1
|
Al-Kubaisi AA, Ghazi MA, Majeed NS, Aldelaimi ER, Enezei HH. Soluble urokinase plasminogen activator receptor (suPAR) is a potential biomarker of stage III-IV, grade C periodontitis through the impact of post-radiotherapy on head and neck cancer patients. BMC Oral Health 2024; 24:1144. [PMID: 39334335 PMCID: PMC11438140 DOI: 10.1186/s12903-024-04801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The urokinase-type plasminogen activator receptor (uPAR) plays an essential function in leukocytes and endothelial homeostasis and, therefore, in the development of chronic periodontitis. METHODS The study enrolled 150 participants, 50 chronic periodontitis with head and neck cancer post radiotherapy (CP + HNC post-RT) patients, 50 chronic periodontitis (CP) without HNC patients, and 50 healthy controls. Clinical Attachment Loss (CAL), Probing Pocket Depth (PPD), Plaque Index (PI), and Gingival Bleeding Index (GBI) were recorded. An enzyme-linked immunosorbent assay (ELISA) was constructed to quantify serum (suPAR) levels. RESULTS Stage and grade of periodontitis were stage III-IV, grade C in patients (CP + HNC post-RT), stage I-III, grade A/B in patients (CP without HNC), and absent in (healthy). Chronic periodontitis with HNC post-RT patients presented a significantly higher proportion of suPAR levels (506.7 pg/ml) compared to chronic periodontitis without HNC and healthy controls (423.08 pg/ml and 255.9 pg/ml), respectively. A significant positive correlation was found between serum suPAR levels and CAL, PPD, PI, and GBI in the periodontal disease groups. ROC results of suPAR (AUC = 0.976 for CP + HNC post-RT, AUC = 0.872 for CP without HNC). Hyposalivation appeared in patients (CP + HNC post-RT; 0.15 [0.11-0.23] ml/min, P = 0.001) and (CP without HNC; 0.30 [0.25-0.41] ml/min, P = 0.001), compared to healthy controls; 0.35 [0.28-0.54] ml/min, P = 0.001). CONCLUSION The study showed a significant elevation in serum suPAR levels in CP + HNC post-RT patients compared to the CP without HNC and control groups. CLINICAL TRIAL REGISTRATION The study was registered retrospectively; clinicaltrials.gov identifier: NCT06529588. Date of registration: July 31, 2024 https://clinicaltrials.gov/study/NCT06529588 .
Collapse
Affiliation(s)
- Ahmed A Al-Kubaisi
- Department of Medical Laboratories Techniques, College of Health and Medical Technology, University of Al Maarif, Al Anbar, 31001, Iraq.
- General Anah Hospital, Al-Anbar Health Directorate, Ministry of Health, Anbar, 31011, Iraq.
| | - Maysam Abdulrahman Ghazi
- Department of Medical Laboratories Techniques, College of Health and Medical Technology, University of Al Maarif, Al Anbar, 31001, Iraq
| | - Nisreen Salah Majeed
- Department of Medical Laboratories Techniques, College of Health and Medical Technology, University of Al Maarif, Al Anbar, 31001, Iraq
| | - Ekram R Aldelaimi
- Department of Periodontology, Al-Anbar Health Directorate, Ministry of Health, Anbar, 31001, Iraq
| | - Hamid H Enezei
- Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Anbar, Ramadi, Anbar, Iraq
| |
Collapse
|
2
|
Al-Kubaisi AA, Nabeel Z, Adem Ş, Mula-Hussain L. Changes and Roles of IL-6, hsCRP, and proCT in Patients with Chronic Periodontitis in Head and Neck Cancer Pre/Post Radiotherapy. AL-RAFIDAIN JOURNAL OF MEDICAL SCIENCES ( ISSN 2789-3219 ) 2024; 7:248-254. [DOI: 10.54133/ajms.v7i1.1248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Background: Head and neck cancer (HNC) patients frequently undergo radiotherapy as a standalone treatment or in combination with chemotherapy. Radiotherapy is associated with adverse effects, including detrimental impacts on periodontal health, which increase the risk of periodontitis. Objective: To investigate the clinical significance of interleukin-6 (IL-6), high-sensitive C-reactive protein (hsCRP), and procalcitonin (proCT) as prognostic indicators. Methods: 150 participants were divided into three groups: (n=50, HNC post-RT) patients with head and neck cancer who had radiation treatment six months ago (n=50, HNC pre-RT), and individuals with periodontal health as the control group (n=50). Probing pocket depth (PPD), clinical attachment loss (CAL), gingival bleeding index (GBI), plaque index (PI), and hyposalivation were meticulously recorded. To quantify serum concentrations of IL-6, hs-CRP, and proCT, an electrochemiluminescence immunoassay (eCLIA) was used. Results: Serum levels of IL-6, hsCRP, and proCT were significantly elevated in two groups of patients with chronic periodontitis with head and neck cancer post-radiotherapy (CP+HNC post-RT) and patients with chronic periodontitis with HNC pre-radiotherapy (CP+HNC pre-RT) compared to a control group. ROC analysis demonstrated the diagnostic accuracy of IL-6, hsCRP, and proCT for both clinical cases. Furthermore, all clinical periodontal index scores (CAL, PPD, PI, and GBI) were significantly elevated compared to a control group. Conclusions: HNC post-RT patients presented significantly higher serum IL-6, hs-CRP, proCT, and periodontal score levels than HNC pre-RT.
Collapse
|
3
|
Wu Y, Yi M, Niu M, Zhou B, Mei Q, Wu K. Beyond success: unveiling the hidden potential of radiotherapy and immunotherapy in solid tumors. Cancer Commun (Lond) 2024; 44:739-760. [PMID: 38837878 PMCID: PMC11260771 DOI: 10.1002/cac2.12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Immunotherapy, particularly with immune checkpoint inhibitors, has significantly transformed cancer treatment. Despite its success, many patients struggle to respond adequately or sustain long-lasting clinical improvement. A growing consensus has emerged that radiotherapy (RT) enhances the response rate and overall efficacy of immunotherapy. Although combining RT and immunotherapy has been extensively investigated in preclinical models and has shown promising results, establishing itself as a dynamic and thriving area of research, clinical evidence for this combination strategy over the past five years has shown both positive and disappointing results, suggesting the need for a more nuanced understanding. This review provides a balanced and updated analysis of the combination of immunotherapy and RT. We summarized the preclinical mechanisms through which RT boosts antitumor immune responses and mainly focused on the outcomes of recently updated clinical trials, including those that may not have met expectations. We investigated the optimization of the therapeutic potential of this combined strategy, including key challenges, such as fractionation and scheduling, lymph node irradiation, and toxicity. Finally, we offered insights into the prospects and challenges associated with the clinical translation of this combination therapy, providing a realistic perspective on the current state of research and potential future directions.
Collapse
Affiliation(s)
- Yuze Wu
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Ming Yi
- Department of Breast SurgeryZhejiang University School of Medicine First Affiliated HospitalHangzhouZhejiangP. R. China
| | - Mengke Niu
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Binghan Zhou
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Qi Mei
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Kongming Wu
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuanShanxiP. R. China
- Cancer CenterTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| |
Collapse
|
4
|
Gong H, Tian S, Ding H, Tao L, Wang L, Wang J, Wang T, Yuan X, Heng Y, Zhang M, Shi Y, Xu C, Wu C, Wang S, Zhou L. Camrelizumab-based induction chemoimmunotherapy in locally advanced stage hypopharyngeal carcinoma: phase II clinical trial. Nat Commun 2024; 15:5251. [PMID: 38898018 PMCID: PMC11187213 DOI: 10.1038/s41467-024-49121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This phase II trial aimed to determine the efficacy and safety of induction chemoimmunotherapy of camrelizumab plus modified TPF in locally advanced hypopharyngeal squamous cell carcinoma (LA HSCC) (NCT04156698). The primary endpoint was objective response rate (ORR), and secondary endpoints were 3-year overall survival (OS), progression-free survival (PFS), larynx preservation rate (LPR), and metastasis-free survival (MFS). Patients (cT3-4aN0-2M0), regardless of sex, received induction chemoimmunotherapy for three cycles: camrelizumab 200 mg d1, docetaxel 75 mg/m2 d1, cisplatin 25 mg/m2 d1-3, and capecitabine 800 mg/m2 bid d1-14, q21d. Patients were assigned to radioimmunotherapy if they had a complete or partial response, those with stable or progressive disease underwent surgery and adjuvant (chemo)radiotherapy. Camrelizumab was maintained post-radioimmunotherapy. Fifty-one patients were enrolled with a median follow-up duration of 23.7 months. After induction therapy, the ORR was 82.4% (42/51), meeting the prespecified endpoint. Grade 3/4 adverse events occurred in 26 patients, and no treatment-related death occurred. As three-year outcomes were immature, two-year OS, PFS and LPR were reported. As no distant metastatic event had occurred, MFS was not reported here. The two-year OS, PFS, and LPR rates were 83.0%, 77.1%, and 70.0%, respectively. The induction chemoimmunotherapy of camrelizumab plus TPF showed a high ORR rate with an acceptable safety profile in LA HSCC.
Collapse
Grants
- We thank all doctors, nurses, and collaborators in this trial supporting the clinical diagnosis, treatments, evaluation, and other works, and especially all patients and their families. This work was supported by the National Natural Science Foundation of China (81502343 (H.G.) and 81972529 (L.Z.)), the Clinical Research Plan of SHDC (SHDC2020CR6011 (L.T.) and SHDC2024CRI053 (H.G.)), the Science and Technology Commission of Shanghai Municipality (16411950100 (L.Z.) and 21Y11900100 (H.G.)), and the Shanghai Municipal Key Clinical Specialty (shslczdzk00801 (L.T.)). Hengrui Medicine Co. partially donated the study drug (Camrelizumab, SHR-1210).
Collapse
Affiliation(s)
- Hongli Gong
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Shu Tian
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Hao Ding
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Lei Tao
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Li Wang
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Jie Wang
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Tian Wang
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Xiaohui Yuan
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yu Heng
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Ming Zhang
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yong Shi
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Chengzhi Xu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Chunping Wu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Shengzi Wang
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Liang Zhou
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
5
|
Song A, Wu L, Zhang BX, Yang QC, Liu YT, Li H, Mao L, Xiong D, Yu HJ, Sun ZJ. Glutamine inhibition combined with CD47 blockade enhances radiotherapy-induced ferroptosis in head and neck squamous cell carcinoma. Cancer Lett 2024; 588:216727. [PMID: 38431035 DOI: 10.1016/j.canlet.2024.216727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a formidable cancer type that poses significant treatment challenges, including radiotherapy (RT) resistance. The metabolic characteristics of tumors present substantial obstacles to cancer therapy, and the relationship between RT and tumor metabolism in HNSCC remains elusive. Ferroptosis is a type of iron-dependent regulated cell death, representing an emerging disease-modulatory mechanism. Here, we report that after RT, glutamine levels rise in HNSCC, and the glutamine transporter protein SLC1A5 is upregulated. Notably, blocking glutamine significantly enhances the therapeutic efficacy of RT in HNSCC. Furthermore, inhibition of glutamine combined with RT triggers immunogenic tumor ferroptosis, a form of nonapoptotic regulated cell death. Mechanistically, RT increases interferon regulatory factor (IRF) 1 expression by activating the interferon signaling pathway, and glutamine blockade augments this efficacy. IRF1 drives transferrin receptor expression, elevating intracellular Fe2+ concentration, disrupting iron homeostasis, and inducing cancer cell ferroptosis. Importantly, the combination treatment-induced ferroptosis is dependent on IRF1 expression. Additionally, blocking glutamine combined with RT boosts CD47 expression and hinders macrophage phagocytosis, attenuating the treatment effect. Dual-blocking glutamine and CD47 promote tumor remission and enhance RT-induced ferroptosis, thereby ameliorating the tumor microenvironment. Our work provides valuable insights into the metabolic and immunological mechanisms underlying RT-induced ferroptosis, highlighting a promising strategy to augment RT efficacy in HNSCC.
