1
|
Ma J, Yang Y, Wang K, Liu J, Feng J, Wang G, Guo S, Fan L. RSK4 promotes the metastasis of clear cell renal cell carcinoma by activating RUNX1-mediated angiogenesis. Cancer Biol Ther 2025; 26:2452025. [PMID: 39797421 PMCID: PMC11730630 DOI: 10.1080/15384047.2025.2452025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
Ribosomal S6 protein kinase 4 (RSK4), a member of the serine‒threonine kinase family, plays a vital role in the Ras‒MAPK pathway. This kinase is responsible for managing several cellular activities, including cell growth, proliferation, survival, and mobility. In this study, we observed higher RSK4 protein expression in clear cell renal cell carcinoma (ccRCC) than in normal kidney tissue, and the overexpression of RSK4 might predict poor outcomes for ccRCC patients. Notably, renal cell carcinoma (RCC) is rich in blood vessels; therefore, this study aimed to explore the biological function of RSK4 in ccRCC progression and its specific regulatory mechanism. We analyzed changes in the expression of target genes through transcriptomic and proteomic assessments. We also conducted tube formation assays and VEGF ELISAs to understand the role of RSK4 in angiogenesis. Additionally, we evaluated the regulatory effect of RUNX1 on EPHA2 transcription using a luciferase reporter gene assay and observed that the effect of RUNX1 on activating EPHA2 transcription was negated after the binding site was mutated. Our findings suggested that RSK4 enhanced tube formation by stimulating VEGF secretion. Concurrently, in vivo experiments confirmed that RSK4 expedited RCC metastasis and angiogenesis. This evidence indicates that RSK4 may serve as a new prognostic marker and play a vital role in RCC metastasis.
Collapse
MESH Headings
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Humans
- Kidney Neoplasms/pathology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/genetics
- Mice
- Animals
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Male
- Female
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Neoplasm Metastasis
- Cell Line, Tumor
- Prognosis
- Mice, Nude
- Angiogenesis
Collapse
Affiliation(s)
- Jing Ma
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Yanru Yang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Kaijing Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Jin Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Junyi Feng
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
- Basic Medical Research Experimental Center, Yan’an University of Medicine, Yan’an, China
| | - Gongcheng Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Shuangping Guo
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Linni Fan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| |
Collapse
|
2
|
Liu C, Liu G, Zhou F, Chen L, Chang B, Tang H, Wang H. EBF1-induced CSRP2 boosts the progression of B-cell acute lymphocytic leukemia by inhibiting ferroptosis. Cancer Lett 2025; 614:217556. [PMID: 39952599 DOI: 10.1016/j.canlet.2025.217556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
B-cell acute lymphocytic leukemia (B-ALL) is a highly aggressive malignancy with poor prognosis. Developing diagnostic markers and therapeutic targets to identify and treat B-ALL early would improve the outcomes of B-ALL patients. Here, we conducted RNA next-generation sequencing using bone marrow (BM) specimens obtained from 7 B-ALL patients and 7 healthy donors. We found cysteine and glycine-rich protein 2 (CSRP2) upregulated in B-ALL. Down-regulation of CSRP2 resulted in suppressed cell proliferation and enhanced cell apoptosis in B-ALL. In addition, inhibition of CSRP2 increased cell ferroptosis in B-ALL cells. Mechanically, we revealed that transcription factor early B cell factor 1 (EBF1) regulated CSRP2 levels in B-ALL, and inhibition of EBF1 decreased CSRP2 levels in B-ALL. In conclusion, the dysregulation EBF1 led to CSRP2 upregulation and resulting in progression of B-ALL. The EBF1/CSRP2 axis could be of great potential as therapeutic targets for B-ALL treatment.
Collapse
Affiliation(s)
- Chengcheng Liu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen Institute of Hematology, Guangzhou, Guangdong, 510630, PR China
| | - Gexiu Liu
- Institute of Hematology, Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Fenling Zhou
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen Institute of Hematology, Guangzhou, Guangdong, 510630, PR China; Institute of Hematology, Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Lu Chen
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen Institute of Hematology, Guangzhou, Guangdong, 510630, PR China; Institute of Hematology, Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Boyang Chang
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510630, PR China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| | - Hua Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| |
Collapse
|
3
|
Hormann FM, Rudd SG. Nelarabine in T-cell acute lymphoblastic leukemia: intracellular metabolism and molecular mode-of-action. Leukemia 2025; 39:531-542. [PMID: 39962329 PMCID: PMC11879874 DOI: 10.1038/s41375-025-02529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 03/06/2025]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) patients often have a poor 5-year event-free survival. The only T-ALL specific drug in clinical practice is nelarabine. A prodrug of the deoxyguanosine analog ara-G, nelarabine is a rationally designed agent selective for the treatment of T-cell malignancies. Originally approved for relapsed/refractory T-ALL, it is increasingly used in T-ALL therapy and is currently being evaluated in upfront treatment. Whilst the clinical use of nelarabine has been the topic of multiple review articles, a thorough overview of the preclinical data detailing the molecular underpinnings of its anti-leukemic activity is lacking, which is critical to inform mechanism-based use. Thus, in the present article we conducted a semi-systematic review of the literature and critically evaluated the preclinical knowledge on the molecular pharmacology of nelarabine. Whilst early studies identified ara-G triphosphate to be the principal active metabolite and nuclear DNA synthesis to be a key target, many fundamental questions remain that could inform upon future use of this therapy. These include the nature of nelarabine-induced DNA lesions and their repair, together with additional cellular targets of ara-G metabolites and their role in efficacy and toxicity. A critical avenue of research in need of development is investigation of nelarabine combination therapies, both in the context of current T-ALL chemotherapy regimens and with emerging anti-leukemic agents, and we highlight some areas to pursue. Altogether, we discuss what we can learn from the preclinical literature as a whole and present our view for future research regarding nelarabine treatment in T-ALL.
Collapse
Affiliation(s)
- Femke M Hormann
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sean G Rudd
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Steinherz PG, Mauguen A, Suser S, Ramaswamy K, Kobos R, Forlenza CJ, Shukla N, Trippett T, Wolden S, Steinherz L. Treatment of T-cell Leukemia/Lymphoma in Children and Young Adults With the Memorial Sloan Kettering Cancer Center New York IIB Protocol. J Pediatr Hematol Oncol 2025; 47:59-66. [PMID: 39899689 DOI: 10.1097/mph.0000000000002999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 12/07/2024] [Indexed: 02/05/2025]
Abstract
We described the Memorial Sloan Kettering Cancer Center New York IIB (MSK-NYII) protocol pilot in 1993, for the treatment of acute lymphoblastic leukemia (ALL) in children at high risk of early relapse. We now report MSK-NYII for the treatment of T-ALL/T-lymphoma over a 15-year period. A review of all patient charts identified 63 treated from 1/1/2000-12/31/2015, with a median follow-up of 9.9 years. Further follow-ups were confounded by the COVID pandemic. Remissions (CR) were defined as <5% marrow blast count on Day 28 and resolution of extramedullary disease. Forty-four had T-ALL, and 19 had stage III/IV lymphoblastic lymphoma (T-LL). Median age at diagnosis was 13.6 years (range 0.4 to 23.7). At diagnosis central nervous system (CNS) leukemia was present in 7/63 patients (11%), cranial nerve palsy in 3 (5%), CNS2 [<5cells/µL cerebrospinal fluid with blasts seen on cytospin] in 11 (17%), testicular enlargement in 3 (5%), and mediastinal mass in 45 (71%). On Day 8, 37 T-ALL (86%) were rapid early responders with <25% marrow blasts. 54 patients had an examination, cerebrospinal fluid, and marrow evaluation on day 28. Remission was demonstrated in 53 (98%) after prior marrow and CNS disease. The 19 T-lymphoma patients had no evidence of disease on day 28. Four relapses in marrow were recorded during therapy. Second remissions were able to be achieved. One patient died without having relapsed and is counted as an event in the event-free survival (EFS) analysis. Four patients, including 3 after the second CR transplant, died during follow-up. One unusual case of T-ALL recurred as T-LL of the colon 5.5 years after diagnosis, 3.5 years after therapy discontinuation. Fifteen years after diagnosis 88% (95% CI=78%-98%) survived event-free, and 91% (95% CI=82%-100%) survived. Twenty-five patients received irradiation. Three had RT to the testes, 3 had cranial RT for cranial nerve palsies, and 19 had cranial radiation for either CNS leukemia, CNS2, or for initial white blood cell >100,000/ µL. The MSK-NYIIB protocol, with a 94% 5-year and 88% 15-year EFS, is an effective therapy for the treatment of T-ALL/lymphoma, with similar toxicity to other high-risk regimens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Suzanne Wolden
- Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
5
|
Péterffy B, Krizsán S, Egyed B, Bedics G, Benard-Slagter A, Palit S, Erdélyi DJ, Müller J, Nagy T, Hegyi LL, Bekő A, Kenéz LA, Jakab Z, Péter G, Zombori M, Csanádi K, Ottóffy G, Csernus K, Vojcek Á, Tiszlavicz LG, Gábor KM, Kelemen Á, Hauser P, Kállay K, Kertész G, Gaál Z, Szegedi I, Barna G, Márk Á, Haltrich I, Hevessy Z, Ujfalusi A, Kajtár B, Timár B, Kiss C, Kriván G, Matolcsy A, Savola S, Kovács G, Bödör C, Alpár D. MOLECULAR PROFILING REVEALS NOVEL GENE FUSIONS AND GENETIC MARKERS FOR REFINED PATIENT STRATIFICATION IN PEDIATRIC ACUTE LYMPHOBLASTIC LEUKEMIA. Mod Pathol 2025:100741. [PMID: 40010436 DOI: 10.1016/j.modpat.2025.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Risk-adapted treatment protocols conferred remarkable improvement in the survival rates of pediatric acute lymphoblastic leukemia/lymphoma (ALL/LBL). Nevertheless, clinical management is still challenging in certain molecular subgroups and in the presence of alterations associated with an increased rate of relapse. In this study, disease-relevant genomic and transcriptomic profiles were established in a prospective, multicenter, real-world cohort involving 192 children diagnosed with ALL/LBL. Gene fusions were detected in 34.9% of B-ALL and 46.4% of T-ALL patients, with novel chimeric genes involving JAK2, KMT2A, PAX5, RUNX1 and NOTCH1, and with KMT2A-rearranged patients displaying the worst 3-year event-free survival (p=0.019). Non-synonymous mutations were uncovered in 74.9% of the analyzed patients, and a pairwise scrutiny of genetic lesions revealed recurrent clonal selection mechanisms commonly converging on the same pathway (e.g. Ras, JAK/STAT and Notch) in individual patients. Investigation of matched diagnostic and relapse samples unraveled complex subclonal variegation, and mutations affecting the NT5C2, TP53, CDKN2A, and PIK3R1 genes, emerging at the time of relapse. TP53 and CREBBP mutations, even as subclonal aberrations, were associated with shorter 3-year event-free survival among all patients with B-ALL (TP53 mutant vs wild-type: p=0.008, CREBBP mutant vs wild-type: p=0.010); and notably, B-ALL patients showing no measurable residual disease on day 33 could be further stratified based on TP53 mutational status (p<0.001). Our in-depth molecular characterization performed across all risk groups identified novel opportunities for molecularly targeted therapy in 55.9% of high-risk and in 31.6% of standard/intermediate-risk patients.
Collapse
Affiliation(s)
- Borbála Péterffy
- HCEMM-SU, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Szilvia Krizsán
- HCEMM-SU, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Bálint Egyed
- HCEMM-SU, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Gábor Bedics
- HCEMM-SU, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | - Sander Palit
- MRC Holland, Department of Oncogenetics, Amsterdam, The Netherlands
| | | | - Judit Müller
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Tibor Nagy
- HCEMM-SU, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Biochemistry and Molecular Biology, University of Debrecen, Hungary
| | - Lajos László Hegyi
- HCEMM-SU, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Anna Bekő
- HCEMM-SU, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Lili Anna Kenéz
- HCEMM-SU, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Jakab
- Hungarian Childhood Cancer Registry, Hungarian Pediatric Oncology Network, Budapest, Hungary
| | - György Péter
- Hemato-Oncology Unit, Heim Pál Children's Hospital, Budapest, Hungary
| | - Marianna Zombori
- Hemato-Oncology Unit, Heim Pál Children's Hospital, Budapest, Hungary
| | - Krisztina Csanádi
- Hemato-Oncology Unit, Heim Pál Children's Hospital, Budapest, Hungary
| | - Gábor Ottóffy
- Department of Pediatrics, Oncohaematology Division, University of Pécs Medical School, Pécs, Hungary
| | - Katalin Csernus
- Department of Pediatrics, Oncohaematology Division, University of Pécs Medical School, Pécs, Hungary
| | - Ágnes Vojcek
- Department of Pediatrics, Oncohaematology Division, University of Pécs Medical School, Pécs, Hungary
| | - Lilla Györgyi Tiszlavicz
- Department of Pediatrics and Pediatric Health Care Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Krisztina Mita Gábor
- Department of Pediatrics and Pediatric Health Care Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ágnes Kelemen
- Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Péter Hauser
- Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Krisztián Kállay
- Pediatric Hematology and Stem Cell Transplantation Department, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gabriella Kertész
- Pediatric Hematology and Stem Cell Transplantation Department, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Zsuzsanna Gaál
- Division of Pediatric Hematology-Oncology, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen
| | - István Szegedi
- Division of Pediatric Hematology-Oncology, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen
| | - Gábor Barna
- HCEMM-SU, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ágnes Márk
- HCEMM-SU, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Irén Haltrich
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Hevessy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Anikó Ujfalusi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Botond Timár
- HCEMM-SU, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Csongor Kiss
- Division of Pediatric Hematology-Oncology, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen
| | - Gergely Kriván
- Pediatric Hematology and Stem Cell Transplantation Department, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - András Matolcsy
- HCEMM-SU, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Suvi Savola
- MRC Holland, Department of Oncogenetics, Amsterdam, The Netherlands
| | - Gábor Kovács
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SU, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Donát Alpár
- HCEMM-SU, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
6
|
Bardelli V, Arniani S, Pierini V, Nardelli C, Matteucci C, Lema Fernandez AG, Crocioni M, Cerrano M, Salutari P, Papayanidis C, Trappolini S, Giglio F, Mastaglio S, Zappasodi P, Pasciolla C, Defina M, Piccini M, Lanzarone G, Di Giacomo D, Sica S, Montefiori LE, Mullighan CG, Mecucci C, La Starza R. Repurposing the Whole Expression Transcriptome Assay for the Genetic Diagnosis of T-Cell Acute Lymphoblastic Leukemia and Lymphoma. J Mol Diagn 2025:S1525-1578(25)00040-6. [PMID: 39984035 DOI: 10.1016/j.jmoldx.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/25/2024] [Accepted: 01/29/2025] [Indexed: 02/23/2025] Open
Abstract
Unlike other cases of acute leukemia, the diagnosis of T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) is uniquely based on morphology and flow cytometry. Although the genomic background has been broadly uncovered, the large spectrum of genes involved and the variability of the molecular mechanisms underlying gene deregulation have delayed the introduction of molecular cytogenetics into diagnostic flowcharts. To overcome these limitations and implement a genetic diagnosis of T-ALL/LBLs, we repurposed a whole transcriptome expression assay (WTEa) as a "priority test" to classify T-ALL/LBLs into the major genetic subtypes. We set up and applied a WTEa classifier based on a set of 312 probes on 215 T-ALL/LBLs, which properly assigned >95% of cases with subtype-defining alterations to the corresponding subgroups (ie, TAL/LMO, HOXA, TLX1, TLX3, BCL11B). Among them, it pinpointed cases that harbored cryptic alterations, such as noncoding mutations that generate a new enhancer at TAL1 and LMO2 loci (8% of TAL/LMO), and duplications of noncoding element downstream BCL11B (BETA) (18% of BCL11B). It was also suitable to classify lymphoma cases for which only formalin-fixed embedded tissues were available, as confirmed in cases harboring TLX1 or TLX3 rearrangements, and distinguished new putative subtypes. WTEa offers a unifying tool to provide a genetic classification of T-ALL/LBLs. If introduced in multicenter prospective studies, it will facilitate evaluation of the clinical impact of genetic classification.
