1
|
Deng M, Du S, Hou H, Xiao J. Structural insights into the high-affinity IgE receptor FcεRI complex. Nature 2024; 633:952-959. [PMID: 39169187 DOI: 10.1038/s41586-024-07864-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Immunoglobulin E (IgE) plays a pivotal role in allergic responses1,2. The high-affinity IgE receptor, FcεRI, found on mast cells and basophils, is central to the effector functions of IgE. FcεRI is a tetrameric complex, comprising FcεRIα, FcεRIβ and a homodimer of FcRγ (originally known as FcεRIγ), with FcεRIα recognizing the Fc region of IgE (Fcε) and FcεRIβ-FcRγ facilitating signal transduction3. Additionally, FcRγ is a crucial component of other immunoglobulin receptors, including those for IgG (FcγRI and FcγRIIIA) and IgA (FcαRI)4-8. However, the molecular basis of FcεRI assembly and the structure of FcRγ have remained elusive. Here we elucidate the cryogenic electron microscopy structure of the Fcε-FcεRI complex. FcεRIα has an essential role in the receptor's assembly, interacting with FcεRIβ and both FcRγ subunits. FcεRIβ is structured as a compact four-helix bundle, similar to the B cell antigen CD20. The FcRγ dimer exhibits an asymmetric architecture, and coils with the transmembrane region of FcεRIα to form a three-helix bundle. A cholesterol-like molecule enhances the interaction between FcεRIβ and the FcεRIα-FcRγ complex. Our mutagenesis analyses further indicate similarities between the interaction of FcRγ with FcεRIα and FcγRIIIA, but differences in that with FcαRI. These findings deepen our understanding of the signalling mechanisms of FcεRI and offer insights into the functionality of other immune receptors dependent on FcRγ.
Collapse
Affiliation(s)
- Meijie Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Shuo Du
- Changping Laboratory, Beijing, People's Republic of China.
| | - Handi Hou
- Changping Laboratory, Beijing, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China.
- Changping Laboratory, Beijing, People's Republic of China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Palvair J, Farhat I, Chaintreuil M, Dal Zuffo L, Messager L, Tinel C, Lamarthée B. The Potential Role of the Leucocyte Immunoglobulin-Like Receptors in Kidney Transplant Rejection: A Mini Review. Transpl Int 2024; 37:12995. [PMID: 39010891 PMCID: PMC11247310 DOI: 10.3389/ti.2024.12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024]
Abstract
Antibody-mediated rejection (ABMR) remains one of the main causes of long-term graft failure after kidney transplantation, despite the development of powerful immunosuppressive therapy. A detailed understanding of the complex interaction between recipient-derived immune cells and the allograft is therefore essential. Until recently, ABMR mechanisms were thought to be solely caused by adaptive immunity, namely, by anti-human leucocyte antigen (HLA) donor-specific antibody. However recent reports support other and/or additive mechanisms, designating monocytes/macrophages as innate immune contributors of ABMR histological lesions. In particular, in mouse models of experimental allograft rejection, monocytes/macrophages are readily able to discriminate non-self via paired immunoglobulin receptors (PIRs) and thus accelerate rejection. The human orthologs of PIRs are leukocyte immunoglobulin-like receptors (LILRs). Among those, LILRB3 has recently been reported as a potential binder of HLA class I molecules, shedding new light on LILRB3 potential as a myeloid mediator of allograft rejection. In this issue, we review the current data on the role of LILRB3 and discuss the potential mechanisms of its biological functions.
Collapse
Affiliation(s)
- Jovanne Palvair
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Imane Farhat
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Centre Hospitalier Universitaire de Dijon, Service de Néphrologie et Transplantation Rénale, Université de Bourgogne, Dijon, France
| | - Mélanie Chaintreuil
- Centre Hospitalier Universitaire de Dijon, Service de Néphrologie et Transplantation Rénale, Université de Bourgogne, Dijon, France
| | | | - Lennie Messager
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Claire Tinel
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Centre Hospitalier Universitaire de Dijon, Service de Néphrologie et Transplantation Rénale, Université de Bourgogne, Dijon, France
| | | |
Collapse
|
3
|
Dorando HK, Mutic EC, Li JY, Perrin EP, Wurtz MK, Quinn CC, Payton JE. LPS and type I and II interferons have opposing effects on epigenetic regulation of LAIR1 expression in mouse and human macrophages. J Leukoc Biol 2024; 115:547-564. [PMID: 38011310 DOI: 10.1093/jleuko/qiad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Inhibitory immune receptors are important for maintaining immune homeostasis. We identified epigenetic alterations in 2 members of this group, LAIR1 and LAIR2, in lymphoma patients with inflammatory tissue damage and susceptibility to infection. We predicted that the expression of LAIR genes is controlled by immune mediators acting on transcriptional regulatory elements. Using flow cytometry, quantitative reverse-transcription polymerase chain reaction, and RNA sequencing, we measured LAIR1 and LAIR2 in human and murine immune cell subsets at baseline and posttreatment with immune mediators, including type I and II interferons, tumor necrosis factor α, and lipopolysaccharide (LPS). We identified candidate regulatory elements using epigenome profiling and measured their regulatory activity using luciferase reporters. LAIR1 expression substantially increases during monocyte differentiation to macrophages in both species. In contrast, murine and human macrophages exhibited opposite changes in LAIR1 in response to immune stimuli: human LAIR1 increased with LPS while mouse LAIR1 increased with interferon γ. LAIR genes had distinct patterns of enhancer activity with variable responses to immune stimuli. To identify relevant transcription factors (TFs), we developed integrative bioinformatic techniques applied to TF chromatin immunoprecipitation sequencing, RNA sequencing, and luciferase activity, revealing distinct sets of TFs for each LAIR gene. Most strikingly, LAIR1 TFs include nuclear factor kappa B factors RELA and RELB, while Lair1 and LAIR2 instead include STAT3 and/or STAT5. Regulation by nuclear factor kappa B factors may therefore explain the LPS-induced increase in LAIR1 expression, in contrast to Lair1 decrease. Our findings reveal new insights into transcriptional mechanisms that control distinct expression patterns of LAIR genes in response to inflammatory stimuli in human and murine myeloid and lymphoid cells.
Collapse
Affiliation(s)
- Hannah K Dorando
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| | - Evan C Mutic
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| | - Joanna Y Li
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| | - Ezri P Perrin
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| | - Mellisa K Wurtz
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| | - Chaz C Quinn
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| |
Collapse
|
4
|
Sparling BA, Ng TT, Carlo-Allende A, McCarthy FM, Taylor RL, Drechsler Y. Immunoglobulin-like receptors in chickens: identification, functional characterization, and renaming to cluster homolog of immunoglobulin-like receptors. Poult Sci 2024; 103:103292. [PMID: 38100950 PMCID: PMC10764270 DOI: 10.1016/j.psj.2023.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
The cluster homolog of immunoglobulin-like receptors (CHIRs), previously known as the "chicken homolog of immunogloublin-like receptors," represents is a large group of transmembrane glycoproteins that direct the immune response. However, the full repertoire of putatively activating, inhibitory, or dual function CHIRA, CHIRB, and CHIRAB on chickens' immune responses is poorly understood. Herein, the study objective was to determine the genes encoding CHIR proteins and predict their function by searching canonical protein structure. A bioinformatics pipeline based on previous work was employed to search for the CHIRs from the newly updated broiler and layer genomes. The categorization into CHIRA, CHIRB, and CHIRAB types was assigned through motif searches, multiple sequence alignment, and phylogeny. In total, 150 protein-encoding genes on Chromosome 31 were identified as CHIRs. Gene members of each functional group (CHIRA, CHIRB, CHIRAB) were classified in accordance with previously recognized proteins. The genes were renamed to "cluster homolog of immunoglobulin-like receptors" (CHIRs) to allow for the naming of orthologous genes in other avian species. Additionally, expression analysis of the classified CHIRs across various reinforces their importance as immune regulators and activation in inflammatory tissues. Furthermore, over 1,000 diverse and rare CHIRs variants associated with differential Marek's disease response (P < 0.05) emphasize the impact of CHIRs on shaping avian immune responses in diverse contexts. The practical applications of these findings encompass advancing immunology, improving poultry health management, optimizing breeding programs for disease resistance, and enhancing overall animal health through a deeper understanding of the roles and functions of CHIRA, CHIRB, and CHIRAB types in avian immune responses.
Collapse
Affiliation(s)
- Brandi A Sparling
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Theros T Ng
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Anaid Carlo-Allende
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Fiona M McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Robert L Taylor
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
5
|
Wang J, Gurupalli HV, Stafford JL. Teleost leukocyte immune-type receptors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104768. [PMID: 37414235 DOI: 10.1016/j.dci.2023.104768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Leukocyte immune-type receptors (LITRs) are a large family of teleost immunoregulatory receptor-types belonging to the immunoglobulin superfamily. These immune genes are phylogenetically and syntenically related to Fc receptor-like protein genes (fcrls) present in other vertebrates, including amphibians, birds, mice, and man. In vitro-based functional analyses of LITRs, using transfection approaches, have shown that LITRs have diverse immunoregulatory potentials including the activation and inhibition of several innate immune effector responses such as cell-mediated killing responses, degranulation, cytokine secretion, and phagocytosis. The purpose of this mini review is to provide an overview of fish LITR-mediated immunoregulatory potentials obtained from various teleost model systems, including channel catfish, zebrafish, and goldfish. We will also describe preliminary characterization of a new goldish LITR-specific polyclonal antibody (pAb) and discuss the significance of this tool for further investigation of the functions of fish LITRs.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Biological Sciences, University of Alberta, Alberta, Canada
| | | | - James L Stafford
- Department of Biological Sciences, University of Alberta, Alberta, Canada.
| |
Collapse
|
6
|
Watanabe M, Motooka D, Yamasaki S. The kinetics of signaling through the common FcRγ chain determine cytokine profiles in dendritic cells. Sci Signal 2023; 16:eabn9909. [PMID: 36881655 DOI: 10.1126/scisignal.abn9909] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The common Fc receptor γ (FcRγ) chain is a signaling subunit common to several immune receptors, but cellular responses induced by FcRγ-coupled receptors are diverse. We investigated the mechanisms by which FcRγ generates divergent signals when coupled to Dectin-2 and Mincle, structurally similar C-type lectin receptors that induce the release of different cytokines from dendritic cells. Chronological tracing of transcriptomic and epigenetic changes upon stimulation revealed that Dectin-2 induced early and strong signaling, whereas Mincle-mediated signaling was delayed, which reflects their expression patterns. Generation of early and strong FcRγ-Syk signaling by engineered chimeric receptors was sufficient to recapitulate a Dectin-2-like gene expression profile. Early Syk signaling selectively stimulated the activity of the calcium ion-activated transcription factor NFAT, which rapidly altered the chromatin status and transcription of the Il2 gene. In contrast, proinflammatory cytokines, such as TNF, were induced regardless of FcRγ signaling kinetics. These results suggest that the strength and timing of FcRγ-Syk signaling can alter the quality of cellular responses through kinetics-sensing signaling machineries.
