1
|
Ke M, Chong CM, Su H. Using induced pluripotent stem cells for modeling Parkinson’s disease. World J Stem Cells 2019; 11:634-649. [PMID: 31616540 PMCID: PMC6789186 DOI: 10.4252/wjsc.v11.i9.634] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/26/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is an age-related neurodegenerative disease caused by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. As DA neurons degenerate, PD patients gradually lose their ability of movement. To date no effective therapies are available for the treatment of PD and its pathogenesis remains unknown. Experimental models that appropriately mimic the development of PD are certainly needed for gaining mechanistic insights into PD pathogenesis and identifying new therapeutic targets. Human induced pluripotent stem cells (iPSCs) could provide a promising model for fundamental research and drug screening. In this review, we summarize various iPSCs-based PD models either derived from PD patients through reprogramming technology or established by gene-editing technology, and the promising application of iPSC-based PD models for mechanistic studies and drug testing.
Collapse
Affiliation(s)
- Minjing Ke
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| |
Collapse
|
2
|
Gu C, Zhang Y, Hu Q, Wu J, Ren H, Liu CF, Wang G. P7C3 inhibits GSK3β activation to protect dopaminergic neurons against neurotoxin-induced cell death in vitro and in vivo. Cell Death Dis 2017; 8:e2858. [PMID: 28569794 PMCID: PMC5520908 DOI: 10.1038/cddis.2017.250] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/12/2017] [Accepted: 05/03/2017] [Indexed: 01/17/2023]
Abstract
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease. Although its pathogenesis remains unclear, mitochondrial dysfunction plays a vital role in the pathology of PD. P7C3, an aminopropyl carbazole, possesses a significant neuroprotective ability in several neurodegenerative disorders, including PD. Here, we showed that P7C3 stabilized mitochondrial membrane potential, reduced reactive oxygen species production, and inhibited cytochrome c release in MES23.5 cells (a dopaminergic (DA) cell line) exposed to 1-methyl-4-phenylpyridinium (MPP+). In MES23.5 cells, P7C3 inhibited glycogen synthase kinase-3 beta (GSK3β) activation induced by MPP+. P7C3 also inhibited p53 activity and repressed Bax upregulation to protect cells from MPP+ toxicity. In addition, the activation of p53 was significantly attenuated with the inhibition of GSK3β activity by P7C3. Furthermore, P7C3 blocked GSK3β and p53 activation in the midbrain, and prevented DA neuronal loss in the substantia nigra in 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine mice. Thus, our study demonstrates that P7C3 protects DA neurons from neurotoxin-induced cell death by repressing the GSK3β-p53-Bax pathway both in vitro and in vivo, thus providing a theoretical basis for P7C3 in the potential clinical treatment of PD.
Collapse
Affiliation(s)
- Chao Gu
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Yan Zhang
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Qingsong Hu
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Jiayuan Wu
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Haigang Ren
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Guanghui Wang
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| |
Collapse
|
3
|
Papaevgeniou N, Chondrogianni N. UPS Activation in the Battle Against Aging and Aggregation-Related Diseases: An Extended Review. Methods Mol Biol 2016; 1449:1-70. [PMID: 27613027 DOI: 10.1007/978-1-4939-3756-1_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Aging is a biological process accompanied by gradual increase of damage in all cellular macromolecules, i.e., nucleic acids, lipids, and proteins. When the proteostasis network (chaperones and proteolytic systems) cannot reverse the damage load due to its excess as compared to cellular repair/regeneration capacity, failure of homeostasis is established. This failure is a major hallmark of aging and/or aggregation-related diseases. Dysfunction of the major cellular proteolytic machineries, namely the proteasome and the lysosome, has been reported during the progression of aging and aggregation-prone diseases. Therefore, activation of these pathways is considered as a possible preventive or therapeutic approach against the progression of these processes. This chapter focuses on UPS activation studies in cellular and organismal models and the effects of such activation on aging, longevity and disease prevention or reversal.
Collapse
Affiliation(s)
- Nikoletta Papaevgeniou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| |
Collapse
|
4
|
Basu S, Je G, Kim YS. Transcriptional mutagenesis by 8-oxodG in α-synuclein aggregation and the pathogenesis of Parkinson's disease. Exp Mol Med 2015; 47:e179. [PMID: 26315598 PMCID: PMC4558488 DOI: 10.1038/emm.2015.54] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is an age-related progressive neurodegenerative disease associated with selective loss of dopaminergic neurons. The characteristic hallmark of the disease is intracytoplasmic proteinacious inclusion bodies called Lewy bodies, primarily consisting of a presynaptic protein α-synuclein. Oxidative stress-mediated damage to macromolecules have been shown to occur frequently in PD. Oxidative damage to DNA in the form of oxidized guanine (8-oxodG) accumulates in both the mitochondrial and nuclear DNA of dopaminergic neurons of the substantia nigra in PD. 8-oxodG-mediated transcriptional mutagenesis has been shown to have the potential to alter phenotype of cells through production of mutant pool of proteins. This review comprehensively summarizes the role of oxidative stress-mediated damage incurred during neurodegeneration, and highlights the scope of transcriptional mutagenesis event in leading to α-synuclein aggregation as seen in PD.