Collapse
Affiliation(s)
- Valentina Bardelli
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, CREO A.O., Perugia, Italy
| | - Silvia Arniani
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, CREO A.O., Perugia, Italy
| | - Valentina Pierini
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, CREO A.O., Perugia, Italy
| | - Carlotta Nardelli
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, CREO A.O., Perugia, Italy
| | - Caterina Matteucci
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, CREO A.O., Perugia, Italy
| | - Anair Graciela Lema Fernandez
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, CREO A.O., Perugia, Italy
| | - Maria Crocioni
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, CREO A.O., Perugia, Italy
| | - Marco Cerrano
- Division of Hematology, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | | | - Cristina Papayanidis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "L. & A. Seràgnoli", Bologna, Italy
| | | | - Fabio Giglio
- OncoHematology Division, European Institute of Oncology, Milan, Italy
| | - Sara Mastaglio
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Patrizia Zappasodi
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Marzia Defina
- Hematology Unit, University of Siena, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Matteo Piccini
- Hematology Department, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Giuseppe Lanzarone
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Torino, Turin, Italy
| | - Danika Di Giacomo
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, CREO A.O., Perugia, Italy; Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Simona Sica
- Haematology Unit, Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lindsey E Montefiori
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Cristina Mecucci
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, CREO A.O., Perugia, Italy
| | - Roberta La Starza
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, CREO A.O., Perugia, Italy.
| |
Collapse
|
7
|
Feng LS, Li HY, Tang A, Xu ML, Wang SB. Venetoclax and azacitidine in combination with homoharringtonine, cytarabine, and aclarubicin for salvage therapy of relapsed/refractory T cell acute lymphoblastic leukemia. Int J Hematol 2025:10.1007/s12185-025-03915-3. [PMID: 39847198 DOI: 10.1007/s12185-025-03915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND The treatment of relapsed/refractory T cell acute lymphoblastic leukemia (R/R T-ALL) is a significant challenge in hematologic oncology, and no standard salvage treatment plan exists. Both Chinese and international clinical guidelines recommend combination chemotherapy including venetoclax. METHODS Efficacy and safety of venetoclax, azacitidine, homoharringtonine, cytarabine, and aclarubicin (VA-HAA) combination therapy were retrospectively analyzed in 3 patients with R/R T-ALL at the Department of Hematology, 920th Hospital of the Joint Logistics Support Force, Chinese People's Liberation Army. RESULTS The chemotherapy resulted in CR/CRi with negative flow MRD in all 3 patients. Quantitative negative conversion was achieved in 2 patients with fusion genes, and the frequency of monoclonal TCR gene rearrangements was significantly reduced in 1 patient. All patients received stem cell rescue after the chemotherapy. Hematologic toxicity may be manageable, with a median of 24 days for complete recovery of neutrophils (ANC) and 36 days for partial recovery of platelets. There were no major bleeding events or chemotherapy-related deaths. CONCLUSION VA-HAA may be an effective and safe salvage treatment for R/R T-ALL, and prospective clinical trials are needed to verify its specific clinical efficacy.
Collapse
Affiliation(s)
- Lin-Sen Feng
- The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan, China
- Department of Hematology, The 920th Hospital of Joint Logistics Support Force, No.212, Da Guan Road, Xishan District, Kunming, 650100, Yunnan, China
- Department of Hematology, The People's Hospital of Yuxi City, Yuxi, Yunnan, China
- School of General Practitioners, Kunming Medical University, Yuxi, Yunnan, China
| | - Hui-Yuan Li
- Department of Integrated TCM & Western Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ai Tang
- School of General Practitioners, Kunming Medical University, Yuxi, Yunnan, China
| | - Meng-Li Xu
- Department of Hematology, The 920th Hospital of Joint Logistics Support Force, No.212, Da Guan Road, Xishan District, Kunming, 650100, Yunnan, China
| | - San-Bin Wang
- Department of Hematology, The 920th Hospital of Joint Logistics Support Force, No.212, Da Guan Road, Xishan District, Kunming, 650100, Yunnan, China.
| |
Collapse
|
8
|
Simpson APA, George CE, Hui HYL, Doddi R, Kotecha RS, Fuller KA, Erber WN. Imaging Flow Cytometric Identification of Chromosomal Defects in Paediatric Acute Lymphoblastic Leukaemia. Cells 2025; 14:114. [PMID: 39851542 PMCID: PMC11763943 DOI: 10.3390/cells14020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
Acute lymphoblastic leukaemia is the most common childhood malignancy that remains a leading cause of death in childhood. It may be characterised by multiple known recurrent genetic aberrations that inform prognosis, the most common being hyperdiploidy and t(12;21) ETV6::RUNX1. We aimed to assess the applicability of a new imaging flow cytometry methodology that incorporates cell morphology, immunophenotype, and fluorescence in situ hybridisation (FISH) to identify aneuploidy of chromosomes 4 and 21 and the translocation ETV6::RUNX1. We evaluated this new "immuno-flowFISH" platform on 39 cases of paediatric ALL of B-lineage known to have aneuploidy of chromosomes 4 and 21 and the translocation ETV6::RUNX1. After identifying the leukaemic population based on immunophenotype (i.e., expression of CD34, CD10, and CD19 antigens), we assessed for copy numbers of loci for the centromeres of chromosomes 4 and 21 and the ETV6 and RUNX1 regions using fluorophore-labelled DNA probes in more than 1000 cells per sample. Trisomy 4 and 21, tetrasomy 21, and translocations of ETV6::RUNX1, as well as gains and losses of ETV6 and RUNX1, could all be identified based on FISH spot counts and digital imagery. There was variability in clonal makeup in individual cases, suggesting the presence of sub-clones. Copy number alterations and translocations could be detected even when the cell population comprised less than 1% of cells and included cells with a mature B-cell phenotype, i.e., CD19-positive, lacking CD34 and CD10. In this proof-of-principle study of 39 cases, this sensitive and specific semi-automated high-throughput imaging flow cytometric immuno-flowFISH method has been able to show that alterations in ploidy and ETV6::RUNX1 could be detected in the 39 cases of paediatric ALL. This imaging flow cytometric FISH method has potential applications for diagnosis and monitoring disease and marrow regeneration (i.e., distinguishing residual ALL from regenerating haematogones) following chemotherapy.
Collapse
Affiliation(s)
- Ana P. A. Simpson
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Carly E. George
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- PathWest Laboratory Medicine, Nedlands, WA 6009, Australia
| | - Henry Y. L. Hui
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ravi Doddi
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Rishi S. Kotecha
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- Medical School, The University of Western Australia, Crawley, WA 6009, Australia
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
| | - Kathy A. Fuller
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Wendy N. Erber
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- PathWest Laboratory Medicine, Nedlands, WA 6009, Australia
| |
Collapse
|
9
|
Summers RJ, Teachey DT, Hunger SP. How I treat ETP-ALL in children. Blood 2025; 145:43-52. [PMID: 38364183 DOI: 10.1182/blood.2023023155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
ABSTRACT Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is a unique subtype of immature T-cell ALL that was initially associated with a dramatically inferior prognosis compared with non-ETP T-cell ALL (Not-ETP) when it was first described in 2009. Analyses of larger patient cohorts treated with more contemporary regimens, however, have shown minimal survival differences between ETP and Not-ETP. In this manuscript, we use representative cases to explore therapeutic advances and address common clinical questions regarding the management of children, adolescents, and young adults with ETP-ALL. We describe our recommended treatment approach for a child or adolescent with newly diagnosed ETP-ALL, with an emphasis on the prognostic significance of induction failure and detectable minimal residual disease and the role of hematopoietic stem cell transplant in first remission. We discuss the interplay between the ETP immunophenotype and genomic markers of immaturity in T-cell ALL. Finally, we review novel therapeutic approaches that should be considered when managing relapsed or refractory ETP-ALL.
Collapse
Affiliation(s)
- Ryan J Summers
- Department of Pediatrics, Emory University, Atlanta, GA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA
| | - David T Teachey
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
10
|
Ma JF, Yan CL, Jia X, Zhu HJ, Yan JW, Liu MJ, Zhang DY, Liu SH, Xu N, Zhang HG, Ye L, Yu L, Wu DP, Gong WJ, Dai HP, Xue SL. Clinical outcomes and safety of CAR-T cells in treatment of T-Cell acute lymphoblastic leukemia/lymphoma. Ann Hematol 2025; 104:57-63. [PMID: 39692783 DOI: 10.1007/s00277-024-06132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/01/2024] [Indexed: 12/19/2024]
Abstract
Relapsed or refractory T-cell acute lymphoblastic leukemia/lymphoma (r/r T-ALL/LBL) are frequently aggressive and associated with unfavorable prognoses. Pan-targeted Chimeric Antigen Receptor (CAR) T-cell therapy have shown promising results in clinical trials. In recent years, CD7 CAR T-cell and CD5 CAR T-cell demonstrate effectiveness in treating r/r T-ALL/LBL patients with bone marrow infiltration. However, nearly half of r/r T-ALL/T-LBL patients are accompanied by extramedullary disease (EMD), where comprehensive data on the efficacy and safety of CAR T-cell therapy remain limited. Additionally, CD7 CAR T-cell and CD5 CAR T-cell therapy can cause severe immunodeficiency and hematologic toxicity, complicating with difficult immune reconstitution. This review provides an in-depth analysis of the safety profile and adverse events associated with CAR T-cell therapy in r/r T-ALL/LBL, with a a particular emphasis on its impact in patients with EMD.
Collapse
Affiliation(s)
- Jin-Feng Ma
- Jining No.1 People'hospital, Jining, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun-Long Yan
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Xu Jia
- Research and Development Department, Shanghai Unicar Therapy Bio-Medicine Technology Co., Ltd, Shanghai, China
| | - Hong-Jia Zhu
- Research and Development Department, Shanghai Unicar Therapy Bio-Medicine Technology Co., Ltd, Shanghai, China
| | - Jia-Wei Yan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mei-Jing Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Dai-Yi Zhang
- Health Management Center, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Shen-Hao Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Nan Xu
- Research and Development Department, Shanghai Unicar Therapy Bio-Medicine Technology Co., Ltd, Shanghai, China
| | | | - Ling Ye
- Jining No.1 People'hospital, Jining, China
| | - Lei Yu
- Research and Development Department, Shanghai Unicar Therapy Bio-Medicine Technology Co., Ltd, Shanghai, China
| | - De-Pei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Wen-Jie Gong
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Gower M, Li X, Aguilar-Navarro AG, Lin B, Fernandez M, Edun G, Nader M, Rondeau V, Arruda A, Tierens A, Eames Seffernick A, Pölönen P, Durocher J, Wagenblast E, Yang L, Lee HS, Mullighan CG, Teachey D, Rashkovan M, Tremblay CS, Herranz D, Itkin T, Loghavi S, Dick JE, Schwartz G, Perusini MA, Sibai H, Hitzler J, Gruber TA, Minden M, Jones CL, Dolgalev I, Jahangiri S, Tikhonova AN. An inflammatory state defines a high-risk T-lineage acute lymphoblastic leukemia subgroup. Sci Transl Med 2025; 17:eadr2012. [PMID: 39742502 DOI: 10.1126/scitranslmed.adr2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/04/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
T-lineage acute lymphoblastic leukemia (ALL) is an aggressive cancer comprising diverse subtypes that are challenging to stratify using conventional immunophenotyping. To gain insights into subset-specific therapeutic vulnerabilities, we performed an integrative multiomics analysis of bone marrow samples from newly diagnosed T cell ALL, early T cell precursor ALL, and T/myeloid mixed phenotype acute leukemia. Leveraging cellular indexing of transcriptomes and epitopes in conjunction with T cell receptor sequencing, we identified a subset of patient samples characterized by activation of inflammatory and stem gene programs. These inflammatory T-lineage samples exhibited distinct biological features compared with other T-lineage ALL samples, including the production of proinflammatory cytokines, prevalence of mutations affecting cytokine signaling and chromatin remodeling, an altered immune microenvironment, and poor treatment responses. Moreover, we found that, although inflammatory T-lineage ALL samples were less sensitive to dexamethasone, they exhibited unique sensitivity to a BCL-2 inhibitor, venetoclax. To facilitate classification of patients with T-lineage ALL, we developed a computational inflammatory gene signature scoring system, which stratified patients and was associated with disease prognosis in three additional patient cohorts. By identifying a high-risk T-lineage ALL subtype on the basis of an inflammatory score, our study provides a framework for targeted therapeutic approaches for these challenging-to-treat cancers.
Collapse
Affiliation(s)
- Mark Gower
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Ximing Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Brian Lin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Minerva Fernandez
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Gibran Edun
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Mursal Nader
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Vincent Rondeau
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Anne Tierens
- Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Anna Eames Seffernick
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Petri Pölönen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Juliette Durocher
- CHU Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Elvin Wagenblast
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029-5674, USA
| | - Lin Yang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Ho Seok Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - David Teachey
- Division of Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marissa Rashkovan
- CHU Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Cedric S Tremblay
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Tomer Itkin
- Sagol Center for Regenerative Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Neufeld Cardiovascular Research Institute, Department of Pathology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 5262179, Israel
- Tamman Cardiovascular Research Institute, Lev Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Ramat Gan 5262100, Israel
| | - Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gregory Schwartz
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
- Canada Vector Institute, Toronto, ON M5G 1M1, Canada
| | - Maria Agustina Perusini
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON M5B 1W8, Canada
| | - Hassan Sibai
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON M5B 1W8, Canada
| | - Johann Hitzler
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Pediatrics, University of Toronto, ON M5G 1X8, Canada
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON M5B 1W8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Courtney L Jones
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Igor Dolgalev
- Cellular Analytics Laboratory, NYU Grossman School of Medicine, New York, NY 10016, USA
- Division of Precision Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Soheil Jahangiri
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Anastasia N Tikhonova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
12
|
Dashti M, Habibi MA, Nejati N, Robat-Jazi B, Ahmadpour M, Dokhani N, Nejad AR, Karami S, Alinejad E, Malekijoo AH, Ghasemzadeh A, Jadidi-Niaragh F. Clinical Efficacy and Safety of CD7-Targeted CAR T Cell Therapy for T-cell Malignancies: A Systematic Review and Meta-analysis. Anticancer Agents Med Chem 2025; 25:42-51. [PMID: 39192642 DOI: 10.2174/0118715206321313240820101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/19/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVES Although T-cell malignancies are relatively less prevalent compared to B-cell malignancies, they are highly malignant, and patients usually have poor prognoses. Employing CD7-targeted chimeric antigen receptor (CAR) T cell therapy as a novel immunotherapy to treat malignant T cells faces numerous challenges and is in its early phase. To evaluate this possibility, we aimed to review and meta-analyze the related clinical trials systematically. METHODS On October 9, 2023, the online databases of PubMed, Scopus, Embase, and Web of Science were systematically searched for pertinent studies. After completing a two-step title/abstract and full-text screening process, the eligible studies were included. RESULTS We observed a pooled overall response rate (ORR) of 100%. Partial response (PR), stringent and/or complete response (sCR/CR), and relapse rate were 6%, 85%, and 18%, respectively. Additionally, the pooled rate of minimal residual disease (MRD) negativity was 85%. The most common grade ≥3 adverse events were related to hematological toxicities, including neutropenia (100%), thrombocytopenia (79%), and anemia (57%). Cytokine release syndrome (CRS) was also a frequent complication with a 100% rate; however, 81% of CRS events were low grades. No grade ≥3 GVHD was reported, and the immune effector cell-associated neurotoxicity syndrome (ICANS grade ≥3) was rare (4%). CONCLUSION CD7 is an active and safe target that shows promising results in the treatment of relapsed and/or refractory (r/r) T-cell malignancies.