Collapse
Affiliation(s)
- An Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Lei Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Bo-Xin Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Qi-Chao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Yuan-Tong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Hao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Liang Mao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Dian Xiong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Hai-Jun Yu
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
6
|
Gaikwad U, Bajpai J, Jalali R. Combinatorial approach of immuno-proton therapy in cancer: Rationale and potential impact. Asia Pac J Clin Oncol 2024; 20:188-197. [PMID: 37194387 DOI: 10.1111/ajco.13966] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/23/2022] [Accepted: 04/02/2023] [Indexed: 05/18/2023]
Abstract
Cancer management is an expansive, growing, and evolving field. In the last decade or so, immunotherapy (IT) and particle beam therapy have made a tremendous impact in this domain. IT has already established itself as the fourth pillar of oncology. Recent emphasis has been centred around combination therapy, postulating additive or multiplicative effects of combining IT with one or more of the three conventional "pillars," that is, surgery, chemotherapy, and radiotherapy. Radio-IT is being increasingly explored and has shown promising outcomes in both preclinical and clinical settings. Particle beam therapy such as protons, when used as the radiotherapeutic modality in conjunction with IT, can potentially limit toxicities and improve this synergism further. Modern proton therapy has demonstrated a reduction in integral dose of radiation and radiation-induced lymphopenia in various sites. Protons, by virtue of their inherent clinically desirable physical and biological characteristics, namely, high linear energy transfer, relative biological effectiveness of range 1.1-1.6, and proven anti-metastatic and immunogenic potential in preclinical studies, might have a superior immunogenic profile than photons. Proton-IT combination is being studied currently by various groups in lung , head neck and brain tumors, and should be evaluated further in other subsites to replicate preclinical outcomes in a clinical setting. In this review, we summarize the currently available evidence for combinatorial approaches and feasibility of proton and IT combination, and thereafter highlight the emerging challenges for practical application of the same in clinics, while also proposing plausible solutions.
Collapse
Affiliation(s)
- Utpal Gaikwad
- Department of Radiation Oncology, Apollo Proton Cancer Center, Chennai, India
| | - Jyoti Bajpai
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Rakesh Jalali
- Department of Radiation Oncology, Apollo Proton Cancer Center, Chennai, India
| |
Collapse
|
7
|
Zhang S, Lai Y, Pan J, Saeed M, Li S, Zhou H, Jiang X, Gao J, Zhu Y, Yu H, Zhang W, Xu Z. PROTAC Prodrug-Integrated Nanosensitizer for Potentiating Radiation Therapy of Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314132. [PMID: 38353332 DOI: 10.1002/adma.202314132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Radiation therapy (RT) is one of the primary options for clinical cancer therapy, in particular advanced head and neck squamous cell carcinoma (HNSCC). Herein, the crucial role of bromodomain-containing protein 4 (BRD4)-RAD51 associated protein 1 (RAD51AP1) axis in sensitizing RT of HNSCC is revealed. A versatile nanosensitizer (RPB7H) is thus innovatively engineered by integrating a PROteolysis TArgeting Chimeras (PROTAC) prodrug (BPA771) and hafnium dioxide (HfO2 ) nanoparticles to downregulate BRD4-RAD51AP1 pathway and sensitize HNSCC tumor to RT. Upon intravenous administration, the RPB7H nanoparticles selectively accumulate at the tumor tissue and internalize into tumor cells by recognizing neuropilin-1 overexpressed in the tumor mass. HfO2 nanoparticles enhance RT effectiveness by amplifying X-ray deposition, intensifying DNA damage, and boosting oxidative stress. Meanwhile, BPA771 can be activated by RT-induced H2 O2 secretion to degrade BRD4 and inactivate RAD51AP1, thus impeding RT-induced DNA damage repair. This versatile nanosensitizer, combined with X-ray irradiation, effectively regresses HNSCC tumor growth in a mouse model. The findings introduce a PROTAC prodrug-based radiosensitization strategy by targeting the BRD4-RAD51AP1 axis, may offer a promising avenue to augment RT and more effective HNSCC therapy.
Collapse
Affiliation(s)
- Shunan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Lai
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaxing Pan
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 2000092, China
| | - Madiha Saeed
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shiqin Li
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huiling Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xingyu Jiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jing Gao
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yun Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
8
|
Pan S, Sun Z, Zhao B, Miao L, Zhou Q, Chen T, Zhu X. Therapeutic application of manganese-based nanosystems in cancer radiotherapy. Biomaterials 2023; 302:122321. [PMID: 37722183 DOI: 10.1016/j.biomaterials.2023.122321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Radiotherapy is an important therapeutic modality in the treatment of cancers. Nevertheless, the characteristics of the tumor microenvironment (TME), such as hypoxia and high glutathione (GSH), limit the efficacy of radiotherapy. Manganese-based (Mn-based) nanomaterials offer a promising prospect for sensitizing radiotherapy due to their good responsiveness to the TME. In this review, we focus on the mechanisms of radiosensitization of Mn-based nanosystems, including alleviating tumor hypoxia, increasing reactive oxygen species production, increasing GSH conversion, and promoting antitumor immunity. We further illustrate the applications of these mechanisms in cancer radiotherapy, including the development and delivery of radiosensitizers, as well as their combination with other therapeutic modalities. Finally, we summarize the application of Mn-based nanosystems as contrast agents in realizing precision therapy. Hopefully, the present review will provide new insights into the biological mechanisms of Mn-based nanosystems, as well as their applications in radiotherapy, in order to address the difficulties and challenges that remain in their clinical application in the future.
Collapse
Affiliation(s)
- Shuya Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Zhengwei Sun
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Bo Zhao
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Liqing Miao
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Qingfeng Zhou
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Tianfeng Chen
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Department of Chemistry, Jinan University, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China.
| |
Collapse
|
9
|
Chen S, Yang Y, Wang R, Fang J. Neoadjuvant PD-1/PD-L1 inhibitors combined with chemotherapy had a higher ORR than mono-immunotherapy in untreated HNSCC: Meta-analysis. Oral Oncol 2023; 145:106479. [PMID: 37478574 DOI: 10.1016/j.oraloncology.2023.106479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND HNSCC is one of the most common types of cancer worldwide and immune checkpoint inhibitor has shown favorable therapeutic effect in R/M HNSC. However, the application of immunotherapy in untreated HNSCC still needs to be discovered since most R/M HNSCC patients have been treated before and their drug susceptibility and immune tumor microenvironment have changed. This meta-analysis tries to compare immunotherapy and immunochemotherapy in untreated HNSCC and give a reference for clinic application. METHODS Electronic databases, including PubMed, Embase, and Web of Science, were systematically searched from inception through August 31, 2022. The primary outcomes were efficacy, evaluated by objective response rate, 1-year OS and 1-year PFS, and safety, evaluated by grade 3-4 adverse reaction rate. RESULTS A total of 1092 patients from twenty-four studies were included, 282 (25.8%) of which had ORR reported. The average ORR was 37% (95%CI = 26%-49%). Immunochemotherapy could have higher ORR than immunotherapy patients (ORR: 61% vs 22%), and favorable 1-year overall survival from PD-L1 inhibitor (OS = 84%, 95%CI 76%-93%). Radiotherapy after neoadjuvant immunotherapy was equal with the other treatments like chemotherapy and surgery (84% vs 88%, subgroup df p = 0.7). There was no apparent difference between immunotherapy and immunochemotherapy (32% vs 42%, subgroup df p = 0.60). CONCLUSION HNSCC patients could benefit more from neoadjuvant immunochemotherapy.
Collapse
Affiliation(s)
- Shaoshi Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yifan Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
De Felice F, Cattaneo CG, Franco P. Radiotherapy and Systemic Therapies: Focus on Head and Neck Cancer. Cancers (Basel) 2023; 15:4232. [PMID: 37686508 PMCID: PMC10486947 DOI: 10.3390/cancers15174232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a complex clinical entity, and its treatment strategy remains a challenge. The best practice management for individual HNSCC patients should be discussed within a multidisciplinary team. In the locally advanced disease, radiation therapy (RT) with or without concomitant cisplatin-based chemotherapy is the current standard of care for most patients treated definitively or adjuvantly after surgery. Intensity-modulated photon therapy (IMRT) is the recommended RT technique due to its ability to offer considerable treatment conformality while sparing surrounding normal critical tissues. At present, the development of novel treatment strategies, as well as alternative systemic agent combinations, is an urgent need to improve the therapeutic ratio in HNSCC patients. Despite the immune landscape suggesting a strong rationale for the use of immunotherapy agents in HNSCC, evidence-based data demonstrate that combining RT with immune checkpoint inhibitors as the primary treatment modality has not been shown to induce significant benefit on survival clinical outcomes. The objective of this article is to review the current literature on the treatment of patients with HNSCC. We initially provided a comprehensive overview of the standard of care. We then focused on the integration of systemic therapies with RT, highlighting the latest published evidence and ongoing trials which investigate different combination strategies in the definitive setting. Our hope is to summarize relevant literature in order to provide a foundation for interpreting emerging data and designing future trials to maximize care, both in disease control and patient quality of life.
Collapse
Affiliation(s)
- Francesca De Felice
- Radiation Oncology, Policlinico Umberto I, Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Carlo Guglielmo Cattaneo
- Radiation Oncology, Policlinico Umberto I, Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Pierfrancesco Franco
- Department of Translational Medicine (DIMET), University of Eastern Piedmont, Department of Radiation Oncology, “Maggiore della Carità” University Hospital, 28100 Novara, Italy
| |
Collapse
|
11
|
Gadwa J, Amann M, Bickett TE, Knitz MW, Darragh LB, Piper M, Van Court B, Bukkapatnam S, Pham TT, Wang XJ, Saviola AJ, Deak LC, Umaña P, Klein C, D'Alessandro A, Karam SD. Selective targeting of IL2Rβγ combined with radiotherapy triggers CD8- and NK-mediated immunity, abrogating metastasis in HNSCC. Cell Rep Med 2023; 4:101150. [PMID: 37586327 PMCID: PMC10439274 DOI: 10.1016/j.xcrm.2023.101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
The implementation of cancer immunotherapies has seen limited clinical success in head and neck squamous cell carcinoma (HNSCC). Interleukin-2 (IL-2), which modulates the survival and functionality of lymphocytes, is an attractive target for new immunotherapies but one that is limited by presence of regulatory T cells (Tregs) expressing the high-affinity IL-2Rα. The bispecific immunocytokine PD1-IL2v preferentially delivers IL-2 signaling through IL-2Rβγ on PD-1-expressing cells. Selectively targeting the intermediate-affinity IL-2Rβγ can be leveraged to induce anti-tumor immune responses in effector T cells and natural killer (NK) cells while limiting the negative regulation of IL-2Rα activation on Tregs. Using radiation therapy (RT) in combination with PD1-IL2v improves local tumor control and survival, and controls metastatic spread in orthotopic HNSCC tumor models. PD1-IL2v drives systemic activation and expansion of circulating and tumor-infiltrating cytotoxic T cells and NK cells while limiting Treg-mediated immunosuppression. These data show that PD1-L2v induces durable systemic tumor control in HNSCC.
Collapse
Affiliation(s)
- Jacob Gadwa
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Immunology & Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Maria Amann
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), 8952 Schlieren, Switzerland
| | - Thomas E Bickett
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Immunology & Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Miles Piper
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sanjana Bukkapatnam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tiffany T Pham
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laura Codarri Deak
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), 8952 Schlieren, Switzerland
| | - Pablo Umaña
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), 8952 Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), 8952 Schlieren, Switzerland
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Immunology & Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
12
|
Ricco N, Kron SJ. Statins in Cancer Prevention and Therapy. Cancers (Basel) 2023; 15:3948. [PMID: 37568764 PMCID: PMC10417177 DOI: 10.3390/cancers15153948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Statins, a class of HMG-CoA reductase inhibitors best known for their cholesterol-reducing and cardiovascular protective activity, have also demonstrated promise in cancer prevention and treatment. This review focuses on their potential applications in head and neck cancer (HNC), a common malignancy for which established treatment often fails despite incurring debilitating adverse effects. Preclinical and clinical studies have suggested that statins may enhance HNC sensitivity to radiation and other conventional therapies while protecting normal tissue, but the underlying mechanisms remain poorly defined, likely involving both cholesterol-dependent and -independent effects on diverse cancer-related pathways. This review brings together recent discoveries concerning the anticancer activity of statins relevant to HNC, highlighting their anti-inflammatory activity and impacts on DNA-damage response. We also explore molecular targets and mechanisms and discuss the potential to integrate statins into conventional HNC treatment regimens to improve patient outcomes.