Collapse
Affiliation(s)
- Sambuddha Basu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Goun Je
- Department of Biochemistry, College of Medicine, Kyung-Hee University, Seoul, Korea
| | - Yoon-Seong Kim
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA.,Department of Biochemistry, College of Medicine, Kyung-Hee University, Seoul, Korea
| |
Collapse
|
5
|
Tousson E, Salama AF, Ibrahim W, Sakr S, Masoud A, Akela MA, El-Rahman MAA. Epigenetic Study of Parkinson's Disease in Experimental Animal Model. PHARMACOLOGIA 2015; 6:52-62. [DOI: 10.5567/pharmacologia.2015.52.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
6
|
Kragh CL, Gysbers AM, Rockenstein E, Murphy K, Halliday GM, Masliah E, Jensen PH. Prodegenerative IκBα expression in oligodendroglial α-synuclein models of multiple system atrophy. Neurobiol Dis 2013; 63:171-83. [PMID: 24361600 DOI: 10.1016/j.nbd.2013.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/04/2013] [Indexed: 12/11/2022] Open
Abstract
Multiple system atrophy is a progressive, neurodegenerative disease characterized by parkinsonism, ataxia, autonomic dysfunction, and accumulation of α-synuclein in oligodendrocytes. To understand how α-synuclein aggregates impact oligodendroglial homeostasis, we investigated an oligodendroglial cell model of α-synuclein dependent degeneration and identified responses linked to the NF-κB transcription factor stress system. Coexpression of human α-synuclein and the oligodendroglial protein p25α increased the expression of IκBα mRNA and protein early during the degenerative process and this was dependent on both aggregation and Ser129 phosphorylation of α-synuclein. This response was prodegenerative because blocking IκBα expression by siRNA rescued the cells. IκBα is an inhibitor of NF-κB and acts by binding and retaining NF-κB p65 in the cytoplasm. The protection obtained by silencing IκBα was accompanied by a strong increase in nuclear p65 translocation indicating that NF-κB activation protects against α-synuclein aggregate stress. In the cellular model, two different phenotypes were observed; degenerating cells retracting their microtubules and resilient cells tolerating the coexpression of α-synuclein and p25α. The resilient cells displayed a significant higher nuclear translocation of p65 and activation of the NF-κB system relied on stress elicited by aggregated and Ser129 phosphorylated α-synuclein. To validate the relationship between oligodendroglial α-synuclein expression and IκBα, we analyzed two different lines of transgenic mice expressing human α-synuclein under the control of the oligodendrocytic MBP promotor (intermediate-expresser line 1 and high-expresser line 29). IκBα mRNA expression was increased in both lines and immunofluorescence microscopy and in situ hybridization revealed that IκBα mRNA and protein is expressed in oligodendrocytes. IκBα mRNA expression was demonstrated prior to activation of microglia and astrocytes in line 1. Human brain tissue affected by MSA displayed increased expression of IκBα and NF-κB p65 in some oligodendrocytes containing glial cytoplasmic inclusions. Our data suggest that oligodendroglial IκBα expression and NF-κB are activated early in the course of MSA and their balance contributes to the decision of cellular demise. Favoring oligodendroglial NF-κB activation may represent a therapeutic strategy for this devastating disease.
Collapse
Affiliation(s)
- Christine L Kragh
- Department of Biomedicine & Danish Research Institute of Translational Neuroscience-DANDRITE, University of Aarhus, Aarhus, Denmark
| | - Amanda M Gysbers
- Neuroscience Research Australia, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia
| | - Edward Rockenstein
- Department of Neurosciences and Pathology, University of California, San Diego, School of Medicine, La Jolla, CA 92093-0624, USA
| | - Karen Murphy
- Neuroscience Research Australia, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia
| | - Glenda M Halliday
- Neuroscience Research Australia, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia
| | - Eliezer Masliah
- Department of Neurosciences and Pathology, University of California, San Diego, School of Medicine, La Jolla, CA 92093-0624, USA
| | - Poul Henning Jensen
- Department of Biomedicine & Danish Research Institute of Translational Neuroscience-DANDRITE, University of Aarhus, Aarhus, Denmark.
