (Multidimensional Functional Symptom Inventory, MFSI-SF, Patient-Related Outcome Symptom Measurement Information System Short form Fatigue 7a, PROMIS F-SF), QOL (Functional Assessment of Cancer Therapy-General, FACT-G), and cancer symptoms (Edmonton Symptom Assessment Scale, ESAS). METHODS In this prospective, longitudinal observational study, patients with a diagnosis of advanced cancer receiving ICIs were evaluated. Patient demographics, FACT-G, FACIT-F, MFSI-SF, PROMIS F-SF, and ESAS were collected prior to, and during 12 weeks of ICIs. RESULTS A total of 160 of the 212 enrolled patients were analyzed. The median age was 61 years, 60% were female, most common cancer was melanoma (73%), and most common ICI was nivolumab 46%. The frequency of clinically significant fatigue (defined as ≤ 34/52 on FACIT-F score) was 25.6% at baseline, 25.7% at week 8, and 19.5% at week 12. There was significant improvement in FACIT-F (P = 0.016), FACT-G physical well-being (P = 0.041), FACT-G emotional well-being (P = 0.011), ESAS anxiety (P = 0.045), and ESAS psychological distress (P = 0.03) scores from baseline to week 12 of ICIs. Multivariate analysis found significant association between clinically significant CRF and PROMIS F-SF (P < 0.001) and MFSI-SF global scores (P < 0.001). CONCLUSIONS CRF is frequent prior to the initiation of ICI treatment. Over 12 weeks of ICI treatment, CRF significantly improved. FACT-G physical well-being, FACT-G emotional well-being, ESAS anxiety, and ESAS psychological distress scores improved overtime. Further studies are needed to validate these findings.
Collapse
Affiliation(s)
- Sriram Yennurajalingam
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Lisa Thomas
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Penny A Stanton
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhanni Lu
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aline Rozman de Moraes
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Bruera
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
29
|
Shahi A, Kidane D. Starving cancer cells to enhances DNA damage and immunotherapy response. Oncotarget 2024; 15:392-399. [PMID: 38900609 PMCID: PMC11197973 DOI: 10.18632/oncotarget.28595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
Prostate cancer (PCa) poses significant challenges in treatment, particularly when it progresses to a metastatic, castrate-resistant state. Conventional therapies, including chemotherapy, radiotherapy, and hormonal treatments, often fail due to toxicities, off-target effects, and acquired resistance. This research perspective defines an alternative therapeutic strategy focusing on the metabolic vulnerabilities of PCa cells, specifically their reliance on non-essential amino acids such as cysteine. Using an engineered enzyme cyst(e)inase to deplete the cysteine/cystine can induce oxidative stress and DNA damage in cancer cells. This depletion elevates reactive oxygen species (ROS) levels, disrupts glutathione synthesis, and enhances DNA damage, leading to cancer cell death. The combinatorial use of cyst(e)inase with agents targeting antioxidant defenses, such as thioredoxins, further amplifies ROS accumulation and cytotoxicity in PCa cells. Overall, in this perspective provides a compressive overview of the previous work on manipulating amino acid metabolism and redox balance modulate the efficacy of DNA repair-targeted and immune checkpoint blockade therapies in prostate cancer.
Collapse
Affiliation(s)
- Aashirwad Shahi
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Dawit Kidane
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
30
|
Le Guevelou J, Cuccia F, Flippot R, Ferrera G, Terlizzi M, Zilli T, De Crevoisier R, Hannoun-Levi JM, Supiot S, Sargos P, Pasquier D. The current landscape of stereotactic body radiation therapy for metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00862-8. [PMID: 38898265 DOI: 10.1038/s41391-024-00862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND The onset of castration-resistance is associated with dismal outcomes in patients with prostate cancer (PCa). Metastasis directed therapy has been investigated in multiple disease settings and may improve outcomes in selected patients. Our systematic review aims to summarize evidence with stereotactic body radiotherapy (SBRT) in castration-resistant prostate cancer (CRPC). METHODS The literature search was performed on March 2024, on Pubmed, using the keywords "SBRT" AND "CRPC", and "stereotactic ablative radiotherapy (SABR)" AND "CRPC". This search retrieved a total of 108 articles, 19 were included. RESULTS The literature is largely dominated by retrospective series. In men with metachronous oligoprogression, SBRT with androgen receptor pathway inhibitor significantly increased progression-free survival (PFS) including biochemical progression-free survival in a randomized phase II trial (hazard ratio of 0.35, p < 0.001). In patients continuing ADT, the bPFS ranged between 9.5 months to 17.9 months, and next systemic treatment-free survival (NEST-FS) reached up to 2 years. In men with induced oligoprogression, SBRT enabled NEST-FS up to 3 years. SBRT was well tolerated, with less than 5% grade 3 toxicity reported across studies. CONCLUSION In the population of patients with oligometastatic CRPC, SBRT enables long-term biochemical response and PFS. In the oligoprogressive setting, SBRT could be integrated to prolong the duration and efficacy of systemic therapies. Nevertheless, the level of evidence remains very low and inclusion within prospective trials remain the preferred option for this population of patients.
Collapse
Affiliation(s)
| | - Francesco Cuccia
- Department of Radiation Therapy, ARNAS Civico Palermo, Palermo, Italy
| | - Ronan Flippot
- Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France
| | - Giuseppe Ferrera
- Department of Radiation Therapy, ARNAS Civico Palermo, Palermo, Italy
| | - Mario Terlizzi
- Department of Radiation Therapy, Institut Gustave Roussy, Villejuif, France
| | - Thomas Zilli
- Department of Radiation Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
- Università della Svizzera Italiana, Lugano, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Jean-Michel Hannoun-Levi
- Department of Radiation Oncology, Centre Antoine Lacassagne, University Côte d'Azur, Nice, France
| | - Stephane Supiot
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest, Nantes, France
| | - Paul Sargos
- Department of Radiation Oncology, Institut Bergonié, Bordeaux, France
| | - David Pasquier
- Academic Department of Radiation Oncology, Centre Oscar Lambret, Lille, France
- Lille University, CRIStAL UMR CNRS 9189, Lille, France
| |
Collapse
|
31
|
Yu P, Zhu C, You X, Gu W, Wang X, Wang Y, Bu R, Wang K. The combination of immune checkpoint inhibitors and antibody-drug conjugates in the treatment of urogenital tumors: a review insights from phase 2 and 3 studies. Cell Death Dis 2024; 15:433. [PMID: 38898003 PMCID: PMC11186852 DOI: 10.1038/s41419-024-06837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
With the high incidence of urogenital tumors worldwide, urinary system tumors are among the top 10 most common tumors in men, with prostate cancer ranking first and bladder cancer fourth. Patients with resistant urogenital tumors often have poor prognosis. In recent years, researchers have discovered numerous specific cancer antigens, which has led to the development of several new anti-cancer drugs. Using protein analysis techniques, researchers developed immune checkpoint inhibitors (ICIs) and antibody-conjugated drugs (ADCs) for the treatment of advanced urogenital tumors. However, tumor resistance often leads to the failure of monotherapy. Therefore, clinical trials of the combination of ICIs and ADCs have been carried out in numerous centers around the world. This article reviewed phase 2 and 3 clinical studies of ICIs, ADCs, and their combination in the treatment of urogenital tumors to highlight safe and effective methods for selecting individualized therapeutic strategies for patients. ICIs activate the immune system, whereas ADCs link monoclonal antibodies to toxins, which can achieve a synergistic effect when the two drugs are combined. This synergistic effect provides multiple advantages for the treatment of urogenital tumors.