Collapse
Affiliation(s)
- Mohsen Dashti
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Habibi
- Clinical Research Development Center, Qom University of Medical Sciences, Qom, Iran
| | - Negar Nejati
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Robat-Jazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Ahmadpour
- Shahid Faghihi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Dokhani
- Cardio-Oncology Research Center, Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Aida Rezaei Nejad
- Stem Cell and Regenerative Medical Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Karami
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Alinejad
- Department of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Amir H Malekijoo
- Department of Computer Engineering, Semnan University, Semnan, Iran
| | - Afsaneh Ghasemzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Xu J, Chen C, Sussman JH, Yoshimura S, Vincent T, Pölönen P, Hu J, Bandyopadhyay S, Elghawy O, Yu W, Tumulty J, Chen CH, Li EY, Diorio C, Shraim R, Newman H, Uppuluri L, Li A, Chen GM, Wu DW, Ding YY, Xu JA, Karanfilovski D, Lim T, Hsu M, Thadi A, Ahn KJ, Wu CY, Peng J, Sun Y, Wang A, Mehta R, Frank D, Meyer L, Loh ML, Raetz EA, Chen Z, Wood BL, Devidas M, Dunsmore KP, Winter SS, Chang TC, Wu G, Pounds SB, Zhang NR, Carroll W, Hunger SP, Bernt K, Yang JJ, Mullighan CG, Tan K, Teachey DT. A multiomic atlas identifies a treatment-resistant, bone marrow progenitor-like cell population in T cell acute lymphoblastic leukemia. NATURE CANCER 2025; 6:102-122. [PMID: 39587259 PMCID: PMC11779640 DOI: 10.1038/s43018-024-00863-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/17/2024] [Indexed: 11/27/2024]
Abstract
Refractoriness to initial chemotherapy and relapse after remission are the main obstacles to curing T cell acute lymphoblastic leukemia (T-ALL). While tumor heterogeneity has been implicated in treatment failure, the cellular and genetic factors contributing to resistance and relapse remain unknown. Here we linked tumor subpopulations with clinical outcome, created an atlas of healthy pediatric hematopoiesis and applied single-cell multiomic analysis to a diverse cohort of 40 T-ALL cases. We identified a bone marrow progenitor (BMP)-like leukemia subpopulation associated with treatment failure and poor overall survival. The single-cell-derived molecular signature of BMP-like blasts predicted poor outcome across multiple subtypes of T-ALL and revealed that NOTCH1 mutations additively drive T-ALL blasts away from the BMP-like state. Through in silico and in vitro drug screenings, we identified a therapeutic vulnerability of BMP-like blasts to apoptosis-inducing agents including venetoclax. Collectively, our study establishes multiomic signatures for rapid risk stratification and targeted treatment of high-risk T-ALL.
Collapse
Affiliation(s)
- Jason Xu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Changya Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjian, China
| | - Jonathan H Sussman
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Satoshi Yoshimura
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tiffaney Vincent
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Petri Pölönen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jianzhong Hu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shovik Bandyopadhyay
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Cell & Molecular Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Omar Elghawy
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wenbao Yu
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph Tumulty
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chia-Hui Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth Y Li
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Haley Newman
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lahari Uppuluri
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alexander Li
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gregory M Chen
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David W Wu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang-Yang Ding
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica A Xu
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Damjan Karanfilovski
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tristan Lim
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miles Hsu
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anusha Thadi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyung Jin Ahn
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chi-Yun Wu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacqueline Peng
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yusha Sun
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Alice Wang
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - David Frank
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lauren Meyer
- The Ben Town Center for Childhood Cancer Research, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatric Hematology Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Mignon L Loh
- The Ben Town Center for Childhood Cancer Research, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatric Hematology Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Elizabeth A Raetz
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Zhiguo Chen
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Brent L Wood
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kimberly P Dunsmore
- Division of Oncology, University of Virginia Children's Hospital, Charlottesville, VA, USA
| | | | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley B Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nancy R Zhang
- Department of Statistics, University of Pennsylvania, Philadelphia, PA, USA
| | - William Carroll
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Stephen P Hunger
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathrin Bernt
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - David T Teachey
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Pan J, Tan Y, Shan L, Seery S, Deng B, Ling Z, Xu J, Duan J, Wang Z, Wang K, Yu X, Zheng Q, Xu X, Hu G, Tan T, Yuan Y, Tian Z, Yan F, Han Y, Zhang J, Feng X. Allogeneic CD5-specific CAR-T therapy for relapsed/refractory T-ALL: a phase 1 trial. Nat Med 2025; 31:126-136. [PMID: 39354195 DOI: 10.1038/s41591-024-03282-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/30/2024] [Indexed: 10/03/2024]
Abstract
Refractory or relapsed T cell acute lymphoblastic leukemia (r/r T-ALL) patients have poor prognoses, due to the lack of effective salvage therapies. Recently, CD7-targeting chimeric antigen receptor (CAR)-T therapies show efficacy in patients with r/r T-ALL, but relapse with CD7 loss is common. This study evaluates a CD5-gene-edited CAR-T cell therapy targeting CD5 in 19 r/r T-ALL patients, most of whom had previously failed CD7 CAR-T interventions. CAR-T products were derived from previous transplant donors (Cohort A) or newly matched donors (Cohort B). Primary endpoints were dose-limiting toxicity at 21 days and adverse events within 30 days. Secondary endpoints were responses, pharmacokinetics and severe adverse events after 30 days. A total of 16 received infusions, 10 at target dose of 1 × 106 kg-1. All encountered grade 3-4 cytopenias and one had a grade 3 infection within 30 days. All patients (100%) achieved complete remission or complete remission with incomplete blood count recovery by day 30. At a median follow-up of 14.3 months, four received transplantation; three were in remission and one died of infection. Of 12 untransplanted patients, 2 were in remission, 3 relapsed, 5 died of infection and 2 of thrombotic microangiopathy. CAR-T cells persisted and cleared CD5+ T cells. CD5- T cells, mostly CD5-gene-edited, increased but remained below normal levels. These results suggest this CD5-specific CAR-T intervention has a high remission rate for T-ALL patients. Evidence also suggests the risk of late-onset severe infection may be mitigated with consolidative transplantation. This study provides insights that could help to optimize this promising intervention. ClinicalTrials.gov registration: NCT05032599 .
Collapse
Affiliation(s)
- Jing Pan
- State Key Laboratory of Experimental Hematology, Boren Clinical Translational Center, Department of Hematology, Beijing Gobroad Boren Hospital, Beijing, China.
| | - Yue Tan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lingling Shan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Samuel Seery
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Biping Deng
- Cytology Laboratory, Beijing Gobroad Boren Hospital, Beijing, China
| | - Zhuojun Ling
- State Key Laboratory of Experimental Hematology, Boren Clinical Translational Center, Department of Hematology, Beijing Gobroad Boren Hospital, Beijing, China
| | - Jinlong Xu
- State Key Laboratory of Experimental Hematology, Boren Clinical Translational Center, Department of Hematology, Beijing Gobroad Boren Hospital, Beijing, China
| | - Jiajia Duan
- State Key Laboratory of Experimental Hematology, Boren Clinical Translational Center, Department of Hematology, Beijing Gobroad Boren Hospital, Beijing, China
| | - Zelin Wang
- State Key Laboratory of Experimental Hematology, Boren Clinical Translational Center, Department of Hematology, Beijing Gobroad Boren Hospital, Beijing, China
| | - Kai Wang
- State Key Laboratory of Experimental Hematology, Boren Clinical Translational Center, Department of Hematology, Beijing Gobroad Boren Hospital, Beijing, China
| | - Xinjian Yu
- Medical Laboratory, Beijing Gobroad Boren Hospital, Beijing, China
| | - Qinlong Zheng
- Medical Laboratory, Beijing Gobroad Boren Hospital, Beijing, China
| | - Xiuwen Xu
- Medical Laboratory, Beijing Gobroad Boren Hospital, Beijing, China
| | - Guang Hu
- Nanjing IASO Biotherapeutics, Nanjing, China
| | - Taochao Tan
- Nanjing IASO Biotherapeutics, Nanjing, China
| | - Ying Yuan
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Austin, TX, USA
| | - Zhenglong Tian
- Gobroad Research Center, Gobroad Medical Group, Beijing, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yajing Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jiecheng Zhang
- Department of Hospital Management, Gobroad Medical Group, Beijing, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
15
|
Yang J, Liu Y, Du Z, Zhou Q, Yang L, Ye Q, Pan J, Zou W, Chen C, Jin B. Antitumor activity of niclosamide-mediated oxidative stress against acute lymphoblastic leukemia. Carcinogenesis 2024; 45:940-952. [PMID: 38820079 DOI: 10.1093/carcin/bgae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 06/02/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous clonal disease originated from B- or T-cell lymphoid precursor cells. ALL is often refractory or relapses after treatment. Novel treatments are anxiously needed in order to achieve a better response and prolonged overall survival in ALL patients. In the present study, we aimed at examining the antitumor effect of niclosamide on ALL. We investigated the effects of niclosamide on the proliferation and apoptosis in vitro, the growth of ALL cells in xenografted NOD-Prkdcem26Cd52 il2rgem26Cd22 /Nju (NCG) mice. The results showed that niclosamide treatment potently inhibited the growth of ALL cells and induced apoptosis via elevating the levels of reactive oxygen species and activating TP53. These findings suggest that niclosamide may be a promisingly potential agent for ALL therapy.
Collapse
Affiliation(s)
- Jing Yang
- Division of Hematology/Oncology, Department of Pediatrics, 628 Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yong Liu
- Division of Hematology/Oncology, Department of Pediatrics, 628 Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zefan Du
- Division of Hematology/Oncology, Department of Pediatrics, 628 Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qin Zhou
- Division of Hematology/Oncology, Department of Pediatrics, 628 Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Luo Yang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 54 South Xianlie Road, Guangzhou 510060, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qianyun Ye
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 54 South Xianlie Road, Guangzhou 510060, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 54 South Xianlie Road, Guangzhou 510060, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Waiyi Zou
- Department of Hematology, The First Affiliated Hospital, 58 Zhongshan Road II, Guangzhou 510080, Sun Yat-sen University, Guangzhou, China
| | - Chun Chen
- Division of Hematology/Oncology, Department of Pediatrics, 628 Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Bei Jin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 54 South Xianlie Road, Guangzhou 510060, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Hojjatipour T, Ajeli M, Maali A, Azad M. Epigenetic-modifying agents: The potential game changers in the treatment of hematologic malignancies. Crit Rev Oncol Hematol 2024; 204:104498. [PMID: 39244179 DOI: 10.1016/j.critrevonc.2024.104498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Hematologic malignancies are lethal diseases arising from accumulated leukemic cells with substantial genetic or epigenetic defects in their natural development. Epigenetic modifications, including DNA methylation and histone modifications, are critical in hematologic malignancy formation, propagation, and treatment response. Both mutations and aberrant recruitment of epigenetic modifiers are reported in different hematologic malignancies, which regarding the reversible nature of epigenetic regulations, make them a potential target for cancer treatment. Here, we have first outlined a comprehensive overview of current knowledge related to epigenetic regulation's impact on the development and prognosis of hematologic malignancies. Furthermore, we have presented an updated overview regarding the current status of epigenetic-based drugs in hematologic malignancies treatment. And finally, discuss current challenges and ongoing clinical trials based on the manipulation of epigenetic modifies in hematologic malignancies.
Collapse
Affiliation(s)
- Tahereh Hojjatipour
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Mina Ajeli
- Department of Medical Laboratory Sciences, Guilan University of Medical Sciences, Guilan, Iran
| | - Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, School of Paramedicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
17
|
Zhang B, Chen J, Chen J, Shen Y, Chen Y, Wang S, Zhang C, He Y, Feng H, Wang J, Cai Z. CD7-targeting pro-apoptotic extracellular vesicles: A novel approach for T-cell haematological malignancy therapy. J Extracell Vesicles 2024; 13:e70025. [PMID: 39676736 DOI: 10.1002/jev2.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/28/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
T-cell haematological malignancies progress rapidly and have a high mortality rate and effective treatments are still lacking. Here, we developed a drug delivery system utilizing 293T cell-derived extracellular vesicles (EVs) modified with an anti-CD7 single-chain variable fragment (αCD7/EVs). Given the challenges of chemotherapy resistance in patients with T-cell malignancy, we selected cytochrome C (CytC) and Bcl2 siRNA (siBcl2) as therapeutic agents and loaded them into αCD7/EVs (αCD7/EVs/CytC/siBcl2). We found that αCD7/EVs efficiently targeted and were internalized by human T-ALL Molt-4 cells. In addition, the interaction between αCD7 and CD7 switched the EV entry pathway in Molt-4 cells from macropinocytosis-dependent endocytosis to clathrin-mediated endocytosis, thereby reducing EV-lysosome colocalization, ultimately improving CytC delivery efficiency and increasing the cytotoxicity of nascent EVs from EV-treated Molt-4 cells. Notably, αCD7/EVs/CytC/siBcl2 demonstrated similar efficacy against both Molt-4 and chemotherapy-resistant Molt-4 cells (CR-Molt-4). Furthermore, αCD7/EVs/CytC/siBcl2 exhibited high safety, low immunogenicity and minimal impact on human T cells. Therefore, αCD7/EVs/CytC/siBcl2 are promising therapeutic approaches for treating CD7+ T-cell malignancies.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Orthopaedics of the Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianqiang Chen
- Department of Orthopaedics of the Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiming Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian province university, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Diseases Xiamen Medical College, Xiamen, China
- Organiod platform of medical laboratory science, Xiamen medical college, Xiamen, China
| | - Yingying Shen
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Yinghu Chen
- Department of Infectious Disease, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Shibo Wang
- Department of Orthopaedics of the Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyan Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuzhou He
- Department of Emergency, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Huajun Feng
- Ecological-Environment & Health College, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Jiaoli Wang
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Zhijian Cai
- Department of Orthopaedics of the Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Ghete T, Kock F, Pontones M, Pfrang D, Westphal M, Höfener H, Metzler M. Models for the marrow: A comprehensive review of AI-based cell classification methods and malignancy detection in bone marrow aspirate smears. Hemasphere 2024; 8:e70048. [PMID: 39629240 PMCID: PMC11612571 DOI: 10.1002/hem3.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/25/2024] [Accepted: 10/26/2024] [Indexed: 12/07/2024] Open
Abstract
Given the high prevalence of artificial intelligence (AI) research in medicine, the development of deep learning (DL) algorithms based on image recognition, such as the analysis of bone marrow aspirate (BMA) smears, is rapidly increasing in the field of hematology and oncology. The models are trained to identify the optimal regions of the BMA smear for differential cell count and subsequently detect and classify a number of cell types, which can ultimately be utilized for diagnostic purposes. Moreover, AI is capable of identifying genetic mutations phenotypically. This pipeline has the potential to offer an accurate and rapid preliminary analysis of the bone marrow in the clinical routine. However, the intrinsic complexity of hematological diseases presents several challenges for the automatic morphological assessment. To ensure general applicability across multiple medical centers and to deliver high accuracy on prospective clinical data, AI models would require highly heterogeneous training datasets. This review presents a systematic analysis of models for cell classification and detection of hematological malignancies published in the last 5 years (2019-2024). It provides insight into the challenges and opportunities of these DL-assisted tasks.
Collapse
Affiliation(s)
- Tabita Ghete
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenErlangenGermany
- Bavarian Cancer Research Center (BZKF)ErlangenGermany
| | - Farina Kock
- Computational PathologyFraunhofer Institute for Digital Medicine (MEVIS)BremenGermany
| | - Martina Pontones
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenErlangenGermany
- Bavarian Cancer Research Center (BZKF)ErlangenGermany
| | - David Pfrang
- Computational PathologyFraunhofer Institute for Digital Medicine (MEVIS)BremenGermany
| | - Max Westphal
- Computational PathologyFraunhofer Institute for Digital Medicine (MEVIS)BremenGermany
| | - Henning Höfener
- Computational PathologyFraunhofer Institute for Digital Medicine (MEVIS)BremenGermany
| | - Markus Metzler
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenErlangenGermany
- Bavarian Cancer Research Center (BZKF)ErlangenGermany
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenGermany
| |
Collapse
|
19
|
Oh BLZ, Shimasaki N, Coustan-Smith E, Chan E, Poon L, Lee SHR, Yeap F, Tan LK, Chai LYA, Le Bert N, Tan N, Bertoletti A, Chen SP, Del Bufalo F, Becilli M, Locatelli F, Yeoh AEJ, Campana D. Fratricide-resistant CD7-CAR T cells in T-ALL. Nat Med 2024; 30:3687-3696. [PMID: 39227445 DOI: 10.1038/s41591-024-03228-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is difficult to treat when it relapses after therapy or is chemoresistant; the prognosis of patients with relapsed or refractory T-ALL is generally poor. We report a case series of 17 such patients who received autologous chimeric antigen receptor (CAR) T cells expressing an anti-CD7 CAR and an anti-CD7 protein expression blocker (PEBL), which prevented CAR T cell fratricide. Despite high leukemic burden and low CAR T cell dosing, 16 of the 17 patients attained minimal residual disease-negative complete remission within 1 month. The remaining patient had CD7- T-ALL cells before infusion, which persisted after infusion. Toxicities were mild: cytokine release syndrome grade 1 in ten patients and grade 2 in three patients; immune effector cell-associated neurotoxicity syndrome grade 1 in two patients. Eleven patients remained relapse-free (median follow-up, 15 months), including all nine patients who received an allotransplant. The first patient is in remission 55 months after infusion without further chemotherapy or transplantation; circulating CAR T cells were detectable for 2 years. T cells regenerating after lymphodepletion lacked CD7 expression, were polyclonal and responded to SARS-CoV-2 vaccination; CD7+ immune cells reemerged concomitantly with CAR T cell disappearance. In conclusion, autologous anti-CD7 PEBL-CAR T cells have powerful antileukemic activity and are potentially an effective option for the treatment of T-ALL.