| |
Collapse
|
7
|
Burbulla LF, Krüger R. The use of primary human fibroblasts for monitoring mitochondrial phenotypes in the field of Parkinson's disease. J Vis Exp 2012:4228. [PMID: 23070237 DOI: 10.3791/4228] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Parkinson's disease (PD) is the second most common movement disorder and affects 1% of people over the age of 60 (1). Because ageing is the most important risk factor, cases of PD will increase during the next decades (2). Next to pathological protein folding and impaired protein degradation pathways, alterations of mitochondrial function and morphology were pointed out as further hallmark of neurodegeneration in PD (3-11). After years of research in murine and human cancer cells as in vitro models to dissect molecular pathways of Parkinsonism, the use of human fibroblasts from patients and appropriate controls as ex vivo models has become a valuable research tool, if potential caveats are considered. Other than immortalized, rather artificial cell models, primary fibroblasts from patients carrying disease-associated mutations apparently reflect important pathological features of the human disease. Here we delineate the procedure of taking skin biopsies, culturing human fibroblasts and using detailed protocols for essential microscopic techniques to define mitochondrial phenotypes. These were used to investigate different features associated with PD that are relevant to mitochondrial function and dynamics. Ex vivo, mitochondria can be analyzed in terms of their function, morphology, colocalization with lysosomes (the organelles degrading dysfunctional mitochondria) and degradation via the lysosomal pathway. These phenotypes are highly relevant for the identification of early signs of PD and may precede clinical motor symptoms in human disease-gene carriers. Hence, the assays presented here can be utilized as valuable tools to identify pathological features of neurodegeneration and help to define new therapeutic strategies in PD.
Collapse
|
8
|
Abstract
Recently, several genes for parkinsonism have been identified. Among them, familial Parkinson's disease (PD) could be assigned for PARK disorders. PARK disorders consist of three different inherited modes such as autosomal recessive, autosomal dominant modes and susceptible genes. Some of them manifest not only typical parkinsonism, but also dystonia, pyramidal sign, and mental dysfunctions. While the monogenic forms of PARK disorders have been reviewed extensively, it is not easy to do differential diagnosis of PARK disorders due to the additional features except for typical parkinsonism. In this presentation, we focus on two different scenarios of patients with autosomal dominant parkinsonism: (1) parkinsonism with mutations in one of the PARK genes; (2) parkinsonism with mutations other than PARK genes or yet other genes where parkinsonism is a well recognized, concomitant, or even an isolated feature.
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo 113-8421, Japan
| |
Collapse
|
9
|
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that involves the deterioration of dopaminergic neurons in the substantia nigra pars compacta. Although the etiology of PD remains poorly understood, recent genetic, postmortem, and experimental evidence shows that abnormal protein accumulation and subsequent aggregate formation are prominent features of both sporadic and familial PD. While proteasome dysfunction is observed in PD, diverse mutations in the parkin gene are linked to early-onset autosomal-recessive forms of familial PD. We demonstrate that parkin, an E3 ubiquitin ligase, activates the 26S proteasome in an E3 ligase activity-independent manner. Furthermore, an N-terminal ubiquitin-like domain within parkin is critical for the activation of the 26S proteasome through enhancing the interaction between 19S proteasomal subunits, whereas the PD-linked R42P mutant abolishes this action. The current findings point to a novel role for parkin for 26S proteasome assembly and suggest that parkin mutations contribute to the proteasomal dysfunction in PD.
Collapse
|
10
|
Autosomal-dominant striatal degeneration is caused by a mutation in the phosphodiesterase 8B gene. Am J Hum Genet 2010; 86:83-7. [PMID: 20085714 DOI: 10.1016/j.ajhg.2009.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/03/2009] [Accepted: 12/08/2009] [Indexed: 10/20/2022] Open
Abstract
Autosomal-dominant striatal degeneration (ADSD) is an autosomal-dominant movement disorder affecting the striatal part of the basal ganglia. ADSD is characterized by bradykinesia, dysarthria, and muscle rigidity. These symptoms resemble idiopathic Parkinson disease, but tremor is not present. Using genetic linkage analysis, we have mapped the causative genetic defect to a 3.25 megabase candidate region on chromosome 5q13.3-q14.1. A maximum LOD score of 4.1 (Theta = 0) was obtained at marker D5S1962. Here we show that ADSD is caused by a complex frameshift mutation (c.94G>C+c.95delT) in the phosphodiesterase 8B (PDE8B) gene, which results in a loss of enzymatic phosphodiesterase activity. We found that PDE8B is highly expressed in the brain, especially in the putamen, which is affected by ADSD. PDE8B degrades cyclic AMP, a second messenger implied in dopamine signaling. Dopamine is one of the main neurotransmitters involved in movement control and is deficient in Parkinson disease. We believe that the functional analysis of PDE8B will help to further elucidate the pathomechanism of ADSD as well as contribute to a better understanding of movement disorders.