Collapse
Affiliation(s)
- Puguang Yu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiangyun You
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Urology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443002, China
- Department of Urology, Yichang Central People's Hospital, Yichang, 443002, China
| | - Wen Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yuan Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Renge Bu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
32
|
Choudhury AD, Kwak L, Cheung A, Allaire KM, Marquez J, Yang DD, Tripathi A, Kilar JM, Flynn M, Maynard B, Reichel R, Pace AF, Chen BK, Van Allen EM, Kilbridge K, Wei XX, McGregor BA, Pomerantz MM, Bhatt RS, Sweeney CJ, Bubley GJ, Jacene HA, Taplin ME, Huang FW, Harshman LC, Fong L. Randomized Phase II Study Evaluating the Addition of Pembrolizumab to Radium-223 in Metastatic Castration-resistant Prostate Cancer. Cancer Immunol Res 2024; 12:704-718. [PMID: 38552171 PMCID: PMC11148544 DOI: 10.1158/2326-6066.cir-22-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/15/2023] [Accepted: 03/08/2024] [Indexed: 06/05/2024]
Abstract
The checkpoint immunotherapeutic pembrolizumab induces responses in a small minority of patients with metastatic castration-resistant prostate cancer (mCRPC). Radium-223 (R223) may increase immunogenicity of bone metastases and increase pembrolizumab (P) activity. In a randomized phase II study, we assessed the effect of R223+P compared with R223 on tumor immune infiltration, safety, and clinical outcomes in patients with mCRPC. The primary endpoint was differences in CD4+ and CD8+ T-cell infiltrate in 8-week versus baseline bone metastasis biopsies; secondary endpoints were safety, radiographic progression-free survival (rPFS), and overall survival (OS). Of the 42 treated patients (29 R223+P, 13 R223), 18 R223+P and 8 R223 patients had evaluable paired tumor biopsies. Median fold-change of CD4+ T cells was -0.7 (range: -9.3 to 4.7) with R223+P and 0.1 (-11.1 to 3.7) with R223 (P = 0.66); for CD8+ T cells, median fold-change was -0.6 (-7.4 to 5.3) with R223+P and -1.3 (-3.1 to 4.8) with R223 (P = 0.66). Median rPFS and OS was 6.1 (95% confidence interval: 2.7-11.0) and 16.9 months [12.7-not reached (NR)], respectively, with R223+P and 5.7 (2.6-NR) and 16.0 (9.0-NR), respectively, with R223. Although R223+P was well tolerated with no unexpected toxicity, the combination did not improve efficacy. High-dimensional flow cytometry demonstrated minimal immune modulation with R223, whereas R223+P induced CTLA-4 expression on circulating CD4+ T cells. Clinical responders possessed lower circulating frequencies of Ki67+ T and myeloid cells at baseline and higher circulating frequencies of TIM-3+ T and myeloid cells by week 9. Although R223+P did not induce T-cell infiltration into the tumor microenvironment, exhaustion of induced peripheral T-cell immune responses may dampen the combination's clinical activity.
Collapse
Affiliation(s)
- Atish D. Choudhury
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Lucia Kwak
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alexander Cheung
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Kathryn M. Allaire
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Jaqueline Marquez
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - David D. Yang
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | - Rebecca Reichel
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Brandon K. Chen
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Eliezer M. Van Allen
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Kerry Kilbridge
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Xiao X. Wei
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Bradley A. McGregor
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Mark M. Pomerantz
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Rupal S. Bhatt
- Harvard Medical School, Boston, Massachusetts
- Beth-Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Glenn J. Bubley
- Harvard Medical School, Boston, Massachusetts
- Beth-Israel Deaconess Medical Center, Boston, Massachusetts
| | - Heather A. Jacene
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Mary-Ellen Taplin
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Franklin W. Huang
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | | | - Lawrence Fong
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| |
Collapse
|
33
|
Liu H, Fu L, Jin S, Ye X, Chen Y, Pu S, Xue Y. Cardiovascular toxicity with CTLA-4 inhibitors in cancer patients: A meta-analysis. CANCER INNOVATION 2024; 3:e116. [PMID: 38947758 PMCID: PMC11212283 DOI: 10.1002/cai2.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 07/02/2024]
Abstract
Background With the emergence of cytotoxic T lymphocyte-associated protein-4 (CTLA-4) inhibitors, the outcomes of patients with malignant tumors have improved significantly. However, the incidence of cardiovascular adverse events has also increased, which can affect tumor treatment. In this study, we evaluated the incidence and severity of adverse cardiovascular events caused by CTLA-4 inhibitors by analyzing reported trials that involved CTLA-4 inhibitor therapy. Methods Randomized clinical trials published in English from January 1, 2013, to November 30, 2022, were searched using the Cochrane Library and PubMed databases. All included trials examined all grade and grades 3-5 cardiac and vascular adverse events. These involved comparisons of CTLA-4 inhibitors to placebo, CTLA-4 inhibitors plus chemotherapy to chemotherapy alone, CTLA-4 inhibitors combined with PD-1/PD-L1 inhibitors to PD-1/PD-L1 inhibitors alone, and CTLA-4 inhibitors plus target agent to PD-1/PD-L1 inhibitors plus target agent. The odds ratio (OR) and corresponding 95% confidence intervals (CIs) were calculated using the Mantel-Haenszel method. Results Overall, 20 trials were included. CTLA-4 inhibitors significantly increased the incidence of all-grade cardiovascular toxicity (OR = 1.33, 95% CI: 1.00-1.75, p = 0.05). The incidence of all-grade cardiovascular toxicity increased in malignant tumor patients who received single-agent CTLA-4 inhibitors (OR = 1.73, 95% CI: 1.13-2.65, p = 0.01), as well as the incidence rate of grades 3-5 cardiovascular adverse events (OR = 2.00, 95% CI: 1.08-3.70, p = 0.03). Compared with the non-CTLA-4 inhibitor group, CTLA-4 inhibitors plus chemotherapy, PD-1/PD-L1 inhibitors, or target agent did not significantly affect the incidence of cardiac and vascular toxicity. The incidence of grades 3-5 cardiac failure, hypertension, pericardial effusion, myocarditis, and atrial fibrillation were much higher among patients exposed to CTLA-4 inhibitor, but the data were not statistically significant. Conclusion Our findings suggest that the incidence rate of all cardiovascular toxicity and severe cardiovascular toxicity increased in patients who were administered CTLA-4 inhibitors. In addition, the risk of serious cardiovascular toxic events was independent of the type of adverse event. From these results, physicians should assess the benefits and risks of CTLA-4 inhibitors when treating malignancies.