Collapse
Affiliation(s)
- Natalia Ricco
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain;
| | - Stephen J. Kron
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
13
|
Upadhaya P, Ryan N, Roth P, Pero T, Lamenza F, Springer A, Jordanides P, Pracha H, Mitchell D, Oghumu S. Ionizing Radiation Reduces Head and Neck Squamous Cell Carcinoma Cell Viability and Is Associated with Predictive Tumor-Specific T Cell Responses. Cancers (Basel) 2023; 15:3334. [PMID: 37444444 DOI: 10.3390/cancers15133334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is common and deadly, and there is a need for improved strategies to predict treatment responses. Ionizing radiation (IR) has been demonstrated to improve HNSCC outcomes, but its effects on immune responses are not well characterized. We determined the impact of IR on T cell immune responses ex vivo. Human and mouse HNSCC cells were exposed to IR ranging from 20 to 200 Gy to determine cell viability and the ability to stimulate T-cell-specific responses. Lymph node cells of LY2 and MOC2 tumor-bearing or non-tumor-bearing mice were re-stimulated with a tumor antigen derived from LY2 or MOC2 cells treated with 200 Gy IR, ultraviolet (UV) exposure, or freeze/thaw cycle treatments. T cell proliferation and cytokine production were compared to T cells restimulated with plate-bound CD3 and CD28 antibodies. Human and mouse HNSCC cells showed reduced viability in response to ionizing radiation in a dose-dependent manner, and induced expression of T cell chemotactic cytokines. Tumor antigens derived from IR-treated LY2 and MOC2 cells induced greater proliferation of lymph node cells from tumor-bearing mice and induced unique T cell cytokine expression profiles. Our results demonstrate that IR induces potent tumoral immune responses, and IR-generated tumor antigens can potentially serve as an indicator of antitumor immune responses to HNSCC in ex vivo T cell restimulation assays.
Collapse
Affiliation(s)
- Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nathan Ryan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Peyton Roth
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Travis Pero
- College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Felipe Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Anna Springer
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Pete Jordanides
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Darrion Mitchell
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Hu Y, Paris S, Sahoo N, Bertolet G, Wang Q, Wang Q, Barsoumian HB, Da Silva J, Huang A, Doss DJ, Pollock DP, Hsu E, Selene N, Leyton CSK, Voss TA, Masrorpour F, Ganjoo S, Leuschner C, Pietz JT, Puebla-Osorio N, Gandhi S, Nguyen QN, Wang J, Cortez MA, Welsh JW. Nanoparticle-enhanced proton beam immunoradiotherapy drives immune activation and durable tumor rejection. JCI Insight 2023; 8:e167749. [PMID: 37345658 PMCID: PMC10371249 DOI: 10.1172/jci.insight.167749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
The combination of radiation therapy (RT) and immunotherapy has emerged as a promising treatment option in oncology. Historically, x-ray radiation (XRT) has been the most commonly used form of RT. However, proton beam therapy (PBT) is gaining recognition as a viable alternative, as it has been shown to produce similar outcomes to XRT while minimizing off-target effects. The effects of PBT on the antitumor immune response have only just begun to be described, and to our knowledge no studies to date have examined the effect of PBT as part of a combinatorial immunoradiotherapeutic strategy. Here, using a 2-tumor model of lung cancer in mice, we show that PBT in tandem with an anti-PD1 antibody substantially reduced growth in both irradiated and unirradiated tumors. This was accompanied by robust activation of the immune response, as evidenced by whole-tumor and single-cell RNA sequencing showing upregulation of a multitude of immune-related transcripts. This response was further significantly enhanced by the injection of the tumor to be irradiated with NBTXR3 nanoparticles. Tumors of mice treated with the triple combination exhibited increased infiltration and activation of cytotoxic immune cells. This triple combination eradicated both tumors in 37.5% of the treated mice and showed robust long-term immunity to cancer.
Collapse
Affiliation(s)
- Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sébastien Paris
- Department of Translational Science, Nanobiotix, Paris, France
| | | | - Genevieve Bertolet
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qianxia Wang
- Department of Radiation Physics, and
- Department of Physics and Astronomy, Rice University, Houston, Texas, USA
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jordan Da Silva
- Department of Translational Science, Nanobiotix, Paris, France
| | - Ailing Huang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Ethan Hsu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nanez Selene
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Claudia S Kettlun Leyton
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tiffany A Voss
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shonik Ganjoo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carola Leuschner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jordan T Pietz
- Department of Strategic Communication, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Saumil Gandhi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Mao L, Zhou JJ, Xiao Y, Yang QC, Yang SC, Wang S, Wu ZZ, Xiong HG, Yu HJ, Sun ZJ. Immunogenic hypofractionated radiotherapy sensitising head and neck squamous cell carcinoma to anti-PD-L1 therapy in MDSC-dependent manner. Br J Cancer 2023; 128:2126-2139. [PMID: 36977825 PMCID: PMC10206106 DOI: 10.1038/s41416-023-02230-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Enhancing the response rate of immunotherapy will aid in the success of cancer treatment. Here, we aimed to explore the combined effect of immunogenic radiotherapy with anti-PD-L1 treatment in immunotherapy-resistant HNSCC mouse models. METHODS The SCC7 and 4MOSC2 cell lines were irradiated in vitro. SCC7-bearing mice were treated with hypofractionated or single-dose radiotherapy followed by anti-PD-L1 therapy. The myeloid-derived suppressive cells (MDSCs) were depleted using an anti-Gr-1 antibody. Human samples were collected to evaluate the immune cell populations and ICD markers. RESULTS Irradiation increased the release of immunogenic cell death (ICD) markers (calreticulin, HMGB1 and ATP) in SCC7 and 4MOSC2 in a dose-dependent manner. The supernatant from irradiated cells upregulated the expression of PD-L1 in MDSCs. Mice treated with hypofractionated but not single-dose radiotherapy were resistant to tumour rechallenge by triggering ICD, when combined with anti-PD-L1 treatment. The therapeutic efficacy of combination treatment partially relies on MDSCs. The high expression of ICD markers was associated with activation of adaptive immune responses and a positive prognosis in HNSCC patients. CONCLUSION These results present a translatable method to substantially improve the antitumor immune response by combining PD-L1 blockade with immunogenic hypofractionated radiotherapy in HNSCC.
Collapse
Affiliation(s)
- Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Jun-Jie Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Yao Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Qi-Chao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Shao-Chen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Zhi-Zhong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Hong-Gang Xiong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Hai-Jun Yu
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China.
| |
Collapse
|
16
|
Ye X, Liu J, Quan R, Lu Y, Zhang J. DKK1 affects survival of patients with head and neck squamous cell carcinoma by inducing resistance to radiotherapy and immunotherapy. Radiother Oncol 2023; 181:109485. [PMID: 36690301 DOI: 10.1016/j.radonc.2023.109485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have been approved to treat various types of tumors, including head and neck squamous cell carcinoma (HNSC). However, most HNSC patients do not respond to ICIs. Radioimmunotherapy has been proposed to enhance the immune response rate in HNSC. Dickkopf-1 (DKK1), a secreted protein, plays important roles in the Wnt signaling pathways. Herein, we aimed to explore the effect of DKK1 on radioimmunotherapy in HNSC. METHODS We collected the gene expression profile and clinical information of HNSC patients from TCGA and GEO databases. The immune cell infiltration and immune score were assessed using R package CIBERSORT and ESTIMATE. The level of related pathways and biological processes were analyzed by GSEA. The signature scores of gene sets of interest were calculated by GSVA. We also performed cell viability and apoptosis assay, and clonogenic assay to investigate the radiation sensitivity of HSC-3 cells and CNE-2 cells after silencing DKK1 by siRNA. RESULTS We found DKK1 was significantly higher expressed in HNSC, and closely correlated with patients' survival time, especially the patients who received radiotherapy. DKK1-knockdown HSC-3 cells or CNE-2 cells showed a decrease in cell viability and colony formation, and an increase in apoptotic rate after radiation. DKK1high tumors showed a more immunosuppressive microenvironment with lower infiltration of T cells and higher infiltration of marrow-derived suppressor cells (MDSCs). CONCLUSION Our data show that DKK1 can affect both radiotherapy and immunotherapy in HNSC, suggesting that DKK1 can be a potential target for radioimmunology in HNSC.
Collapse
Affiliation(s)
- Xinyu Ye
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingwen Liu
- Department of Radiation Oncology, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rencui Quan
- Department of Radiation Oncology, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
17
|
Boss MK, Harrison LG, Gold A, Karam SD, Regan DP. Canine oral squamous cell carcinoma as a spontaneous, translational model for radiation and immunology research. Front Oncol 2023; 12:1033704. [PMID: 36698398 PMCID: PMC9868558 DOI: 10.3389/fonc.2022.1033704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction Improving outcomes for oral squamous cell carcinoma (OSCC) patients has been hindered by a lack of effective predictive animal models. Spontaneously occurring canine OSCC could help fill this gap. The objective of this study was to characterize the immune landscape of canine OSCC to advance understanding of how dogs could serve as a surrogate for human OSCC. Methods/Results Canine OSCC contains a heterogenous tumor immune microenvironment. CD3+ T cells were the predominant tumor infiltrating immune cell population; however, there was a wide range CD3+ T cell density across samples. The most common CD3+ T cell micro-anatomical distribution was defined as "pre-existing immunity", but the remaining 20% of tumors were characterized as "immunologically ignorant" or "excluded infiltrates" patterns. When compared to normal oral mucosa, the tumor gene expression pattern suggests that canine OSCC microenvironment is highly inflamed and characterized by the presence of an anti-tumor immune response dominated by cytotoxic\effector T cells and NK cells (CD8a, GZMA, OX40, and HLA-A); however, overexpression of genes associated with effector T cell exhaustion and microenvironmental immunosuppression was also identified (PD-1, LAG3, CXCL2). Correlations between CD3+ T cell density and immune gene expression revealed key genes associated with cytotoxic anti-tumor T cell responses (GZMA, GZMB, PRF1), co-stimulation of T cells (CD27, CD28, ICOS), and other immune processes, including Type I IFN response (TNF, TNFSF10), and T cell exhaustion (CTLA4, PD-1). CD3+ T cell density in canine OSCC was significantly correlated with a cytolytic activity score (mean PRF1 and GZMA expression), suggestive of active effector CD8 T cell function. CD204+ macrophages were the second most abundant tumor infiltrating immune cell, and when comparing to normal oral mucosa, two differently expressed genes linked to tumor associated macrophages and myeloid derived suppressor cells (MDSC) were identified: CXCL2, CD70. Overexpression of CXCL2 was also identified in canine OSCC "T cell-high" tumors compared to "T cell-low" tumors. Discussion This study identified actionable immunotherapy targets which could inform future comparative oncology trials in canine OSCC: CTLA-4, PD-1, CXCL2. These data provide a good first step towards utilizing spontaneous canine OSCC as a comparative model for human OSCC radiation and immuno-oncology research.