Collapse
Affiliation(s)
- Miyuki Watanabe
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan.,Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
7
|
Wang J, Zhao SJ, Wang LL, Lin XX, Mor G, Liao AH. Leukocyte immunoglobulin-like receptor subfamily B: A novel immune checkpoint molecule at the maternal-fetal interface. J Reprod Immunol 2023; 155:103764. [PMID: 36434938 DOI: 10.1016/j.jri.2022.103764] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/22/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Due to their crucial roles in embryo implantation, maternal-fetal tolerance induction, and pregnancy progression, immune checkpoint molecules (ICMs), such as programmed cell death-1, cytotoxic T-lymphocyte antigen 4, and T cell immunoglobulin mucin 3, are considered potential targets for clinical intervention in pregnancy complications. Despite the considerable progress on these molecules, our understanding of ICMs at the maternal-fetal interface is still limited. Identification of alternative and novel ICMs and the combination of multiple ICMs is urgently needed for deeply understanding the mechanism of maternal-fetal tolerance and to discover the causes of pregnancy complications. Leukocyte immunoglobulin-like receptor subfamily B (LILRB) is a novel class of ICMs with strong negative regulatory effects on the immune response. Recent studies have revealed that LILRB is enriched in decidual immune cells and stromal cells at the maternal-fetal interface, which can modulate the biological behavior of immune cells and promote immune tolerance. In this review, we introduce the structural features, expression profiles, ligands, and orthologs of LILRB. In addition, the potential mechanisms and functions mediated by LILRB for sustaining the maternal-fetal tolerance microenvironment, remodeling the uterine spiral artery, and induction of pregnancy immune memory are summarized. We have also provided new suggestions for further understanding the roles of LILRB and potential therapeutic strategies for pregnancy-related diseases.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Si-Jia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Li-Ling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
8
|
Alves CC, Arns T, Oliveira ML, Moreau P, Antunes DA, Castelli EC, Mendes-Junior CT, Giuliatti S, Donadi EA. Computational and atomistic studies applied to the understanding of the structural and behavioral features of the immune checkpoint HLA-G molecule and gene. Hum Immunol 2023:S0198-8859(23)00004-6. [PMID: 36710086 DOI: 10.1016/j.humimm.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/29/2023]
Abstract
We took advantage of the increasingly evolving approaches for in silico studies concerning protein structures, protein molecular dynamics (MD), protein-protein and protein-DNA docking to evaluate: (i) the structure and MD characteristics of the HLA-G well-recognized isoforms, (ii) the impact of missense mutations at HLA-G receptor genes (LILRB1/2), and (iii) the differential binding of the hypoxia-inducible factor 1 (HIF1) to hypoxia-responsive elements (HRE) at the HLA-G gene. Besides reviewing these topics, they were revisited including the following novel results: (i) the HLA-G6 isoforms were unstable docked or not with β2-microglobulin or peptide, (ii) missense mutations at LILRB1/2 genes, exchanging amino acids at the intracellular domain, particularly those located within and around the ITIM motifs, may impact the HLA-G binding strength, and (iii) HREs motifs at the HLA-G promoter or exon 2 regions exhibiting a guanine at their third position present a higher affinity for HIF1 when compared to an adenine at the same position. These data shed some light into the functional aspects of HLA-G, particularly how polymorphisms may influence the role of the molecule. Computational and atomistic studies have provided alternative tools for experimental physical methodologies, which are time-consuming, expensive, demanding large quantities of purified proteins, and exhibit low output.
Collapse
Affiliation(s)
- Cinthia C Alves
- Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Thaís Arns
- Luxembourg Centre for Systems Biomedicine, Luxembourg
| | - Maria L Oliveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Philippe Moreau
- CEA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France; U976 HIPI Unit, IRSL, Université Paris-Cité, Paris, France
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, USA
| | - Erick C Castelli
- Department of Pathology, School of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Celso T Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Silvana Giuliatti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Eduardo A Donadi
- Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Dornburg A, Mallik R, Wang Z, Bernal MA, Thompson B, Bruford EA, Nebert DW, Vasiliou V, Yohe LR, Yoder JA, Townsend JP. Placing human gene families into their evolutionary context. Hum Genomics 2022; 16:56. [PMID: 36369063 PMCID: PMC9652883 DOI: 10.1186/s40246-022-00429-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Following the draft sequence of the first human genome over 20 years ago, we have achieved unprecedented insights into the rules governing its evolution, often with direct translational relevance to specific diseases. However, staggering sequence complexity has also challenged the development of a more comprehensive understanding of human genome biology. In this context, interspecific genomic studies between humans and other animals have played a critical role in our efforts to decode human gene families. In this review, we focus on how the rapid surge of genome sequencing of both model and non-model organisms now provides a broader comparative framework poised to empower novel discoveries. We begin with a general overview of how comparative approaches are essential for understanding gene family evolution in the human genome, followed by a discussion of analyses of gene expression. We show how homology can provide insights into the genes and gene families associated with immune response, cancer biology, vision, chemosensation, and metabolism, by revealing similarity in processes among distant species. We then explain methodological tools that provide critical advances and show the limitations of common approaches. We conclude with a discussion of how these investigations position us to gain fundamental insights into the evolution of gene families among living organisms in general. We hope that our review catalyzes additional excitement and research on the emerging field of comparative genomics, while aiding the placement of the human genome into its existentially evolutionary context.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA.
| | - Rittika Mallik
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Moisés A Bernal
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, USA
| | - Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Elspeth A Bruford
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Laurel R Yohe
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey P Townsend
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
10
|
Ramos-Mejia V, Arellano-Galindo J, Mejía-Arangure JM, Cruz-Munoz ME. A NK Cell Odyssey: From Bench to Therapeutics Against Hematological Malignancies. Front Immunol 2022; 13:803995. [PMID: 35493522 PMCID: PMC9046543 DOI: 10.3389/fimmu.2022.803995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
In 1975 two independent groups noticed the presence of immune cells with a unique ability to recognize and eliminate transformed hematopoietic cells without any prior sensitization or expansion of specific clones. Since then, NK cells have been the axis of thousands of studies that have resulted until June 2021, in more than 70 000 publications indexed in PubMed. As result of this work, which include approaches in vitro, in vivo, and in natura, it has been possible to appreciate the role played by the NK cells, not only as effectors against specific pathogens, but also as regulators of the immune response. Recent advances have revealed previous unidentified attributes of NK cells including the ability to adapt to new conditions under the context of chronic infections, or their ability to develop some memory-like characteristics. In this review, we will discuss significant findings that have rule our understanding of the NK cell biology, the developing of these findings into new concepts in immunology, and how these conceptual platforms are being used in the design of strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Veronica Ramos-Mejia
- GENYO: Centro Pfizer, Universidad de Granada, Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
| | - Jose Arellano-Galindo
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México “Dr. Federico Gomez”, Ciudad de México, Mexico
| | - Juan Manuel Mejía-Arangure
- Genómica del Cancer, Instituto Nacional de Medicina Genómica (INMEGEN) & Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Mario Ernesto Cruz-Muñoz, ; Juan Manuel Mejía-Arangure,
| | - Mario Ernesto Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- *Correspondence: Mario Ernesto Cruz-Muñoz, ; Juan Manuel Mejía-Arangure,
| |
Collapse
|
11
|
The Molecular Interaction of Collagen with Cell Receptors for Biological Function. Polymers (Basel) 2022; 14:polym14050876. [PMID: 35267698 PMCID: PMC8912536 DOI: 10.3390/polym14050876] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/25/2023] Open
Abstract
Collagen, an extracellular protein, covers the entire human body and has several important biological functions in normal physiology. Recently, collagen from non-human sources has attracted attention for therapeutic management and biomedical applications. In this regard, both land-based animals such as cow, pig, chicken, camel, and sheep, and marine-based resources such as fish, octopus, starfish, sea-cucumber, and jellyfish are widely used for collagen extraction. The extracted collagen is transformed into collagen peptides, hydrolysates, films, hydrogels, scaffolds, sponges and 3D matrix for food and biomedical applications. In addition, many strategic ideas are continuously emerging to develop innovative advanced collagen biomaterials. For this purpose, it is important to understand the fundamental perception of how collagen communicates with receptors of biological cells to trigger cell signaling pathways. Therefore, this review discloses the molecular interaction of collagen with cell receptor molecules to carry out cellular signaling in biological pathways. By understanding the actual mechanism, this review opens up several new concepts to carry out next level research in collagen biomaterials.
Collapse
|
12
|
Al-Moussawy M, Abdelsamed HA, Lakkis FG. Immunoglobulin-like receptors and the generation of innate immune memory. Immunogenetics 2022; 74:179-195. [PMID: 35034136 PMCID: PMC10074160 DOI: 10.1007/s00251-021-01240-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/25/2021] [Indexed: 12/22/2022]
Abstract
Host immunity is classically divided into "innate" and "adaptive." While the former has always been regarded as the first, rapid, and antigen-nonspecific reaction to invading pathogens, the latter represents the more sophisticated and antigen-specific response that has the potential to persist and generate memory. Recent work however has challenged this dogma, where murine studies have successfully demonstrated the ability of innate immune cells (monocytes and macrophages) to acquire antigen-specific memory to allogeneic major histocompatibility complex (MHC) molecules. The immunoreceptors so far identified that mediate innate immune memory are the paired immunoglobulin-like receptors (PIRs) in mice, which are orthologous to human leukocyte immunoglobulin-like receptors (LILRs). These receptor families are mainly expressed by the myelomonocytic cell lineage, suggesting an important role in the innate immune response. In this review, we will discuss the role of immunoglobulin-like receptors in the development of innate immune memory across species.