Collapse
|
11
|
Abstract
Parkinson's disease is a primarily sporadic occurring neurodegenerative disorder of advanced age. However, in the last few years several genes have been identified that lead to a hereditary parkinsonian disorder with autosomal dominant or autosomal recessive inheritance. This includes autosomal dominant mutations in the alpha-synuclein, ubiquitin-C-terminal hydrolase-L1 (UCH-L1) and the leucine-rich repeat kinase (LRRK)2 genes and autosomal recessively inherited mutations in Parkin, PINK1, DJ-1 and the ATP13A2 genes. By taking the biochemical function of these genes and mutations into account, three underlying pathogenetic pathways can be identified: (i) altered protein quality control, (ii) oxidative stress and mitochondrial dysfunction, and (iii) disturbed kinase activity. It remains an open question whether alterations of these pathways lead to different entities of Parkinson's disease or whether they finally converge at a point that is the common pathogenetic denominator of Parkinson's disease. Finally cell death is executed by excitotoxicity, apoptosis and autophagy and appears to be facilitated by neuroinflammatory processes.
Collapse
Affiliation(s)
- Jörg B Schulz
- Dept. of Neurodegeneration and Restorative Research, Center for Neurological Medicine, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
12
|
Padmanabhan N, Fichtner L, Dickmanns A, Ficner R, Schulz JB, Braus GH. The yeast HtrA orthologue Ynm3 is a protease with chaperone activity that aids survival under heat stress. Mol Biol Cell 2008; 20:68-77. [PMID: 18946088 DOI: 10.1091/mbc.e08-02-0178] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ynm3 is the only budding yeast protein possessing a combination of serine protease and postsynaptic density 95/disc-large/zona occludens domains, a defining feature of the high temperature requirement A (HtrA) protein family. The bacterial HtrA/DegP is involved in protective stress response to aid survival at higher temperatures. The role of mammalian mitochondrial HtrA2/Omi in protein quality control is unclear, although loss of its protease activity results in susceptibility toward Parkinson's disease, in which mitochondrial dysfunction and impairment of protein folding and degradation are key pathogenetic features. We studied the role of the budding yeast HtrA, Ynm3, with respect to unfolding stresses. Similar to Escherichia coli DegP, we find that Ynm3 is a dual chaperone-protease. Its proteolytic activity is crucial for cell survival at higher temperature. Ynm3 also exhibits strong general chaperone activity, a novel finding for a eukaryotic HtrA member. We propose that the chaperone activity of Ynm3 may be important to improve the efficiency of proteolysis of aberrant proteins by averting the formation of nonproductive toxic aggregates and presenting them in a soluble state to its protease domain. Suppression studies with Deltaynm3 led to the discovery of chaperone activity in a nucleolar peptidyl-prolyl cis-trans isomerase, Fpr3, which could partly relieve the heat sensitivity of Deltaynm3.
Collapse
Affiliation(s)
- Nirmala Padmanabhan
- Abteilung Molekulare Mikrobiologie und Genetik, Institut für Mikrobiologie und Genetik, Georg August Universität Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Schiesling C, Kieper N, Seidel K, Krüger R. Review: Familial Parkinson's disease – genetics, clinical phenotype and neuropathology in relation to the common sporadic form of the disease. Neuropathol Appl Neurobiol 2008; 34:255-71. [DOI: 10.1111/j.1365-2990.2008.00952.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Wahl C, Kautzmann S, Krebiehl G, Strauss K, Woitalla D, Müller T, Bauer P, Riess O, Krüger R. A comprehensive genetic study of the proteasomal subunit S6 ATPase in German Parkinson's disease patients. J Neural Transm (Vienna) 2008; 115:1141-8. [PMID: 18446261 DOI: 10.1007/s00702-008-0054-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 04/10/2008] [Indexed: 12/12/2022]
Abstract
Dysfunction of proteasomal protein degradation is involved in neurodegeneration in Parkinson's disease (PD). Recently we identified the regulatory proteasomal subunit S6 ATPase as a novel interactor of synphilin-1, which is a substrate of the ubiquitin-ligase Parkin (PARK2) and an interacting protein of alpha-synuclein (PARK1). To further investigate a potential role in the pathogenesis of PD, we performed a detailed mutation analysis of the S6 ATPase gene in a large sample of 486 German sporadic and familial PD patients. Direct sequencing revealed two novel intronic variants. An insertion/deletion variant in intron 5 of the S6 ATPase gene was more frequent in patients compared to controls. Moreover, this variant was significantly more frequent in early-onset compared to late-onset PD patients. The identification of a genetic link between a regulatory proteasomal subunit and PD further underscores the relevance of disturbed protein degradation in PD.