Collapse
Affiliation(s)
- Mary-Keara Boss
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lauren G. Harrison
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Alexandra Gold
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel P. Regan
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
18
|
Wang X, Li Y, Pan M, Lu T, Wang M, Wang Z, Liu C, Hu G. CEACAM5 inhibits the lymphatic metastasis of head and neck squamous cell carcinoma by regulating epithelial-mesenchymal transition via inhibiting MDM2. Clin Sci (Lond) 2022; 136:1691-1710. [PMID: 36377775 PMCID: PMC9702577 DOI: 10.1042/cs20220581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 10/30/2024]
Abstract
Lymph node (LN) metastasis affects both the management and prognosis of head and neck squamous cell carcinoma (HNSCC). Here, we explored the relationship between lymphatic metastasis and CEA family member 5 (CEACAM5), including its possible regulatory role in HNSCC. The levels of CEACAM5 in tissues from patients with HNSCC, with and without LN metastases, were assessed by transcriptome sequencing. The associations between CEACAM5 and the N stage of LN metastasis in HNSCC were predicted through The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and a pan-cancer analysis of CEACAM5 expression in 33 common human tumors was conducted. CEACAM5 levels were analyzed in tumor and normal tissue specimens from HNSCC patients and the correlation between CEACAM5 levels and prognosis was evaluated. The influence of CEACAM5 on cell proliferation, invasion, migration, and apoptosis was investigated in HNSCC cell lines, as were the downstream regulatory mechanisms. A mouse model of LN metastasis was constructed. CEACAM5 levels were significantly higher in HNSCC tissue without LN metastasis than in that with LN metastasis. Similar findings were obtained for the clinical specimens. CEACAM5 levels were associated with better clinical prognosis. CEACAM5 was found to inhibit the proliferation and migration and promote the apoptosis of HNSCC cells. A mouse xenograft model showed that CEACAM5 inhibited LN metastasis. In conclusions, CEACAM5 inhibited epithelial-mesenchymal transition (EMT) in HNSCC by reducing murine double minute 2 (MDM2) expression and thereby suppressing LN metastasis. CEACAM5 has potential as both a prognostic marker and a therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Otorhinolaryngology, The People’s Hospital of Jianyang City, Jianyang, Sichuan 641400, China
| | - Yanshi Li
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Min Pan
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tao Lu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Min Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhihai Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chuan Liu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guohua Hu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
19
|
Shen A, Ye Y, Chen F, Xu Y, Zhang Z, Zhao Q, Zeng ZL. Integrated multi-omics analysis identifies CD73 as a prognostic biomarker and immunotherapy response predictor in head and neck squamous cell carcinoma. Front Immunol 2022; 13:969034. [PMID: 36466881 PMCID: PMC9708745 DOI: 10.3389/fimmu.2022.969034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/27/2022] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Advances in tumor immunotherapy have been developed for patients with advanced recurrent or metastatic (R/M) HNSCC. However, the response of most HNSCC patients to immune checkpoint inhibitors (ICI) remains unsatisfactory. CD73 is a promising target for tumor immunotherapy, but its role in HNSCC remains insufficient. In this study, we aim to explore the function of CD73 in HNSCC. METHODS Transcriptomic and clinical data of TCGA-HNSC were downloaded from UCSC Xena for analysis of CD73 mRNA expression and prognosis. Immunohistochemical assay were performed to validate the expression of CD73 in tumor tissues and its relationship with CD8+ T cells. GSEA analysis was performed with the "clusterProfiler" R package. Immune infiltration analysis was calculated with ESTIMATE, CIBERSORT and MCP-counter algorithms. Single-cell transcriptomic data was originated from GSE103322. Cell clustering, annotation and CD73 expression were from the TISCH database. Correlation data between CD73 and tumor signatures were obtained from the CancerSEA database. Somatic mutation data were obtained from TCGA-HNSC and analyzed by "maftools" R package. Immune efficacy prediction was performed using TIDE algorithm and validated with the IMvigor210 cohort. RESULTS Compared with normal tissues, both mRNA and protein expressions of CD73 were elevated in tumor tissues (P = 9.7×10-10, P = 7.6×10-5, respectively). Kaplan-Meier analysis revealed that patients with high expression of CD73 had worse overall survival (log-rank P = 0.0094), and CD73 could be used as a diagnostic factor for HNSCC (AUC = 0.778). Both bulk RNA-seq and single-cell RNA-seq analysis showed that high CD73 expression can promote EMT and metastasis, samples with high CD73 expression had reduced CD8+ T cells. Furthermore, it was found that CD73-high group was more prone to have mutations in TP53, HRAS and CDKN2A, and were negatively correlated with TMB (P = 0.0055) and MSI (P = 0.00034). Mutational signature analysis found that CD73 was associated with APOBEC signature. Immunotherapy efficacy analysis showed that CD73-high group was less sensitive to immune efficacy. CONCLUSIONS Our results demonstrate that CD73 has an inhibitory effect on the tumor microenvironment, and is more likely to be unresponsive to ICI therapy. Collectively, targeting CD73 may provide new insights for tumor targeted therapy and/or immunotherapy.
Collapse
Affiliation(s)
- Ao Shen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Yafen Ye
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Institute for Diabetes, Shanghai, China
| | - Fan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunyun Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Zhao-lei Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
20
|
Du C, Jiang J, Wan C, Pan G, Kong F, Zhai R, Hu C, Ying H. AntiPD-L1 antibody conjugated Au-SPIOs nanoplatform for enhancing radiosensitivity and triggering anti-tumor immune response. Sci Rep 2022; 12:19542. [PMID: 36380062 PMCID: PMC9666506 DOI: 10.1038/s41598-022-23434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
To improve radiotherapy effect by inducing more toxicity for tumors and less for normal tissue and switching immunosuppressive microenvironment caused by expression of PD-L1 and tumor-associated macrophages (TAMs) to immunoreactive microenvironment, we designed a PD-L1-targeted nanoplatform consisting of gold nanoparticles and superparamagnetic iron oxide nanoparticles (antiPD-L1-SPIOs@PLGA@Au). In vivo T2-weighted images, the best contrast effect of tumor was achieved two hours after intravenous injection of antiPD-L1-SPIOs@PLGA@Au. The tumor control caused by irradiation combined with antiPD-L1-SPIOs@PLGA@Au was better than that by radiotherapy alone in clone formation assay and B16F10 subcutaneous tumor model. Radiosensitivity enhancement induced by the addition of antiPD-L1-SPIOs@PLGA@Au was achieved by increasing ROS production and attenuating DNA damage repair. AntiPD-L1-SPIOs@PLGA@Au could promote the polarization of tumor-associated macrophages (TAMs) to M1 and reverse the immunosuppression caused by TAMs. By increasing the expression of CRT in tumor and blocking the PD-L1/PD pathway, antiPD-L1-SPIOs@PLGA@Au with radiation activated the anti-tumor immune response. In conclusion, antiPD-L1-SPIOs@PLGA@Au could be used as a radiosensitizer and a MRI contrast targeting PD-L1, with the functions of blocking the PD-L1/PD-1 immune checkpoint pathway and reversing the immunosuppression caused by TAMs.
Collapse
Affiliation(s)
- Chengrun Du
- grid.452404.30000 0004 1808 0942Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452344.0Shanghai Key Laboratory of Radiation Oncology, Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032 China
| | - Jianyun Jiang
- grid.452404.30000 0004 1808 0942Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452344.0Shanghai Key Laboratory of Radiation Oncology, Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032 China
| | - Caifeng Wan
- grid.415869.7Department of Ultrasound, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Guangsen Pan
- grid.452404.30000 0004 1808 0942Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452344.0Shanghai Key Laboratory of Radiation Oncology, Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032 China
| | - Fangfang Kong
- grid.452404.30000 0004 1808 0942Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452344.0Shanghai Key Laboratory of Radiation Oncology, Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032 China
| | - Ruiping Zhai
- grid.452404.30000 0004 1808 0942Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452344.0Shanghai Key Laboratory of Radiation Oncology, Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032 China
| | - Chaosu Hu
- grid.452404.30000 0004 1808 0942Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452344.0Shanghai Key Laboratory of Radiation Oncology, Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032 China
| | - Hongmei Ying
- grid.452404.30000 0004 1808 0942Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452344.0Shanghai Key Laboratory of Radiation Oncology, Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032 China
| |
Collapse
|
21
|
Hu Y, Paris S, Bertolet G, Barsoumian HB, Wang Q, Da Silva J, Patel NB, Nguyen N, Doss DJ, Huang A, Hsu E, Leyton CSK, Voss TA, Masrorpour F, Leuschner C, Pietz JT, Puebla-Osorio N, Gandhi S, Nguyen QN, Wang J, Cortez MA, Welsh JW. NBTXR3 improves the efficacy of immunoradiotherapy combining nonfucosylated anti-CTLA4 in an anti-PD1 resistant lung cancer model. Front Immunol 2022; 13:1022011. [PMID: 36405757 PMCID: PMC9669748 DOI: 10.3389/fimmu.2022.1022011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/19/2022] [Indexed: 01/01/2024] Open
Abstract
The efficacy of immunoradiotherapy consisting of radiation therapy and immune checkpoint blockade relies on effectively promoting the systemic antitumor immune response's activation while simultaneously reducing local factors favoring immune suppression. We previously demonstrated that NBTXR3, a nanoparticle radioenhancer, significantly improved immune responses in a murine anti-PD1-resistant metastatic lung cancer model. We hypothesize that radioactivated-NBTXR3 addition to anti-PD1 and a second-generation anti-CTLA4 could improve treatment effectiveness. To test this hypothesis, we inoculated mice with 344SQR cells in the right and left legs to establish primary and secondary tumors. The primary tumors were intratumorally injected with NBTXR3 nanoparticles on day 7, followed by three fractions of 12 Gy radiation on days 8, 9, and 10. The secondary tumors received two fractions of 1Gy radiation on days 13 and 14. Multiple rounds of anti-PD1, anti-CTLA4 or nonfucosylated anti-CTLA4 were given to the mice. Immune profiling of the tumors revealed that the combination of NBTXR3 with immunoradiotherapy significantly upregulated the activities of a wide range of antitumor immune pathways and reduced the abundance of regulatory suppressor T cells. This combination effectively eradicated the primary and secondary tumors and increased animal survival to 75%. Remarkably, previously treated with NBTXR3-containing treatment, the survivor mice exhibited a long-lasting antitumor memory immune response. This data provides compelling evidence of the efficacy of NBTXR3 to synergize with the immunoradiotherapy approach when combined with an anti-PD1 and multiple checkpoints such as a second generation anti-CTLA4 and show the potential for clinical uses of antitumor immunomodulatory effects of NBTXR3.
Collapse
Affiliation(s)
- Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sébastien Paris
- Department of Translational Science, Nanobiotix, Paris, France
| | - Genevieve Bertolet
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jordan Da Silva
- Department of Translational Science, Nanobiotix, Paris, France
| | - Nalini B. Patel
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nguyen Nguyen
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Denaha J. Doss
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ailing Huang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ethan Hsu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Claudia S. Kettlun Leyton
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Tiffany A. Voss
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Carola Leuschner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jordan T. Pietz
- Department of Strategic Communication, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Saumil Gandhi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W. Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
22
|
Chen Z, John J, Wang JH. Why responses to immune checkpoint inhibitors are heterogeneous in head and neck cancers: Contributions from tumor-intrinsic and host-intrinsic factors. Front Oncol 2022; 12:995434. [PMID: 36330485 PMCID: PMC9623029 DOI: 10.3389/fonc.2022.995434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/03/2022] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment including in head and neck squamous cell carcinomas (HNSCCs); however, only a fraction of HNSCC patients respond to ICI, whereas the majority fail to do so. The mechanisms underlying such variable responses remain incompletely understood. A better understanding of such mechanisms may broaden the spectrum of responding patients and enhance the rate of ICI response. HNSCCs exhibit a high level of genetic heterogeneity, manifested as mutations or amplifications of oncogenes (e.g., PIK3CA) and mutations of tumor suppressor genes (e.g., TP53). The immune tumor microenvironment (TME) of HNSCCs also varies significantly in composition and in relative abundance of distinct immune subsets such as CD8 tumor-infiltrating lymphocytes (TILs) or tumor-associated macrophages (TAMs), which represents a high degree of immunological heterogeneity. Here, we briefly discuss how heterogeneous ICI responses may be attributed to tumor-intrinsic factors, including genetic, transcriptional, and functional variations in tumor cells, and host-intrinsic factors, including cellular composition of the TME (e.g., CD8 TILs and TAMs), and host-intrinsic differences in the T cell receptor (TCR) repertoire of CD8 TILs. We also discuss the potential impact of these factors on designing strategies for personalized immunotherapy of HNSCCs.
Collapse
Affiliation(s)
- Zhangguo Chen
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jessy John
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jing H. Wang
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
23
|
Hu Y, Paris S, Bertolet G, Barsoumian HB, He K, Sezen D, Chen D, Wasley M, Silva JDA, Mitchell JA, Voss TA, Masrorpour F, Leyton CK, Yang L, Leuschner C, Puebla-Osorio N, Gandhi S, Nguyen QN, Cortez MA, Welsh JW. Combining a nanoparticle-mediated immunoradiotherapy with dual blockade of LAG3 and TIGIT improves the treatment efficacy in anti-PD1 resistant lung cancer. J Nanobiotechnology 2022; 20:417. [PMID: 36123677 PMCID: PMC9484155 DOI: 10.1186/s12951-022-01621-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While improvements in immunoradiotherapy have significantly improved outcomes for cancer patients, this treatment approach has nevertheless proven ineffective at controlling the majority of malignancies. One of the mechanisms of resistance to immunoradiotherapy is that immune cells may be suppressed via the myriad of different immune checkpoint receptors. Therefore, simultaneous blockade of multiple immune checkpoint receptors may enhance the treatment efficacy of immunoradiotherapy. METHODS We combined NBTXR3-enhanced localized radiation with the simultaneous blockade of three different checkpoint receptors: PD1, LAG3, and TIGIT, and tested the treatment efficacy in an anti-PD1-resistant lung cancer model in mice. 129 Sv/Ev mice were inoculated with fifty thousand αPD1-resistant 344SQR cells in the right leg on day 0 to establish primary tumors and with the same number of cells in the left leg on day 4 to establish the secondary tumors. NBTXR3 was intratumorally injected into the primary tumors on day 7, which were irradiated with 12 Gy on days 8, 9, and 10. Anti-PD1 (200 µg), αLAG3 (200 µg), and αTIGIT (200 µg) were given to mice by intraperitoneal injections on days 5, 8, 11, 14, 21, 28, 35, and 42. RESULTS This nanoparticle-mediated combination therapy is effective at controlling the growth of irradiated and distant unirradiated tumors, enhancing animal survival, and is the only one that led to the destruction of both tumors in approximately 30% of the treated mice. Corresponding with this improved response is robust activation of the immune response, as manifested by increased numbers of immune cells along with a transcriptional signature of both innate and adaptive immunity within the tumor. Furthermore, mice treated with this combinatorial therapy display immunological memory response when rechallenged by the same cancer cells, preventing tumor engraftment. CONCLUSION Our results strongly attest to the efficacy and validity of combining nanoparticle-enhanced radiotherapy and simultaneous blockade of multiple immune checkpoint receptors and provide a pre-clinical rationale for investigating its translation into human patients.