Collapse
Affiliation(s)
- Huiyi Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
| | - Lu Fu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
| | - Shuyu Jin
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xingdong Ye
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
| | - Yanlin Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
| | - Sijia Pu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
- School of MedicineSouth China University of TechnologyGuangzhouGuangdongChina
| | - Yumei Xue
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
| |
Collapse
|
34
|
Bell HN, Zou W. Beyond the Barrier: Unraveling the Mechanisms of Immunotherapy Resistance. Annu Rev Immunol 2024; 42:521-550. [PMID: 38382538 PMCID: PMC11213679 DOI: 10.1146/annurev-immunol-101819-024752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Immune checkpoint blockade (ICB) induces a remarkable and durable response in a subset of cancer patients. However, most patients exhibit either primary or acquired resistance to ICB. This resistance arises from a complex interplay of diverse dynamic mechanisms within the tumor microenvironment (TME). These mechanisms include genetic, epigenetic, and metabolic alterations that prevent T cell trafficking to the tumor site, induce immune cell dysfunction, interfere with antigen presentation, drive heightened expression of coinhibitory molecules, and promote tumor survival after immune attack. The TME worsens ICB resistance through the formation of immunosuppressive networks via immune inhibition, regulatory metabolites, and abnormal resource consumption. Finally, patient lifestyle factors, including obesity and microbiome composition, influence ICB resistance. Understanding the heterogeneity of cellular, molecular, and environmental factors contributing to ICB resistance is crucial to develop targeted therapeutic interventions that enhance the clinical response. This comprehensive overview highlights key mechanisms of ICB resistance that may be clinically translatable.
Collapse
Affiliation(s)
- Hannah N Bell
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Medical School, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Graduate Programs in Cancer Biology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA; ,
| | - Weiping Zou
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Medical School, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA; ,
- Graduate Programs in Cancer Biology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
35
|
Dorff TB, Blanchard MS, Adkins LN, Luebbert L, Leggett N, Shishido SN, Macias A, Del Real MM, Dhapola G, Egelston C, Murad JP, Rosa R, Paul J, Chaudhry A, Martirosyan H, Gerdts E, Wagner JR, Stiller T, Tilakawardane D, Pal S, Martinez C, Reiter RE, Budde LE, D'Apuzzo M, Kuhn P, Pachter L, Forman SJ, Priceman SJ. PSCA-CAR T cell therapy in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat Med 2024; 30:1636-1644. [PMID: 38867077 PMCID: PMC11186768 DOI: 10.1038/s41591-024-02979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/05/2024] [Indexed: 06/14/2024]
Abstract
Despite recent therapeutic advances, metastatic castration-resistant prostate cancer (mCRPC) remains lethal. Chimeric antigen receptor (CAR) T cell therapies have demonstrated durable remissions in hematological malignancies. We report results from a phase 1, first-in-human study of prostate stem cell antigen (PSCA)-directed CAR T cells in men with mCRPC. The starting dose level (DL) was 100 million (M) CAR T cells without lymphodepletion (LD), followed by incorporation of LD. The primary end points were safety and dose-limiting toxicities (DLTs). No DLTs were observed at DL1, with a DLT of grade 3 cystitis encountered at DL2, resulting in addition of a new cohort using a reduced LD regimen + 100 M CAR T cells (DL3). No DLTs were observed in DL3. Cytokine release syndrome of grade 1 or 2 occurred in 5 of 14 treated patients. Prostate-specific antigen declines (>30%) occurred in 4 of 14 patients, as well as radiographic improvements. Dynamic changes indicating activation of peripheral blood endogenous and CAR T cell subsets, TCR repertoire diversity and changes in the tumor immune microenvironment were observed in a subset of patients. Limited persistence of CAR T cells was observed beyond 28 days post-infusion. These results support future clinical studies to optimize dosing and combination strategies to improve durable therapeutic outcomes. ClinicalTrials.gov identifier NCT03873805 .
Collapse
Affiliation(s)
- Tanya B Dorff
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, USA.
| | - M Suzette Blanchard
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, USA
| | - Lauren N Adkins
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Laura Luebbert
- Departments of Mathematics and Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Neena Leggett
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Stephanie N Shishido
- Michelson Center for Convergent Bioscience, Convergent Science Institute in Cancer, University of Southern California, Los Angeles, CA, USA
| | - Alan Macias
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Marissa M Del Real
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Gaurav Dhapola
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Colt Egelston
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - John P Murad
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Reginaldo Rosa
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Jinny Paul
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | | | - Hripsime Martirosyan
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, USA
| | - Ethan Gerdts
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Jamie R Wagner
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Tracey Stiller
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, USA
| | - Dileshni Tilakawardane
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Sumanta Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, USA
| | - Catalina Martinez
- Department of Clinical and Translational Project Development, City of Hope, Duarte, CA, USA
| | - Robert E Reiter
- Department of Urology, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Lihua E Budde
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | | | - Peter Kuhn
- Michelson Center for Convergent Bioscience, Convergent Science Institute in Cancer, University of Southern California, Los Angeles, CA, USA
| | - Lior Pachter
- Departments of Mathematics and Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA.