Collapse
Affiliation(s)
- Mouhamad Al-Moussawy
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA.
| | - Hossam A Abdelsamed
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA. .,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA.
| | - Fadi G Lakkis
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA. .,Department of Immunology, University of Pittsburgh, Pittsburgh, USA. .,Department of Medicine, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
13
|
Storm L, Bruijnesteijn J, de Groot NG, Bontrop RE. The Genomic Organization of the LILR Region Remained Largely Conserved Throughout Primate Evolution: Implications for Health And Disease. Front Immunol 2021; 12:716289. [PMID: 34737739 PMCID: PMC8562567 DOI: 10.3389/fimmu.2021.716289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
The genes of the leukocyte immunoglobulin-like receptor (LILR) family map to the leukocyte receptor complex (LRC) on chromosome 19, and consist of both activating and inhibiting entities. These receptors are often involved in regulating immune responses, and are considered to play a role in health and disease. The human LILR region and evolutionary equivalents in some rodent and bird species have been thoroughly characterized. In non-human primates, the LILR region is annotated, but a thorough comparison between humans and non-human primates has not yet been documented. Therefore, it was decided to undertake a comprehensive comparison of the human and non-human primate LILR region at the genomic level. During primate evolution the organization of the LILR region remained largely conserved. One major exception, however, is provided by the common marmoset, a New World monkey species, which seems to feature a substantial contraction of the number of LILR genes in both the centromeric and the telomeric region. Furthermore, genomic analysis revealed that the killer-cell immunoglobulin-like receptor gene KIR3DX1, which maps in the LILR region, features one copy in humans and great ape species. A second copy, which might have been introduced by a duplication event, was observed in the lesser apes, and in Old and New World monkey species. The highly conserved gene organization allowed us to standardize the LILR gene nomenclature for non-human primate species, and implies that most of the receptors encoded by these genes likely fulfill highly preserved functions.
Collapse
Affiliation(s)
- Lisanne Storm
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
14
|
Abdallah F, Coindre S, Gardet M, Meurisse F, Naji A, Suganuma N, Abi-Rached L, Lambotte O, Favier B. Leukocyte Immunoglobulin-Like Receptors in Regulating the Immune Response in Infectious Diseases: A Window of Opportunity to Pathogen Persistence and a Sound Target in Therapeutics. Front Immunol 2021; 12:717998. [PMID: 34594332 PMCID: PMC8478328 DOI: 10.3389/fimmu.2021.717998] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Immunoregulatory receptors are essential for orchestrating an immune response as well as appropriate inflammation in infectious and non-communicable diseases. Among them, leukocyte immunoglobulin-like receptors (LILRs) consist of activating and inhibitory receptors that play an important role in regulating immune responses modulating the course of disease progression. On the one hand, inhibitory LILRs constitute a safe-guard system that mitigates the inflammatory response, allowing a prompt return to immune homeostasis. On the other hand, because of their unique capacity to attenuate immune responses, pathogens use inhibitory LILRs to evade immune recognition, thus facilitating their persistence within the host. Conversely, the engagement of activating LILRs triggers immune responses and the production of inflammatory mediators to fight microbes. However, their heightened activation could lead to an exacerbated immune response and persistent inflammation with major consequences on disease outcome and autoimmune disorders. Here, we review the genetic organisation, structure and ligands of LILRs as well as their role in regulating the immune response and inflammation. We also discuss the LILR-based strategies that pathogens use to evade immune responses. A better understanding of the contribution of LILRs to host-pathogen interactions is essential to define appropriate treatments to counteract the severity and/or persistence of pathogens in acute and chronic infectious diseases lacking efficient treatments.
Collapse
Affiliation(s)
- Florence Abdallah
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Sixtine Coindre
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Margaux Gardet
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Florian Meurisse
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Abderrahim Naji
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Nankoku-City, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Nankoku-City, Japan
| | - Laurent Abi-Rached
- Aix-Marseille University, IRD, APHM, MEPHI, IHU Mediterranean Infection, SNC5039 CNRS, Marseille, France.,SNC5039 CNRS, Marseille, France
| | - Olivier Lambotte
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France.,Public-Hospital Assistance of Paris, Department of Internal Medicine and Clinical Immunology, Paris-Saclay University Hospital Group, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| |
Collapse
|
15
|
Fan J, Li J, Han J, Zhang Y, Gu A, Song F, Duan J, Yin D, Wang L, Yi Y. Expression of leukocyte immunoglobulin-like receptor subfamily B expression on immune cells in hepatocellular carcinoma. Mol Immunol 2021; 136:82-97. [PMID: 34098344 DOI: 10.1016/j.molimm.2021.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/12/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Leukocyte immunoglobulin-like receptor subfamily B (LILRB) is a group of inhibitory receptors involved in innate immune mainly expressed on lymphoid and myelomonocytic cells. LILRB is proposed to serve as immune checkpoint like PD-1 and CTLA-4 for tumor treatment. We recently reported that the expression of LILRB2 in CD1c+ mDC from tumor tissue might suppress immune for HCC patients. However, the expression of all the LILRB family on other immune cells in peripheral blood and tumor microenvironment of HCC patients has not been systematically studied. METHODS The expression of LILRB family (LILRB1, LILRB2, LILRB3, LILRB4 and LILRB5) on immune cells, including granulocytes, NK cells, NKT cells, monocyte subsets, TAMs, B cells, γδ T cells, CD4+ T cells, CD8+ T cells and MDSC subsets, was analyzed by flow cytometry in the peripheral blood of 20 HCC patients and 20 healthy donors as well as in the tumor and tumor free tissues of 10 HCC patients. RESULTS LILRB1, LILRB2 and LILRB3 in granulocytes from peripheral blood were expressed increased in HCC patients compared with healthy donors. The expression of LILRB5 in NK cells and NKT cells from HCC blood were higher compared with healthy donors` blood. CD14+CD16+ monocyte subsets in blood of HCC patients expressed increased LILRB1 and LILRB4 than that in healthy donors. CD14+CD16- monocyte subsets in blood of HCC patients expressed increased LILRB3 than that in healthy donors. Compared to corresponding TFL, LILRB3, LILRB4 and LILRB5 were expressed enhanced in TAMs from HCC tumors. LILRB1 expressed on the B cells both in the blood and tumor had significantly increased compared with healthy donors or corresponding TFL. Different from peripheral blood, in the HCC microenvironment, CD4+ T cells expressed lower LILRB2, LILRB3 and LILRB4 than that from TFL and CD8+ T cells expressed decreased LILRB2. And γδ T cells expressed LILRB1 in HCC blood and microenvironment. Surprisingly, the percentage of LILRB1 expressed on MDSC from HCC peripheral blood and tumors was lower than that from healthy donors and corresponding TFL. CONCLUSIONS This is the first systemically examination of the LILRB family expression on a variety of immune cells from both peripheral blood and microenvironment in HCC patients. The specific increasing expression of LILRB on immune cells may regulate innate and adaptive immune and impact on HCC progression. Our findings justify further investigation of LILRB function in HCC.
Collapse
Affiliation(s)
- Jing Fan
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Jiayan Li
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Jianbo Han
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Yufeng Zhang
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Aidong Gu
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Fangnan Song
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Jie Duan
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Dandan Yin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Lili Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China.
| | - Yongxiang Yi
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China; Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China.
| |
Collapse
|
16
|
Deng M, Chen H, Liu X, Huang R, He Y, Yoo B, Xie J, John S, Zhang N, An Z, Zhang CC. Leukocyte immunoglobulin-like receptor subfamily B: therapeutic targets in cancer. Antib Ther 2021; 4:16-33. [PMID: 33928233 PMCID: PMC7944505 DOI: 10.1093/abt/tbab002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1–5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs that recruit phosphatases to negatively regulate immune activation. The activation of LILRB signaling in immune cells may contribute to immune evasion. In addition, the expression and signaling of LILRBs in cancer cells especially in certain hematologic malignant cells directly support cancer development. Certain LILRBs thus have dual roles in cancer biology—as immune checkpoint molecules and tumor-supporting factors. Here, we review the expression, ligands, signaling, and functions of LILRBs, as well as therapeutic development targeting them. LILRBs may represent attractive targets for cancer treatment, and antagonizing LILRB signaling may prove to be effective anti-cancer strategies.
Collapse
Affiliation(s)
- Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Byounggyu Yoo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel John
- Department of Pediatrics, Pediatric Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
17
|
Identification of distinct LRC- and Fc receptor complex-like chromosomal regions in fish supports that teleost leukocyte immune-type receptors are distant relatives of mammalian Fc receptor-like molecules. Immunogenetics 2021; 73:93-109. [PMID: 33410929 DOI: 10.1007/s00251-020-01193-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/17/2020] [Indexed: 01/17/2023]
Abstract
Leukocyte immune-type receptors (LITRs) are a large family of immunoregulatory receptor-types originally identified in the channel catfish (Ictalurus punctatus (Ip)LITRs). Phylogenetic analyses of LITRs show that they share distant evolutionary relationships with important mammalian immunoregulatory receptors belonging to the Fc receptors family and the leukocyte receptor complex (LRC), but their syntenic relationships with these immunoglobulin superfamily members have not been investigated. To further examine the possible evolutionary connections between teleost LITRs and various mammalian immunoregulatory receptor-types, we surveyed the genomic databases of representative vertebrate taxa and our results show that teleost LITRs generally exist in large genomic clusters, which are linked to vangl2, arhgef11, and slam family genes, features that are also shared by amphibian and mammalian Fc receptor-like molecules (FCRLs). Moreover, detailed phylogenetic comparisons between the individual Ig-like domains of LITRs and mammalian FCRLs shows that these receptors share related Ig-like domains indicative of their common ancestry. However, contrary to our previous reports, no supportive evidence for phylogenetic relationships between the Ig-like domains of LITRs with the Ig-like domains of LRC-encoded mammalian immunoregulatory receptors was found. We also identified an LRC-like region in the zebrafish genome, but no expanded litr-related genes were located in this region. Similarly, no lilr-related genes were found in spotted gar, a representative basal ray-finned fish. Finally, two distantly related fcrls and an LRC-like gene were identified in the elephant shark genome, suggesting that the loss of an immunoregulatory receptor-containing LRC region may be unique to ray-finned fish.