Collapse
Affiliation(s)
- Yun Hu
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Sébastien Paris
- Department of Translational Science, Nanobiotix, Paris, France
| | - Genevieve Bertolet
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Kewen He
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Duygu Sezen
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Radiation Oncology, Koc University School of Medicine, Istanbul, Turkey
| | - Dawei Chen
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Mark Wasley
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jordan DA Silva
- Department of Translational Science, Nanobiotix, Paris, France
| | - Joylise A Mitchell
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Tiffany A Voss
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Claudia Kettlun Leyton
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Liangpeng Yang
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Carola Leuschner
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Saumil Gandhi
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Maria Angelica Cortez
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - James W Welsh
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Zhou Y, Zhang J, Gong J, Tang X, Zhang C. UBE2C mediated radiotherapy resistance of head and neck squamous cell carcinoma by regulating oxidative-stress-relative apoptosis. Aging (Albany NY) 2022; 14:7003-7013. [PMID: 36069832 PMCID: PMC9512496 DOI: 10.18632/aging.204265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Radiotherapy resistance is the main obstacle in the effective treatment of advanced head and neck squamous cell carcinoma (HNSCC). Increasing scientific opinions present that ubiquitin-conjugating enzyme E2C (UBE2C) might be a target gene acting as an oncogene. METHOD TCGA database was used to analyze the expression of UBE2C in HNSCC patients, and the relationship between UBE2C expression and prognosis. Western blot and RT-PCR were used to assess UBE2C expression before and after radiation. Then, cell viability experiment and colony formation were used to evaluate proliferation after 2 Gy radiation. Cell viability experiment, migration, and invasion were evaluated in the condition of UBE2C knock-down. Western blot and RT-PCR were used to assess the expression of apoptosis and ROS relative gene expression. Then, the xenograft model was used to evaluate the efficacy of radiation combined with UBE2C suppression. RESULT The expression of UBE2C was high in tumors of patients with HNSCC and relatives with poor prognoses. Si-UBE2C cells showed proliferation inhibited and apoptosis enhanced after radiation. Furthermore, the mechanism of UBE2C in HNSCC radioresistance was explored. We performed RT-PCR to find the 4-HNE, which increases oxidative-stress-relative apoptosis in Si-UBE2C cells after radiation. CONCLUSIONS Through the RT-PCR, WB, cell viability experiment, migration, invasion, and in vivo experiment, UBE2C was confirmed to downregulate oxidative-stress-relative apoptosis induced by radiation and promote the development of malignant tumor cells.
Collapse
Affiliation(s)
- Yingchun Zhou
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Junbin Zhang
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Jinglin Gong
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Xi Tang
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Chengyao Zhang
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
25
|
Yu X, Ma H, Xu G, Liu Z. Radiotherapy assisted with biomaterials to trigger antitumor immunity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Lin P, Hu XL, Hu YY, Liu MY, Wang QY, Ding Y, Ye JC. Prognostic value of CD247 in patients with head and neck squamous cell carcinoma: bioinformatic analysis of TCGA database. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:923. [PMID: 36172089 PMCID: PMC9511182 DOI: 10.21037/atm-22-1143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
Abstract
Background Head and neck squamous cell carcinoma (HNSC) is the 7th most common type of cancer in the world. Through the advantages of The Cancer Genome Atlas (TCGA) large-scale sequencing-based genome analysis technology, we can explore the potential molecular mechanisms that can improve the prognosis of HNSC patients. Methods The HNSC transcriptome and clinical data were downloaded from TCGA database. A univariate survival analysis and differential expression analysis were conducted to obtain the intersection gene set. A protein-protein interaction (PPI) analysis, modular analysis, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis were then conducted to identify the hub genes. Clinical correlation analysis, univariate and multivariate Cox regression analyses were performed on the identified hub genes to determine the prognostic impact of hub genes on HNSC patients. Results In total, 601 intersecting gene sets were obtained. A modular analysis was conducted, and the highest scoring module was 19.304. Based on the GO/KEGG enrichment analysis results, CD247 molecule (CD247) was ultimately selected as the gene for this study. The CD247 were divided into a high-expression group and a low-expression group. The Kaplan-Meier survival curve analysis showed that there was a significant difference between the 2 groups (P<0.0001). The median survival time of the low-expression CD247 group was 30.9 months, and the 5-year survival rate was 36.4%. While the median survival time of the high-expression CD247 group was 68.8 months, and the 5-year survival rate was 52.3%. The clinical correlation analysis showed that CD247 was significantly negatively correlated with pathological tumor stage (pT) and pathological nodal extracapsular spread. Gene Set Enrichment Analysis (GSEA) showed that CD247 activating KEGG pathway hsa04650 and hsa04660. Conclusions CD247 is an independent protective factor in the prognosis of HNSC patients. By activating the hsa04650 and hsa04660 pathways, the expression of interferon gamma, interleukin (IL)-2, and IL-10 is promoted, which in turn improves the tumor immune monitoring ability of the body, induces tumor cell apoptosis, and inhibits tumor cell growth. CD247 is a potential target for improving the clinical treatment effect of HNSC and the prognosis of patients.
Collapse
Affiliation(s)
- Peng Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Li Hu
- Department of Ultrasound, Nanning Maternity and Child Health Hospital, Nanning, China
| | - Yuan-Yuan Hu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Mai-Ying Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Qian-Yu Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yan Ding
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jia-Cai Ye
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
27
|
Zhou X, Wang X. Radioimmunotherapy in HPV-Associated Head and Neck Squamous Cell Carcinoma. Biomedicines 2022; 10:1990. [PMID: 36009537 PMCID: PMC9405566 DOI: 10.3390/biomedicines10081990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/12/2022] Open
Abstract
HPV-associated head and neck squamous cell carcinoma (HNSCC) is a cancer entity with unique biological and clinical characteristics that requires more personalized treatment strategies. As the backbone of conventional therapeutics, radiation is now harnessed to synergize with immunotherapy in multiple malignancies. Accumulating preclinical and clinical data have suggested the potential of radioimmunotherapy in eliciting local and systemic anti-tumor response via direct killing of tumor cells and immunogenic cell death. However, this effect remains uncertain in HPV-associated HNSCC. Owing to its intrinsic radiosensitivity and distinct tumor microenvironment, HPV-associated HNSCC may represent a good candidate for radioimmunotherapy. In this review, we provide a detailed illustration of the biology, the genomic features, and immune landscapes of HPV-associated HNSCC that support the synergism between radiation and immune agents. The interaction between radiotherapy and immunotherapy is described. We also highlight the present evidence as well as ongoing trials using different combination strategies in the recurrent/metastatic or definitive settings. In addition, we have summarized the challenges and outlook for future trial design, with special emphasis on radiotherapy optimization and novel therapeutic options to incorporate.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xiaoshen Wang
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
28
|
Bojaxhiu B, Sinovcic D, Elicin O, Templeton AJ, Shelan M, Wartenberg J, Alberts I, Rominger A, Aebersold DM, Zaugg K. Correlation between hematological parameters and PET/CT metabolic parameters in patients with head and neck cancer. Radiat Oncol 2022; 17:141. [PMID: 35964056 PMCID: PMC9375277 DOI: 10.1186/s13014-022-02112-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Background Systemic inflammation is predictive of the overall survival in cancer patients and is related to the density of immune cells in the tumor microenvironment of cancer, which in turn correlates with 18F -fluorodeoxyglucose (FDG)-positron emission tomography/computed tomography (PET/CT) metabolic parameters (MPs). The density of tumor-infiltrating lymphocytes (TILs) in the microenvironment has the potential to be a biomarker that can be used clinically to optimize patient selection in oropharyngeal head and neck squamous cell carcinoma (HNSCC). There is little to no data regarding the association of systemic inflammation with PET/CT-MPs, especially in HNSCC. This study aimed to evaluate the correlation between markers of host inflammation, namely blood neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR), with the PET/CT-MPs standardized uptake value (SUV), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) of the primary tumor, derived from FDG-PET/CT in patients with nonmetastatic (cM0) HNSCC before treatment. We hypothesized that NLR and PLR at baseline are positively correlated with PET/CT-MPs. Methods A retrospective review of consecutive patients with HNSCC with a pretreatment PET/CT was performed. NLR and PLR were computed using complete blood counts measured within 10 days before the start of any treatment. The correlation between NLR and PLR with PET/CT-MPs was evaluated with Spearman's rho test. Results Seventy-one patients were analyzed. Overall survival (OS) at 1, 2, and 3 years was 86%, 76%, and 68%. PLR was found to be correlated with MTV (rho = 0.26, P = .03) and TLG (rho = 0.28, P = .02) but not with maximum SUV or mean SUV. There was no correlation between NLR and the analyzed PET/CT-MPs. TLG was associated with worse survival in uni- and multivariable analysis, but no other PET/CT-MPs were associated with either OS or disease-specific survival (DSS). NLR and PLR were associated with OS and DSS on uni- and multivariable analysis. Conclusions In patients with HNSCC before any treatment such as definitive radio (chemo)therapy or oncologic surgery followed by adjuvant RT, baseline PLR correlated with MTV and TLG but not with SUV. NLR was not correlated with any PET/CT-MPs analyzed in our study. Confirmatory studies are needed, and a potential interaction between tumor microenvironment, host inflammation, and FDG-PET/CT measures warrants further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-022-02112-4.
Collapse
Affiliation(s)
- Beat Bojaxhiu
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse, 3010, Bern, Switzerland. .,Department of Radiation Oncology, Stadtspital Triemli, Zurich, Switzerland.
| | - Dubravko Sinovcic
- Department of Radiation Oncology, Stadtspital Triemli, Zurich, Switzerland
| | - Olgun Elicin
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse, 3010, Bern, Switzerland
| | - Arnoud J Templeton
- Department of Medical Oncology, St. Claraspital Basel and Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Mohamed Shelan
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse, 3010, Bern, Switzerland
| | - Jan Wartenberg
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel M Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse, 3010, Bern, Switzerland
| | - Kathrin Zaugg
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse, 3010, Bern, Switzerland.,Department of Radiation Oncology, Stadtspital Triemli, Zurich, Switzerland
| |
Collapse
|
29
|
|
30
|
Sorsa T, Nwhator SO, Sakellari D, Grigoriadis A, Umeizudike KA, Brandt E, Keskin M, Tervahartiala T, Pärnänen P, Gupta S, Mohindra R, Bostanci N, Buduneli N, Räisänen IT. aMMP-8 Oral Fluid PoC Test in Relation to Oral and Systemic Diseases. FRONTIERS IN ORAL HEALTH 2022; 3:897115. [PMID: 35757444 PMCID: PMC9226345 DOI: 10.3389/froh.2022.897115] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022] Open
Abstract
The manuscript uses the previously published literature and highlights the benefits of active-matrix metalloproteinase (aMMP)-8 chairside/point-of-care (PoC) diagnostic tools as adjunctive measures in oral and systemic diseases. Previous studies suggest that as a biomarker, aMMP-8 is more precise than total MMP-8, MMP-9, MMP-2, MMP-3, MMP-13, MMP-7, MMP-1, calprotectin, myeloperoxidase (MPO), human neutrophil elastase (HNE), tissue inhibitor of matrix metalloproteinase (TIMP)-1, and bleeding of probing (BOP). Therefore, aMMP-8 could be implemented as the needed key biomarker for the new disease classification for both periodontitis and peri-implantitis. With a sensitivity to the tune of 75-85% and specificity in the range of 80-90%, lateral flow aMMP-8 PoC testing is comparable to catalytic protease activity assays for aMMP-8. The test can be further applied to estimate the glycemic status of an individual, to ascertain whether a person is at risk for COVID-19, in managing the oral side effects of radiotherapy carried in head and neck cancers, and in selected cases pertaining to reproductive health. In the future, aMMP-8 could find application as a potential systemic biomarker in diseases affecting the cardiovascular system, cancers, bacteremia, sepsis, diabetes, obesity, meningitis, as well as pancreatitis. The aMMP-8 PoCT is the first practical test in the emerging new dental clinical field, that is, oral clinical chemistry representing oral medicine, clinical chemistry, peri-implantology, and periodontology.