Collapse
Affiliation(s)
- Bernice L Z Oh
- Viva-University Children's Cancer Center, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Noriko Shimasaki
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elaine Coustan-Smith
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Esther Chan
- National University Cancer Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Limei Poon
- National University Cancer Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Shawn H R Lee
- Viva-University Children's Cancer Center, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Frances Yeap
- Viva-University Children's Cancer Center, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lip Kun Tan
- National University Cancer Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Louis Y A Chai
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore, Singapore
| | - Nina Le Bert
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Nicole Tan
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Antonio Bertoletti
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Siew Peng Chen
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Francesca Del Bufalo
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Marco Becilli
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy.
| | - Allen E J Yeoh
- Viva-University Children's Cancer Center, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore.
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National University Cancer Institute, National University Hospital, National University Health System, Singapore, Singapore.
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Dario Campana
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Cancer Institute, National University Hospital, National University Health System, Singapore, Singapore
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Toscan CE, McCalmont H, Ashoorzadeh A, Lin X, Fu Z, Doculara L, Kosasih HJ, Cadiz R, Zhou A, Williams S, Evans K, Khalili F, Cai R, Yeats KL, Gifford AJ, Pickford R, Mayoh C, Xie J, Henderson MJ, Trahair TN, Patterson AV, Smaill JB, de Bock CE, Lock RB. The third generation AKR1C3-activated prodrug, ACHM-025, eradicates disease in preclinical models of aggressive T-cell acute lymphoblastic leukemia. Blood Cancer J 2024; 14:192. [PMID: 39505850 PMCID: PMC11542020 DOI: 10.1038/s41408-024-01180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that expresses high levels of the enzyme aldo-keto reductase family 1 member C3 (AKR1C3). To exploit this finding, we developed a novel prodrug, ACHM-025, which is selectively activated by AKR1C3 to a nitrogen mustard DNA alkylating agent. We show that ACHM-025 has potent in vivo efficacy against T-ALL patient-derived xenografts (PDXs) and eradicated the disease in 7 PDXs. ACHM-025 was significantly more effective than cyclophosphamide both as a single agent and when used in combination with cytarabine/6-mercaptopurine. Notably, ACHM-025 in combination with nelarabine was curative when used to treat a chemoresistant T-ALL PDX in vivo. The in vivo efficacy of ACHM-025 directly correlated with AKR1C3 expression levels, providing a predictive biomarker for response. Together, our work provides strong preclinical evidence highlighting the potential of ACHM-025 as a targeted and effective therapy for aggressive forms of T-ALL.
Collapse
Affiliation(s)
- Cara E Toscan
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Hannah McCalmont
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Amir Ashoorzadeh
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Xiaojing Lin
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Zhe Fu
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Louise Doculara
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Hansen J Kosasih
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Roxanne Cadiz
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Anthony Zhou
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Sarah Williams
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Kathryn Evans
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Faezeh Khalili
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Ruilin Cai
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Kristy L Yeats
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
- Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Jinhan Xie
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle J Henderson
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Charles E de Bock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
21
|
Domenech C, Kicinski M, De Moerloose B, Piette C, Chahla WA, Kornreich L, Pasquet M, Uyttebroeck A, Theron A, Poirée M, Arfeuille C, Bakkus M, Grardel N, Paillard C, Freycon C, Millot F, Simon P, Philippet P, Pluchart C, Suciu S, Rohrlich P, Ferster A, Bertrand Y, Cavé H. Results of the prospective EORTC Children Leukemia Group study 58081 in precursor B- and T-cell acute lymphoblastic leukemia. Hemasphere 2024; 8:e70025. [PMID: 39540141 PMCID: PMC11558101 DOI: 10.1002/hem3.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/28/2024] [Accepted: 08/07/2024] [Indexed: 11/16/2024] Open
Abstract
Here, we report the results of the prospective cohort study EORTC-CLG 58081 and compare them to the control arm of the randomized phase 3 trial EORTC-CLG 58951, on which treatment recommendations were built. In both studies, patients aged 1-18 years with BCR::ABL1 negative acute lymphoblastic leukemia of the B-lineage (B-ALL) or T-lineage (T-ALL) were treated using a BFM backbone without cranial irradiation. Similarly to the control arm of 58951, prednisolone (PRED) 60 mg/m2/day was used for induction therapy, but a few modifications were made. Dexamethasone (DXM) was used in average-risk 2 (AR2) T-ALL and B-ALL during induction, 10 and 6 mg/m2/day, respectively. Leucovorin rescue was delayed to 42 h instead of 36 h after initiation of high-dose methotrexate, and a postconsolidation MRD time point was added to stratify patients. Between 2011 and 2017, 835 patients were prospectively enrolled in the 58081 study. Overall, the 5-year event-free survival (EFS) was 84.8% versus 83.6% (hazard ratio [HR], 0.96 [95% confidence interval [CI]: 0.76-1.21]) for 58081 versus 58951 considered as a control group, respectively, 84.3% versus 84.9% (HR, 1.06 [99% CI: 0.75-1.49]) in B-ALL but 87.3% versus 76.6% (HR, 0.59 [99% CI: 0.28-1.24]) in T-ALL. The comparison between the two studies regarding EFS differed by risk group (p = 0.012). The HR was 2.15 (99% CI: 0.67-6.85) for very low-risk but 0.34 (99% CI: 0.13-0.89) for AR2. The particularly favorable results observed in the T-ALLs and AR2 subgroups suggest the benefit of using DXM in specific patient groups and highlight the importance of risk stratification.
Collapse
Affiliation(s)
- Carine Domenech
- Department of Pediatric Hematology‐Oncology, Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de LyonUniversité Lyon1LyonFrance
| | | | - Barbara De Moerloose
- Department of Pediatric Hematology‐OncologyGhent University HospitalGhentBelgium
| | - Caroline Piette
- Department of Paediatrics, Division of Haematology‐OncologyUniversity Hospital Liège and University of LiègeLiègeBelgium
| | | | - Laure Kornreich
- Department of Hemato‐OncologyHUDERF‐HUB (ULB)BrusselsBelgium
| | | | - Anne Uyttebroeck
- Department of PediatricsUniversity Hospital GasthuisbergLeuvenBelgium
| | - Alexandre Theron
- Department of Pediatric Hematology OncologyCHU de MontpellierMontpellierFrance
| | | | - Chloé Arfeuille
- Département de GénétiqueAssistance Publique des Hôpitaux de Paris (AP‐HP), Hôpital Robert DebréParisFrance
- Department of Research‐INSERM UMR 1131Université Paris CitéFrance
| | - Marleen Bakkus
- Department of Molecular HematologyUZ BrusselBrusselsBelgium
| | | | - Catherine Paillard
- Department of Paediatric Haematology and OncologyCHU HautepierreStrasbourg
| | | | - Frédéric Millot
- Department of Pediatric Hematology‐OncologyCHUPoitiersFrance
| | - Pauline Simon
- Department of Pediatric Hematology‐OncologyCHRUBesançonFrance
| | - Pierre Philippet
- Department of Pediatric Hemato‐OncologyCHC MontLégiaLiègeBelgium
| | | | - Stefan Suciu
- Department of StatisticEORTC HeadquartersBrusselsBelgium
| | | | - Alina Ferster
- Department of Hemato‐OncologyHUDERF‐HUB (ULB)BrusselsBelgium
| | - Yves Bertrand
- Department of Pediatric Hematology‐Oncology, Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de LyonUniversité Lyon1LyonFrance
| | - Hélène Cavé
- Département de GénétiqueAssistance Publique des Hôpitaux de Paris (AP‐HP), Hôpital Robert DebréParisFrance
- Department of Research‐INSERM UMR 1131Université Paris CitéFrance
| | | |
Collapse
|
22
|
Phan L, Jabbour E, Antonoff MB, Jain N, Lin P, Moran C, Pemmaraju N. Unexpected Mediastinal Mass Etiology in B-Acute Lymphoblastic Leukemia. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:314-316. [PMID: 39524462 PMCID: PMC11541927 DOI: 10.36401/jipo-24-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 11/16/2024]
Abstract
Leukemic masses are a known complication in patients with hematologic malignancies. Here we present a case regarding a patient with recently diagnosed B-acute lymphoblastic leukemia (B-ALL) who presented with multiple sites of extramedullary involvement including an anterior mediastinal mass. This mass persisted despite multiple rounds of multiagent cytotoxic therapy. In this report, we summarize the literature regarding mediastinal masses in the setting of B-ALL and illustrate that such masses in patients with leukemias may have surprising etiology, separate from the primary disease.
Collapse
Affiliation(s)
- Luan Phan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mara B. Antonoff
- Department of Thoracic and Cardiovascular Surgery The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pei Lin
- Department of Hematopathology The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cesar Moran
- Department of Anatomical Pathology The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
23
|
Li H, Chen Y, Ding M, Liu J, Sun H, Fang H, Brady SW, Xu Y, Glaser F, Ma X, Tang Y, Du L, Wu X, Wang S, Zhu L, Li B, Shen S, Zhang J, Zheng L, Yu J, Assaraf YG, Zhou BBS. Folylpolyglutamate synthetase inactivation in relapsed ALL induces a druggable folate metabolic vulnerability. Drug Resist Updat 2024; 77:101141. [PMID: 39181011 DOI: 10.1016/j.drup.2024.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
AIMS The antifolate methotrexate (MTX) is an anchor drug used in acute lymphoblastic leukemia (ALL) with poorly understood chemoresistance mechanisms in relapse. Herein we find decreased folate polyglutamylation network activities and inactivating FPGS mutations, both of which could induce MTX resistance and folate metabolic vulnerability in relapsed ALL. METHODS We utilized integrated systems biology analysis of transcriptomic and genomic data from relapse ALL cohorts to infer hidden ALL relapse drivers and related genetic alternations during clonal evolution. The drug sensitivity assay was used to determine the impact of relapse-specific FPGS mutations on sensitivity to different antifolates and chemotherapeutics in ALL cells. We used liquid chromatography-mass spectrometry (LC-MS) to quantify MTX and folate polyglutamate levels in folylpoly-γ-glutamate synthetase (FPGS) mutant ALL cells. Enzymatic activity and protein degradation assays were also conducted to characterize the catalytic properties and protein stabilities of FPGS mutants. An ALL cell line-derived mouse leukemia xenograft model was used to evaluate the in vivo impact of FPGS inactivation on leukemogenesis and sensitivity to the polyglutamatable antifolate MTX as well as non-polyglutamatble lipophilic antifolate trimetrexate (TMQ). RESULTS We found a significant decrease in folate polyglutamylation network activities during ALL relapse using RNA-seq data. Supported by functional evidence, we identified multifactorial mechanisms of FPGS inactivation in relapsed ALL, including its decreased network activity and gene expression, focal gene deletion, impaired catalytic activity, and increased protein degradation. These deleterious FPGS alterations induce MTX resistance and inevitably cause marked intracellular folate shrinkage, which could be efficiently targeted by a polyglutamylation-independent lipophilic antifolate TMQ in vitro and in vivo. CONCLUSIONS MTX resistance in relapsed ALL relies on FPGS inactivation, which inevitably induces a folate metabolic vulnerability, allowing for an efficacious antifolate ALL treatment strategy that is based upon TMQ, thereby surmounting chemoresistance in relapsed ALL.
Collapse
Affiliation(s)
- Hui Li
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou, China
| | - Yao Chen
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Ding
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Huiying Sun
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Houshun Fang
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yan Xu
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fabian Glaser
- Structural and Computational Biology Unit, The Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yabin Tang
- Department of Pharmacology and Chemical Biology, School of Basic Medicine and Shanghai Collaborative Innovation Center for Translational Medicine Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Xiaoyu Wu
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuxuan Wang
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, School of Basic Medicine and Shanghai Collaborative Innovation Center for Translational Medicine Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benshang Li
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuhong Shen
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou, China
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Liang Zheng
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou, China.
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Bin-Bing S Zhou
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou, China; Department of Pharmacology and Chemical Biology, School of Basic Medicine and Shanghai Collaborative Innovation Center for Translational Medicine Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Aertgeerts M, Meyers S, Demeyer S, Segers H, Cools J. Unlocking the Complexity: Exploration of Acute Lymphoblastic Leukemia at the Single Cell Level. Mol Diagn Ther 2024; 28:727-744. [PMID: 39190087 DOI: 10.1007/s40291-024-00739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. ALL originates from precursor lymphocytes that acquire multiple genomic changes over time, including chromosomal rearrangements and point mutations. While a large variety of genomic defects was identified and characterized in ALL over the past 30 years, it was only in recent years that the clonal heterogeneity was recognized. Thanks to the latest advancements in single-cell sequencing techniques, which have evolved from the analysis of a few hundred cells to the analysis of thousands of cells simultaneously, the study of tumor heterogeneity now becomes possible. Different modalities can be explored at the single-cell level: DNA, RNA, epigenetic modifications, and intracellular and cell surface proteins. In this review, we describe these techniques and highlight their advantages and limitations in the study of ALL biology. Moreover, multiomics technologies and the incorporation of the spatial dimension can provide insight into intercellular communication. We describe how the different single-cell sequencing technologies help to unravel the molecular complexity of ALL, shedding light on its development, its heterogeneity, its interaction with the leukemia microenvironment and possible relapse mechanisms.
Collapse
Affiliation(s)
- Margo Aertgeerts
- Department of Oncology, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven-UZ Leuven, Leuven, Belgium
| | - Sarah Meyers
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven-UZ Leuven, Leuven, Belgium
| | - Sofie Demeyer
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven-UZ Leuven, Leuven, Belgium
| | - Heidi Segers
- Department of Oncology, KU Leuven, Leuven, Belgium.
- Leuvens Kanker Instituut (LKI), KU Leuven-UZ Leuven, Leuven, Belgium.
- Department of Pediatric Hematology and Oncology, UZ Leuven, Leuven, Belgium.
| | - Jan Cools
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Center for Cancer Biology, VIB, Leuven, Belgium.
- Leuvens Kanker Instituut (LKI), KU Leuven-UZ Leuven, Leuven, Belgium.
| |
Collapse
|
25
|
Ray A, Levitt M, Efunkoya T, Trinkman H. Precision Medicine for Acute Lymphoblastic Leukemia in Children: A Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1329. [PMID: 39594904 PMCID: PMC11593090 DOI: 10.3390/children11111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
The clinical outcome for children diagnosed with acute lymphoblastic leukemia is a testimony to the success of modern medicine. Over the past few decades, survival has climbed from ∼10% to >90% for certain subgroups. Yet, the outcome for those with relapsed disease is often poor, and survivors struggle with a multitude of healthcare issues, some of which are lifelong. In recent years, the advent of the widespread sequencing of tumors has made available patients with previously unrecognized subtypes of leukemia, who have the potential to benefit from the addition of targeted therapies. Indeed, the promise of precision medicine, encompassing a person's environment, genetics and lifestyle, is likely to have profound impact on further tailoring therapies that are likely to improve outcomes, diminish toxicity and ultimately pave the pathway for a healthier population.