Collapse
|
18
|
Yabe R, Chung SH, Murayama MA, Kubo S, Shimizu K, Akahori Y, Maruhashi T, Seno A, Kaifu T, Saijo S, Iwakura Y. TARM1 contributes to development of arthritis by activating dendritic cells through recognition of collagens. Nat Commun 2021; 12:94. [PMID: 33397982 PMCID: PMC7782728 DOI: 10.1038/s41467-020-20307-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/20/2020] [Indexed: 12/29/2022] Open
Abstract
TARM1 is a member of the leukocyte immunoglobulin-like receptor family and stimulates macrophages and neutrophils in vitro by associating with FcRγ. However, the function of this molecule in the regulation of the immune system is unclear. Here, we show that Tarm1 expression is elevated in the joints of rheumatoid arthritis mouse models, and the development of collagen-induced arthritis (CIA) is suppressed in Tarm1-/- mice. T cell priming against type 2 collagen is suppressed in Tarm1-/- mice and antigen-presenting ability of GM-CSF-induced dendritic cells (GM-DCs) from Tarm1-/- mouse bone marrow cells is impaired. We show that type 2 collagen is a functional ligand for TARM1 on GM-DCs and promotes DC maturation. Furthermore, soluble TARM1-Fc and TARM1-Flag inhibit DC maturation and administration of TARM1-Fc blocks the progression of CIA in mice. These results indicate that TARM1 is an important stimulating factor of dendritic cell maturation and could be a good target for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Rikio Yabe
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
- Medical Mycobiology Research Center, Chiba University, Chiba, Chiba, 260-8673, Japan
| | - Soo-Hyun Chung
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Masanori A Murayama
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Sachiko Kubo
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Kenji Shimizu
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Yukiko Akahori
- Medical Mycobiology Research Center, Chiba University, Chiba, Chiba, 260-8673, Japan
| | - Takumi Maruhashi
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Akimasa Seno
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Tomonori Kaifu
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Shinobu Saijo
- Medical Mycobiology Research Center, Chiba University, Chiba, Chiba, 260-8673, Japan.
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan.
- Medical Mycobiology Research Center, Chiba University, Chiba, Chiba, 260-8673, Japan.
| |
Collapse
|
19
|
Bruijnesteijn J, de Groot NG, Bontrop RE. The Genetic Mechanisms Driving Diversification of the KIR Gene Cluster in Primates. Front Immunol 2020; 11:582804. [PMID: 33013938 PMCID: PMC7516082 DOI: 10.3389/fimmu.2020.582804] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022] Open
Abstract
The activity and function of natural killer (NK) cells are modulated through the interactions of multiple receptor families, of which some recognize MHC class I molecules. The high level of MHC class I polymorphism requires their ligands either to interact with conserved epitopes, as is utilized by the NKG2A receptor family, or to co-evolve with the MHC class I allelic variation, which task is taken up by the killer cell immunoglobulin-like receptor (KIR) family. Multiple molecular mechanisms are responsible for the diversification of the KIR gene system, and include abundant chromosomal recombination, high mutation rates, alternative splicing, and variegated expression. The combination of these genetic mechanisms generates a compound array of diversity as is reflected by the contraction and expansion of KIR haplotypes, frequent birth of fusion genes, allelic polymorphism, structurally distinct isoforms, and variegated expression, which is in contrast to the mainly allelic nature of MHC class I polymorphism in humans. A comparison of the thoroughly studied human and macaque KIR gene repertoires demonstrates a similar evolutionarily conserved toolbox, through which selective forces drove and maintained the diversified nature of the KIR gene cluster. This hypothesis is further supported by the comparative genetics of KIR haplotypes and genes in other primate species. The complex nature of the KIR gene system has an impact upon the education, activity, and function of NK cells in coherence with an individual’s MHC class I repertoire and pathogenic encounters. Although selection operates on an individual, the continuous diversification of the KIR gene system in primates might protect populations against evolving pathogens.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
20
|
Quantitative Multiplex Real-Time Reverse Transcriptase-Polymerase Chain Reaction with Fluorescent Probe Detection of Killer Immunoglobulin-Like Receptors, KIR2DL4/3DL3. Diagnostics (Basel) 2020; 10:diagnostics10080588. [PMID: 32823754 PMCID: PMC7460478 DOI: 10.3390/diagnostics10080588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 11/18/2022] Open
Abstract
(1) Background: KIR2DL4/KIR3DL3 are the framework genes present in all KIR haplotypes, with unique expression patterns being present only in women and CD56bright NK cells. KIR genes have a high degree of DNA sequence identity. Consequently, they are one of the most challenging genes for molecular detection—especially regarding expressions; (2) Methods: We developed an effective method to determine KIR3DL3/KIR2DL4 expressions based on a multiplex quantitative real-time Reverse transcription polymerase chain reaction (qRT-PCR )with fluorescent probes using NK92; (3) Results: Standardizations of the singleplex KIR2DL4 and KIR3DL3 were performed to evaluate the sensitivity and specificity for further development of the multiplex assay. The limit of detection was at 500 copies each. There was cross-amplification with the presence of related KIR genes at a level of 5 × 107 copies. This is not biologically significant because this high level of KIR expression has not been found in clinical samples. The multiplex assay was reproducible equivalent to its singleplex (KIR2DL4; R2 = 0.995, KIR3DL3; R2 = 0.996, but lower sensitivity of 103 copies). Furthermore, the validation of the developed method on samples of blood donors showed high sensitivity (100%) and specificity (99.9%); (4) Conclusions: The developed method is reliable and highly specific suitable for evaluation of the KIR2DL4/3DL3 mRNA expressions in further applications.
Collapse
|
21
|
The impact of KIR/HLA genes on the risk of developing multibacillary leprosy. PLoS Negl Trop Dis 2019; 13:e0007696. [PMID: 31525196 PMCID: PMC6762192 DOI: 10.1371/journal.pntd.0007696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/26/2019] [Accepted: 08/08/2019] [Indexed: 11/19/2022] Open
Abstract
Background Killer-cell immunoglobulin-like receptors (KIRs) are a group of regulatory molecules able to activate or inhibit natural killer cells upon interaction with human leukocyte antigen (HLA) class I molecules. Combinations of KIR and HLA may contribute to the occurrence of different immunological and clinical responses to infectious diseases. Leprosy is a chronic neglected disease, both disabling and disfiguring, caused mainly by Mycobacterium leprae. In this case–control study, we examined the influence of KIRs and HLA ligands on the development of multibacillary leprosy. Methodology/Principal findings Genotyping of KIR and HLA genes was performed in 264 multibacillary leprosy patients and 518 healthy unrelated controls (238 healthy household contacts and 280 healthy subjects). These are unprecedented results in which KIR2DL2/KIR2DL2/C1/C2 and KIR2DL3/2DL3/C1/C1 indicated a risk for developing lepromatous and borderline leprosy, respectively. Concerning to 3DL2/A3/A11+, our study demonstrated that independent of control group (contacts or healthy subjects), this KIR receptor and its ligand act as a risk factor for the borderline clinical form. Conclusions/Significance Our finding suggests that synergetic associations of activating and inhibitory KIR genes may alter the balance between these receptors and thus interfere in the progression of multibacillary leprosy. Leprosy is a neglected disease with the highest worldwide prevalence, and remains a public health problem in Brazil. The innate immune mechanisms are determinants in the management of leprosy and its different clinical manifestations. Accordingly, genetic association study provides information about the contribution of host genetic factors and the environment in which the individual lives on the development of leprosy. The individuals considered most affected and associated with a major risk for developing leprosy are household contacts with an intimate relation to patients living in crowded households. For this reason, we chose the contacts as one of our control groups, since they are more exposed to infection compared to the general population. We investigated the influence of KIR and HLA genes on the susceptibility to multibacillary leprosy. Our results reinforce the importance of host genetic background in the susceptibility to leprosy demonstrating that, independent from the control group (contacts or healthy subjects) the KIR and HLA act as risk factors in the development of lepromatous and borderline leprosy.
Collapse
|
22
|
Futas J, Oppelt J, Jelinek A, Elbers JP, Wijacki J, Knoll A, Burger PA, Horin P. Natural Killer Cell Receptor Genes in Camels: Another Mammalian Model. Front Genet 2019; 10:620. [PMID: 31312212 PMCID: PMC6614441 DOI: 10.3389/fgene.2019.00620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/13/2019] [Indexed: 12/23/2022] Open
Abstract
Due to production of special homodimeric heavy chain antibodies, somatic hypermutation of their T-cell receptor genes and unusually low diversity of their major histocompatibility complex genes, camels represent an important model for immunogenetic studies. Here, we analyzed genes encoding selected natural killer cell receptors with a special focus on genes encoding receptors for major histocompatibility complex (MHC) class I ligands in the two domestic camel species, Camelus dromedarius and Camelus bactrianus. Based on the dromedary genome assembly CamDro2, we characterized the genetic contents, organization, and variability of two complex genomic regions, the leukocyte receptor complex and the natural killer complex, along with the natural cytotoxicity receptor genes NCR1, NCR2, and NCR3. The genomic organization of the natural killer complex region of camels differs from cattle, the phylogenetically most closely related species. With its minimal set of KLR genes, it resembles this complex in the domestic pig. Similarly, the leukocyte receptor complex of camels is strikingly different from its cattle counterpart. With KIR pseudogenes and few LILR genes, it seems to be simpler than in the pig. The syntenies and protein sequences of the NCR1, NCR2, and NCR3 genes in the dromedary suggest that they could be human orthologues. However, only NCR1 and NCR2 have a structure of functional genes, while NCR3 appears to be a pseudogene. High sequence similarities between the two camel species as well as with the alpaca Vicugna pacos were observed. The polymorphism in all genes analyzed seems to be generally low, similar to the rest of the camel genomes. This first report on natural killer cell receptor genes in camelids adds new data to our understanding of specificities of the camel immune system and its functions, extends our genetic knowledge of the innate immune variation in dromedaries and Bactrian camels, and contributes to studies of natural killer cell receptors evolution in mammals.