Collapse
Affiliation(s)
- Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Solna, Sweden
| | | | - Dimitra Sakellari
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Grigoriadis
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- 424 General Army Hospital, Thessaloniki, Greece
| | - Kehinde Adesola Umeizudike
- Department of Preventive Dentistry, Faculty of Dental Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Ella Brandt
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mutlu Keskin
- Oral and Dental Health Department, Altinbaş University, Istanbul, Turkey
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pirjo Pärnänen
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Shipra Gupta
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritin Mohindra
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Nagihan Bostanci
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Solna, Sweden
| | - Nurcan Buduneli
- Department of Periodontology, Faculty of Dentistry, Ege University, Izmir, Turkey
| | - Ismo Tapani Räisänen
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
31
|
Gougousis S, Petanidis S, Poutoglidis A, Tsetsos N, Vrochidis P, Skoumpas I, Argyriou N, Katopodi T, Domvri K. Epigenetic editing and tumor-dependent immunosuppressive signaling in head and neck malignancies. Oncol Lett 2022; 23:196. [PMID: 35572491 PMCID: PMC9100602 DOI: 10.3892/ol.2022.13317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer (HNC) comprises a heterogeneous variety of malignant tumors, characterized by a relatively high tumor mutation burden. Previous data have revealed that immune system dysfunction appears to serve a key role in the development and progression of HNC and established immunosuppression is vital for evading the host immune response. Despite progress in chemotherapy and radiotherapy, the survival rate of patients with HNC is still low. Therefore, the present review discusses the development of novel immunotherapy approaches based on the various immune cell signaling routes that trigger drug resistance and immunosuppression. Additionally, the present review discusses the epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling and non-coding RNAs that drive and support HNC progression. Furthermore, the role of cancer-associated fibroblasts, tumor macrophages and myeloid cells in tumor-related immunosuppression are considered. Specifically, the molecular immune-related mechanisms in the tumor microenvironment, which lead to decreased drug sensitivity and tumor relapse, and strategies for reversing drug resistance and targeting immunosuppressive tumor networks are discussed. Deciphering these molecular mechanisms is essential for preclinical and clinical investigations in order to enhance therapeutic efficacy. Furthermore, an improved understanding of these immune cell signaling pathways that drive immune surveillance, immune-driven inflammation and tumor-related immunosuppression is necessary for future personalized HNC-based therapeutic approaches.
Collapse
Affiliation(s)
- Spyridon Gougousis
- Ear Nose Throat Department, General Hospital of Thessaloniki ‘G. Papanikolaou’, Thessaloniki GR-57010, Greece
| | - Savvas Petanidis
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University, Moscow 119992, Russian Federation
| | - Alexandros Poutoglidis
- Ear Nose Throat Department, General Hospital of Thessaloniki ‘G. Papanikolaou’, Thessaloniki GR-57010, Greece
| | - Nikolaos Tsetsos
- Ear Nose Throat Department, General Hospital of Thessaloniki ‘G. Papanikolaou’, Thessaloniki GR-57010, Greece
| | - Paraskevas Vrochidis
- Ear Nose Throat Department, General Hospital of Goumenissa, Kilkis GR-61100, Greece
| | - Ioannis Skoumpas
- Ear Nose Throat Department, General Hospital of Katerini, Katerini GR-60100, Greece
| | - Nektarios Argyriou
- Ear Nose Throat Department, General Hospital of Thessaloniki ‘G. Gennimatas’, Thessaloniki GR-54635, Greece
| | - Theodora Katopodi
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Kalliopi Domvri
- Pulmonary Department, General Hospital of Thessaloniki ‘G. Papanikolaou’, Aristotle University of Thessaloniki, Thessaloniki GR-57010, Greece
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| |
Collapse
|
32
|
Lian X, Scott-Thomas A, Lewis JG, Bhatia M, MacPherson SA, Zeng Y, Chambers ST. Monoclonal Antibodies and Invasive Aspergillosis: Diagnostic and Therapeutic Perspectives. Int J Mol Sci 2022; 23:ijms23105563. [PMID: 35628374 PMCID: PMC9146623 DOI: 10.3390/ijms23105563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening fungal disease that causes high morbidity and mortality in immunosuppressed patients. Early and accurate diagnosis and treatment of IA remain challenging. Given the broad range of non-specific clinical symptoms and the shortcomings of current diagnostic techniques, most patients are either diagnosed as “possible” or “probable” cases but not “proven”. Moreover, because of the lack of sensitive and specific tests, many high-risk patients receive an empirical therapy or a prolonged treatment of high-priced antifungal agents, leading to unnecessary adverse effects and a high risk of drug resistance. More precise diagnostic techniques alongside a targeted antifungal treatment are fundamental requirements for reducing the morbidity and mortality of IA. Monoclonal antibodies (mAbs) with high specificity in targeting the corresponding antigen(s) may have the potential to improve diagnostic tests and form the basis for novel IA treatments. This review summarizes the up-to-date application of mAb-based approaches in assisting IA diagnosis and therapy.
Collapse
Affiliation(s)
- Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
- Department of Medical Imaging, The Second Clinical Medical School of Fujian Medical University, Quanzhou 362000, China
| | - Amy Scott-Thomas
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
| | - John G. Lewis
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
- Steroid and Immunobiochemistry Laboratory, Canterbury Health Laboratories, Christchurch 8140, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
| | - Sean A. MacPherson
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
- Haematology Department, Christchurch Hospital, Christchurch 8011, New Zealand
| | - Yiming Zeng
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362000, China;
| | - Stephen T. Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
- Correspondence: ; Tel.: +64-3-364-0649
| |
Collapse
|
33
|
Oba A, Wu YHA, Colborn KL, Karam SD, Meguid C, Al-Musawi MH, Bao QR, Gleisner AL, Ahrendt S, Schulick RD, Del Chiaro M. Comparing neoadjuvant chemotherapy with or without radiation therapy for pancreatic ductal adenocarcinoma: National Cancer Database cohort analysis. Br J Surg 2022; 109:450-454. [PMID: 35136963 DOI: 10.1093/bjs/znac002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/16/2021] [Accepted: 01/04/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Neoadjuvant treatment is important for improving the rate of R0 surgical resection and overall survival outcome in treating patients with pancreatic ductal adenocarcinoma (PDAC). However, the true efficacy of radiotherapy (RT) for neoadjuvant treatment of PDAC is uncertain. This retrospective study evaluated the treatment outcome of neoadjuvant RT in the treatment of PDAC. METHODS Collected from the National Cancer Database, information on patients with PDAC who underwent neoadjuvant chemotherapy (NAC) and pancreatectomy between 2010 to 2016 was used in this study. Short- and long-term outcomes were compared between patients who received neoadjuvant chemoradiotherapy (NACRT) and NAC. RESULTS The study included 6936 patients, of whom 3185 received NACRT and 3751 NAC. The groups showed no difference in overall survival (NACRT 16.1 months versus NAC 17.4 months; P = 0.054). NACRT is associated with more frequent margin negative resection (86.1 versus 80.0 per cent; P < 0.001) but a more unfavourable 90-day mortality than NAC (6.4 versus 3.6 per cent; P < 0.001). The odds of 90-day mortality were higher in the radiotherapy group (odds ratio 1.81; P < 0.001), even after adjusting for significant covariates. Patients who received NACRT received single-agent chemotherapy more often than those who received NAC (31.5 versus 10.7 per cent; P < 0.001). CONCLUSION This study failed to show a survival benefit for NACRT over NAC alone, despite its association with negative margin resection. The significantly higher mortality in NACRT warrants further investigation into its efficacy in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Atsushi Oba
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Y H Andrew Wu
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kathryn L Colborn
- Surgical Outcomes and Applied Research, Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cheryl Meguid
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mohammed H Al-Musawi
- Clinical Trials Office, Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Quoc R Bao
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
- First Surgical Clinic, Department of Surgical, Gastroenterological and Oncological Science, University of Padua, Padua, Italy
| | - Ana L Gleisner
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado Cancer Center, Denver, Colorado, USA
| | - Steven Ahrendt
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado Cancer Center, Denver, Colorado, USA
| | - Richard D Schulick
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado Cancer Center, Denver, Colorado, USA
| | - Marco Del Chiaro
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado Cancer Center, Denver, Colorado, USA
| |
Collapse
|
34
|
Yin G, Guo W, Huang Z, Chen X. Efficacy of radiotherapy combined with immune checkpoint inhibitors in patients with melanoma: a systemic review and meta-analysis. Melanoma Res 2022; 32:71-78. [PMID: 35254329 DOI: 10.1097/cmr.0000000000000800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The purpose of this study is to review the efficacy of radiotherapy combined with immune checkpoint inhibitors (ICIs) in the treatment of melanoma and systematically evaluate the efficacy and safety of this combined treatment compared with ICIs alone. We searched a number of online databases up to 1 July 2021. Comprehensive Meta-Analysis 2.0 and RevMan 5.0 were used for summary analysis. The overall survival (OS), progression-free survival (PFS), overall response rate (ORR) and treatment adverse effects (AEs) were calculated. In total, 624 patients were included from 12 studies, including nine published studies and the results of three clinical trials. Radiotherapy combined with ICIs had a higher ORR compared with ICIs alone (35.00 vs. 20.39%). In terms of survival effect, radiotherapy combined with ICIs had no obvious advantage in OS. There was no statistically significant difference between 6-month and 12-month OS (P = 0.13; P = 0.69). There was no significant difference in PFS at 6 months (P = 0.08), but there was a significant difference in PFS at 12 months (P = 0.005). For patients with melanoma, radiotherapy combined with ICIs can improve the effective rate of treatment. Although there is no obvious OS advantage, it can improve PFS without serious adverse effects. Most of the studies included in this article are retrospective analyses, and there are few randomized controlled studies at present. Therefore, more prospective studies are still needed to explore the efficacy of radiotherapy combined with immunotherapy in melanoma.
Collapse
Affiliation(s)
- Gaofei Yin
- Department of Otorhinolaryngology and Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | | | | | | |
Collapse
|
35
|
Zhou H, Tu C, Yang P, Li J, Kepp O, Li H, Zhang L, Zhang L, Zhao Y, Zhang T, Sheng C, Wang J. Carbon ion radiotherapy triggers immunogenic cell death and sensitizes melanoma to anti-PD-1 therapy in mice. Oncoimmunology 2022; 11:2057892. [PMID: 35355680 PMCID: PMC8959514 DOI: 10.1080/2162402x.2022.2057892] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Carbon ion radiotherapy (CIRT) is an emerging type of radiotherapy for the treatment of solid tumors. In recent years, evidence accumulated that CIRT improves the therapeutic outcome in patients with otherwise poor response to immune checkpoint blockade. Here, we aimed at identifying the underlying mechanisms of CIRT-induced tumor immunogenicity and treatment efficacy. We used human U2OS osteosarcoma cells for the in vitro assessment of immunogenic cell death and established several in vivo models of melanoma in mice. We treated the animals with conventional radiation, CIRT, PD-1-targeting immune checkpoint blockade or a sequential combinations of radiotherapy with checkpoint blockade. We utilized flow cytometry, polyacrylamide gel electrophoresis (PAGE) and immunoblot analysis, immunofluorescence, immunohistochemistry, as well as enzyme-linked immunosorbent assays (ELISA) to assess biomarkers of immunogenic cell death in vitro. Treatment efficacy was studied by tumor growth assessment and the tumor immune infiltrate was analyzed by flow cytometry and immunohistochemistry. Compared with conventional radioimmunotherapy, the combination of CIRT with anti-PD-1 more efficiently triggered traits of immunogenic cell death including the exposure of calreticulin, the release of adenosine triphosphate (ATP), the exodus of high-mobility group box 1 (HMGB1) as well as the induction of type-1 interferon responses. In addition, CIRT plus anti-PD-1 led to an increased infiltration of CD4+, and CD8+ lymphocytes into the tumor bed, significantly decreased tumor growth and prolonged survival of melanoma bearing mice. We herein provide evidence that CIRT-triggered immunogenic cell death, enhanced tumor immunogenicity and improved the efficacy of subsequent anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Heng Zhou
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou,Gansu, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing,China
| | - Chen Tu
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Pengfei Yang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou,Gansu, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing,China
| | - Jin Li
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou,Gansu, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM, Paris, France
| | - Haining Li
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Sciences, Lanzhou, Gansu, China
| | - Liying Zhang
- Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Lixin Zhang
- Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yang Zhao
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tianyi Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou,Gansu, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing,China
| | - Chengyan Sheng
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou,Gansu, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing,China
| |
Collapse
|
36
|
Liu L, Zeng F, Li Y, Li W, Yu H, Zeng Q, Chen Q, Qin H. Undifferentiated destruction of mitochondria by photoacoustic shockwave to overcome chemoresistance and radiation resistance in cancer therapy. NANOSCALE 2022; 14:4073-4081. [PMID: 35244120 DOI: 10.1039/d1nr07449k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Resistance to either radiation or chemotherapy remains a complex and stubborn obstacle in cancer therapy and is responsible for a significant portion of the treatment failure. While the underlying mechanisms of the resistance are often associated with multiple factors, direct destruction of mitochondria is likely to ensure the ultimate death of the cell. Herein, a strategy of precise mitochondrial destruction using a photoacoustic (PA) shockwave was proposed to overcome chemoresistance and radiation resistance in cancer therapy. A nanoparticle featuring mitochondria-targeting and high near-infrared absorbance is constructed. The nanoparticle was found to indiscriminately localize in the mitochondria of both parental and its corresponding resistant tumor cells due to the mitochondrial transmembrane potential. By absorbing a controllable amount of energy from a pulsed laser, the nanoparticle could generate a mechanical PA shockwave that physically damages the mitochondria leading to the opening of apoptotic pathways and thus yielding a precision antitumor effect. The cell-killing efficiency was validated in vitro and in vivo. The results demonstrate that a PA shockwave can result in undifferentiated killing of the resistant tumor cells via destruction of mitochondria. Given the critical importance of resistant tumor cells, although at its preliminary stage, the proposed modality may open a new window in cancer therapy.