Collapse
Affiliation(s)
- Claudia Wahl
- Laboratory of Functional Neurogenomics, Center of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tubingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jung AE, Fitzsimons HL, Bland RJ, During MJ, Young D. HSP70 and constitutively active HSF1 mediate protection against CDCrel-1-mediated toxicity. Mol Ther 2008; 16:1048-55. [PMID: 18398426 DOI: 10.1038/mt.2008.68] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Defects in cellular quality control mechanisms are thought to contribute to the neuropathology of Parkinson's disease (PD). Overexpressing heat shock proteins (HSPs) may constitute a powerful therapeutic strategy for PD, because they boost the ability of the cell to eliminate unwanted proteins. We investigated the neuroprotective potential of HSP70, HSP40, and H-BH, a constitutively active form of heat shock factor 1, in a rat model of PD based on adeno-associated virus (AAV) vector-mediated overexpression of CDCrel-1, a parkin substrate known to be toxic to dopaminergic neurons. AAV vector-mediated overexpression of H-BH and of HSP70 afforded similar levels of protection against CDCrel-1 toxicity, with approximately 20% improvement in survival of dopaminergic neurons as compared to the controls. The assessment of protection conferred was made using tyrosine hydroxylase (TH) and HuC/D immunohistochemistry and Fluoro-Gold retrograde tracing, and by observing the extent of preservation of spontaneous function and also the extent of drug-induced motor function. In contrast to H-BH and HSP70, HSP40 overexpression exacerbated CDCrel-1-mediated cell death. Real-time reverse transcriptase (RT)-PCR analysis showed that H-BH had the effect of upregulating endogenous HSP70 and HSP40 mRNA levels 10-fold and 4-fold over basal levels, respectively, whereas AAV vector-mediated HSP70 and HSP40 mRNA levels were over 100-fold higher. Our results suggest that a comparatively modest upregulation of multiple HSPs may be an effective approach for achieving significant neuroprotection in PD.
Collapse
Affiliation(s)
- Alisha E Jung
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
16
|
Needham M, Mastaglia F. Sporadic inclusion body myositis: a continuing puzzle. Neuromuscul Disord 2008; 18:6-16. [DOI: 10.1016/j.nmd.2007.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/29/2007] [Accepted: 11/07/2007] [Indexed: 11/29/2022]
|
17
|
Arias-Vásquez A, de Lau L, Pardo L, Liu F, Feng BJ, Bertoli-Avella A, Isaacs A, Aulchenko Y, Hofman A, Oostra B, Breteler M, van Duijn C. Relationship of the Ubiquilin 1 gene with Alzheimer's and Parkinson's disease and cognitive function. Neurosci Lett 2007; 424:1-5. [PMID: 17709205 DOI: 10.1016/j.neulet.2007.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 07/06/2007] [Accepted: 07/06/2007] [Indexed: 12/18/2022]
Abstract
Ubiquilin 1 (UBQLN1) is involved in the ubiquitination machinery, which has been implicated in Alzheimer's disease (AD) as well as Parkinson's disease (PD). A polymorphism in the gene encoding for UBQLN1 has been previously associated with a higher risk of AD. We studied the role of the SNP rs12344615 on the UBQLN 1 gene in AD, PD and cognitive function in a population-based study, the Rotterdam Study, and a family-based study embedded in the genetic research in isolated population (GRIP) program. The Rotterdam Study includes 549 patients with AD and 157 patients with PD. The GRIP program includes a series of 123 patients with AD and a study of 1049 persons who are characterized for cognitive function. Data were analysed using logistic and multiple regression analysis. We found no significant difference in risk of AD or PD by the UBQLN1 SNP rs12344615 in our overall and stratified analyses in the Rotterdam Study. In our family-based study, we did not find evidence for linkage of AD to the region including the UBQLN1 gene. In the family-based study we also failed to detect an effect of this polymorphism on cognitive function. Our results suggest that it is unlikely that the SNP rs12344615 of the UBQLN1 gene is related to the onset of AD, PD or cognitive function.
Collapse
|
18
|
Marx FP, Soehn AS, Berg D, Melle C, Schiesling C, Lang M, Kautzmann S, Strauss KM, Franck T, Engelender S, Pahnke J, Dawson S, von Eggeling F, Schulz JB, Riess O, Krüger R. The proteasomal subunit S6 ATPase is a novel synphilin-1 interacting protein--implications for Parkinson's disease. FASEB J 2007; 21:1759-67. [PMID: 17327361 DOI: 10.1096/fj.06-6734com] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Synphilin-1 is linked to Parkinson's disease (PD), based on its role as an alpha-synuclein (PARK1)-interacting protein and substrate of the ubiquitin E3 ligase Parkin (PARK2) and because of its presence in Lewy bodies (LB) in brains of PD patients. We found that overexpression of synphilin-1 in cells leads to the formation of ubiquitinated cytoplasmic inclusions supporting a derangement of the ubiquitin-proteasome system in PD. We report here a novel specific interaction of synphilin-1 with the regulatory proteasomal protein S6 ATPase (tbp7). Functional characterization of this interaction on a cellular level revealed colocalization of S6 and synphilin-1 in aggresome-like intracytoplasmic inclusions. Overexpression of synphilin-1 and S6 in cells caused reduced proteasomal activity associated with a significant increase in inclusion formation compared to cells expressing synphilin-1 alone. Steady-state levels of synphilin-1 in cells were not altered after cotransfection of S6 and colocalization of synphilin-1-positive inclusions with lysosomal markers suggests the presence of an alternative lysosomal degradation pathway. Subsequent immunohistochemical studies in brains of PD patients identified S6 ATPase as a component of LB. This is the first study investigating the physiological role of synphilin-1 in the ubiquitin proteasome system. Our data suggest a direct interaction of synphilin-1 with the regulatory complex of the proteasome modulating proteasomal function.