Collapse
Affiliation(s)
- Jan Futas
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
- RG Animal Immunogenomics, CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Jan Oppelt
- RG Animal Immunogenomics, CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
- National Centre for Biomolecular research, CEITEC-MU, Faculty of Science, Masaryk University, Brno, Czechia
| | - April Jelinek
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Jean P. Elbers
- Research Institute for Wildlife Ecology, Department of Integrative Biology and Evolution, Vetmeduni Vienna, Vienna, Austria
| | - Jan Wijacki
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Brno, Czechia
- RG Animal Immunogenomics, CEITEC-MENDELU, Mendel University in Brno, Brno, Czechia
| | - Ales Knoll
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Brno, Czechia
- RG Animal Immunogenomics, CEITEC-MENDELU, Mendel University in Brno, Brno, Czechia
| | - Pamela A. Burger
- Research Institute for Wildlife Ecology, Department of Integrative Biology and Evolution, Vetmeduni Vienna, Vienna, Austria
| | - Petr Horin
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
- RG Animal Immunogenomics, CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| |
Collapse
|
23
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
24
|
Parham P, Guethlein LA. Genetics of Natural Killer Cells in Human Health, Disease, and Survival. Annu Rev Immunol 2018; 36:519-548. [PMID: 29394121 DOI: 10.1146/annurev-immunol-042617-053149] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural killer (NK) cells have vital functions in human immunity and reproduction. In the innate and adaptive immune responses to infection, particularly by viruses, NK cells respond by secreting inflammatory cytokines and killing infected cells. In reproduction, NK cells are critical for genesis of the placenta, the organ that controls the supply of oxygen and nutrients to the growing fetus. Controlling NK cell functions are interactions of HLA class I with inhibitory NK cell receptors. First evolved was the conserved interaction of HLA-E with CD94:NKG2A; later established were diverse interactions of HLA-A, -B, and -C with killer cell immunoglobulin-like receptors. Characterizing the latter interactions is rapid evolution, which distinguishes human populations and all species of higher primate. Driving this evolution are the different and competing selections imposed by pathogens on NK cell-mediated immunity and by the constraints of human reproduction on NK cell-mediated placentation. Promoting rapid evolution is independent segregation of polymorphic receptors and ligands throughout human populations.
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| | - Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| |
Collapse
|
25
|
Fuchs E. Haploidentical Hematopoietic Cell Transplantation. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
Kang X, Kim J, Deng M, John S, Chen H, Wu G, Phan H, Zhang CC. Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors. Cell Cycle 2016; 15:25-40. [PMID: 26636629 PMCID: PMC4825776 DOI: 10.1080/15384101.2015.1121324] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1-5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that recruit protein tyrosine phosphatase non-receptor type 6 (PTPN6 or SHP-1), protein tyrosine phosphatase non-receptor type 11 (PTPN11 or SHP-2), or Src homology 2 domain-containing inositol phosphatase (SHIP), leading to negative regulation of immune cell activation. Certain of these receptors also play regulatory roles in neuronal activity and osteoclast development. The activation of LILRBs on immune cells by their ligands may contribute to immune evasion by tumors. Recent studies found that several members of LILRB family are expressed by tumor cells, notably hematopoietic cancer cells, and may directly regulate cancer development and relapse as well as the activity of cancer stem cells. LILRBs thus have dual concordant roles in tumor biology - as immune checkpoint molecules and as tumor-sustaining factors. Importantly, the study of knockout mice indicated that LILRBs do not affect hematopoiesis and normal development. Therefore LILRBs may represent ideal targets for tumor treatment. This review aims to summarize current knowledge on expression patterns, ligands, signaling, and functions of LILRB family members in the context of cancer development.
Collapse
Affiliation(s)
- Xunlei Kang
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Jaehyup Kim
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Mi Deng
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Samuel John
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Heyu Chen
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Guojin Wu
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Hiep Phan
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Cheng Cheng Zhang
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
27
|
Edinur HA, Manaf SM, Che Mat NF. Genetic barriers in transplantation medicine. World J Transplant 2016; 6:532-541. [PMID: 27683631 PMCID: PMC5036122 DOI: 10.5500/wjt.v6.i3.532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/26/2016] [Accepted: 07/13/2016] [Indexed: 02/05/2023] Open
Abstract
The successful of transplantation is determined by the shared human leukocyte antigens (HLAs) and ABO blood group antigens between donor and recipient. In recent years, killer cell receptor [i.e., killer cell immunoglobulin-like receptor (KIR)] and major histocompatibility complex (MHC) class I chain-related gene molecule (i.e., MICA) were also reported as important determinants of transplant compatibility. At present, several different genotyping techniques (e.g., sequence specific primer and sequence based typing) can be used to characterize blood group, HLA, MICA and KIR and loci. These molecular techniques have several advantages because they do not depend on the availability of anti-sera, cellular expression and have greater specificity and accuracy compared with the antibody-antigen based typing. Nonetheless, these molecular techniques have limited capability to capture increasing number of markers which have been demonstrated to determine donor and recipient compatibility. It is now possible to genotype multiple markers and to the extent of a complete sequencing of the human genome using next generation sequencer (NGS). This high throughput genotyping platform has been tested for HLA, and it is expected that NGS will be used to simultaneously genotype a large number of clinically relevant transplantation genes in near future. This is not far from reality due to the bioinformatics support given by the immunogenetics community and the rigorous improvement in NGS methodology. In addition, new developments in immune tolerance based therapy, donor recruitment strategies and bioengineering are expected to provide significant advances in the field of transplantation medicine.
Collapse
|
28
|
Yugami M, Odagiri H, Endo M, Tsutsuki H, Fujii S, Kadomatsu T, Masuda T, Miyata K, Terada K, Tanoue H, Ito H, Morinaga J, Horiguchi H, Sugizaki T, Akaike T, Gotoh T, Takai T, Sawa T, Mizuta H, Oike Y. Mice Deficient in Angiopoietin-like Protein 2 (Angptl2) Gene Show Increased Susceptibility to Bacterial Infection Due to Attenuated Macrophage Activity. J Biol Chem 2016; 291:18843-52. [PMID: 27402837 DOI: 10.1074/jbc.m116.720870] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 12/21/2022] Open
Abstract
Macrophages play crucial roles in combatting infectious disease by promoting inflammation and phagocytosis. Angiopoietin-like protein 2 (ANGPTL2) is a secreted factor that induces tissue inflammation by attracting and activating macrophages to produce inflammatory cytokines in chronic inflammation-associated diseases such as obesity-associated metabolic syndrome, atherosclerosis, and rheumatoid arthritis. Here, we asked whether and how ANGPTL2 activates macrophages in the innate immune response. ANGPTL2 was predominantly expressed in proinflammatory mouse bone marrow-derived differentiated macrophages (GM-BMMs) following GM-CSF treatment relative to anti-inflammatory cells (M-BMMs) established by M-CSF treatment. Expression of the proinflammatory markers IL-1β, IL-12p35, and IL-12p40 significantly decreased in GM-BMMs from Angptl2-deficient compared with wild-type (WT) mice, suggestive of attenuated proinflammatory activity. We also report that ANGPTL2 inflammatory signaling is transduced through integrin α5β1 rather than through paired immunoglobulin-like receptor B. Interestingly, Angptl2-deficient mice were more susceptible to infection with Salmonella enterica serovar Typhimurium than were WT mice. Moreover, nitric oxide (NO) production by Angptl2-deficient GM-BMMs was significantly lower than in WT GM-BMMs. Collectively, our findings suggest that macrophage-derived ANGPTL2 promotes an innate immune response in those cells by enhancing proinflammatory activity and NO production required to fight infection.
Collapse
Affiliation(s)
- Masaki Yugami
- From the Departments of Molecular Genetics, Orthopedic Surgery, and
| | - Haruki Odagiri
- From the Departments of Molecular Genetics, Orthopedic Surgery, and
| | | | - Hiroyasu Tsutsuki
- Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shigemoto Fujii
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | - Tetsuro Masuda
- From the Departments of Molecular Genetics, Orthopedic Surgery, and
| | | | | | - Hironori Tanoue
- From the Departments of Molecular Genetics, Orthopedic Surgery, and
| | - Hitoshi Ito
- From the Departments of Molecular Genetics, Orthopedic Surgery, and
| | | | | | | | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan, and
| | - Tomohiro Sawa
- Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | | | - Yuichi Oike
- From the Departments of Molecular Genetics, Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 102-0076, Japan
| |
Collapse
|
29
|
Shiina T, Blancher A, Inoko H, Kulski JK. Comparative genomics of the human, macaque and mouse major histocompatibility complex. Immunology 2016; 150:127-138. [PMID: 27395034 DOI: 10.1111/imm.12624] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 12/20/2022] Open
Abstract
The MHC is a highly polymorphic genomic region that encodes the transplantation and immune regulatory molecules. It receives special attention for genetic investigation because of its important role in the regulation of innate and adaptive immune responses and its strong association with numerous infectious and/or autoimmune diseases. The MHC locus was first discovered in the mouse and for the past 50 years it has been studied most intensively in both mice and humans. However, in recent years the macaque species have emerged as some of the more important and advanced experimental animal models for biomedical research into MHC with important human immunodeficiency virus/simian immunodeficiency virus and transplantation studies undertaken in association with precise MHC genotyping and haplotyping methods using Sanger sequencing and next-generation sequencing. Here, in this special issue on 'Macaque Immunology' we provide a short review of the genomic similarities and differences among the human, macaque and mouse MHC class I and class II regions, with an emphasis on the association of the macaque class I region with MHC polymorphism, haplotype structure and function.