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
36
|
Ceci F, Airò Farulla LS, Bonatto E, Evangelista L, Aliprandi M, Cecchi LG, Mattana F, Bertocchi A, DE Vincenzo F, Perrino M, Cordua N, Borea F, Zucali PA. New target therapies in prostate cancer: from radioligand therapy, to PARP-inhibitors and immunotherapy. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2024; 68:101-115. [PMID: 38860274 DOI: 10.23736/s1824-4785.24.03575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Prostate cancer (PCa) remains a significant global health challenge, particularly in its advanced stages. Despite progress in early detection and treatment, PCa is the second most common cancer diagnosis among men. This review aims to provide an overview of current therapeutic approaches and innovations in PCa management, focusing on the latest advancements and ongoing challenges. We conducted a narrative review of clinical trials and research studies, focusing on PARP inhibitors (PARPis), phosphoinositide 3 kinase-protein kinase B inhibitors, immunotherapy, and radioligand therapies (RLTs). Data was sourced from major clinical trial databases and peer-reviewed journals. Androgen deprivation therapy and androgen-receptor pathway inhibitors remain foundational in managing castration-sensitive and early-stage castration-resistant PCa (CRPC). PARPi's, such as olaparib and rucaparib, have emerged as vital treatments for metastatic CRPC with homologous recombination repair gene mutations, highlighting the importance of personalized medicine. Immune checkpoint inhibitors (ICIs) have shown clinical benefit limited to specific subgroups of PCa, demonstrating significant improvement in efficacy in patients with microsatellite instability/mismatch repair or cyclin-dependent kinase 12 alteration, highlighting the importance of focusing ongoing research on identifying and characterizing these subgroups to maximize the clinical benefits of ICIs. RLTs have shown effectiveness in treating mCRPC. Different alpha emitters (like [225Ac]PSMA) and beta emitters compounds (like [177Lu]PSMA) impact treatment differently due to their energy transfer characteristics. Clinical trials like VISION and TheraP have demonstrated positive outcomes with RLT, particularly [177Lu]PSMA-617, leading to FDA approval. Ongoing trials and future perspectives explore the potential of [225Ac]PSMA, aiming to improve outcomes for patients with mCRPC. The landscape of PCa treatment is evolving, with significant advancements in both established and novel therapies. The combination of hormonal therapies, chemotherapy, PARPis, immunotherapy, and RLTs, guided by genetic and molecular insights, opens new possibilities for personalized treatment.
Collapse
Affiliation(s)
- Francesco Ceci
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lighea S Airò Farulla
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy -
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Elena Bonatto
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Nuclear Medicine, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marta Aliprandi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luigi G Cecchi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Francesco Mattana
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Bertocchi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Fabio DE Vincenzo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Matteo Perrino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Nadia Cordua
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Federica Borea
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paolo A Zucali
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
37
|
Nguyen CB, Vaishampayan UN. Clinical Applications of the Gut Microbiome in Genitourinary Cancers. Am Soc Clin Oncol Educ Book 2024; 44:e100041. [PMID: 38788173 DOI: 10.1200/edbk_100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Recently recognized as one of the hallmarks of cancer, the microbiome consists of symbiotic microorganisms that play pivotal roles in carcinogenesis, the tumor microenvironment, and responses to therapy. With recent advances in microbiome metagenomic sequencing, a growing body of work has demonstrated that changes in gut microbiome composition are associated with differential responses to immune checkpoint inhibitors (ICIs) because of alterations in cytokine signaling and cytotoxic T-cell recruitment. Therefore, strategies to shape the gut microbiome into a more favorable, immunogenic profile may lead to improved responses with ICIs. Immunotherapy is commonly used in genitourinary (GU) cancers such as renal cell carcinoma, urothelial cancer, and to a limited extent, prostate cancer. However, a subset of patients do not derive clinical benefit with ICIs. Gut microbiome-based interventions are of particular interest given the potential to boost responses to ICIs in preclinical and early-phase prospective studies. Novel approaches using probiotic therapy (live bacterial supplementation) and fecal microbiota transplantation in patients with GU cancers are currently under investigation.
Collapse
Affiliation(s)
- Charles B Nguyen
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Ulka N Vaishampayan
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
38
|
Bosnali E, Akdas EM, Telli E, Teke K, Kara O. The role of immunotherapy in urological cancers. Arch Ital Urol Androl 2024; 96:12307. [PMID: 38818794 DOI: 10.4081/aiua.2024.12307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/10/2024] [Indexed: 06/01/2024] Open
Abstract
Immunotherapy is defined as a therapeutic approach that targets or manipulates the immune system. A deeper understanding of the cellular and molecular composition of the tumour environment, as well as the mechanisms controlling the immune system, has made possible the development and clinical investigation of many innovative cancer therapies. Historically, immunotherapy has played an essential role in treating urologic malignancies, while in the modern era, the development of immune checkpoint inhibitors (ICIs) has been critical to urology. Urothelial carcinoma is a common type of cancer in the genitourinary system, and treatment strategies in this area are constantly evolving. Intravesical and systemic immunotherapeutic agents have begun to be used increasingly frequently in treating urothelial carcinoma. These agents increase the anti-tumour response by affecting the body's defence mechanisms. Immunotherapeutic agents used in urothelial carcinoma include various options such as BCG, interferon, anti-PD-1 (pembrolizumab, nivolumab) and anti-PD-L1 (atezolizumab, avelumab, durvalumab). Renal cell carcinoma (RCC) has been known for many years as a tumour with unique sensitivity to immunotherapies. The recent emergence of ICIs that block PD-1/PD-L1 (pembrolizumab, nivolumab, atezolizumab) or CTLA4 (ipilimumab) signalling pathways has reestablished systemic immunotherapy as central to the treatment of advanced RCC. In light of randomized clinical trials conducted with increasing interest in the application of immunotherapies in the adjuvant setting, combination therapies (nivolumab/ipilimumab, nivolumab/cabozantinib, pembrolizumab/ axitinib, pembrolizumab/lenvantinib) have become the standard first-line treatment of metastatic RCC. Prostate cancer is in the immunologically "cold" tumour category; on the contrary, in recent years, immunotherapeutic agents have come to the fore as an essential area in the treatment of this disease. Especially in the treatment of castration-resistant prostate cancer, immunotherapeutic agents constitute an alternative treatment method besides androgen deprivation therapy and chemotherapy. Ipilimumab, nivolumab, pembrolizumab, atezolizumab, and Sipuleucel T (Vaccine-based) are promising alternative treatment options. Considering ongoing randomized clinical trials, immunotherapeutic agents promise to transform the uro-oncology field significantly. In this review, we aimed to summarize the role of immunotherapy in urothelial, renal and prostate cancer in the light of randomized clinical trials.