Collapse
Affiliation(s)
- Frank P Marx
- Center of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Franck T, Krueger R, Woitalla D, Müller T, Engelender S, Riess O. Mutation analysis of the seven in absentia homolog 1 (SIAH1) gene in Parkinson’s disease. J Neural Transm (Vienna) 2006; 113:1903-8. [PMID: 16752048 DOI: 10.1007/s00702-006-0480-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 02/25/2006] [Indexed: 11/26/2022]
Abstract
Seven in absentia homolog 1 (SIAH-1) is a member of the RING-finger-containing E3 ubiquitin ligases. Two substrates of SIAH-1 are alpha-synuclein and synphilin-1, both of these proteins are involved in Parkinson's disease (PD). Recently, mutations in Parkin, another E3 ubiquitin ligase which ubiquinates synphilin-1 and glycosylated alpha-synuclein, have been defined as a major cause of autosomal recessive PD. The potential role of SIAH-1 in PD is further underlined as SIAH-1 protein is a component of the Lewy bodies and as it plays a role in apoptosis caused by nitric oxide (NO) induced oxidative stress. Thus, we performed a mutation screening of the SIAH-1 gene in PD patients. However, screening a large sample of 209 familial and sporadic PD patients we could not find any disease causing mutation. We therefore conclude that genetic alterations of SIAH-1 do not significantly contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- T Franck
- Department of Medical Genetics, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Schulz JB. Anti-apoptotic gene therapy in Parkinson's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:467-76. [PMID: 17017569 DOI: 10.1007/978-3-211-45295-0_70] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Apoptosis, whether caspase-dependent or caspase-independent, has been implicated as one of the important mechanisms leading to the death of dopaminergic neurons in the substantia nigra of Parkinson's disease patients. Major advances of our understanding of apoptosis have been achieved in studies of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity in mice and monkeys and 6-hydroxydopamine (6-OHDA) toxicity in rats and monkeys. The use of viral vectors to either express anti-apoptotic proteins or to downregulate pro-apoptotic proteins has the major advantage of addressing selective molecular targets, bypassing the blood-brain-barrier to specifically target the nigrostriatal pathway by their stereotaxic application and by the choice of the appropriate virus and promotor. Used thus far have been virus-mediated overexpression of inhibitor of apoptosis proteins, inhibitors of the c-jun-N-terminal kinase (JNK) pathway, inhibitors of calpains and dominant negative inhibitors of the protease activating factor (APAF)-1 and cdk5. Most studies implicate the endogenous, mitochondrial pathway in the apoptosis of dopaminergic neurons. The results suggest that only an inhibition of this pathway upstream of caspase activation will also result in the protection of nigrostriatal dopaminergic terminals and behavioral benefit, whereas an inhibition of caspases alone may not be sufficient to prevent the degeneration of terminals, although it may promote the survival of neuronal cell bodies for some time.
Collapse
Affiliation(s)
- J B Schulz
- Department of Neurodegeneration and Restorative Research, Center of Neurology, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
21
|
McKinley ET, Baranowski TC, Blavo DO, Cato C, Doan TN, Rubinstein AL. Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. ACTA ACUST UNITED AC 2005; 141:128-37. [PMID: 16209898 DOI: 10.1016/j.molbrainres.2005.08.014] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 08/03/2005] [Accepted: 08/13/2005] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is characterized by a severe loss of dopaminergic neurons resulting in a range of motor deficits. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is known to cause a similar loss of dopaminergic neurons in the human midbrain with corresponding Parkinsonian symptoms. Several animal species have also shown sensitivity to MPTP, including primates, mice, goldfish, and, most recently, zebrafish. This study demonstrates that the effect of MPTP on dopaminergic neurons in zebrafish larvae is mediated by the same pathways that have been demonstrated in mammalian species. MPTP-induced neurodegeneration was prevented by co-incubation with either the monoamine oxidase-B (MAO-B) inhibitor l-deprenyl or the dopamine transporter (DAT) inhibitor nomifensine. Furthermore, targeted inactivation of the DAT gene by antisense morpholinos also protected neurons from MPTP damage. Thus, the mechanism for MPTP-induced dopaminergic neuron toxicity in mammals is conserved in zebrafish larvae. Effects on swimming behavior and touch response that result from MPTP damage are partially ameliorated by both l-deprenyl and DAT knockdown.