Collapse
Affiliation(s)
- Liming Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Fanchu Zeng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yujie Li
- Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Wenjing Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Hui Yu
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Qingxing Zeng
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Qun Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Huan Qin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
37
|
Yan L, Song X, Yang G, Zou L, Zhu Y, Wang X. Identification and Validation of Immune Infiltration Phenotypes in Laryngeal Squamous Cell Carcinoma by Integrative Multi-Omics Analysis. Front Immunol 2022; 13:843467. [PMID: 35281069 PMCID: PMC8907422 DOI: 10.3389/fimmu.2022.843467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is one of the world’s most common head and neck cancer. However, the immune infiltration phenotypes of LSCC have not been well investigated. Methods The multi-omics data of LSCC were obtained from the TCGA (n=111) and GEO (n=57) datasets. The infiltrations of the 24 immune cell populations were calculated using the GSVA method. Then LSCC samples with different immune cell infiltrating patterns were clustered, and the multi-omics differences were investigated. Results Patients were clustered into the high-infiltration and low-infiltration groups. The infiltration scores of most immune cells were higher in the high-infiltration group. Patients with high-infiltration phenotype have high N and TNM stages but better survival, as well as less mutated COL11A1 and MUC17. Common targets of immunotherapies such as PD1, PDL1, LAG3, and CTLA4 were significantly up-regulated in the high-infiltration group. The differentially expressed genes were mainly enriched in several immune-related GOs and KEGG pathways. Based on the genes, miRNAs, and lncRNAs differentially expressed in both the TCGA and GEO cohorts, we built a ceRNA network, in which BTN3A1, CCR1, miR-149-5p, and so on, located at the center. A predictive model was also constructed to calculate a patient’s immune infiltration phenotype using 16 genes’ expression values, showing excellent accuracy and specificity in the TCGA and GEO cohorts. Conclusions In this study, the immune infiltration phenotypes of LSCC and the corresponding multi-omics differences were explored. Our model might be valuable to predicting immunotherapy’s outcome.
Collapse
Affiliation(s)
- Li Yan
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Xiaole Song
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Gang Yang
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Lifen Zou
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yi Zhu
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Xiaoshen Wang
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
38
|
CW. Wong K, Johnson D, Hui EP, CT. Lam R, BY. Ma B, TC. Chan A. Opportunities and Challenges in Combining Immunotherapy and Radiotherapy in Head and Neck Cancers. Cancer Treat Rev 2022; 105:102361. [DOI: 10.1016/j.ctrv.2022.102361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 02/06/2023]
|
39
|
Starzyńska A, Sobocki BK, Alterio D. Current Challenges in Head and Neck Cancer Management. Cancers (Basel) 2022; 14:cancers14020358. [PMID: 35053520 PMCID: PMC8773596 DOI: 10.3390/cancers14020358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Affiliation(s)
- Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, 80-211 Gdańsk, Poland
- Correspondence:
| | - Bartosz Kamil Sobocki
- Scientific Circle of Oncology and Radiotherapy, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
- Scientific Circle of Oral Surgery, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Daniela Alterio
- Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, 20141 Milan, Italy;
| |
Collapse
|
40
|
Dai D, Tian Q, Shui Y, Li J, Wei Q. The impact of radiation induced lymphopenia in the prognosis of head and neck cancer: A systematic review and meta-analysis. Radiother Oncol 2022; 168:28-36. [PMID: 35017020 DOI: 10.1016/j.radonc.2022.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Radiotherapy is a key part of head and neck cancer (HNC) treatment. Radiation induced lymphopenia (RIL) is a severe complication of radiotherapy. The aim of this study was to evaluate the prognostic role of RIL in HNC patients. METHOD We conducted a PRISMA guideline based systemic review and meta-analysis. The studies were identified on the PubMed, Embase and Cochrane Library from 2007 to October 2021. The quality of each study was assessed by Newcastle-Ottawa Quality Assessment Form for Cohort Studies (NOS). RESULTS There were 8 studies with 2,733 samples finally included in current study. The meta-analysis showed that the odds ratio of developing grade 3-4 RIL was 13.49 (95%CI = 7.03-25.89, I2 = 94%). The incidence rate of grade 3-4 RIL ranged from 73%-88%. Multivariate meta-analysis found that the RIL significantly decreased the overall survival (HR = 2.94, 95%CI = 1.83-4.74, I2 = 0%) and distant metastasis free survival of HNC (HR = 3.79, 95%CI = 2.06-6.97, I2 = 0%). After sensitivity analysis and excluding a potential study that caused heterogeneity, the new pooled multivariate meta-analysis showed RIL was a risk factor to the progression free survival of HNC patients (HR = 3.16, 95%CI = 1.77-5.63, I2 = 0%). CONCLUSION This is the first meta-analysis which showed severe RIL decreased the overall survival and promoted the progression of HNC patients. Future large-scale prospective studies are required to evaluate the association between severe RIL and the prognosis of HNC.
Collapse
Affiliation(s)
- Dongjun Dai
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaoying Tian
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongjie Shui
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfan Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
41
|
Yu D, Pan M, Li Y, Lu T, Wang Z, Liu C, Hu G. RNA N6-methyladenosine reader IGF2BP2 promotes lymphatic metastasis and epithelial-mesenchymal transition of head and neck squamous carcinoma cells via stabilizing slug mRNA in an m6A-dependent manner. J Exp Clin Cancer Res 2022; 41:6. [PMID: 34980207 PMCID: PMC8722037 DOI: 10.1186/s13046-021-02212-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022] Open
Abstract
Background Lymph node metastasis is the main cause of poor prognosis of head and neck squamous carcinoma (HNSCC) patients. N6-methyladenosine (m6A) RNA modification is an emerging epigenetic regulatory mechanism for gene expression, and as a novel m6A reader protein, IGF2BP2 has been implicated in tumor progression and metastasis. However, not much is currently known about the functional roles of IGF2BP2 in HNSCC, and whether IGF2BP2 regulates lymphatic metastasis through m6A modification in HNSCC remains to be determined. Methods The expression and overall survival (OS) probability of m6A-related regulators in HNSCC were analyzed with The Cancer Genome Atlas (TCGA) dataset and GEPIA website tool, respectively. The expression levels of IGF2BP2 were measured in HNSCC tissues and normal adjacent tissues. To study the effects of IGF2BP2 on HNSCC cell metastasis in vitro and in vivo, gain- and loss- of function methods were employed. RIP, MeRIP, luciferase reporter and mRNA stability assays were performed to explore the epigenetic mechanism of IGF2BP2 in HNSCC. Results We investigated 20 m6A-related regulators in HNSCC and discovered that only the overexpression of IGF2BP2 was associated with a poor OS probability and an independent prognostic factor for HNSCC patients. Additionally, we demonstrated that IGF2BP2 was overexpressed in HNSCC tissues, and significantly correlated to lymphatic metastasis and poor prognosis. Functional studies have shown that IGF2BP2 promotes both HNSCC cell migration as well as invasion via the epithelial-mesenchymal transition (EMT) process in vitro, and IGF2BP2 knockdown significantly inhibited lymphatic metastasis and lymphangiogenesis in vivo. Mechanistic investigations revealed that Slug, a key EMT-related transcriptional factor, is the direct target of IGF2BP2, and essential for IGF2BP2-regulated EMT and metastasis in HNSCC. Furthermore, we demonstrated that IGF2BP2 recognizes and binds the m6A site in the coding sequence (CDS) region of Slug and promotes its mRNA stability. Conclusions Collectively, our study uncovers the oncogenic role and potential mechanism of IGF2BP2, which serves as a m6A reader, in controlling lymphatic metastasis and EMT in HNSCC, suggesting that IGF2BP2 may act as a therapeutic target and prognostic biomarker for HNSCC patients with metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02212-1.
Collapse
Affiliation(s)
- Dan Yu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Min Pan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yanshi Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Tao Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Zhihai Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Chuan Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Guohua Hu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
42
|
Dai J, Dong X, Wang Q, Lou X, Xia F, Wang S. PEG-Polymer Encapsulated Aggregation-Induced Emission Nanoparticles for Tumor Theranostics. Adv Healthc Mater 2021; 10:e2101036. [PMID: 34414687 DOI: 10.1002/adhm.202101036] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Indexed: 12/15/2022]
Abstract
In the field of tumor imaging and therapy, the aggregation-caused quenching (ACQ) effect of fluorescent dyes at high concentration is a great challenge. In this regard, the aggregation-induced emission luminogens (AIEgens) show great potential, since AIEgens effectively overcome the ACQ effect and have better fluorescence quantum yield, photobleaching resistance, and photosensitivity. Polyethylene glycol (PEG)-polymer is the most commonly used carrier to prepare nanoparticles (NPs). The advantage of PEGylation is that it can greatly prolong the metabolic half-life and reduce immunogenicity and toxicity. Considering that the hydrophobicity of most AIEgens hinders their application in organisms, the use of PEG-polymer encapsulation is an effective strategy to overcome this obstacle. Importantly, bioactive functional groups can be modified on PEG-polymers to enhance the biological effect of NPs. The combination of powerful AIEgens and PEG-polymers provides a new strategy for tumor imaging and therapy, which is promising for clinical application.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology 1095 Jiefang Avenue Wuhan 430032 China
| | - Xiaoqi Dong
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Quan Wang
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology 1095 Jiefang Avenue Wuhan 430032 China
| |
Collapse
|
43
|
Kumar AR, Devan AR, Nair B, Vinod BS, Nath LR. Harnessing the immune system against cancer: current immunotherapy approaches and therapeutic targets. Mol Biol Rep 2021; 48:8075-8095. [PMID: 34671902 PMCID: PMC8605995 DOI: 10.1007/s11033-021-06752-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapy is a rapidly evolving concept that has been given the tag "fifth pillar" of cancer therapy while radiation therapy, chemotherapy, surgery and targeted therapy remain the other four pillars. This involves the stimulation of the immune system to control tumor growth and it specifically targets the neoplastic cells rather than the normal cells. Conventional chemotherapy has many limitations which include drug resistance, recurrence of cancer and severe adverse effects. Immunology has made major treatment breakthroughs for several cancers such as colorectal cancer, prostate cancer, breast cancer, lung cancer, liver cancer, kidney cancer, stomach cancer, acute lymphoblastic leukaemia etc. Currently, therapeutic strategies harnessing the immune system involve Checkpoint inhibitors, Chimeric antigen receptor T cells (CAR T cells), Monoclonal antibodies, Cancer vaccines, Cytokines, Radio-immunotherapy and Oncolytic virus therapy. The molecular characterization of several tumor antigens (TA) indicates that these TA can be utilized as promising candidates in cancer immunotherapy strategies. Here in this review, we highlight and summarize the different categories of emerging cancer immunotherapies along with the immunologically recognized tumor antigens involved in the tumor microenvironment.
Collapse
Affiliation(s)
- Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Balachandran S Vinod
- Department of Biochemistry, Sree Narayana College, Kollam, Kerala, 691001, India.