Collapse
Affiliation(s)
- Efe Bosnali
- Department of Urology, University of Health Sciences, Derince Training and Research Hospital, Kocaeli.
| | | | - Engin Telli
- Department of Urology, School of Medicine, Kocaeli University.
| | - Kerem Teke
- Department of Urology, School of Medicine, Kocaeli University.
| | - Onder Kara
- Department of Urology, School of Medicine, Kocaeli University.
| |
Collapse
|
39
|
Lampe H, Tam L, Hansen AR. Bi-specific T-cell engagers (BiTEs) in prostate cancer and strategies to enhance development: hope for a BiTE-r future. Front Pharmacol 2024; 15:1399802. [PMID: 38873417 PMCID: PMC11169794 DOI: 10.3389/fphar.2024.1399802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Metastatic castrate resistant prostate cancer (mCRPC) continues to have poor survival rates due to limited treatment options. Bi-specific T cell engagers (BiTEs) are a promising class of novel immunotherapies with demonstrated success in haematological malignancies and melanoma. BiTEs developed for tumour associated antigens in prostate cancer have entered clinical testing. These trials have been hampered by high rates of treatment related adverse events, minimal or transient anti-tumour efficacy and generation of high titres of anti-drug antibodies. This paper aims to analyse the challenges faced by the different BiTE therapy constructs and the mCRPC tumour microenvironment that result in therapeutic resistance and identify possible strategies to overcome these issues.
Collapse
Affiliation(s)
| | | | - Aaron R. Hansen
- Department of Medical Oncology, Division of Cancer Care Services, Princess Alexandra Hospital, Metro South Health Service, Queensland Health, Brisbane, QLD, Australia
| |
Collapse
|
40
|
Maji S, Kumar A, Emdad L, Fisher PB, Das SK. Molecular landscape of prostate cancer bone metastasis. Adv Cancer Res 2024; 161:321-365. [PMID: 39032953 DOI: 10.1016/bs.acr.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer (PC) has a high propensity to develop bone metastases, causing severe pain and pathological fractures that profoundly impact a patients' normal functions. Current clinical intervention is mainly palliative focused on pain management, and tumor progression is refractory to standard therapeutic regimens. This limited treatment efficacy is at least partially due to a lack of comprehensive understanding of the molecular landscape of the disease pathology, along with the intensive overlapping of physiological and pathological molecular signaling. The niche is overwhelmed with diverse cell types with inter- and intra-heterogeneity, along with growth factor-enriched cells that are supportive of invading cell proliferation, providing an additional layer of complexity. This review seeks to provide molecular insights into mechanisms underlying PC bone metastasis development and progression.
Collapse
Affiliation(s)
- Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
41
|
Lopez-Bujanda ZA, Hadavi SH, Ruiz De Porras V, Martínez-Balibrea E, Dallos MC. Chemotactic signaling pathways in prostate cancer: Implications in the tumor microenvironment and as potential therapeutic targets. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:162-205. [PMID: 39260936 DOI: 10.1016/bs.ircmb.2024.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Prostate cancer (PCa) stands as a significant global health concern, ranking among the leading causes of cancer deaths in men. While there are several treatment modalities for localized PCa, metastatic castration-resistant PCa (mCRPC) remains incurable. Despite therapeutic advancements showing promise in mCRPC, their impact on overall survival has been limited. This chapter explores the process by which tumors form, reviews our current understanding of PCa progression to mCRPC, and addresses the challenges of boosting anti-tumor immune responses in these tumors. It specifically discusses how chemotactic signaling affects the tumor microenvironment and its role in immune evasion and cancer progression. The chapter further examines the rationale of directly or indirectly targeting these pathways as adjuvant therapies for mCRPC, highlighting recent pre-clinical and clinical studies currently underway. The discussion emphasizes the potential of targeting specific chemokines and chemokine receptors as combination therapies with mainstream treatments for PCa and mCRPC to maximize long-term survival for this deadly disease.
Collapse
Affiliation(s)
- Zoila A Lopez-Bujanda
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, United States.
| | - Shawn H Hadavi
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Vicenç Ruiz De Porras
- Badalona Applied Research Group of Oncology (B-ARGO), Catalan Institute of Oncology, Badalona, BCN, Spain; CARE program, Germans Trias i Pujol Research Institute (IGTP), Badalona, BCN, Spain
| | - Eva Martínez-Balibrea
- CARE program, Germans Trias i Pujol Research Institute (IGTP), Badalona, BCN, Spain; ProCURE Program, Catalan Institute of Oncology, Badalona, BCN, Spain
| | - Matthew C Dallos
- Memorial Solid Tumor Group, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
42
|
Capuozzo M, Santorsola M, Ianniello M, Ferrara F, Zovi A, Petrillo N, Castiello R, Fantuz MR, Ottaiano A, Savarese G. Innovative Drug Modalities for the Treatment of Advanced Prostate Cancer. Diseases 2024; 12:87. [PMID: 38785742 PMCID: PMC11119780 DOI: 10.3390/diseases12050087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Prostate cancer, a prevalent malignancy affecting the prostate gland, is a significant global health concern. Androgen-deprivation therapy (ADT) has proven effective in controlling advanced disease, with over 50% of patients surviving at the 10-year mark. However, a diverse spectrum of responses exists, and resistance to ADT may emerge over time. This underscores the need to explore innovative treatment strategies for effectively managing prostate cancer progression. Ongoing research endeavors persist in unraveling the complexity of prostate cancer and fostering the development of biologic and innovative approaches, including immunotherapies and targeted therapies. This review aims to provide a valuable synthesis of the dynamic landscape of emerging drug modalities in this context. Interestingly, the complexities posed by prostate cancer not only present a formidable challenge but also serve as a model and an opportunity for translational research and innovative therapies in the field of oncology.
Collapse
Affiliation(s)
- Maurizio Capuozzo
- Coordinamento Farmaceutico, ASL-Naples-3, 80056 Ercolano, Italy; (M.C.); (F.F.)