Collapse
Affiliation(s)
- Anish Ray
- Cook Children’s Medical Center, Fort Worth, TX 76104, USA; (T.E.); (H.T.)
| | - Michael Levitt
- University of North Texas Health Science Center, Texas College of Osteopathic Medicine, Fort Worth, TX 76107, USA;
| | | | - Heidi Trinkman
- Cook Children’s Medical Center, Fort Worth, TX 76104, USA; (T.E.); (H.T.)
| |
Collapse
|
26
|
Šimiaková M, Bielik V. The pros and cons of probiotic use in pediatric oncology patients following treatment for acute lymphoblastic leukemia. Front Pediatr 2024; 12:1427185. [PMID: 39502562 PMCID: PMC11534854 DOI: 10.3389/fped.2024.1427185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) treatment, involving chemotherapy, radiotherapy, and pharmacotherapy (antibiotics, antineoplastics) perturbs the gut microbiota in pediatric patients, with enduring effects post-treatment. ALL treatments diminish microbial richness and diversity, favoring pathogenic bacteria. Probiotics may offer promise in mitigating these disruptions and associated side effects. This mini-review explores the impact of ALL treatment on the gut microbiota and the potential benefits of probiotics in pediatric oncology. Probiotics have shown promise in restoring gut microbial balance, reducing treatment-associated side effects, and potentially improving quality of life. However, potential adverse effects, particularly in immunocompromised patients, warrant caution. Notably, there's emerging interest in probiotics' role in bone health and mineral bioaccessibility. Further research is needed to elucidate probiotics' mechanisms and their broader impact on pediatric health. Integration of probiotics into ALL treatment and post-treatment regimens offers significant potential for improving patient outcomes and reducing treatment-related complications and long-lasting disruptions, although careful monitoring is essential.
Collapse
Affiliation(s)
| | - Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sports, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
27
|
Flores-López LA, De la Mora-De la Mora I, Malagón-Reyes CM, García-Torres I, Martínez-Pérez Y, López-Herrera G, Hernández-Alcántara G, León-Avila G, López-Velázquez G, Olaya-Vargas A, Gómez-Manzo S, Enríquez-Flores S. Selective Inhibition of Deamidated Triosephosphate Isomerase by Disulfiram, Curcumin, and Sodium Dichloroacetate: Synergistic Therapeutic Strategies for T-Cell Acute Lymphoblastic Leukemia in Jurkat Cells. Biomolecules 2024; 14:1295. [PMID: 39456228 PMCID: PMC11506356 DOI: 10.3390/biom14101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a challenging childhood cancer to treat, with limited therapeutic options and high relapse rates. This study explores deamidated triosephosphate isomerase (dTPI) as a novel therapeutic target. We hypothesized that selectively inhibiting dTPI could reduce T-ALL cell viability without affecting normal T lymphocytes. Computational modeling and recombinant enzyme assays revealed that disulfiram (DS) and curcumin (CU) selectively bind and inhibit dTPI activity without affecting the non-deamidated enzyme. At the cellular level, treatment with DS and CU significantly reduced Jurkat T-ALL cell viability and endogenous TPI enzymatic activity, with no effect on normal T lymphocytes, whereas the combination of sodium dichloroacetate (DCA) with DS or CU showed synergistic effects. Furthermore, we demonstrated that dTPI was present and accumulated only in Jurkat cells, confirming our hypothesis. Finally, flow cytometry confirmed apoptosis in Jurkat cells after treatment with DS and CU or their combination with DCA. These findings strongly suggest that targeting dTPI represents a promising and selective target for T-ALL therapy.
Collapse
Affiliation(s)
- Luis A. Flores-López
- Laboratorio de Biomoléculas y Salud Infantil, CONAHCYT-Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Ignacio De la Mora-De la Mora
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.); (G.L.-V.)
| | - Claudia M. Malagón-Reyes
- Posgrado en Ciencias Biológicas, (Maestría), Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Itzhel García-Torres
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.); (G.L.-V.)
| | - Yoalli Martínez-Pérez
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico;
| | - Gabriela López-Herrera
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Gloria Hernández-Alcántara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, Mexico City 04510, Mexico;
| | - Gloria León-Avila
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico;
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.); (G.L.-V.)
| | - Alberto Olaya-Vargas
- Trasplante de Células Madre y Terapia Celular, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.); (G.L.-V.)
| |
Collapse
|
28
|
Newman H, Teachey DT. A T-ALL order: a new risk classifier for T-ALL. Blood 2024; 144:1545-1547. [PMID: 39388162 DOI: 10.1182/blood.2024025623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Affiliation(s)
- Haley Newman
- The Children's Hospital of Philadelphia
- University of Pennsylvania Perelman School of Medicine
| | - David T Teachey
- The Children's Hospital of Philadelphia
- University of Pennsylvania Perelman School of Medicine
| |
Collapse
|
29
|
Li Y, Zhang Z, Yu J, Yin H, Chu X, Cao H, Tao Y, Zhang Y, Li Z, Wu S, Hu Y, Zhu F, Gao J, Wang X, Zhou B, Jiao W, Wu Y, Yang Y, Chen Y, Zhuo R, Yang Y, Zhang F, Shi L, Hu Y, Pan J, Hu S. Enhancer looping protein LDB1 modulates MYB expression in T-ALL cell lines in vitro by cooperating with master transcription factors. J Exp Clin Cancer Res 2024; 43:283. [PMID: 39385230 PMCID: PMC11462673 DOI: 10.1186/s13046-024-03199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Despite significant progress in the prognosis of pediatric T-cell acute lymphoblastic leukemia (T-ALL) in recent decades, a notable portion of children still confronts challenges such as treatment resistance and recurrence, leading to limited options and a poor prognosis. LIM domain-binding protein 1 (LDB1) has been confirmed to exert a crucial role in various physiological and pathological processes. In our research, we aim to elucidate the underlying function and mechanisms of LDB1 within the background of T-ALL. METHODS Employing short hairpin RNA (shRNA) techniques, we delineated the functional impact of LDB1 in T-ALL cell lines. Through the application of RNA-Seq, CUT&Tag, and immunoprecipitation assays, we scrutinized master transcription factors cooperating with LDB1 and identified downstream targets under LDB1 regulation. RESULTS LDB1 emerges as a critical transcription factor co-activator in cell lines derived from T-ALL. It primarily collaborates with master transcription factors (ERG, ETV6, IRF1) to cooperatively regulate the transcription of downstream target genes. Both in vitro and in vivo experiments affirm the essential fuction of LDB1 in the proliferation and survival of cell lines derived from T-ALL, with MYB identified as a significant downstream target of LDB1. CONCLUSIONS To sum up, our research establishes the pivotal fuction of LDB1 in the tumorigenesis and progression of T-ALL cell lines. Mechanistic insights reveal that LDB1 cooperates with ERG, ETV6, and IRF1 to modulate the expression of downstream effector genes. Furthermore, LDB1 controls MYB through remote enhancer modulation, providing valuable mechanistic insights into its involvement in the progression of T-ALL.
Collapse
Affiliation(s)
- Yan Li
- Children's Hospital of Soochow University, Suzhou, China
- Department of Pediatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, 215003, China
| | - Juanjuan Yu
- Children's Hospital of Soochow University, Suzhou, China
| | - Hongli Yin
- Institute of Pediatric Research, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, 215003, China
| | - Xinran Chu
- Department of Hematology, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, Jiangsu, China
| | - Haibo Cao
- Department of Pediatric Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, 215003, China
| | - Yongping Zhang
- Department of Hematology, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, Jiangsu, China
| | - Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, 215003, China
| | - Shuiyan Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, 215003, China
| | - Yizhou Hu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165, Stockholm, Sweden
| | - Frank Zhu
- Department of Internal Medicine, The Ohio State University, Columbus, 43210, USA
| | - Jizhao Gao
- Department of Pediatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaodong Wang
- Children's Hospital of Soochow University, Suzhou, China
| | - Bi Zhou
- Children's Hospital of Soochow University, Suzhou, China
- Department of Pediatric, Suzhou Hospital of AnHui Medical University, Suzhou, 234000, China
| | - Wanyan Jiao
- Children's Hospital of Soochow University, Suzhou, China
- Department of Pediatric, Yancheng , Third People' Hospital, YanCheng, 224000, China
| | - Yumeng Wu
- Children's Hospital of Soochow University, Suzhou, China
- Department of Pediatric, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Yang Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, 215003, China
| | - Yanling Chen
- Children's Hospital of Soochow University, Suzhou, China
| | - Ran Zhuo
- Children's Hospital of Soochow University, Suzhou, China
| | - Ying Yang
- Clinical Medicine, Guizhou Medical University, Guiyang, 550000, China
| | - Fenli Zhang
- Clinical Medicine, Guizhou Medical University, Guiyang, 550000, China
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization China Pharmaceutical University, Nanjing, 210009, China
| | - Yixin Hu
- Department of Hematology, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, Jiangsu, China.
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, 215003, China.
| | - Shaoyan Hu
- Department of Hematology, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, Jiangsu, China.
| |
Collapse
|
30
|
Guimarães JR, de Souza BF, Filho JMCV, Damascena LCL, Valença AMG, Persuhn DC, de Oliveira NFP. Epigenetic mechanisms and oral mucositis in children with acute lymphoblastic leukaemia. Eur J Oral Sci 2024; 132:e13009. [PMID: 39075736 DOI: 10.1111/eos.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024]
Abstract
This study aimed to investigate the relationship between epigenetic mechanisms and oral mucositis (OM) in paediatric patients with acute lymphoblastic leukaemia. Oral cells were collected from 76 participants, including 15 healthy individuals, 10 patients with acute lymphoblastic leukaemia but without a history of OM and 51 acute lymphoblastic leukaemia patients with a history of OM (35 with active OM and 16 who had recovered from OM). Global DNA methylation in the miR-9-1 and miR-9-3 genes was performed. Seven polymorphisms rs1801131, rs1801133 (MTHFR), rs2228611 (DNMT1), rs7590760, rs1550117 (DNMT3A), rs6087990, rs2424913 (DNMT3B) were genotyped and an analysis of association with global DNA methylation was performed. The global methylation levels were lower in cancer patients recovered from OM than in the other groups. A higher frequency of unmethylated profile for miR-9-1 and partially methylated profile for miR-9-3 was observed in cancer patients regardless of OM history compared to healthy patients. The GG genotype of the rs2228611 (DNMT1) polymorphism was associated with higher levels of global methylation in cancer patients irrespective of OM. It was concluded that global methylation is associated with mucosal recovery. The effect of DNMT1 genotype on the global DNA methylation profile, as well as the methylation profile of miR-9-1 and miR-9-3 in cancer patients is independent of OM.
Collapse
Affiliation(s)
- Juliana Ramalho Guimarães
- Postgraduate Program in Dentistry, Health Sciences Center, Federal University of Paraíba, - UFPB, João Pessoa, Paraíba, Brazil
| | - Beatriz Fernandes de Souza
- Postgraduate Program in Dentistry, Health Sciences Center, Federal University of Paraíba, - UFPB, João Pessoa, Paraíba, Brazil
| | | | - Lecidamia Cristina Leite Damascena
- Postgraduate Program in Decision Models and Health, Center for Exact and Natural Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Ana Maria Gondim Valença
- Postgraduate Program in Decision Models and Health, Center for Exact and Natural Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Darlene Camati Persuhn
- Department of Molecular Biology, Center for Exact and Natural Sciences, Federal University of Paraíba, - UFPB, João Pessoa, Paraíba, Brazil
| | - Naila Francis Paulo de Oliveira
- Postgraduate Program in Dentistry, Health Sciences Center, Federal University of Paraíba, - UFPB, João Pessoa, Paraíba, Brazil
- Department of Molecular Biology, Center for Exact and Natural Sciences, Federal University of Paraíba, - UFPB, João Pessoa, Paraíba, Brazil
| |
Collapse
|
31
|
Schoenfeld K, Habermann J, Wendel P, Harwardt J, Ullrich E, Kolmar H. T cell receptor-directed antibody-drug conjugates for the treatment of T cell-derived cancers. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200850. [PMID: 39176070 PMCID: PMC11338945 DOI: 10.1016/j.omton.2024.200850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
T cell-derived cancers are hallmarked by heterogeneity, aggressiveness, and poor clinical outcomes. Available targeted therapies are severely limited due to a lack of target antigens that allow discrimination of malignant from healthy T cells. Here, we report a novel approach for the treatment of T cell diseases based on targeting the clonally rearranged T cell receptor displayed by the cancerous T cell population. As a proof of concept, we identified an antibody with unique specificity toward a distinct T cell receptor (TCR) and developed antibody-drug conjugates, precisely recognizing and eliminating target T cells while preserving overall T cell repertoire integrity and cellular immunity. Our anti-TCR antibody-drug conjugates demonstrated effective receptor-mediated cell internalization, associated with induction of cancer cell death with strong signs of apoptosis. Furthermore, cell proliferation-inhibiting bystander effects observed on target-negative cells may contribute to the molecules' anti-tumor properties precluding potential tumor escape mechanisms. To our knowledge, this represents the first anti-TCR antibody-drug conjugate designed as custom-tailored immunotherapy for T cell-driven pathologies.
Collapse
Affiliation(s)
- Katrin Schoenfeld
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Jan Habermann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
- Goethe University, Department of Pediatrics, Experimental Immunology and Cell Therapy, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Philipp Wendel
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
- Goethe University, Department of Pediatrics, Experimental Immunology and Cell Therapy, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Evelyn Ullrich
- Goethe University, Department of Pediatrics, Experimental Immunology and Cell Therapy, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64283 Darmstadt, Germany
| |
Collapse
|
32
|
Lin S, Liao N, Li X, Yang L, He YY, Tang YL, Wan WQ, Jia W, Zhang YJ, Kong Q, Long X, Lan X, Ling YY, Lin D, Zhang XL, Wen C, Li CK, Xu HG. Prognosis of pediatric BCP-ALL with IKZF1 deletions and impact of intensive chemotherapy: Results of SCCLG-2016 study. Eur J Haematol 2024; 113:357-370. [PMID: 38847134 DOI: 10.1111/ejh.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND IKZF1 deletion (IKZF1del) is associated with poor prognosis in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). But the prognosis of IKZF1del combined with other prognostic stratification factors remains unclear. Whether intensified treatment improves BCP-ALL prognosis has not been determined. METHODS A retrospective analysis was performed on 1291 pediatric patients diagnosed with BCP-ALL and treated with the South China Children's Leukemia 2016 protocol. Patients were stratified based on IKZF1 status for comparison of characteristics and outcome. Additionally, IKZF1del patients were further divided based on chemotherapy intensity for outcome assessments. RESULTS The BCP-ALL pediatric patients with IKZF1del in south China showed poorer early response. Notably, the DFS and OS for IKZF1del patients were markedly lower than IKZF1wt group (3-year DFS: 88.7% [95% CI: 83.4%-94.0%] vs. 93.5% [95% CI: 92.0%-94.9%], P = .021; 3-year OS: 90.7% [95% CI: 85.8% to 95.6%] vs. 96.1% [95% CI: 95% to 97.2%, P = .003]), with a concurrent increase in 3-year TRM (6.4% [95% CI: 2.3%-10.5%] vs. 2.9% [95% CI: 1.9%-3.8%], P = .025). However, the 3-year CIR was comparable between the two groups (5.7% [95% CI: 1.8%-9.5%] vs. 3.7% [95% CI: 2.6%-4.7%], P = .138). Subgroup analyses reveal no factor significantly influenced the prognosis of the IKZF1del cohort. Noteworthy, intensive chemotherapy improved DFS from 85.7% ± 4.1% to 94.1% ± 0.7% in IKZF1del group (P = .084). Particularly in BCR::ABL positive subgroup, the 3-year DFS was remarkably improved from 53.6% ± 20.1% with non-intensive chemotherapy to 100% with intensive chemotherapy (P = .026). CONCLUSIONS Pediatric BCP-ALL patients with IKZF1del in South China manifest poor outcomes without independent prognostic significance. While no factor substantially alters the prognosis in the IKZF1del group. Intensified chemotherapy may reduce relapse rates and improve DFS in patients with IKZF1del subset, particularly in IKZFdel patients with BCR::ABL positive.