Collapse
Affiliation(s)
- Enid T McKinley
- Zygogen, 520 Kell Hall, 24 Peachtree Center Avenue, Atlanta, GA 30303, USA
| | | | | | | | | | | |
Collapse
|
22
|
Papachroni K, Ninkina N, Wanless J, Kalofoutis AT, Gnuchev NV, Buchman VL. Peripheral sensory neurons survive in the absence of alpha- and gamma-synucleins. J Mol Neurosci 2005; 25:157-64. [PMID: 15784963 DOI: 10.1385/jmn:25:2:157] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Accepted: 08/30/2004] [Indexed: 11/11/2022]
Abstract
Physiological functions of alpha-synuclein, a protein implicated in certain types of neurodegeneration, and two other members of the same family, beta-synuclein and gamma-synuclein, are not clearly understood. It has been suggested that synucleins are involved in intracellular processes associated with survival of neurons and their response to stress, and that changes of synuclein ratio might have deteriorating effects on neurons. In wild-type mice, sensory neurons of the peripheral nervous system express alpha-synuclein and notably high levels of gamma-synuclein, but targeted inactivation of either of these genes has no effect on these neurons. Here we produced double, alpha-synuclein/gamma-synuclein null mutant mice, which develop normally, are fertile, and show no obvious signs of pathology in adulthood. Survival of alpha/gamma-synuclein-deficient peripheral sensory neurons in vivo and in primary tissue culture is indistinguishable from survival of wild-type neurons. The absence of two synucleins does not lead to expression in sensory neurons of the third member of the family, beta-synuclein. Therefore, our results demonstrate that neurons with normally high levels of synuclein(s) can develop and survive normally in the absence of any of these proteins. This suggests that other intraneuronal mechanisms and pathways effectively compensate the loss of synuclein function in null mutant animals.
Collapse
Affiliation(s)
- Katerina Papachroni
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | | | | | | | | | | |
Collapse
|
23
|
Pathophysiology: biochemistry of Parkinson's disease. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
24
|
Poorkaj P, Nutt JG, James D, Gancher S, Bird TD, Steinbart E, Schellenberg GD, Payami H. parkin mutation analysis in clinic patients with early-onset Parkinson [corrected] disease. Am J Med Genet A 2005; 129A:44-50. [PMID: 15266615 DOI: 10.1002/ajmg.a.30157] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
parkin Mutations are the most common identified cause of Parkinson's disease (PD). It has been suggested that patients with young-onset PD be screened for parkin mutations as a part of their clinical work-up. The aim of this study was to assess parkin mutation frequency in a clinical setting, correlate genotype with phenotype, and evaluate the current justification for clinical parkin testing. Patients were selected from a movement disorder clinic based on diagnosis of PD and onset age </=40 years. parkin was genotyped by sequence and dosage analysis for all 12 exons. Key relatives and controls were screened for identified mutations. Mutations were found in 7/39 patients. Two patients were compound heterozygous; five were heterozygous. Mutations included deletions in exons 2, 3, and 8, duplications in exons 2-4, and 9, and P437L substitution. Seventy-eight percent of mutations were deletions/multiplications. A novel substitution (R402W) was found in one patient and in one control. None of the point mutations found in patients were detected in 96 controls. parkin phenotypes were consistent with idiopathic PD. In conclusion, parkin mutations are common in the clinic setting: 10% of PD patients had early-onset and 18% of them had parkin mutations. However, if parkin is recessive, only 5% of early-onset cases who had compound mutations could be attributed to this locus. Mutation frequency was 0.12 (95% CI 0.04-0.19). parkin cases can present as typical idiopathic PD, distinguishable only by molecular testing. Seventy percent of parkin cases were heterozygous. It is unclear whether heterozygous mutations are pathogenic. parkin-based diagnosis and counseling require a better understanding of the mode of inheritance, penetrance, and carrier frequencies.
Collapse
Affiliation(s)
- P Poorkaj
- Geriatric Research Education Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle Division, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bonin M, Poths S, Osaka H, Wang YL, Wada K, Riess O. Microarray expression analysis of gad mice implicates involvement of Parkinson's disease associated UCH-L1 in multiple metabolic pathways. ACTA ACUST UNITED AC 2004; 126:88-97. [PMID: 15207921 DOI: 10.1016/j.molbrainres.2004.03.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2004] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is thought to be caused by environmental and genetic factors. Mutations in four genes, alpha-synuclein, parkin, DJ-1, and UCH-L1, have been identified in autosomal inherited forms of PD. The pathogenetic cause for the loss of neuronal cells in PD patients, however, remains to be determined. Due to the rarity of mutations in humans with PD, the analysis of animal models might help to further gain insights into the pathogenesis of familial PD. For UCH-L1, deficiency has been described in gad mice leading to axonal degeneration and formation of spheroid bodies in nerve terminals. Here, we investigated the gene expression pattern of the brain of 3-month-old Uch-l1-deficient gracile axonal dystrophy (gad) mice by microarray analysis. A total of 146 genes were differentially regulated by at least a 1.4-fold change with 103 being up-regulated and 43 being down-regulated compared with age and sex matched wildtype littermate mice. The gene products with altered expression are involved in protein degradation, cell cycle, vesicle transport, cellular structure, signal transduction, and transcription regulation. Most of the genes were modestly regulated, which is in agreement that severe alteration of these pathways might be lethal. Among the genes most significantly down-regulated is the brain-derived neurotrophic factor which might be one aspect of the pathogenesis in gad mice. Interestingly, several subunits of the transcription factor CCAAT/enhancer binding protein are up-regulated, which plays a central role in most altered pathways.