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| | - Monica Ianniello
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (N.P.); (R.C.); (M.R.F.)
| | - Francesco Ferrara
- Coordinamento Farmaceutico, ASL-Naples-3, 80056 Ercolano, Italy; (M.C.); (F.F.)
| | - Andrea Zovi
- Ministry of Health, Viale Giorgio Ribotta 5, 00144 Rome, Italy;
| | - Nadia Petrillo
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (N.P.); (R.C.); (M.R.F.)
| | - Rosa Castiello
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (N.P.); (R.C.); (M.R.F.)
| | - Maria Rosaria Fantuz
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (N.P.); (R.C.); (M.R.F.)
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| | - Giovanni Savarese
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| |
Collapse
|
43
|
Yu T, Wang K, Wang J, Liu Y, Meng T, Hu F, Yuan H. M-MDSCs mediated trans-BBB drug delivery for suppression of glioblastoma recurrence post-standard treatment. J Control Release 2024; 369:199-214. [PMID: 38537717 DOI: 10.1016/j.jconrel.2024.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 05/24/2024]
Abstract
We found that immunosuppressive monocytic-myeloid-derived suppressor cells (M-MDSCs) were more likely to be recruited by glioblastoma (GBM) through adhesion molecules on GBM-associated endothelial cells upregulated post-chemoradiotherapy. These cells are continuously generated during tumor progression, entering tumors and expressing PD-L1 at a high level, allowing GBM to exhaust T cells and evade attack from the immune system, thereby facilitating GBM relapse. αLy-6C-LAMP is composed of (i) drug cores with slightly negative charges condensed by cationic protamine and plasmids encoding PD-L1 trap protein, (ii) pre-formulated cationic liposomes targeted to Ly-6C for encapsulating the drug cores, and (iii) a layer of red blood cell membrane on the surface for effectuating long-circulation. αLy-6C-LAMP persistently targets peripheral, especially splenic, M-MDSCs and delivers secretory PD-L1 trap plasmids, leveraging M-MDSCs to transport the plasmids crossing the blood-brain barrier (BBB), thus expressing PD-L1 trap protein in tumors to inhibit PD-1/PD-L1 pathway. Our proposed drug delivery strategy involving intermediaries presents an efficient cross-BBB drug delivery concept that incorporates live-cell targeting and long-circulating nanotechnology to address GBM recurrence.
Collapse
Affiliation(s)
- Tong Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, PR China
| | - Kai Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, PR China
| | - Jianwei Wang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Yupeng Liu
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, PR China
| | - Tingting Meng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, PR China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, PR China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
44
|
Slootbeek PHJ, Tolmeijer SH, Mehra N, Schalken JA. Therapeutic biomarkers in metastatic castration-resistant prostate cancer: does the state matter? Crit Rev Clin Lab Sci 2024; 61:178-204. [PMID: 37882463 DOI: 10.1080/10408363.2023.2266482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
The treatment of metastatic castration-resistant prostate cancer (mCRPC) has been fundamentally transformed by our greater understanding of its complex biological mechanisms and its entrance into the era of precision oncology. A broad aim is to use the extreme heterogeneity of mCRPC by matching already approved or new targeted therapies to the correct tumor genotype. To achieve this, tumor DNA must be obtained, sequenced, and correctly interpreted, with individual aberrations explored for their druggability, taking into account the hierarchy of driving molecular pathways. Although tumor tissue sequencing is the gold standard, tumor tissue can be challenging to obtain, and a biopsy from one metastatic site or primary tumor may not provide an accurate representation of the current genetic underpinning. Sequencing of circulating tumor DNA (ctDNA) might catalyze precision oncology in mCRPC, as it enables real-time observation of genomic changes in tumors and allows for monitoring of treatment response and identification of resistance mechanisms. Moreover, ctDNA can be used to identify mutations that may not be detected in solitary metastatic lesions and can provide a more in-depth understanding of inter- and intra-tumor heterogeneity. Finally, ctDNA abundance can serve as a prognostic biomarker in patients with mCRPC.The androgen receptor (AR)-axis is a well-established therapeutical target for prostate cancer, and through ctDNA sequencing, insights have been obtained in (temporal) resistance mechanisms that develop through castration resistance. New third-generation AR-axis inhibitors are being developed to overcome some of these resistance mechanisms. The druggability of defects in the DNA damage repair machinery has impacted the treatment landscape of mCRPC in recent years. For patients with deleterious gene aberrations in genes linked to homologous recombination, particularly BRCA1 or BRCA2, PARP inhibitors have shown efficacy compared to the standard of care armamentarium, but platinum-based chemotherapy may be equally effective. A hierarchy exists in genes associated with homologous recombination, where, besides the canonical genes in this pathway, not every other gene aberration predicts the same likelihood of response. Moreover, evidence is emerging on cross-resistance between therapies such as PARP inhibitors, platinum-based chemotherapy and even radioligand therapy that target this genotype. Mismatch repair-deficient patients can experience a beneficial response to immune checkpoint inhibitors. Activation of other cellular signaling pathways such as PI3K, cell cycle, and MAPK have shown limited success with monotherapy, but there is potential in co-targeting these pathways with combination therapy, either already witnessed or anticipated. This review outlines precision medicine in mCRPC, zooming in on the role of ctDNA, to identify genomic biomarkers that may be used to tailor molecularly targeted therapies. The most common druggable pathways and outcomes of therapies matched to these pathways are discussed.
Collapse
Affiliation(s)
- Peter H J Slootbeek
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Sofie H Tolmeijer
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Niven Mehra
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Jack A Schalken
- Department of Experimental Urology, Research Institute of Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Hamid AA, Sweeney CJ, Hovens C, Corcoran N, Azad AA. Precision medicine for prostate cancer: An international perspective. Urol Oncol 2024:S1078-1439(24)00334-X. [PMID: 38614920 DOI: 10.1016/j.urolonc.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 04/15/2024]
Abstract
Greater personalization of cancer medicine continues to shape therapy development and patient selection accordingly. The treatment of prostate cancer has evolved considerably since the discovery of androgen deprivation therapy. The comprehensive profiling of the prostate cancer genome has mapped the targetable molecular landscape of the disease and identified opportunities for the implementation of novel and combination therapies. In this review, we provide an overview of the molecular biology of prostate cancer and tools developed to aid prognostication and prediction of therapy benefit. Modern treatment of advanced prostate cancer is reviewed as a paradigm of increasing precision-informed approach to patient care, and must be considered on a global scale with respect to the state of science and care delivery.