Collapse
Affiliation(s)
- Shaofen Lin
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning Liao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinyu Li
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lihua Yang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yun-Yan He
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan-Lai Tang
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wu-Qing Wan
- Division of Hematology and Tumor, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenguang Jia
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ya-Jie Zhang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Kong
- Department of Pediatrics, The Third Affiliated Hospital, SUN Yat-sen University, Guangzhou, China
| | - Xingjiang Long
- Department of Pediatrics, Liuzhou People's Hospital, Liuzhou, China
| | - Xiang Lan
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ya-Yun Ling
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danna Lin
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Li Zhang
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuan Wen
- Division of Hematology and Tumor, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chi-Kong Li
- Department of Pediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong-Gui Xu
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Wang J, Zhang W, Xu X, Buglioni A, Li P, Chen X, Liu Y, Xu M, Herrick JL, Horna P, Zhang X, Song J, Jevremovic D, He R, Shi M, Yuan J. Clinicopathologic features and outcomes of acute leukemia harboring PICALM::MLLT10 fusion. Hum Pathol 2024; 151:105626. [PMID: 38971327 DOI: 10.1016/j.humpath.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The PICALM::MLLT10 fusion is a rare but recurrent cytogenetic abnormality in acute leukemia, with limited clinicopathologic and outcome data available. Herein, we analyzed 156 acute leukemia patients with PICALM::MLLT10 fusion, including 12 patients from our institutions and 144 patients from the literature. The PICALM::MLLT10 fusion preferentially manifested in pediatric and young adult patients, with a median age of 24 years. T-lymphoblastic leukemia/lymphoma (T-ALL) constituted 65% of cases, acute myeloid leukemia (AML) 27%, and acute leukemia of ambiguous lineage (ALAL) 8%. About half of T-ALL were classified as an early T-precursor (ETP)-ALL. In our institutions' cohort, mediastinum was the most common extramedullary site of involvement. Eight of 12 patients were diagnosed with T-ALL exhibiting a pro-/pre-T stage phenotype (CD4/CD8-double negative, CD7-positive), and frequent CD79a expression. NGS revealed pathogenic mutations in 5 of 6 tested cases, including NOTCH1, and genes in RAS and JAK-STAT pathways and epigenetic modifiers. Of 138 cases with follow-up, pediatric patients (<18 years) had 5-year overall survival (OS) of 71%, significantly better than adults at 33%. The 5-year OS for AML patients was 25%, notably shorter than T-ALL patients at 54%; this distinction was observed in both pediatric and adult populations. Furthermore, adult but not pediatric ETP-ALL patients demonstrated inferior survival compared to non-ETP-ALL patients. Neither karyotype complexity nor transplant status had a discernible impact on OS. In conclusion, PICALM::MLLT10 fusion is most commonly seen in T-ALL patients, particularly those with an ETP phenotype. AML and adult ETP-ALL patients had adverse prognosis. PICALM::MLTT10 fusion testing should be considered in T-ALL, AML, and ALAL patients.
Collapse
Affiliation(s)
| | - Weiwei Zhang
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xinjie Xu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alessia Buglioni
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Peng Li
- Division of Hematopathology, Department of Pathology, University of Utah Health, Salt Lake City, UT, 84132, USA
| | - Xueyan Chen
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, 98195, USA
| | - Yajuan Liu
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, 98195, USA
| | - Min Xu
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, 98105, USA
| | - Jennifer L Herrick
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Pedro Horna
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiaohui Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jinming Song
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Dragan Jevremovic
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rong He
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Min Shi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ji Yuan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
34
|
Khawaji ZY, Khawaji NY, Alahmadi MA, Elmoneim AA. Prediction of Response to FDA-Approved Targeted Therapy and Immunotherapy in Acute Lymphoblastic Leukemia (ALL). Curr Treat Options Oncol 2024; 25:1163-1183. [PMID: 39102166 DOI: 10.1007/s11864-024-01237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/06/2024]
Abstract
OPINION STATEMENT Acute lymphoblastic leukemia (ALL) represents the predominant cancer in pediatric populations, though its occurrence in adults is relatively rare. Pre-treatment risk stratification is crucial for predicting prognosis. Important factors for assessment include patient age, white blood cell (WBC) count at diagnosis, extramedullary involvement, immunophenotype, and cytogenetic aberrations. Minimal residual disease (MRD), primarily assessed by flow cytometry following remission, plays a substantial role in guiding management plans. Over the past decade, significant advancements in ALL outcomes have been witnessed. Conventional chemotherapy has remarkably reduced mortality rates; however, its intensive nature raises safety concerns and has led to the emergence of treatment-resistant cases with recurrence of relapses. Consequently, The U.S. Food and Drug Administration (FDA) has approved several novel treatments for relapsed/refractory ALL due to their demonstrated efficacy, as indicated by improved complete remission and survival rates. These treatments include tyrosine kinase inhibitors (TKIs), the anti-CD19 monoclonal antibody blinatumomab, anti-CD22 inotuzumab ozogamicin, anti-CD20 rituximab, and chimeric antigen receptor (CAR) T-cell therapy. Identifying the variables that influence treatment decisions is a pressing necessity for tailoring therapy based on heterogeneous patient characteristics. Key predictive factors identified in various observational studies and clinical trials include prelymphodepletion disease burden, complex genetic abnormalities, and MRD. Furthermore, the development of serious adverse events following treatment could be anticipated through predictive models, allowing for appropriate prophylactic measures to be considered. The ultimate aim is to incorporate the concept of precision medicine in the field of ALL through valid prediction platform to facilitate the selection of the most suitable treatment approach.
Collapse
Affiliation(s)
| | | | | | - Abeer Abd Elmoneim
- Women and Child Health Department, Taibah University, Madinah, Kingdom of Saudi Arabia
- 2nd Affiliation: Pediatric Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
35
|
Arner A, Ettinger A, Blaser BW, Schmid B, Jeremias I, Rostam N, Binder-Blaser V. In vivo monitoring of leukemia-niche interactions in a zebrafish xenograft model. PLoS One 2024; 19:e0309415. [PMID: 39213296 PMCID: PMC11364250 DOI: 10.1371/journal.pone.0309415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common type of malignancy in children. ALL prognosis after initial diagnosis is generally good; however, patients suffering from relapse have a poor outcome. The tumor microenvironment is recognized as an important contributor to relapse, yet the cell-cell interactions involved are complex and difficult to study in traditional experimental models. In the present study, we established an innovative larval zebrafish xenotransplantation model, that allows the analysis of leukemic cells (LCs) within an orthotopic niche using time-lapse microscopic and flow cytometric approaches. LCs homed, engrafted and proliferated within the hematopoietic niche at the time of transplant, the caudal hematopoietic tissue (CHT). A specific dissemination pattern of LCs within the CHT was recorded, as they extravasated over time and formed clusters close to the dorsal aorta. Interactions of LCs with macrophages and endothelial cells could be quantitatively characterized. This zebrafish model will allow the quantitative analysis of LCs in a functional and complex microenvironment, to study mechanisms of niche mediated leukemogenesis, leukemia maintenance and relapse development.
Collapse
Affiliation(s)
- Anja Arner
- Department of Pediatric Hematology/Oncology, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University (LMU), Munich, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells, Helmholtz Centre Munich, German Research Center for Environmental Health, Munich, Germany
| | - Bradley Wayne Blaser
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Bettina Schmid
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Irmela Jeremias
- Department of Pediatric Hematology/Oncology, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University (LMU), Munich, Germany
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Centre Munich, German Research Center for Environmental Health, Munich, Germany
| | - Nadia Rostam
- Department of Pediatric Hematology/Oncology, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University (LMU), Munich, Germany
- Department of Biology, University of Sulaimani, Sulaymaniyah, Iraq
| | - Vera Binder-Blaser
- Department of Pediatric Hematology/Oncology, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University (LMU), Munich, Germany
| |
Collapse
|
36
|
İnce T, Gürocak ÖT, Totur G, Yılmaz Ş, Ören H, Aydın A. Waning of Humoral Immunity to Vaccine-Preventable Diseases in Children Treated for Acute Lymphoblastic Leukemia: A Single-Center Retrospective Cross-Sectional Analysis. Turk J Haematol 2024; 41:160-166. [PMID: 38801016 PMCID: PMC11589364 DOI: 10.4274/tjh.galenos.2024.2024.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/25/2024] [Indexed: 05/29/2024] Open
Abstract
Objective The survival rates of children with acute lymphoblastic leukemia (ALL) have improved over the years, but infections remain a significant cause of morbidity and mortality. Chemotherapy has a range of harmful side effects including the loss of protective antibodies against vaccine-preventable diseases. The objective of this study was to evaluate the serological status of pediatric ALL cases before and after intensive chemotherapy. Materials and Methods Children treated and followed for ALL at Dokuz Eylül University were included in this retrospective cross-sectional study. Antibody levels against hepatitis A, hepatitis B, and rubella were routinely assessed at both the time of diagnosis and 6 months after completion of chemotherapy. Measles, mumps, and varicella antibody levels were evaluated at only 6 months after treatment. Results Seventy-eight children who completed chemotherapy for ALL were enrolled in the study. All participants had non-protective antibody levels for at least one of the diseases. The highest seropositivity rate was found for hepatitis A (55.1%) and the lowest for measles (17.9%) after chemotherapy. Overall, 50.7%, 30.6%, and 45.7% of the patients significantly lost their humoral immunity against hepatitis B, hepatitis A, and rubella, respectively. Patients in the higher-risk group for ALL had lower seropositivity rates than patients of the other risk groups. There were statistically significant relationships between the protective antibody rates for hepatitis A and varicella and the ages of the patients. Except for hepatitis A vaccination, pre-chemotherapy vaccination did not affect post-chemotherapy serology. On the other hand, all children with a history of varicella before diagnosis showed immunity after chemotherapy. Conclusion Patients with ALL, including those previously fully vaccinated, are at great risk of infection due to the decrease in protective antibody levels after chemotherapy. There is a need for routine post-chemotherapy serological testing and re-vaccination based on the results obtained.
Collapse
Affiliation(s)
- Tolga İnce
- Dokuz Eylül University Faculty of Medicine, Department of Pediatrics, Division of Social Pediatrics, İzmir, Türkiye
| | - Özlem Tüfekçi Gürocak
- Dokuz Eylül University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Hematology, İzmir, Türkiye
| | - Gülberat Totur
- University of Health Sciences Türkiye, İzmir Tepecik Training and Research Hospital, Clinic of Pediatrics, İzmir, Türkiye
| | - Şebnem Yılmaz
- Dokuz Eylül University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Hematology, İzmir, Türkiye
| | - Hale Ören
- Dokuz Eylül University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Hematology, İzmir, Türkiye
| | - Adem Aydın
- Dokuz Eylül University Faculty of Medicine, Department of Pediatrics, Division of Social Pediatrics, İzmir, Türkiye
| |
Collapse
|
37
|
Guarnera L, D’Addona M, Bravo-Perez C, Visconte V. KMT2A Rearrangements in Leukemias: Molecular Aspects and Therapeutic Perspectives. Int J Mol Sci 2024; 25:9023. [PMID: 39201709 PMCID: PMC11354696 DOI: 10.3390/ijms25169023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
KMT2A (alias: mixed-lineage leukemia [MLL]) gene mapping on chromosome 11q23 encodes the lysine-specific histone N-methyltransferase 2A and promotes transcription by inducing an open chromatin conformation. Numerous genomic breakpoints within the KMT2A gene have been reported in young children and adults with hematologic disorders and are present in up to 10% of acute leukemias. These rearrangements describe distinct features and worse prognosis depending on the fusion partner, characterized by chemotherapy resistance and high rates of relapse, with a progression-free survival of 30-40% and overall survival below 25%. Less intensive regimens are used in pediatric patients, while new combination therapies and targeted immunotherapeutic agents are being explored in adults. Beneficial therapeutic effects, and even cure, can be reached with hematopoietic stem cell transplantation, mainly in young children with dismal molecular lesions; however, delayed related toxicities represent a concern. Herein, we summarize the translocation partner genes and partial tandem duplications of the KMT2A gene, their molecular impact, clinical aspects, and novel targeted therapies.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (L.G.); (M.D.); (C.B.-P.)
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Matteo D’Addona
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (L.G.); (M.D.); (C.B.-P.)
| | - Carlos Bravo-Perez
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (L.G.); (M.D.); (C.B.-P.)
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, CIBERER—Instituto de Salud Carlos III, University of Murcia, IMIB-Pascual Parrilla, 30005 Murcia, Spain
| | - Valeria Visconte
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (L.G.); (M.D.); (C.B.-P.)
| |
Collapse
|
38
|
Teachey D, Newman H, Lee S, Pölönen P, Shraim R, Li Y, Liu H, Aplenc R, Bandyopadhyay S, Chen C, Chen Z, Devidas M, Diorio C, Dunsmore K, Elghawy O, Elhachimi A, Fuller T, Gupta S, Hall J, Hughes A, Hunger S, Loh M, Martinez Z, McCoy M, Mullen C, Pounds S, Raetz E, Ryan T, Seffernick A, Shi G, Sussman J, Tan K, Uppuluri L, Vincent TL, Wang'ondu R, Winestone L, Winter S, Wood B, Wu G, Xu J, Yang W, Mullighan C, Yang J, Bona K. Impact of Genetic Ancestry on T-cell Acute Lymphoblastic Leukemia Outcomes. RESEARCH SQUARE 2024:rs.3.rs-4858231. [PMID: 39184069 PMCID: PMC11343283 DOI: 10.21203/rs.3.rs-4858231/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The influence of genetic ancestry on biology, survival outcomes, and risk stratification in T-cell Acute Lymphoblastic Leukemia (T-ALL) has not been explored. Genetic ancestry was genomically-derived from DNA-based single nucleotide polymorphisms in children and young adults with T-ALL treated on Children's Oncology Group trial AALL0434. We determined associations of genetic ancestry, leukemia genomics and survival outcomes; co-primary outcomes were genomic subtype, pathway alteration, overall survival (OS), and event-free survival (EFS). Among 1309 patients, T-ALL molecular subtypes varied significantly by genetic ancestry, including increased frequency of genomically defined ETP-like, MLLT10, and BCL11B-activated subtypes in patients of African ancestry. In multivariable Cox models adjusting for high-risk subtype and pathways, patients of Admixed American ancestry had superior 5-year EFS/OS compared with European; EFS/OS for patients of African and European ancestry were similar. The prognostic value of five commonly altered T-ALL genes varied by ancestry - including NOTCH1 , which was associated with superior OS for patients of European and Admixed American ancestry but non-prognostic among patients of African ancestry. Furthermore, a published five-gene risk classifier accurately risk stratified patients of European ancestry, but misclassified patients of African ancestry. We developed a penalized Cox model which successfully risk stratified patients across ancestries. Overall, 80% of patients had a genomic alteration in at least one gene with differential prognostic impact by genetic ancestry. T-ALL genomics and prognostic associations of genomic alterations vary by genetic ancestry. These data demonstrate the importance of incorporating genetic ancestry into analyses of tumor biology for risk classification algorithms.
Collapse
|
39
|
Xue Y, Liu H, Zhang Y, Yang W, Li H, Gong Y, Zhang Y, Li B, Liu C, Li Y. Label-Free and Ultra-Sensitive Detection of Dexamethasone Using a FRET Aptasensor Utilizing Cationic Conjugated Polymers. BIOSENSORS 2024; 14:364. [PMID: 39194593 DOI: 10.3390/bios14080364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Dexamethasone (Dex) is a widely used glucocorticoid in medical practice, with applications ranging from allergies and inflammation to cerebral edema and shock. Despite its therapeutic benefits, Dex is classified as a prohibited substance for athletes due to its potential performance-enhancing effects. Consequently, there is a critical need for a convenient and rapid detection platform to enable prompt and accurate testing of this drug. In this study, we propose a label-free Förster Resonance Energy Transfer (FRET) aptasensor platform for Dex detection utilizing conjugated polymers (CPs), cationic conjugated polymers (CCPs), and gene finder probes (GFs). The system operates by exploiting the electrostatic interactions between positively charged CCPs and negatively charged DNA, facilitating sensitive and specific Dex detection. The label-free FRET aptasensor platform demonstrated robust performance in detecting Dex, exhibiting high selectivity and sensitivity. The system effectively distinguished Dex from interfering molecules and achieved stable detection across a range of concentrations in a commonly used sports drink matrix. Overall, the label-free FRET Dex detection system offers a simple, cost-effective, and highly sensitive approach for detecting Dex in diverse sample matrices. Its simplicity and effectiveness make it a promising tool for anti-doping efforts and other applications requiring rapid and accurate Dex detection.