Collapse
Affiliation(s)
- Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Antoine Blancher
- Laboratoire d'Immunogénétique moléculaire (LIMT, EA 3034), Laboratoire d'immunologie, Faculté de Médecine Purpan, Université Toulouse 3, CHU de Toulouse, Toulouse, France
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jerzy K Kulski
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan.,School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
30
|
Nowak I, Malinowski A, Barcz E, Wilczyński JR, Wagner M, Majorczyk E, Motak-Pochrzęst H, Banasik M, Kuśnierczyk P. Possible Role of HLA-G, LILRB1 and KIR2DL4 Gene Polymorphisms in Spontaneous Miscarriage. Arch Immunol Ther Exp (Warsz) 2016; 64:505-514. [PMID: 26973020 PMCID: PMC5085992 DOI: 10.1007/s00005-016-0389-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/28/2016] [Indexed: 12/15/2022]
Abstract
The KIR2DL4 receptor and its ligand HLA-G are considered important for fetal-maternal immune tolerance and successful pregnancy. The absence of a particular variant of KIR2DL4 might be a bad prognostic factor for pregnancy outcome. However, it could be compensated by the presence of the respective LILRB1 allele. Therefore, we investigated the KIR2DL4, LILRB1 and HLA-G polymorphisms in 277 couples with spontaneous abortion and 219 control couples by HRM, PCR-SSP and RFLP methods. We found a protective effect of women’s heterozygosity in −716 HLA-G (p = 0.0206) and LILRB1 (p = 0.0131) against spontaneous abortion. Surprisingly, we observed more 9A/10A genotypes of KIR2DL4 gene carriers in the group of male partners from the miscarriage group in comparison to the men from the control group (p = 0.0288). Furthermore, there was no association of women’s KIR2DL4 polymorphism with susceptibility to spontaneous abortion. Multivariate analysis indicated that women’s −716 HLA-G and LILRB1 and men’s KIR2DL4 9A/10A are important in terms of the protection or susceptibility to miscarriage, respectively (p = 0.00968). In conclusion, a woman’s heterozygosity in HLA-G and LILRB1 might be an advantage for a success of reproduction, but the partner’s heterozygosity in 9A/10A KIR2DL4 alleles might not.
Collapse
MESH Headings
- Abortion, Habitual/genetics
- Abortion, Habitual/immunology
- Abortion, Spontaneous/genetics
- Abortion, Spontaneous/immunology
- Adult
- Aged
- Alleles
- Antigens, CD/genetics
- Antigens, CD/physiology
- Case-Control Studies
- Female
- Genotype
- HLA-G Antigens/genetics
- HLA-G Antigens/physiology
- Haplotypes
- Heterozygote
- Humans
- Immune Tolerance
- Leukocyte Immunoglobulin-like Receptor B1
- Linkage Disequilibrium
- Male
- Middle Aged
- Models, Statistical
- Multivariate Analysis
- Polymorphism, Genetic
- Polymorphism, Single Nucleotide
- Pregnancy
- Pregnancy Outcome
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Receptors, KIR2DL4/genetics
- Receptors, KIR2DL4/physiology
- Young Adult
Collapse
Affiliation(s)
- Izabela Nowak
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland.
| | - Andrzej Malinowski
- Department of Surgical, Endoscopic and Oncologic Gynecology, Polish Mothers' Memorial Hospital-Research Institute, Lodz, Poland
| | - Ewa Barcz
- First Chair and Clinic of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Jacek R Wilczyński
- Department of Gynecology and Gynecologic Oncology, Polish Mothers' Memorial Hospital-Research Institute, Lodz, Poland
| | - Marta Wagner
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Edyta Majorczyk
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Opole, Poland
| | - Hanna Motak-Pochrzęst
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Opole, Poland
- Obstetric Gynecological Department, Disctrict Hospital Strzelce Opolskie, Strzelce Opolskie, Poland
| | | | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland.
| |
Collapse
|
31
|
Taylor EB, Moulana M, Stuge TB, Quiniou SMA, Bengten E, Wilson M. A Leukocyte Immune-Type Receptor Subset Is a Marker of Antiviral Cytotoxic Cells in Channel Catfish, Ictalurus punctatus. THE JOURNAL OF IMMUNOLOGY 2016; 196:2677-89. [PMID: 26856701 DOI: 10.4049/jimmunol.1502166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/03/2016] [Indexed: 11/19/2022]
Abstract
Channel catfish, Ictalurus punctatus, leukocyte immune type receptors (LITRs) represent a multigene family that encodes Ig superfamily proteins that mediate activating or inhibitory signaling. In this study, we demonstrate the use of mAb CC41 to monitor viral cytotoxic responses in catfish and determine that CC41 binds to a subset of LITRs on the surface of catfish clonal CTLs. Homozygous gynogenetic catfish were immunized with channel catfish virus (CCV)-infected MHC-matched clonal T cells (G14D-CCV), and PBL were collected at various times after immunization for flow cytometric analyses. The percentage of CC41(+) cells was significantly increased 5 d after primary immunization with G14D-CCV and at 3 d after a booster immunization as compared with control fish only injected with G14D. Moreover, CC41(+) cells magnetically isolated from the PBL specifically killed CCV-infected targets as measured by (51)Cr release assays and expressed messages for CD3γδ, perforin, and at least one of the CD4-like receptors as analyzed by RNA flow cytometry. When MLC effector cells derived from a G14D-CCV-immunized fish were preincubated with CC41 mAb, killing of G14D-CCV targets was reduced by ∼40%, suggesting that at least some LITRs have a role in target cell recognition and/or cytotoxicity. The availability of a LITR-specific mAb has allowed, to our knowledge for the first time, functional characterization of LITRs in an autologous system. In addition, the identification of an LITR subset as a cytotoxic cell marker will allow for more effective monitoring of catfish immune responses to pathogens.
Collapse
Affiliation(s)
- Erin B Taylor
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Mohadetheh Moulana
- Warmwater Aquaculture Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Stoneville, MS 38776; and
| | - Tor B Stuge
- Immunology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromso-Arctic University of Norway, N-9037 Tromso, Norway
| | - Sylvie M A Quiniou
- Warmwater Aquaculture Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Stoneville, MS 38776; and
| | - Eva Bengten
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Melanie Wilson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216;
| |
Collapse
|
32
|
An H, Brettle M, Lee T, Heng B, Lim CK, Guillemin GJ, Lord MS, Klotzsch E, Geczy CL, Bryant K, Fath T, Tedla N. Soluble LILRA3 promotes neurite outgrowth and synapses formation through high affinity interaction with Nogo 66. J Cell Sci 2016; 129:1198-209. [DOI: 10.1242/jcs.182006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/26/2016] [Indexed: 01/24/2023] Open
Abstract
Inhibitory proteins, particularly Nogo 66, a highly conserved 66 amino acid loop of Nogo A, play key roles in limiting the intrinsic capacity of the central nervous system to regenerate after injury. Ligation of surface Nogo receptors (NgRs) and/or leukocyte immunoglobulin like receptor B2 (LILRB2) and its mouse orthologue the paired-immunoglobulin-like receptor B (PIRB) by Nogo 66 transduces inhibitory signals that potently inhibit neurite outgrowth. Here we show that soluble leukocyte immunoglobulin-like receptor A3 (LILRA3) is a high affinity receptor for Nogo 66, suggesting that LILRA3 might be a competitive antagonist to these cell surface inhibitory receptors. Consistent with this, LILRA3 significantly reversed Nogo 66-mediated inhibition of neurite outgrowth and promoted synapse formation in primary cortical neurons via regulation of the MEK/ERK pathway. LILRA3 represents a new antagonist to Nogo 66-mediated inhibition of neurite outgrowth in the CNS, a function distinct from its immune-regulatory role in leukocytes. This report is also the first to demonstrate that a member of LILR family normally not expressed in rodents exerts functions on mouse neurons through the highly homologous Nogo 66 ligand.
Collapse
Affiliation(s)
- Hongyan An
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| | - Merryn Brettle
- Neurodegeneration and Repair Unit, School of Medical Sciences, Department of Anatomy, UNSW, Sydney, Australia
| | - Terry Lee
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| | - Benjamin Heng
- Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Macquarie University, Australia
| | - Chai K. Lim
- Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Macquarie University, Australia
| | - Gilles J. Guillemin
- Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Macquarie University, Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Enrico Klotzsch
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, Sydney, NSW, Australia
| | - Carolyn L. Geczy
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| | - Katherine Bryant
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, Department of Anatomy, UNSW, Sydney, Australia
| | - Nicodemus Tedla
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| |
Collapse
|
33
|
Zhang F, Zheng J, Kang X, Deng M, Lu Z, Kim J, Zhang C. Inhibitory leukocyte immunoglobulin-like receptors in cancer development. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1216-25. [PMID: 26566804 DOI: 10.1007/s11427-015-4925-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/16/2015] [Indexed: 01/21/2023]
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRB1-5) signal through immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their intracellular domains and recruit phosphatases protein tyrosine phosphatase, non-receptor type 6 (PTPN6, SHP-1), protein tyrosine phosphatase, non-receptor type 6 (PTPN6, SHP-2), or Src homology 2 domain containing inositol phosphatase (SHIP) to negatively regulate immune cell activation. These receptors are known to play important regulatory roles in immune and neuronal functions. Recent studies demonstrated that several of these receptors are expressed by cancer cells. Importantly, they may directly regulate development, drug resistance, and relapse of cancer, and the activity of cancer stem cells. Although counterintuitive, these findings are consistent with the generally immune-suppressive and thus tumor-promoting roles of the inhibitory receptors in the immune system. This review focuses on the ligands, expression pattern, signaling, and function of LILRB family in the context of cancer development. Because inhibition of the signaling of certain LILRBs directly blocks cancer growth and stimulates immunity that may suppress tumorigenesis, but does not disturb normal development, LILRB signaling pathways may represent ideal targets for treating hematological malignancies and perhaps other tumors.