Collapse
Affiliation(s)
- Anis A Hamid
- Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Surgery, University of Melbourne, Melbourne, Australia.
| | | | | | - Niall Corcoran
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Arun A Azad
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
46
|
Hu Q, Rizvi AA, Schau G, Ingale K, Muller Y, Baits R, Pretzer S, BenTaieb A, Gordhamer A, Nussenzveig R, Cole A, Leavitt MO, Jones RD, Joshi RP, Beaubier N, Stumpe MC, Nagpal K. Development and validation of a deep learning-based microsatellite instability predictor from prostate cancer whole-slide images. NPJ Precis Oncol 2024; 8:88. [PMID: 38594360 PMCID: PMC11004110 DOI: 10.1038/s41698-024-00560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/22/2024] [Indexed: 04/11/2024] Open
Abstract
Microsatellite instability-high (MSI-H) is a tumor-agnostic biomarker for immune checkpoint inhibitor therapy. However, MSI status is not routinely tested in prostate cancer, in part due to low prevalence and assay cost. As such, prediction of MSI status from hematoxylin and eosin (H&E) stained whole-slide images (WSIs) could identify prostate cancer patients most likely to benefit from confirmatory testing to evaluate their eligibility for immunotherapy and need for Lynch syndrome testing. Prostate biopsies and surgical resections from prostate cancer patients referred to our institution were analyzed. MSI status was determined by next-generation sequencing. Patients sequenced before a cutoff date formed an algorithm development set (n = 4015, MSI-H 1.8%) and a paired validation set (n = 173, MSI-H 19.7%) that consisted of two serial sections from each sample, one stained and scanned internally and the other at an external site. Patients sequenced after the cutoff date formed a temporally independent validation set (n = 1350, MSI-H 2.3%). Attention-based multiple instance learning models were trained to predict MSI-H from H&E WSIs. The predictor achieved area under the receiver operating characteristic curve values of 0.78 (95% CI [0.69-0.86]), 0.72 (95% CI [0.63-0.81]), and 0.72 (95% CI [0.62-0.82]) on the internally prepared, externally prepared, and temporal validation sets, respectively, showing effective predictability and generalization to both external staining/scanning processes and temporally independent samples. While MSI-H status is significantly correlated with Gleason score, the model remained predictive within each Gleason score subgroup.
Collapse
Affiliation(s)
- Qiyuan Hu
- Tempus AI, Inc, 600 W Chicago Ave #510, Chicago, IL, 60654, USA
| | - Abbas A Rizvi
- Tempus AI, Inc, 600 W Chicago Ave #510, Chicago, IL, 60654, USA
| | - Geoffery Schau
- Tempus AI, Inc, 600 W Chicago Ave #510, Chicago, IL, 60654, USA
| | - Kshitij Ingale
- Tempus AI, Inc, 600 W Chicago Ave #510, Chicago, IL, 60654, USA
| | - Yoni Muller
- Tempus AI, Inc, 600 W Chicago Ave #510, Chicago, IL, 60654, USA
| | - Rachel Baits
- Tempus AI, Inc, 600 W Chicago Ave #510, Chicago, IL, 60654, USA
| | - Sebastian Pretzer
- Work done while at Tempus AI, Inc, 600 W Chicago Ave #510, Chicago, IL, 60654, USA
| | - Aïcha BenTaieb
- Work done while at Tempus AI, Inc, 600 W Chicago Ave #510, Chicago, IL, 60654, USA
| | - Abigail Gordhamer
- PathNet, Inc, 5100 Talley Rd Suite 300, Little Rock, AR, 72204, USA
- DDx Foundation, 2889 W Ashton Blvd. Suite 300, Lehi, UT, 84043, USA
| | - Roberto Nussenzveig
- PathNet, Inc, 5100 Talley Rd Suite 300, Little Rock, AR, 72204, USA
- DDx Foundation, 2889 W Ashton Blvd. Suite 300, Lehi, UT, 84043, USA
| | - Adam Cole
- PathNet, Inc, 5100 Talley Rd Suite 300, Little Rock, AR, 72204, USA
- DDx Foundation, 2889 W Ashton Blvd. Suite 300, Lehi, UT, 84043, USA
| | - Matthew O Leavitt
- PathNet, Inc, 5100 Talley Rd Suite 300, Little Rock, AR, 72204, USA
- DDx Foundation, 2889 W Ashton Blvd. Suite 300, Lehi, UT, 84043, USA
- Lumea, 2889 Ashton Blvd #300, Lehi, UT, 84043, USA
| | - Ryan D Jones
- Tempus AI, Inc, 600 W Chicago Ave #510, Chicago, IL, 60654, USA
| | - Rohan P Joshi
- Tempus AI, Inc, 600 W Chicago Ave #510, Chicago, IL, 60654, USA
| | - Nike Beaubier
- Tempus AI, Inc, 600 W Chicago Ave #510, Chicago, IL, 60654, USA
| | - Martin C Stumpe
- Tempus AI, Inc, 600 W Chicago Ave #510, Chicago, IL, 60654, USA
| | - Kunal Nagpal
- Tempus AI, Inc, 600 W Chicago Ave #510, Chicago, IL, 60654, USA.
| |
Collapse
|
47
|
Sindhu KK, Dovey Z, Thompson M, Nehlsen AD, Skalina KA, Malachowska B, Hasan S, Guha C, Tang J, Salgado LR. The potential role of precision medicine to alleviate racial disparities in prostate, bladder and renal urological cancer care. BJUI COMPASS 2024; 5:405-425. [PMID: 38633827 PMCID: PMC11019243 DOI: 10.1002/bco2.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 04/19/2024] Open
Abstract
Background Racial disparities in oncological outcomes resulting from differences in social determinants of health (SDOH) and tumour biology are well described in prostate cancer (PCa) but similar inequities exist in bladder (BCa) and renal cancers (RCCs). Precision medicine (PM) aims to provide personalized treatment based on individual patient characteristics and has the potential to reduce these inequities in GU cancers. Objective This article aims to review the current evidence outlining racial disparities in GU cancers and explore studies demonstrating improved oncological outcomes when PM is applied to racially diverse patient populations. Evidence acquisition Evidence was obtained from Pubmed and Web of Science using keywords prostate, bladder and renal cancer, racial disparity and precision medicine. Because limited studies were found, preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were not applied but rather related articles were studied to explore existing debates, identify the current status and speculate on future applications. Results Evidence suggests addressing SDOH for PCa can reverse racial inequities in oncological outcomes but differences in incidence remain. Similar disparities in BCa and RCC are seen, and it would be reasonable to suggest achieving parity in SDOH for all races would do the same. Research applying a PM approach to different ethnicities is lacking although in African Americans (AAs) with metastatic castrate-resistant prostate cancer (mCRPCa) better outcomes have been shown with androgen receptor inhibitors, radium-223 and sipuleucel. Exploiting the abscopal effect with targeted radiation therapy (RT) and immunotherapy has promise but requires further study, as does defining actionable mutations in specific patient groups to tailor treatments as appropriate. Conclusion For all GU cancers, the historical underrepresentation of ethnic minorities in clinical trials still exists and there is an urgent need for recruitment strategies to address this. PM is a promising development with the potential to reduce inequities in GU cancers, however, both improved understanding of race-specific tumour biology, and enhanced recruitment of minority populations into clinical trials are required. Without this, the benefits of PM will be limited.