Collapse
Affiliation(s)
- Yizhang Xue
- Sport Coaching College, Beijing Sport University, Beijing 100084, China
| | - Hangbing Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ye Zhang
- Sport Coaching College, Beijing Sport University, Beijing 100084, China
| | - Weijun Yang
- Sport Coaching College, Beijing Sport University, Beijing 100084, China
| | - Huixin Li
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Yuxuan Gong
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Yubai Zhang
- Sport Coaching College, Beijing Sport University, Beijing 100084, China
| | - Bo Li
- Division of Sport Science and Physical Education, Tsinghua University, Beijing 100084, China
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Yi Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
40
|
陈 霞, 雷 小, 管 贤, 窦 颖, 温 贤, 郭 玉, 高 惠, 于 洁. [Risk factors for recurrence of childhood acute lymphoblastic leukemia after treatment with the Chinese Children's Cancer Group ALL-2015 protocol]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:701-707. [PMID: 39014946 PMCID: PMC11562041 DOI: 10.7499/j.issn.1008-8830.2401010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/27/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVES To investigate the cumulative incidence of recurrence (CIR) in children with acute lymphoblastic leukemia (ALL) after treatment with the Chinese Children's Cancer Group ALL-2015 (CCCG-ALL-2015) protocol and the risk factors for recurrence. METHODS A retrospective analysis was conducted on the clinical data of 852 children who were treated with the CCCG-ALL-2015 protocol from January 2015 to December 2019. CIR was calculated, and the risk factors for the recurrence of B-lineage acute lymphoblastic leukemia (B-ALL) were analyzed. RESULTS Among the 852 children with ALL, 146 (17.1%) experienced recurrence, with an 8-year CIR of 19.8%±1.6%. There was no significant difference in 8-year CIR between the B-ALL group and the acute T lymphocyte leukemia group (P>0.05). For the 146 children with recurrence, recurrence was mainly observed in the very early stage (n=62, 42.5%) and the early stage (n=46, 31.5%), and there were 42 children with bone marrow recurrence alone (28.8%) in the very early stage and 27 children with bone marrow recurrence alone (18.5%) in the early stage. The Cox proportional-hazards regression model analysis showed that positive MLLr fusion gene (HR=4.177, 95%CI: 2.086-8.364, P<0.001) and minimal residual disease≥0.01% on day 46 (HR=2.013, 95%CI: 1.163-3.483, P=0.012) were independent risk factors for recurrence in children with B-ALL after treatment with the CCCG-ALL-2015 protocol. CONCLUSIONS There is still a relatively high recurrence rate in children with ALL after treatment with the CCCG-ALL-2015 protocol, mainly bone marrow recurrence alone in the very early stage and the early stage, and minimal residual disease≥0.01% on day 46 and positive MLLr fusion gene are closely associated with the recurrence of B-ALL.
Collapse
|
41
|
Ishida H, Imamura T, Kobayashi R, Hashii Y, Deguchi T, Miyamura T, Oda M, Yamamoto M, Okada K, Sano H, Koh K, Yuza Y, Watanabe K, Nishimura N, Takimoto T, Moriya‐Saito A, Sekimizu M, Suenobu S, Sunami S, Horibe K. Differential impact of asparaginase discontinuation on outcomes of children with T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Cancer Med 2024; 13:e7246. [PMID: 38888368 PMCID: PMC11184648 DOI: 10.1002/cam4.7246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/09/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Asparaginase is essential for treating T-cell acute lymphoblastic leukemia (T-ALL). Despite the ongoing debate on whether T-ALL and T-cell lymphoblastic lymphoma (T-LBL) are the same disease entity or two distinct diseases, patients with T-LBL often receive the same or similar treatment protocols as those with T-ALL. METHODS The outcomes of patients with or without L-asparaginase discontinuation were retrospectively analyzed among four national protocols: Japan Association of Childhood Leukemia Study (JACLS) ALL-02 and ALL-97 for T-ALL and Japanese Pediatric Leukemia/Lymphoma Study Group ALB-NHL03 and JACLS NHL-98 for T-LBL. The hazard ratio (HR) was calculated with the Cox regression model by considering L-asparaginase discontinuation as a time-dependent variable. RESULTS In total, 199 patients with T-ALL, and 133 patients with T-LBL were included. L-asparaginase discontinuation compromised event-free survival (EFS) of T-ALL patients (ALL-02: HR 3.32, 95% confidence interval [CI] 1.40-7.90; ALL-97: HR 3.39, 95%CI 1.19-9.67). Conversely, EFS compromise was not detected among T-LBL patients (ALB-NHL03: HR 1.39, 95%CI 0.41-4.68; NHL-98: HR 0.92, 95%CI 0.11-7.60). CONCLUSION The effects of L-asparaginase discontinuation differed between T-ALL and T-LBL. We assume that the differential impact results from (1) the inherent differential response to L-asparaginase between them and/or (2) a less stringent assessment of early treatment response in T-LBL than in T-ALL. Given the poor salvage rate of refractory or relapsed T-ALL and T-LBL, optimization of the frontline therapy is critical, and the current study provides a new suggestion for further treatment modifications. However, larger studies in contemporary intensified treatment protocols are required.
Collapse
Affiliation(s)
- Hisashi Ishida
- Department of PediatricsOkayama University HospitalOkayamaJapan
| | - Toshihiko Imamura
- Department of PediatricsKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Ryoji Kobayashi
- Department of Hematology/Oncology for Children and AdolescentsSapporo Hokuyu HospitalSapporoJapan
| | - Yoshiko Hashii
- Department of PediatricsOsaka International Cancer InstituteOsakaJapan
| | - Takao Deguchi
- Division of Cancer Immunodiagnostics, Children's Cancer CenterNational Center for Child Health and DevelopmentTokyoJapan
| | - Takako Miyamura
- Department of PediatricsOsaka University Graduate School of MedicineSuitaJapan
| | - Megumi Oda
- Department of PediatricsOkayama University HospitalOkayamaJapan
| | - Masaki Yamamoto
- Department of PediatricsSapporo Medical University School of MedicineSapporoJapan
| | - Keiko Okada
- Department of Pediatric Hematology/OncologyOsaka City General HospitalOsakaJapan
| | - Hideki Sano
- Department of Pediatric OncologyFukushima Medical University HospitalFukushimaJapan
| | - Katsuyoshi Koh
- Department of Hematology/OncologySaitama Children's Medical CenterSaitamaJapan
| | - Yuki Yuza
- Department of Hematology and OncologyTokyo Metropolitan Children's Medical CenterTokyoJapan
| | - Kenichiro Watanabe
- Department of Hematology and OncologyShizuoka Children's HospitalShizuokaJapan
| | - Noriyuki Nishimura
- Department of Public HealthKobe University Graduate School of Health ScienceKobeJapan
| | - Tetsuya Takimoto
- Department of Childhood Cancer Data ManagementNational Center for Child Health and DevelopmentTokyoJapan
| | - Akiko Moriya‐Saito
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Masahiro Sekimizu
- Department of PediatricsNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | | | - Shosuke Sunami
- Department of Pediatrics, Japanese Red Cross Narita HospitalNaritaJapan
| | - Keizo Horibe
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| |
Collapse
|
42
|
Yang T, Liu D, Zhang Z, Sa R, Guan F. Predicting T-Cell Lymphoma in Children From 18F-FDG PET-CT Imaging With Multiple Machine Learning Models. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:952-964. [PMID: 38321311 PMCID: PMC11169166 DOI: 10.1007/s10278-024-01007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/08/2024]
Abstract
This study aimed to examine the feasibility of utilizing radiomics models derived from 18F-FDG PET/CT imaging to screen for T-cell lymphoma in children with lymphoma. All patients had undergone 18F-FDG PET/CT scans. Lesions were extracted from PET/CT and randomly divided into training and validation sets. Two different types of models were constructed as follows: features that are extracted from standardized uptake values (SUV)-associated parameters, and CT images were used to build SUV/CT-based model. Features that are derived from PET and CT images were used to build PET/CT-based model. Logistic regression (LR), linear support vector machine, support vector machine with the radial basis function kernel, neural networks, and adaptive boosting were performed as classifiers in each model. In the training sets, 77 patients, and 247 lesions were selected for building the models. In the validation sets, PET/CT-based model demonstrated better performance than that of SUV/CT-based model in the prediction of T-cell lymphoma. LR showed highest accuracy with 0.779 [0.697, 0.860], area under the receiver operating characteristic curve (AUC) with 0.863 [0.762, 0.963], and preferable goodness-of-fit in PET/CT-based model at the patient level. LR also showed best performance with accuracy of 0.838 [0.741, 0.936], AUC of 0.907 [0.839, 0.976], and preferable goodness-of-fit in PET/CT-based model at the lesion level. 18F-FDG PET/CT-based radiomics models with different machine learning classifiers were able to screen T-cell lymphoma in children with high accuracy, AUC, and preferable goodness-of-fit, providing incremental value compared with SUV-associated features.
Collapse
Affiliation(s)
- Taiyu Yang
- Department of Nuclear Medicine, The First Hospital of Jilin University, 1# Xinmin St, Changchun, 130021, China
| | - Danyan Liu
- Department of Radiology, The First Hospital of Jilin University, 1# Xinmin St, Changchun, 130021, China
| | - Zexu Zhang
- Department of Nuclear Medicine, The First Hospital of Jilin University, 1# Xinmin St, Changchun, 130021, China
| | - Ri Sa
- Department of Nuclear Medicine, The First Hospital of Jilin University, 1# Xinmin St, Changchun, 130021, China.
| | - Feng Guan
- Department of Nuclear Medicine, The First Hospital of Jilin University, 1# Xinmin St, Changchun, 130021, China.
| |
Collapse
|
43
|
Sayed NH, Hammad M, Abdelrahman SA, Abdelgawad HM. Association of long non-coding RNAs and ABO blood groups with acute lymphoblastic leukemia in Egyptian children. Noncoding RNA Res 2024; 9:307-317. [PMID: 38505304 PMCID: PMC10945145 DOI: 10.1016/j.ncrna.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 03/21/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most prevailing cancer among children. Despite extensive studies, ALL etiology is still an unsolved puzzle. Long non-coding RNAs (lncRNAs) emerged as key mediators in cancer etiology. Several lncRNAs are dysregulated in ALL, leading to oncogenic or tumor-suppressive activities. Additionally, a relation between ABO blood groups and hematological malignancies was proposed. The current study intended to explore the association of lncRNAs, ANRIL and LINC-PINT, and their downstream targets, CDKN2A and heme oxygenase-1 (HMOX1), with the incidence of ALL and treatment response, and to determine the distribution of blood groups across different childhood ALL phenotypes. Blood samples were taken from 66 ALL patients (at diagnosis and at the end of remission induction phase) and 39 healthy children. Whole blood was used for blood group typing. Expression of ANRIL, LINC-PINT and CDKN2A was analyzed in plasma by qRT-PCR. Serum HMOX1 was measured using ELISA. ANRIL and CDKN2A were upregulated, while LINC-PINT and HMOX1 were downregulated in newly diagnosed patients. All of which showed remarkable diagnostic performance, where HMOX1 was superior. HMOX1 was independent predictor of ALL as well. LINC-PINT and HMOX1 were significantly upregulated after treatment. Notably, ANRIL and LINC-PINT were associated with poor outcome. No significant difference in the distribution of ABO blood groups was observed between patients and controls. In conclusion, our results suggested an association of ANRIL and LINC-PINT with childhood ALL predisposition, at least in part, through altering CDKN2A and HMOX1 production. Furthermore, the impact of remission induction treatment was newly revealed.
Collapse
Affiliation(s)
- Noha H. Sayed
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Mahmoud Hammad
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Egypt
| | | | | |
Collapse
|
44
|
Oh BL, Vinanica N, Wong DM, Campana D. Chimeric antigen receptor T-cell therapy for T-cell acute lymphoblastic leukemia. Haematologica 2024; 109:1677-1688. [PMID: 38832423 PMCID: PMC11141683 DOI: 10.3324/haematol.2023.283848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/11/2024] [Indexed: 06/05/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a new and effective treatment for patients with hematologic malignancies. Clinical responses to CAR T cells in leukemia, lymphoma, and multiple myeloma have provided strong evidence of the antitumor activity of these cells. In patients with refractory or relapsed B-cell acute lymphoblastic leukemia (ALL), the infusion of autologous anti-CD19 CAR T cells is rapidly gaining standard-of-care status and might eventually be incorporated into frontline treatment. In T-ALL, however, leukemic cells generally lack surface molecules recognized by established CAR, such as CD19 and CD22. Such deficiency is particularly important, as outcome is dismal for patients with T-ALL that is refractory to standard chemotherapy and/or hematopoietic stem cell transplant. Recently, CAR T-cell technologies directed against T-cell malignancies have been developed and are beginning to be tested clinically. The main technical obstacles stem from the fact that malignant and normal T cells share most surface antigens. Therefore, CAR T cells directed against T-ALL targets might be susceptible to self-elimination during manufacturing and/or have suboptimal activity after infusion. Moreover, removing leukemic cells that might be present in the cell source used for CAR T-cell manufacturing might be problematic. Finally, reconstitution of T cells and natural killer cells after CAR T-cell infusion might be impaired. In this article, we discuss potential targets for CAR T-cell therapy of T-ALL with an emphasis on CD7, and review CAR configurations as well as early clinical results.
Collapse
Affiliation(s)
- Bernice L.Z. Oh
- Viva-University Children’s Cancer Center, Khoo Teck Puat-National University Children’s Medical Institute, National University Hospital, National University Health System
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore
| | - Natasha Vinanica
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore
| | - Desmond M.H. Wong
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore
| | - Dario Campana
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
45
|
Altieri F, Buono L, Lanzilli M, Mirabelli P, Cianflone A, Beneduce G, De Matteo A, Parasole R, Salvatore M, Smaldone G. LINC00958 as new diagnostic and prognostic biomarker of childhood acute lymphoblastic leukaemia of B cells. Front Oncol 2024; 14:1388154. [PMID: 38884090 PMCID: PMC11176504 DOI: 10.3389/fonc.2024.1388154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Background Paediatric acute B-cell lymphoblastic leukaemia is the most common cancer of the paediatric age. Although the advancement of scientific and technological knowledge has ensured a huge step forward in the management of this disease, there are 15%-20% cases of recurrence leading to serious complications for the patient and sometimes even death. It is therefore necessary to identify new and increasingly personalised biomarkers capable of predicting the degree of risk of B-ALL in order to allow the correct management of paediatric leukaemia patients. Methods Starting from our previously published results, we validate the expression level of LINC00958 in a cohort of 33 B-ALL and 9 T-ALL childhood patients, using in-silico public datasets as support. Expression levels of LINC00958 in B-ALL patients stratified by risk (high risk vs. standard/medium risk) and who relapsed 3 years after the first leukaemia diagnosis were also evaluated. Results We identified the lncRNA LINC00958 as a biomarker of B-ALL, capable of discriminating B-ALL from T-ALL and healthy subjects. Furthermore, we associated LINC00958 expression levels with the disease risk classification (high risk and standard risk). Finally, we show that LINC00958 can be used as a predictor of relapses in patients who are usually stratified as standard risk and thus not always targeted for marrow transplantation. Conclusions Our results open the way to new diagnostic perspectives that can be directly used in clinical practice for a better management of B-ALL paediatric patients.