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India.
| |
Collapse
|
44
|
Bickett TE, Knitz M, Darragh LB, Bhatia S, Van Court B, Gadwa J, Bhuvane S, Piper M, Nguyen D, Tu H, Lenz L, Clambey ET, Barry K, Karam SD. FLT3L Release by Natural Killer Cells Enhances Response to Radioimmunotherapy in Preclinical Models of HNSCC. Clin Cancer Res 2021; 27:6235-6249. [PMID: 34518311 PMCID: PMC8595694 DOI: 10.1158/1078-0432.ccr-21-0971] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/12/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Natural killer (NK) cells are type I innate lymphoid cells that are known for their role in killing virally infected cells or cancer cells through direct cytotoxicity. In addition to direct tumor cell killing, NK cells are known to play fundamental roles in the tumor microenvironment through secretion of key cytokines, such as FMS-like tyrosine kinase 3 ligand (FLT3L). Although radiotherapy is the mainstay treatment in most cancers, the role of radiotherapy on NK cells is not well characterized. EXPERIMENTAL DESIGN This study combines radiation, immunotherapies, genetic mouse models, and antibody depletion experiments to identify the role of NK cells in overcoming resistance to radiotherapy in orthotopic models of head and neck squamous cell carcinoma. RESULTS We have found that NK cells are a crucial component in the development of an antitumor response, as depleting them removes efficacy of the previously successful combination treatment of radiotherapy, anti-CD25, and anti-CD137. However, in the absence of NK cells, the effect can be rescued through treatment with FLT3L. But neither radiotherapy with FLT3L therapy alone nor radiotherapy with anti-NKG2A yields any meaningful tumor growth delay. We also identify a role for IL2 in activating NK cells to secrete FLT3L. This activity, we show, is mediated through CD122, the intermediate affinity IL2 receptor, and can be targeted with anti-CD25 therapy. CONCLUSIONS These findings highlight the complexity of using radio-immunotherapies to activate NK cells within the tumor microenvironment, and the importance of NK cells in activating dendritic cells for increased tumor surveillance.
Collapse
Affiliation(s)
- Thomas E Bickett
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Michael Knitz
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Shiv Bhuvane
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Miles Piper
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Hua Tu
- Lake Pharma, The Biologics Company, San Francisco, California
| | - Laurel Lenz
- Department of Immunology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Eric T Clambey
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kevin Barry
- Immunotherapy Integrated Research Center, Fred Hutchinson Research Institute, Seattle, Washington
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
45
|
Lan Y, Liang Y, Xiao X, Shi Y, Zhu M, Meng C, Yang S, Khan MT, Zhang YJ. Stoichioproteomics study of differentially expressed proteins and pathways in head and neck cancer. BRAZ J BIOL 2021; 83:e249424. [PMID: 34730606 DOI: 10.1590/1519-6984.249424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/20/2021] [Indexed: 01/16/2023] Open
Abstract
Hypoxia is a prominent feature of head and neck cancer. However, the oxygen element characteristics of proteins and how they adapt to hypoxia microenvironments of head and neck cancer are still unknown. Human genome sequences and proteins expressed data of head and neck cancer were retrieved from pathology atlas of Human Protein Atlas project. Then compared the oxygen and carbon element contents between proteomes of head and neck cancer and normal oral mucosa-squamous epithelial cells, genome locations, pathways, and functional dissection associated with head and neck cancer were also studied. A total of 902 differentially expressed proteins were observed where the average oxygen content is higher than that of the lowly expressed proteins in head and neck cancer proteins. Further, the average oxygen content of the up regulated proteins was 2.54% higher than other. None of their coding genes were distributed on the Y chromosome. The up regulated proteins were enriched in endocytosis, apoptosis and regulation of actin cytoskeleton. The increased oxygen contents of the highly expressed and the up regulated proteins might be caused by frequent activity of cytoskeleton and adapted to the rapid growth and fast division of the head and neck cancer cells. The oxygen usage bias and key proteins may help us to understand the mechanisms behind head and neck cancer in targeted therapy, which lays a foundation for the application of stoichioproteomics in targeted therapy and provides promise for potential treatments for head and neck cancer.
Collapse
Affiliation(s)
- Y Lan
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - Y Liang
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - X Xiao
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - Y Shi
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - M Zhu
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - C Meng
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - S Yang
- Ningxia University, School of Life Sciences, Xixia, Yinchuan, Ningxia, P.R. China
| | - M T Khan
- The University of Lahore-Pakistan, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
| | - Y J Zhang
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| |
Collapse
|
46
|
Chin RI, Schiff JP, Brenneman RJ, Gay HA, Thorstad WL, Lin AJ. A Rational Approach to Unilateral Neck RT for Head and Neck Cancers in the Era of Immunotherapy. Cancers (Basel) 2021; 13:5269. [PMID: 34771432 PMCID: PMC8582444 DOI: 10.3390/cancers13215269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy plays an important role in the definitive and adjuvant treatment of head and neck squamous cell carcinoma (HNSCC). However, standard courses of radiation therapy may contribute to the depletion of circulating lymphocytes and potentially attenuate optimal tumor antigen presentation that may be detrimental to the efficacy of novel immunotherapeutic agents. This review explores the advantages of restricting radiation to the primary tumor/tumor bed and ipsilateral elective neck as it pertains to the evolving field of immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexander J. Lin
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MI 63110, USA; (R.-I.C.); (J.P.S.); (R.J.B.); (H.A.G.); (W.L.T.)
| |
Collapse
|
47
|
Gerard CL, Delyon J, Wicky A, Homicsko K, Cuendet MA, Michielin O. Turning tumors from cold to inflamed to improve immunotherapy response. Cancer Treat Rev 2021; 101:102227. [PMID: 34656019 DOI: 10.1016/j.ctrv.2021.102227] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/30/2022]
Abstract
Immune checkpoint inhibitors have revolutionized the treatment landscape for a number of cancers over the last few decades. Nevertheless, a majority of patients still do not benefit from these treatments. Such patient-specific lack of response can be predicted, in part, from the immune phenotypes present in the tumor microenvironment. We provide a perspective on options to reprogram the tumors and their microenvironment to increase the therapeutic efficacy of immunotherapies and expand their efficacy against cold tumors. Additionally, we review data from current preclinical and clinical trials aimed at testing the different therapeutic options in monotherapy or preferably in combination with checkpoint inhibitors.
Collapse
Affiliation(s)
- C L Gerard
- Precision Oncology Center, Lausanne University Hospital (CHUV), Switzerland
| | - J Delyon
- Precision Oncology Center, Lausanne University Hospital (CHUV), Switzerland
| | - A Wicky
- Precision Oncology Center, Lausanne University Hospital (CHUV), Switzerland
| | - K Homicsko
- Precision Oncology Center, Lausanne University Hospital (CHUV), Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Michel A Cuendet
- Precision Oncology Center, Lausanne University Hospital (CHUV), Switzerland; Molecular Modelling Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland; Department of Physiology and Biophysics, Weill Cornell Medicine, NY, USA.
| | - O Michielin
- Precision Oncology Center, Lausanne University Hospital (CHUV), Switzerland; Molecular Modelling Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
48
|
Han MG, Jang BS, Kang MH, Na D, Kim IA. PI3Kγδ inhibitor plus radiation enhances the antitumour immune effect of PD-1 blockade in syngenic murine breast cancer and humanised patient-derived xenograft model. Eur J Cancer 2021; 157:450-463. [PMID: 34601286 DOI: 10.1016/j.ejca.2021.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/18/2023]
Abstract
INTRODUCTION We hypothesised that the combined use of radiation therapy and a phosphoinositide 3-kinaseγδ inhibitor to reduce immune suppression would enhance the efficacy of an immune checkpoint inhibitor. METHODS Murine breast cancer cells (4T1) were grown in both immune-competent and -deficient BALB/c mice, and tumours were irradiated by 3 fractions of 24 Gy. A PD-1 blockade and a phosphoinositide 3-kinase (PI3K)γδ inhibitor were then administered every other day for 2 weeks. The same experiments were performed in humanised patient-derived breast cancer xenograft model and its tumour was sequenced to identify immune-related pathways and profile infiltrated immune cells. Transcriptomic and clinical data were acquired from The Cancer Genome Atlas pan-cancer cohort, and the deconvolution algorithm was used to profile immune cell repertoire. RESULTS Using a PI3Kγδ inhibitor, radiation therapy (RT) and PD-1 blockade significantly delayed primary tumour growth, boosted the abscopal effect and improved animal survival. RT significantly increased CD8+cytotoxic T-cell fractions, immune-suppressive regulatory T cells (Tregs), myeloid-derived suppressor cells and M2 tumour-associated macrophages (TAMs). However, the PI3Kγδ inhibitor significantly lowered the proportions of Tregs, myeloid-derived suppressor cells and M2 TAMs, achieving dramatic gains in splenic, nodal, and tumour CD8+ T-cell populations after triple combination therapy. In a humanised patient-derived breast cancer xenograft model, triple combination therapy significantly delayed tumour growth and decreased immune-suppressive pathways. In The Cancer Genome Atlas cohort, high Treg/CD8+ T cell and M2/M1 TAM ratios were associated with poor overall patient survival. CONCLUSION These findings indicate PI3Kγ and PI3Kδ are clinically relevant targets in an immunosuppressive TME, and combining PI3Kγδ inhibitor, RT and PD-1 blockade may overcome the therapeutic resistance of immunologically cold tumours. SYNOPSIS Combining PI3Kγδ inhibitor, RT, and PD-1 blockade may be a viable clinical approach, helping to overcome the therapeutic resistance of immunologically cold tumours such as breast cancer.
Collapse
Affiliation(s)
- Min Guk Han
- Department of Tumour Biology, Graduate School of Medicine, Seoul National University, Seoul, South Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Seoul, South Korea
| | - Bum-Sup Jang
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Seoul, South Korea
| | - Mi Hyun Kang
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Seoul, South Korea
| | - Deukchae Na
- Institute of Convergence Medicine, Ewha Woman's University Mokdong Hospital, Seoul, South Korea
| | - In Ah Kim
- Department of Tumour Biology, Graduate School of Medicine, Seoul National University, Seoul, South Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Seoul, South Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Seoul, South Korea; Department of Radiation Oncology and Cancer Research Institute, Seoul National University, College of Medicine, Seoul, South Korea.
| |
Collapse
|
49
|
A gene expression-based immune content predictor for survival and postoperative radiotherapy response in head and neck cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:380-387. [PMID: 34553026 PMCID: PMC8430044 DOI: 10.1016/j.omto.2021.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022]
Abstract
The immune infiltration in the tumor microenvironment has been demonstrated to be relevant to radiotherapy response. Here, we sought to understand the immune infiltration in head and neck cancer (HNC) and evaluate its significance in predicting prognosis and radiotherapy response. Using RNA sequencing data of 522 retrospective head and neck squamous cell carcinomas (HNSCCs), we constructed an immune content score based on genes related to 6 prognostic infiltrating cell types. Unsupervised hallmark pathway clustering demonstrated an immune-related tumor cluster containing the immune content score. Patients with high immune content scores exhibited favorable overall survival and disease-free survival (DFS). Moreover, the immune content score was an independent prognostic factor for DFS in HNSCC. Interestingly, the immune content score was strongly associated with radiation response pathways. These results were also extended to nasopharyngeal carcinoma. Furthermore, patients in the low immune content score group significantly gained overall survival benefits from postoperative radiotherapy (PORT), whereas patients in the high immune content score group did not. Therefore, this study identifies the immune content score as a prognostic tool, which might have a potential association with PORT response, thereby facilitating outcome prediction and treatment decision in HNC.
Collapse
|
50
|
Radioimmunotherapy: future prospects from the perspective of brachytherapy. J Contemp Brachytherapy 2021; 13:458-467. [PMID: 34484362 PMCID: PMC8407252 DOI: 10.5114/jcb.2021.108601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
In combination with radiotherapy, immunotherapy is becoming an increasingly used strategy in treating advanced, recurrent, or metastatic cancer. The evident impact of radiotherapy on local and systemic immune response is an indication of the synergistic effect of these two modalities. There is a strong rationale to combine radiotherapy and immunotherapy to enhance response rates and overcome resistances. Therefore, the combination of radio- and immunotherapy holds a variety of opportunities as well as challenges in treating primary cancer and is progressively tested in curative settings. Brachytherapy is also known as internal radiation therapy and only offers a local therapy option at first glance: due to tumor-specific antigens, released by a high local radiation dose, a systemic immune response could be plausible and eminent. Accordingly, brachytherapy could be an underestimated partner with immuno-therapeutic approaches in both curative and palliative settings, to generate local and systemic response. In this review, we summarized the potential benefit of a potential combination of brachytherapy and immuno-therapeutic approaches vs. the background of limited data.
Collapse
|