Collapse
Affiliation(s)
- FeiFei Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital; Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - JunKe Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital; Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - XunLei Kang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | - Mi Deng
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | - ZhiGang Lu
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | - Jaehyup Kim
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | - ChengCheng Zhang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA.
| |
Collapse
|
34
|
Aleyd E, Heineke MH, van Egmond M. The era of the immunoglobulin A Fc receptor FcαRI; its function and potential as target in disease. Immunol Rev 2015; 268:123-38. [DOI: 10.1111/imr.12337] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Esil Aleyd
- Department of Molecular Cell Biology and Immunology; VU University Medical Center; Amsterdam The Netherlands
| | - Marieke H. Heineke
- Department of Molecular Cell Biology and Immunology; VU University Medical Center; Amsterdam The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology; VU University Medical Center; Amsterdam The Netherlands
- Department of Surgery; VU University Medical Center; Amsterdam The Netherlands
| |
Collapse
|
35
|
Abstract
Natural killer (NK) cells are immune cells that play a crucial role against viral infections and tumors. To be tolerant against healthy tissue and simultaneously attack infected cells, the activity of NK cells is tightly regulated by a sophisticated array of germline-encoded activating and inhibiting receptors. The best characterized mechanism of NK cell activation is “missing self” detection, i.e., the recognition of virally infected or transformed cells that reduce their MHC expression to evade cytotoxic T cells. To monitor the expression of MHC-I on target cells, NK cells have monomorphic inhibitory receptors which interact with conserved MHC molecules. However, there are other NK cell receptors (NKRs) encoded by gene families showing a remarkable genetic diversity. Thus, NKR haplotypes contain several genes encoding for receptors with activating and inhibiting signaling, and that vary in gene content and allelic polymorphism. But if missing-self detection can be achieved by a monomorphic NKR system why have these polygenic and polymorphic receptors evolved? Here, we review the expansion of NKR receptor families in different mammal species, and we discuss several hypotheses that possibly underlie the diversification of the NK cell receptor complex, including the evolution of viral decoys, peptide sensitivity, and selective MHC-downregulation.
Collapse
|
36
|
|
37
|
Kirkham CL, Carlyle JR. Complexity and Diversity of the NKR-P1:Clr (Klrb1:Clec2) Recognition Systems. Front Immunol 2014; 5:214. [PMID: 24917862 PMCID: PMC4041007 DOI: 10.3389/fimmu.2014.00214] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/28/2014] [Indexed: 11/26/2022] Open
Abstract
The NKR-P1 receptors were identified as prototypical natural killer (NK) cell surface antigens and later shown to be conserved from rodents to humans on NK cells and subsets of T cells. C-type lectin-like in nature, they were originally shown to be capable of activating NK cell function and to recognize ligands on tumor cells. However, certain family members have subsequently been shown to be capable of inhibiting NK cell activity, and to recognize proteins encoded by a family of genetically linked C-type lectin-related ligands. Some of these ligands are expressed by normal, healthy cells, and modulated during transformation, infection, and cellular stress, while other ligands are upregulated during the immune response and during pathological circumstances. Here, we discuss historical and recent developments in NKR-P1 biology that demonstrate this NK receptor–ligand system to be far more complex and diverse than originally anticipated.
Collapse
Affiliation(s)
- Christina L Kirkham
- Department of Immunology, University of Toronto, Sunnybrook Research Institute , Toronto, ON , Canada
| | - James R Carlyle
- Department of Immunology, University of Toronto, Sunnybrook Research Institute , Toronto, ON , Canada
| |
Collapse
|
38
|
Kadomatsu T, Endo M, Miyata K, Oike Y. Diverse roles of ANGPTL2 in physiology and pathophysiology. Trends Endocrinol Metab 2014; 25:245-54. [PMID: 24746520 DOI: 10.1016/j.tem.2014.03.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/18/2014] [Accepted: 03/25/2014] [Indexed: 12/12/2022]
Abstract
Stresses based on aging and lifestyle can cause tissue damage. Repair of damage by tissue remodeling is often meditated by communications between parenchymal and stromal cells via cell-cell contact or humoral factors. However, loss of tissue homeostasis leads to chronic inflammation and pathological tissue remodeling. Angiopoietin-like protein 2 (ANGPTL2) maintains tissue homeostasis by promoting adaptive inflammation and subsequent tissue reconstruction, whereas excess ANGPTL2 activation induced by prolonged stress promotes breakdown of tissue homeostasis due to chronic inflammation and irreversible tissue remodeling, promoting development of various metabolic diseases. Thus, it is important to define how ANGPTL2 signaling is regulated in order to understand mechanisms underlying disease development. Here, we focus on ANGPTL2 function in physiology and pathophysiology.
Collapse
Affiliation(s)
- Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Motoyoshi Endo
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan.
| |
Collapse
|
39
|
Nash WT, Teoh J, Wei H, Gamache A, Brown MG. Know Thyself: NK-Cell Inhibitory Receptors Prompt Self-Tolerance, Education, and Viral Control. Front Immunol 2014; 5:175. [PMID: 24795719 PMCID: PMC3997006 DOI: 10.3389/fimmu.2014.00175] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/03/2014] [Indexed: 01/05/2023] Open
Abstract
Natural killer (NK) cells provide essential protection against viral infections. One of the defining features of this lymphocyte population is the expression of a wide array of variable cell surface stimulatory and inhibitory NK receptors (sNKR and iNKR, respectively). The iNKR are particularly important in terms of NK-cell education. As receptors specific for MHC class I (MHC I) molecules, they are responsible for self-tolerance and adjusting NK-cell reactivity based on the expression level of self-MHC I. The end result of this education is twofold: (1) inhibitory signaling tunes the functional capacity of the NK cell, endowing greater potency with greater education, and (2) education on self allows the NK cell to detect aberrations in MHC I expression, a common occurrence during many viral infections. Many studies have indicated an important role for iNKR and MHC I in disease, making these receptors attractive targets for manipulating NK-cell reactivity in the clinic. A greater understanding of iNKR and their ability to regulate NK cells will provide a basis for future attempts at translating their potential utility into benefits for human health.
Collapse
Affiliation(s)
- William T Nash
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA
| | - Jeffrey Teoh
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA
| | - Hairong Wei
- Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Division of Nephrology, Department of Medicine, University of Virginia , Charlottesville, VA , USA
| | - Awndre Gamache
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA
| | - Michael G Brown
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Division of Nephrology, Department of Medicine, University of Virginia , Charlottesville, VA , USA
| |
Collapse
|
40
|
Development and evaluation of a sandwich ELISA method for the detection of human CD306. J Immunol Methods 2013; 396:65-73. [DOI: 10.1016/j.jim.2013.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/19/2013] [Accepted: 07/25/2013] [Indexed: 01/08/2023]
|
41
|
Davidson CL, Cameron LE, Burshtyn DN. The AP-1 transcription factor JunD activates the leukocyte immunoglobulin-like receptor 1 distal promoter. Int Immunol 2013; 26:21-33. [PMID: 24038602 DOI: 10.1093/intimm/dxt038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leukocyte immunoglobulin-like receptor 1 (LILRB1) is an inhibitory receptor that binds classical and non-classical MHC-I as well as UL18, a viral MHC-I homolog. LILRB1 is encoded within the leukocyte receptor complex and is widely expressed on immune cells. Two distinct promoters used differentially by lymphoid and myeloid cells were previously identified, but little is known regarding molecular regulation of each promoter or cell-type-specific usage. Here, we have investigated the transcriptional regulation of human LILRB1 focusing on elements that drive expression in NK cells. We found that while both the distal and proximal promoter regions are active in reporter plasmids in lymphoid and myeloid cells, the proximal promoter is used minimally to transcribe LILRB1 in NK cells compared with monocytes. We defined a 120-bp core region of transcriptional activity in the distal promoter that can bind several factors in NK cell nuclear extracts. Within this region, we investigated overlapping putative AP-1 sites. An inhibitor of JNK decreased LILRB1 transcript in a LILRB1⁺ NK cell line. Upon examining binding of specific AP-1 factors, we found JunD associated with the LILRB1 distal promoter. Finally, depletion of JunD led to a decrease in distal promoter transcript, indicating an activating role for JunD in regulation of LILRB1 transcription. This study presents the first description of regions/factors required for activity of the LILRB1 distal promoter, the first description of a role for JunD in NK cells and suggests a potential mechanism for dynamic regulation of LILRB1 by cytokines.
Collapse
Affiliation(s)
- Chelsea L Davidson
- Department of Medical Microbiology and Immunology, University of Alberta, 6-043 Katz Building, Edmonton, Alberta T6G 2S2, Canada
| | | | | |
Collapse
|
42
|
Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii). Immunogenetics 2012; 65:25-35. [PMID: 23007952 DOI: 10.1007/s00251-012-0643-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/30/2012] [Indexed: 10/27/2022]
Abstract
Within the mammalian immune system, natural killer (NK) cells contribute to the first line of defence against infectious agents and tumours. Their activity is regulated, in part, by cell surface NK cell receptors. NK receptors can be divided into two unrelated, but functionally analogous superfamilies based on the structure of their extracellular ligand-binding domains. Receptors belonging to the C-type lectin superfamily are predominantly encoded in the natural killer complex (NKC), while receptors belonging to the immunoglobulin superfamily are predominantly encoded in the leukocyte receptor complex (LRC). Natural killer cell receptors are emerging as a rapidly evolving gene family which can display significant intra- and interspecific variation. To date, most studies have focused on eutherian mammals, with significantly less known about the evolution of these receptors in marsupials. Here, we describe the identification of 43 immunoglobulin domain-containing LRC genes in the genome of the Tasmanian devil (Sarcophilus harrisii), the largest remaining marsupial carnivore and only the second marsupial species to be studied. We also identify orthologs of NKC genes KLRK1, CD69, CLEC4E, CLEC1B, CLEC1A and an ortholog of an opossum NKC receptor. Characterisation of these regions in a second, distantly related marsupial provides new insights into the dynamic evolutionary histories of these receptors in mammals. Understanding the functional role of these genes is also important for the development of therapeutic agents against Devil Facial Tumour Disease, a contagious cancer that threatens the Tasmanian devil with extinction.