Collapse
Affiliation(s)
- Kunal K. Sindhu
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Zachary Dovey
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Marcher Thompson
- Department of Radiation OncologyAIS Cancer Center/Adventist HealthBakersfieldCAUSA
| | - Anthony D. Nehlsen
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Karin A. Skalina
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNYUSA
| | - Beata Malachowska
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNYUSA
| | - Shaakir Hasan
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNYUSA
| | - Chandan Guha
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNYUSA
| | - Justin Tang
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNYUSA
| | - Lucas Resende Salgado
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
48
|
Zang PD, Chawla NS, Barragan-Carrillo R, Chehrazi-Raffle A, Tripathi A, Pal SK, Dorff TB. Tumor Mutational Burden in Metastatic Castration-Resistant Prostate Cancer and Response to Checkpoint Inhibition. JAMA Oncol 2024; 10:531-532. [PMID: 38329743 PMCID: PMC10853862 DOI: 10.1001/jamaoncol.2023.6817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/08/2023] [Indexed: 02/09/2024]
Abstract
This single-center cohort study assesses the association of tumor mutational burden status in patients with metastatic castration-resistant prostate cancer and response to immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Peter D. Zang
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Neal S. Chawla
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Regina Barragan-Carrillo
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Alex Chehrazi-Raffle
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Abhishek Tripathi
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Sumanta K. Pal
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Tanya B. Dorff
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, California
| |
Collapse
|
49
|
de Kouchkovsky I, Chan E, Schloss C, Poehlein C, Aggarwal R. Diagnosis and management of neuroendocrine prostate cancer. Prostate 2024; 84:426-440. [PMID: 38173302 DOI: 10.1002/pros.24664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/13/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Although most patients with prostate cancer (PC) respond to initial androgen deprivation therapy (ADT), castration-resistant disease invariably develops. Progression to treatment-emergent neuroendocrine PC (t-NEPC) represents a unique mechanism of resistance to androgen receptor (AR)-targeted therapy in which lineage plasticity and neuroendocrine differentiation induce a phenotypic switch from an AR-driven adenocarcinoma to an AR-independent NEPC. t-NEPC is characterized by an aggressive clinical course, increased resistance to AR-targeted therapies, and a poor overall prognosis. METHODS This review provides an overview of our current knowledge of NEPC, with a focus on the unmet needs, diagnosis, and clinical management of t-NEPC. RESULTS Evidence extrapolated from the literature on small cell lung cancer or data from metastatic castration-resistant PC (mCRPC) cohorts enriched for t-NEPC suggests an increased sensitivity to platinum-based chemotherapy. However, optimal strategies for managing t-NEPC have not been established, and prospective clinical trial data are limited. Intertumoral heterogeneity within a given patient, as well as the lack of robust molecular or clinical biomarkers for early detection, often lead to delays in diagnosis and prolonged treatment with suboptimal strategies (i.e., conventional chemohormonal therapies for mCRPC), which may further contribute to poor outcomes. CONCLUSIONS Recent advances in genomic and molecular classification of NEPC and the development of novel biomarkers may facilitate an early diagnosis, help to identify promising therapeutic targets, and improve the selection of patients most likely to benefit from NEPC-targeted therapies.
Collapse
Affiliation(s)
- Ivan de Kouchkovsky
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, San Francisco, California, USA
| | - Emily Chan
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | | | | | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
50
|
Gaikwad U, Bajpai J, Jalali R. Combinatorial approach of immuno-proton therapy in cancer: Rationale and potential impact. Asia Pac J Clin Oncol 2024; 20:188-197. [PMID: 37194387 DOI: 10.1111/ajco.13966] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/23/2022] [Accepted: 04/02/2023] [Indexed: 05/18/2023]
Abstract
Cancer management is an expansive, growing, and evolving field. In the last decade or so, immunotherapy (IT) and particle beam therapy have made a tremendous impact in this domain. IT has already established itself as the fourth pillar of oncology. Recent emphasis has been centred around combination therapy, postulating additive or multiplicative effects of combining IT with one or more of the three conventional "pillars," that is, surgery, chemotherapy, and radiotherapy. Radio-IT is being increasingly explored and has shown promising outcomes in both preclinical and clinical settings. Particle beam therapy such as protons, when used as the radiotherapeutic modality in conjunction with IT, can potentially limit toxicities and improve this synergism further. Modern proton therapy has demonstrated a reduction in integral dose of radiation and radiation-induced lymphopenia in various sites. Protons, by virtue of their inherent clinically desirable physical and biological characteristics, namely, high linear energy transfer, relative biological effectiveness of range 1.1-1.6, and proven anti-metastatic and immunogenic potential in preclinical studies, might have a superior immunogenic profile than photons. Proton-IT combination is being studied currently by various groups in lung , head neck and brain tumors, and should be evaluated further in other subsites to replicate preclinical outcomes in a clinical setting. In this review, we summarize the currently available evidence for combinatorial approaches and feasibility of proton and IT combination, and thereafter highlight the emerging challenges for practical application of the same in clinics, while also proposing plausible solutions.
Collapse
Affiliation(s)
- Utpal Gaikwad
- Department of Radiation Oncology, Apollo Proton Cancer Center, Chennai, India
| | - Jyoti Bajpai
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Rakesh Jalali
- Department of Radiation Oncology, Apollo Proton Cancer Center, Chennai, India
| |
Collapse
|