Collapse
Affiliation(s)
| | | | | | - Peppino Mirabelli
- Department of Paediatric Haemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, Naples, Italy
| | - Alessandra Cianflone
- Department of Paediatric Haemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, Naples, Italy
| | - Giuliana Beneduce
- Department of Paediatric Haemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, Naples, Italy
| | - Antonia De Matteo
- Department of Paediatric Haemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, Naples, Italy
| | - Rosanna Parasole
- Department of Paediatric Haemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, Naples, Italy
| | | | | |
Collapse
|
46
|
Loeffler DA. Enhancing of cerebral Abeta clearance by modulation of ABC transporter expression: a review of experimental approaches. Front Aging Neurosci 2024; 16:1368200. [PMID: 38872626 PMCID: PMC11170721 DOI: 10.3389/fnagi.2024.1368200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Clearance of amyloid-beta (Aβ) from the brain is impaired in both early-onset and late-onset Alzheimer's disease (AD). Mechanisms for clearing cerebral Aβ include proteolytic degradation, antibody-mediated clearance, blood brain barrier and blood cerebrospinal fluid barrier efflux, glymphatic drainage, and perivascular drainage. ATP-binding cassette (ABC) transporters are membrane efflux pumps driven by ATP hydrolysis. Their functions include maintenance of brain homeostasis by removing toxic peptides and compounds, and transport of bioactive molecules including cholesterol. Some ABC transporters contribute to lowering of cerebral Aβ. Mechanisms suggested for ABC transporter-mediated lowering of brain Aβ, in addition to exporting of Aβ across the blood brain and blood cerebrospinal fluid barriers, include apolipoprotein E lipidation, microglial activation, decreased amyloidogenic processing of amyloid precursor protein, and restricting the entrance of Aβ into the brain. The ABC transporter superfamily in humans includes 49 proteins, eight of which have been suggested to reduce cerebral Aβ levels. This review discusses experimental approaches for increasing the expression of these ABC transporters, clinical applications of these approaches, changes in the expression and/or activity of these transporters in AD and transgenic mouse models of AD, and findings in the few clinical trials which have examined the effects of these approaches in patients with AD or mild cognitive impairment. The possibility that therapeutic upregulation of ABC transporters which promote clearance of cerebral Aβ may slow the clinical progression of AD merits further consideration.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, United States
| |
Collapse
|
47
|
Lizcova L, Prihodova E, Pavlistova L, Svobodova K, Mejstrikova E, Hrusak O, Luknarova P, Janotova I, Sramkova L, Stary J, Zemanova Z. Cytogenomic characterization of pediatric T-cell acute lymphoblastic leukemia reveals TCR rearrangements as predictive factors for exceptional prognosis. Mol Cytogenet 2024; 17:14. [PMID: 38783324 PMCID: PMC11118568 DOI: 10.1186/s13039-024-00682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND T-cell acute lymphoblastic leukemia (T-ALL) represents a rare and clinically and genetically heterogeneous disease that constitutes 10-15% of newly diagnosed pediatric ALL cases. Despite improved outcomes of these children, the survival rate after relapse is extremely poor. Moreover, the survivors must also endure the acute and long-term effects of intensive therapy. Although recent studies have identified a number of recurrent genomic aberrations in pediatric T-ALL, none of the changes is known to have prognostic significance. The aim of our study was to analyze the cytogenomic changes and their various combinations in bone marrow cells of children with T-ALL and to correlate our findings with the clinical features of the subjects and their treatment responses. RESULTS We performed a retrospective and prospective comprehensive cytogenomic analysis of consecutive cohort of 66 children (46 boys and 20 girls) with T-ALL treated according to BFM-based protocols and centrally investigated cytogenetics and immunophenotypes. Using combinations of cytogenomic methods (conventional cytogenetics, FISH, mFISH/mBAND, arrayCGH/SNP and MLPA), we identified chromosomal aberrations in vast majority of patients (91%). The most frequent findings involved the deletion of CDKN2A/CDKN2B genes (71%), T-cell receptor (TCR) loci translocations (27%), and TLX3 gene rearrangements (23%). All chromosomal changes occurred in various combinations and were rarely found as a single abnormality. Children with aberrations of TCR loci had a significantly better event free (p = 0.0034) and overall survival (p = 0.0074), all these patients are living in the first complete remission. None of the abnormalities was an independent predictor of an increased risk of relapse. CONCLUSIONS We identified a subgroup of patients with TCR aberrations (both TRA/TRD and TRB), who had an excellent prognosis in our cohort with 5-year EFS and OS of 100%, regardless of the presence of other abnormality or the translocation partner. Our data suggest that escalation of treatment intensity, which may be considered in subsets of T-ALL is not needed for nonHR (non-high risk) patients with TCR aberrations.
Collapse
Affiliation(s)
- Libuse Lizcova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | - Eva Prihodova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Lenka Pavlistova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Karla Svobodova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Ester Mejstrikova
- CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague and University Hospital Motol, Prague, Czech Republic
| | - Ondrej Hrusak
- CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague and University Hospital Motol, Prague, Czech Republic
| | - Pavla Luknarova
- CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague and University Hospital Motol, Prague, Czech Republic
| | - Iveta Janotova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague and University Hospital Motol, Prague, Czech Republic
| | - Lucie Sramkova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague and University Hospital Motol, Prague, Czech Republic
| | - Jan Stary
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague and University Hospital Motol, Prague, Czech Republic
| | - Zuzana Zemanova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
48
|
Kypraios A, Bennour J, Imbert V, David L, Calvo J, Pflumio F, Bonnet R, Couralet M, Magnone V, Lebrigand K, Barbry P, Rohrlich PS, Peyron JF. Identifying Candidate Gene Drivers Associated with Relapse in Pediatric T-Cell Acute Lymphoblastic Leukemia Using a Gene Co-Expression Network Approach. Cancers (Basel) 2024; 16:1667. [PMID: 38730619 PMCID: PMC11083586 DOI: 10.3390/cancers16091667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Pediatric T-cell Acute Lymphoblastic Leukemia (T-ALL) relapses are still associated with a dismal outcome, justifying the search for new therapeutic targets and relapse biomarkers. Using single-cell RNA sequencing (scRNAseq) data from three paired samples of pediatric T-ALL at diagnosis and relapse, we first conducted a high-dimensional weighted gene co-expression network analysis (hdWGCNA). This analysis highlighted several gene co-expression networks (GCNs) and identified relapse-associated hub genes, which are considered potential driver genes. Shared relapse-expressed genes were found to be related to antigen presentation (HLA, B2M), cytoskeleton remodeling (TUBB, TUBA1B), translation (ribosomal proteins, EIF1, EEF1B2), immune responses (MIF, EMP3), stress responses (UBC, HSP90AB1/AA1), metabolism (FTH1, NME1/2, ARCL4C), and transcriptional remodeling (NF-κB family genes, FOS-JUN, KLF2, or KLF6). We then utilized sparse partial least squares discriminant analysis to select from a pool of 481 unique leukemic hub genes, which are the genes most discriminant between diagnosis and relapse states (comprising 44, 35, and 31 genes, respectively, for each patient). Applying a Cox regression method to these patient-specific genes, along with transcriptomic and clinical data from the TARGET-ALL AALL0434 cohort, we generated three model gene signatures that efficiently identified relapsed patients within the cohort. Overall, our approach identified new potential relapse-associated genes and proposed three model gene signatures associated with lower survival rates for high-score patients.
Collapse
Affiliation(s)
- Anthony Kypraios
- Université Côte d’Azur, Inserm C3M, 06200 Nice, France (V.I.); (L.D.); (R.B.); (P.S.R.)
- Team#4: “Fundamental to Translational Research on Dysregulated Hematopoiesis—DysHema”, Centre Méditerranéen de Médecine Moléculaire-C3M-Inserm U1065, Bâtiment Universitaire ARCHIMED, 151 Route Saint Antoine de Ginestière, BP 2 3194, CEDEX 3, 06204 Nice, France
| | - Juba Bennour
- Université Côte d’Azur, Inserm C3M, 06200 Nice, France (V.I.); (L.D.); (R.B.); (P.S.R.)
- Team#4: “Fundamental to Translational Research on Dysregulated Hematopoiesis—DysHema”, Centre Méditerranéen de Médecine Moléculaire-C3M-Inserm U1065, Bâtiment Universitaire ARCHIMED, 151 Route Saint Antoine de Ginestière, BP 2 3194, CEDEX 3, 06204 Nice, France
| | - Véronique Imbert
- Université Côte d’Azur, Inserm C3M, 06200 Nice, France (V.I.); (L.D.); (R.B.); (P.S.R.)
- Team#4: “Fundamental to Translational Research on Dysregulated Hematopoiesis—DysHema”, Centre Méditerranéen de Médecine Moléculaire-C3M-Inserm U1065, Bâtiment Universitaire ARCHIMED, 151 Route Saint Antoine de Ginestière, BP 2 3194, CEDEX 3, 06204 Nice, France
| | - Léa David
- Université Côte d’Azur, Inserm C3M, 06200 Nice, France (V.I.); (L.D.); (R.B.); (P.S.R.)
- Team#4: “Fundamental to Translational Research on Dysregulated Hematopoiesis—DysHema”, Centre Méditerranéen de Médecine Moléculaire-C3M-Inserm U1065, Bâtiment Universitaire ARCHIMED, 151 Route Saint Antoine de Ginestière, BP 2 3194, CEDEX 3, 06204 Nice, France
| | - Julien Calvo
- Team#4: “Fundamental to Translational Research on Dysregulated Hematopoiesis—DysHema”, Centre Méditerranéen de Médecine Moléculaire-C3M-Inserm U1065, Bâtiment Universitaire ARCHIMED, 151 Route Saint Antoine de Ginestière, BP 2 3194, CEDEX 3, 06204 Nice, France
| | - Françoise Pflumio
- Team#4: “Fundamental to Translational Research on Dysregulated Hematopoiesis—DysHema”, Centre Méditerranéen de Médecine Moléculaire-C3M-Inserm U1065, Bâtiment Universitaire ARCHIMED, 151 Route Saint Antoine de Ginestière, BP 2 3194, CEDEX 3, 06204 Nice, France
| | - Raphaël Bonnet
- Université Côte d’Azur, Inserm C3M, 06200 Nice, France (V.I.); (L.D.); (R.B.); (P.S.R.)
- Team#4: “Fundamental to Translational Research on Dysregulated Hematopoiesis—DysHema”, Centre Méditerranéen de Médecine Moléculaire-C3M-Inserm U1065, Bâtiment Universitaire ARCHIMED, 151 Route Saint Antoine de Ginestière, BP 2 3194, CEDEX 3, 06204 Nice, France
| | - Marie Couralet
- Université de Paris, Inserm, CEA, 92260 Fontenay-aux-Roses, France
- Université Côte d’Azur, CNRS, IPMC, 06560 Valbonne, France; (M.C.); (V.M.); (K.L.)
| | - Virginie Magnone
- Université de Paris, Inserm, CEA, 92260 Fontenay-aux-Roses, France
- Université Côte d’Azur, CNRS, IPMC, 06560 Valbonne, France; (M.C.); (V.M.); (K.L.)
| | - Kevin Lebrigand
- Université de Paris, Inserm, CEA, 92260 Fontenay-aux-Roses, France
- Université Côte d’Azur, CNRS, IPMC, 06560 Valbonne, France; (M.C.); (V.M.); (K.L.)
| | - Pascal Barbry
- Université Côte d’Azur, Inserm C3M, 06200 Nice, France (V.I.); (L.D.); (R.B.); (P.S.R.)
- Team#4: “Fundamental to Translational Research on Dysregulated Hematopoiesis—DysHema”, Centre Méditerranéen de Médecine Moléculaire-C3M-Inserm U1065, Bâtiment Universitaire ARCHIMED, 151 Route Saint Antoine de Ginestière, BP 2 3194, CEDEX 3, 06204 Nice, France
- CHU de Nice, Hôpital de l’Archet, 06000 Nice, France
| | - Pierre S. Rohrlich
- Université Côte d’Azur, Inserm C3M, 06200 Nice, France (V.I.); (L.D.); (R.B.); (P.S.R.)
- Team#4: “Fundamental to Translational Research on Dysregulated Hematopoiesis—DysHema”, Centre Méditerranéen de Médecine Moléculaire-C3M-Inserm U1065, Bâtiment Universitaire ARCHIMED, 151 Route Saint Antoine de Ginestière, BP 2 3194, CEDEX 3, 06204 Nice, France
- CHU de Nice, Hôpital de l’Archet, 06000 Nice, France
| | - Jean-François Peyron
- Université Côte d’Azur, Inserm C3M, 06200 Nice, France (V.I.); (L.D.); (R.B.); (P.S.R.)
- CHU de Nice, Hôpital de l’Archet, 06000 Nice, France
| |
Collapse
|
49
|
Song T, Yu Z, Shen Q, Xu Y, Hu H, Liu J, Zeng K, Lei J, Yu L. Pharmacodynamic and Toxicity Studies of 6-Isopropyldithio-2'-guanosine Analogs in Acute T-Lymphoblastic Leukemia. Cancers (Basel) 2024; 16:1614. [PMID: 38730567 PMCID: PMC11083707 DOI: 10.3390/cancers16091614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
(1) Background: The research group has developed a new small molecule, 6-Isopropyldithio-2'-deoxyguanosine analogs-YLS004, which has been shown to be the most sensitive in acute T-lymphoblastic leukemia cells. Moreover, it was found that the structure of Nelarabine, a drug used to treat acute T-lymphoblastic leukemia, is highly similar to that of YLS004. Consequently, the structure of YLS004 was altered to produce a new small molecule inhibitor for this study, named YLS010. (2) Results: YLS010 has exhibited potent anti-tumor effects by inducing cell apoptosis and ferroptosis. A dose gradient was designed for in vivo experiments based on tentative estimates of the toxicity dose using acute toxicity in mice and long-term toxicity in rats. The study found that YLS010 at a dose of 8 mg/kg prolonged the survival of late-stage acute T-lymphoblastic leukemia mice in the mouse model study. (3) Conclusions: YLS010 has demonstrated specific killing effects against acute T-lymphoblastic leukemia both in vivo and in vitro. Preclinical studies of YLS010 offer a new opportunity for the treatment of patients with acute T-lymphoblastic leukemia in clinical settings.
Collapse
Affiliation(s)
- Tiantian Song
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (T.S.); (Z.Y.); (H.H.); (K.Z.); (J.L.)
- Jinhua Institute of Zhejiang University, Jinhua 321099, China; (Q.S.); (Y.X.)
| | - Zheming Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (T.S.); (Z.Y.); (H.H.); (K.Z.); (J.L.)
| | - Qitao Shen
- Jinhua Institute of Zhejiang University, Jinhua 321099, China; (Q.S.); (Y.X.)
| | - Yu Xu
- Jinhua Institute of Zhejiang University, Jinhua 321099, China; (Q.S.); (Y.X.)
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (T.S.); (Z.Y.); (H.H.); (K.Z.); (J.L.)
- Jinhua Institute of Zhejiang University, Jinhua 321099, China; (Q.S.); (Y.X.)
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310022, China;
| | - Kui Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (T.S.); (Z.Y.); (H.H.); (K.Z.); (J.L.)
- Jinhua Institute of Zhejiang University, Jinhua 321099, China; (Q.S.); (Y.X.)
| | - Jinxiu Lei
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (T.S.); (Z.Y.); (H.H.); (K.Z.); (J.L.)
- Jinhua Institute of Zhejiang University, Jinhua 321099, China; (Q.S.); (Y.X.)
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (T.S.); (Z.Y.); (H.H.); (K.Z.); (J.L.)
- Jinhua Institute of Zhejiang University, Jinhua 321099, China; (Q.S.); (Y.X.)
- Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Pharmacy, Shaoxing People’s Hospital, Shaoxing 312068, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
50
|
Suwannaying K, Ong AA, Dhaduk R, Pei D, Iijima M, Merkle E, Zhuang TZ, Goodenough CG, Brown J, Browne EK, Wolcott B, Cheng C, Wilson CL, Pui CH, Ness KK, Kaste SC, Inaba H. Quantitative computed tomography analysis of body composition changes in paediatric patients with acute lymphoblastic leukaemia. Br J Haematol 2024; 204:1335-1343. [PMID: 38291722 PMCID: PMC11006578 DOI: 10.1111/bjh.19310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Children with acute lymphoblastic leukaemia (ALL) are at risk for obesity and cardiometabolic diseases. To gain insight into body composition changes among children with ALL, we assessed quantitative computed tomography (QCT) data for specific body compartments (subcutaneous adipose tissue [SAT], visceral adipose tissue [VAT], total adipose tissue [TAT], lean tissue [LT], LT/TAT and VAT/SAT at lumbar vertebrae L1 and L2) at diagnosis and at off-therapy for 189 children with ALL and evaluated associations between body mass index (BMI) Z-score and clinical characteristics. BMI Z-score correlated positively with SAT, VAT and TAT and negatively with LT/TAT and VAT/SAT. At off-therapy, BMI Z-score, SAT, VAT and TAT values were higher than at diagnosis, but LT, LT/TAT and VAT/SAT were lower. Patients aged ≥10 years at diagnosis had higher SAT, VAT and TAT and lower LT and LT/TAT than patients aged 2.0-9.9 years. Female patients had lower LT and LT/TAT than male patients. Black patients had less VAT than White patients. QCT analysis showed increases in adipose tissue and decreases in LT during ALL therapy when BMI Z-scores increased. Early dietary and physical therapy interventions should be considered, particularly for patients at risk for obesity.
Collapse
Affiliation(s)
- Kunanya Suwannaying
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Pediatrics, Khon Kaen university, Khon Kaen, Thailand
| | - Adrian A. Ong
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Rikeenkumar Dhaduk
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Mayuko Iijima
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Eric Merkle
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Tony Z. Zhuang
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Chelsea G. Goodenough
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | | | - Emily K. Browne
- Department of Psychology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Bruce Wolcott
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Carmen L. Wilson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Kirsten K. Ness
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Sue C. Kaste
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Radiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|