Collapse
|
43
|
Giles J, Shaw J, Piper C, Wong-Baeza I, McHugh K, Ridley A, Li D, Lenart I, Antoniou AN, DiGleria K, Kuroki K, Maenaka K, Bowness P, Kollnberger S. HLA-B27 homodimers and free H chains are stronger ligands for leukocyte Ig-like receptor B2 than classical HLA class I. THE JOURNAL OF IMMUNOLOGY 2012; 188:6184-93. [PMID: 22593621 DOI: 10.4049/jimmunol.1102711] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Possession of HLA-B27 (B27) strongly predisposes to the development of spondyloarthritis. B27 forms classical heterotrimeric complexes with β(2)-microglobulin (β2m) and peptide and (β2m free) free H chain (FHC) forms including B27 dimers (termed B27(2)) at the cell surface. In this study, we characterize the interaction of HLA-B27 with LILR, leukocyte Ig-like receptor (LILR)B1 and LILRB2 immune receptors biophysically, biochemically, and by FACS staining. LILRB1 bound to B27 heterotrimers with a K(D) of 5.3 ± 1.5 μM but did not bind B27 FHC. LILRB2 bound to B27(2) and B27 FHC and B27 heterotrimers with K(D)s of 2.5, 2.6, and 22 ± 6 μM, respectively. Domain exchange experiments showed that B27(2) bound to the two membrane distal Ig-like domains of LILRB2. In FACS staining experiments, B27 dimer protein and tetramers stained LILRB2 transfectants five times more strongly than B27 heterotrimers. Moreover, LILRB2Fc bound to dimeric and other B27 FHC forms on B27-expressing cell lines more strongly than other HLA-class 1 FHCs. B27-transfected cells expressing B27 dimers and FHC inhibited IL-2 production by LILRB2-expressing reporter cells to a greater extent than control HLA class I transfectants. B27 heterotrimers complexed with the L6M variant of the GAG KK10 epitope bound with a similar affinity to complexes with the wild-type KK10 epitope (with K(D)s of 15.0 ± 0.8 and 16.0 ± 2.0 μM, respectively). Disulfide-dependent B27 H chain dimers and multimers are stronger ligands for LILRB2 than HLA class I heterotrimers and H chains. The stronger interaction of B27 dimers and FHC forms with LILRB2 compared with other HLA class I could play a role in spondyloarthritis pathogenesis.
Collapse
Affiliation(s)
- Joanna Giles
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hogan L, Bhuju S, Jones DC, Laing K, Trowsdale J, Butcher P, Singh M, Vordermeier M, Allen RL. Characterisation of bovine leukocyte Ig-like receptors. PLoS One 2012; 7:e34291. [PMID: 22485161 PMCID: PMC3317502 DOI: 10.1371/journal.pone.0034291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/25/2012] [Indexed: 12/29/2022] Open
Abstract
Leukocyte Immunoglobulin-like receptors (LILR) are innate immune receptors involved in regulating both innate and adaptive immune functions. LILR show more interspecies conservation than the closely related Killer Ig-like receptors, and homologues have been identified in rodents, primates, seals and chickens. The murine equivalents, paired Ig-like receptors (PIR), contain two additional immunoglobulin domains, but show strong sequence and functional similarities to human LILR. The bovine genome was recently sequenced, with preliminary annotations indicating that LILR were present in this species. We therefore sought to identify and characterize novel LILR within the Bos taurus genome, compare these phylogenetically with LILR from other species and determine whether they were expressed in vivo. Twenty six potential bovine LILR were initially identified using BLAST and BLAT software. Phylogenetic analysis constructed using the neighbour-joining method, incorporating pairwise deletion and confidence limits estimated from 1000 replicates using bootstrapping, indicated that 16 of these represent novel bovine LILR. Protein structures defined using protein BLAST predict that the bovine LILR family comprises seven putative inhibitory, four activating and five soluble receptors. Preliminary expression analysis was performed by mapping the predicted sequences with raw data from total transcript sequence generated using Genome Analyzer IIx (Illumina) to provide evidence that all 16 of these receptors are expressed in vivo. The bovine receptor family appears to contain receptors which resemble the six domain rodent PIR as well as the four domain LILR found in other species.
Collapse
Affiliation(s)
- Louise Hogan
- Centre for Infection, Division of Clinical Sciences, St George's, University of London, Cranmer Terrace, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Montgomery BC, Cortes HD, Mewes-Ares J, Verheijen K, Stafford JL. Teleost IgSF immunoregulatory receptors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1223-1237. [PMID: 21414352 DOI: 10.1016/j.dci.2011.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/14/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
In all animals innate immunity is the first line of immune defense from invading pathogens. The prototypical innate cellular responses such as phagocytosis, degranulation, and cellular cytotoxicity are elicited by leukocytes in a diverse range of animals including fish, amphibians, birds and mammals reinforcing the importance of such primordial defense mechanisms. In mammals, these responses are intricately controlled and coordinated at the cellular level by distinct subsets of immunoregulatory receptors. Many of these surface proteins belong to the immunoglobulin superfamily and in mammals elaborate immunoregulatory receptor networks play a major role in the control of infectious diseases. Recent examination of teleost immunity has begun to further illustrate the complexities of these receptor networks in lower vertebrates. However, little is known about the mechanisms that control how immunoregulatory receptors influence cellular decision making in ectothermic vertebrates. This review focuses on several families of recently discovered immunoglobulin superfamily members in fish that share structural, phylogenetic and in some cases functional relationships with mammalian immunoregulatory receptors. Further characterization of these teleost innate immune receptor families will provide detailed information regarding the conservation and importance of innate immune defense strategies throughout vertebrate evolution.
Collapse
|
46
|
The human immunoglobulin A Fc receptor FcαRI: a multifaceted regulator of mucosal immunity. Mucosal Immunol 2011; 4:612-24. [PMID: 21937986 DOI: 10.1038/mi.2011.36] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immunoglobulin A (IgA) is commonly recognized as the most prevalent antibody (Ab) at mucosal sites with an important role in defense by shielding mucosal surfaces from invasion by pathogens. However, its potential to both actively dampen excessive immune responses or to initiate potent proinflammatory cellular processes is less well known. Interestingly, either functional outcome is mediated through interaction with the myeloid IgA Fc receptor FcαRI (CD89). Monomeric interaction of IgA with FcαRI triggers inhibitory signals that block activation via other receptors, whereas multimeric FcαRI crosslinking induces phagocytosis, reactive oxygen species production, antigen presentation, Ab-dependent cellular cytotoxicity, and cytokine release. Thus, FcαRI acts as a regulator between anti- and proinflammatory responses of IgA. As such, the biology of FcαRI, and its multifaceted role in immunity will be the focus of this review.
Collapse
|
47
|
Lichterfeld M, Yu XG. The emerging role of leukocyte immunoglobulin-like receptors (LILRs) in HIV-1 infection. J Leukoc Biol 2011; 91:27-33. [PMID: 22028331 DOI: 10.1189/jlb.0811442] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
LILRs represent a group of immunomodulatory molecules that regulate the functional properties of professional APCs and influence immune activation in a variety of disease contexts. Many members of the LILR family recognize peptide/MHC class I complexes as their physiological ligands, and increasing evidence suggests that such interactions are prominently influenced by polymorphisms in HLA class I alleles or sequence variations in the presented antigenic peptides. Emerging data show that LILRs are involved in multiple, different aspects of HIV-1 disease pathogenesis and may critically influence spontaneous HIV-1 disease progression. Here, we review recent progress in understanding the role of LILR during HIV-1 infection by focusing on the dynamic interplay between LILR and HLA class I molecules in determining HIV-1 disease progression, the effects of HIV-1 mutational escape on LILR-mediated immune recognition, the contribution of LILR to HIV-1-associated immune dysfunction, and the unique expression patterns of LILR on circulating myeloid DCs from elite controllers, a small subset of HIV-1-infected patients with natural control of HIV-1 replication. Obtaining a more complete understanding of LILR-mediated immune regulation during HIV-1 infection may ultimately allow for improved strategies to treat or prevent HIV-1-associated disease manifestations.
Collapse
Affiliation(s)
- Mathias Lichterfeld
- Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
48
|
Viertlboeck BC, Göbel TW. The chicken leukocyte receptor cluster. Vet Immunol Immunopathol 2011; 144:1-10. [PMID: 21794927 DOI: 10.1016/j.vetimm.2011.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 10/18/2022]
Abstract
Receptors of the immunoglobulin-like superfamily are critically involved in virtually every aspect of immune responses. One large chromosomal area encoding such immunoregulatory receptors is the leukocyte receptor cluster. Here we review various aspects of the chicken Ig-like receptor (CHIR) family, located on microchromosome 31, an orthologous position to the mammalian leukocyte receptor cluster. The CHIR family has been massively expanded with over hundred CHIR genes that are further distinguished into activating, inhibitory and bifunctional receptors. Comparisons of various features such as amino acid motifs, genomic structure, expression and associated adaptor molecules reveal the homology of CHIR to both the killer Ig-like and the leukocyte Ig-like receptor families, with most pronounced correlation of certain CHIR to the NK cell receptor KIR2DL4. To date the CHIR ligands remain largely obscure with the exception of CHIR-AB1 that binds to chicken IgY. Detailed analyses of CHIR-AB1, its crystal structure, the interaction to IgY and functional capabilities allow us to draw conclusions regarding Fc receptor phylogeny and function.
Collapse
Affiliation(s)
- Birgit C Viertlboeck
- Institute of Animal Physiology, Department of Veterinary Sciences, LMU München, Veterinärstr. 13, 80539 München, Germany
| | | |
Collapse
|
49
|
Abstract
Although immunoglobulin (Ig) A is commonly recognized as the most prevalent antibody subclass at mucosal sites with an important role in mucosal defense, its potential as a therapeutic monoclonal antibody is less well known. However, IgA has multifaceted anti-, non-, and pro-inflammatory functions that can be exploited for different immunotherapeutical strategies, which will be the focus of this review.
Collapse
Affiliation(s)
- Jantine E Bakema
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
50
|
Recognition and functional activation of the human IgA receptor (FcalphaRI) by C-reactive protein. Proc Natl Acad Sci U S A 2011; 108:4974-9. [PMID: 21383176 DOI: 10.1073/pnas.1018369108] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
C-reactive protein (CRP) is an important biomarker for inflammatory diseases. However, its role in inflammation beyond complement-mediated pathogen clearance remains poorly defined. We identified the major IgA receptor, FcαRI, as a ligand for pentraxins. CRP recognized FcαRI both in solution and on cells, and the pentraxin binding site on the receptor appears distinct from that recognized by IgA. Further competitive binding and mutational analysis showed that FcαRI bound to the effector face of CRP in a region overlapping with complement C1q and Fcγ receptor (FcγR) binding sites. CRP cross-linking of FcαRI resulted in extracellular signal-regulated kinase (ERK) phosphorylation, cytokine production, and degranulation in FcαRI-transfected RBL cells. In neutrophils, CRP induced FcαRI surface expression, phagocytosis, and TNF-α secretion. The ability of CRP to activate FcαRI defines a function for pentraxins in inflammatory responses involving neutrophils and macrophages. It also highlights the innate aspect of otherwise humoral immunity-associated antibody receptors.
Collapse
|