Collapse
Affiliation(s)
- M Bonin
- Department of Medical Genetics, University of Tübingen, Calwerstrasse 7, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Glass AS, Huynh DP, Franck T, Woitalla D, Müller T, Pulst SM, Berg D, Krüger R, Riess O. Screening for mutations in synaptotagmin XI in Parkinson's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2004:21-8. [PMID: 15354386 DOI: 10.1007/978-3-7091-0579-5_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Parkinson's disease (PD) is characterized by selective degeneration of neurons in the substantia nigra and subsequent dysfunction of dopaminergic neurotransmission. Genes identified in familial forms of PD encode proteins that are linked to the ubiquitin-proteasome system indicating the pathogenic relevance of disturbed protein degradation in PD. Some of them, i.e. alpha-synuclein, parkin and synphilin-1, have been implicated in presynaptic neurotransmission based on their localization in synaptic vesicles. Synaptotagmin XI is linked to the pathogenesis of PD based on its identification as a substrate of the ubiquitin-E3-ligase parkin. Moreover synaptotagmin XI is involved in the maintainance of synaptic function and represents a component of Lewy bodies (LB) in brains of PD patients. Therefore, we performed a detailed mutation analysis of the synaptotagmin XI gene in a large sample of 393 familial and sporadic PD patients. We did not find any disease causing mutations arguing against a major role of mutations in the synaptotagmin XI gene in the pathogenesis of PD.
Collapse
Affiliation(s)
- A S Glass
- Department of Medical Genetics, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Müftüoglu M, Elibol B, Dalmizrak O, Ercan A, Kulaksiz G, Ogüs H, Dalkara T, Ozer N. Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov Disord 2004; 19:544-8. [PMID: 15133818 DOI: 10.1002/mds.10695] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The parkin protein functions as a RING-type ubiquitin protein ligase. Considering the possibility that impaired ubiquitin-proteosomal system activity may impair antioxidant defenses and enhance oxidative stress, we have investigated the activity of mitochondrial respiratory enzymes in patients with parkin gene mutations. A significant decrease in the leukocyte complex I activity was found both in patients with parkin mutations (62.5%) and idiopathic PD (64.5%) compared with age-matched controls (P < 0.001). Complex IV activity was also decreased significantly in idiopathic PD patients (60%), but no difference was detected between controls and patients with parkin mutations.
Collapse
Affiliation(s)
- Meltem Müftüoglu
- Department of Biochemistry, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Schulz JB, Falkenburger BH. Neuronal pathology in Parkinson?s disease. Cell Tissue Res 2004; 318:135-47. [PMID: 15365812 DOI: 10.1007/s00441-004-0954-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Accepted: 07/05/2004] [Indexed: 10/26/2022]
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra leading to the major clinical and pharmacological abnormalities of PD. In order to establish causal or protective treatments for PD, it is necessary to identify the cascade of deleterious events that lead to the dysfunction and death of dopaminergic neurons. Based on genetic, neuropathological, and biochemical data in patients and experimental animal models, dysfunction of the ubiquitin-proteasome pathway, protein aggregation, mitochondrial dysfunction, oxidative stress, activation of the c-Jun N-terminal kinase pathway, and inflammation have all been identified as important pathways leading to excitotoxic and apoptotic death of dopaminergic neurons. Toxin-based and genetically engineered animal models allow (1) the study of the significance of these aspects and their interaction with each other and (2) the development of causal treatments to stop disease progression.
Collapse
Affiliation(s)
- Jörg B Schulz
- Department of Neurodegeneration and Neurorestoration, DFG Research Center "Molecular Physiology of the Brain" and Center of Neurology, University of Göttingen, Waldweg 33, 37073 Göttingen, Germany.
| | | |
Collapse
|
29
|
Hering R, Strauss KM, Tao X, Bauer A, Woitalla D, Mietz EM, Petrovic S, Bauer P, Schaible W, Müller T, Schöls L, Klein C, Berg D, Meyer PT, Schulz JB, Wollnik B, Tong L, Krüger R, Riess O. Novel homozygous p.E64D mutation in DJ1 in early onset Parkinson disease (PARK7). Hum Mutat 2004; 24:321-9. [PMID: 15365989 DOI: 10.1002/humu.20089] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mutations in the parkin gene have been identified as a common cause of autosomal recessive inherited Parkinson disease (PD) associated with early disease manifestation. However, based on linkage data, mutations in other genes contribute to the genetic heterogeneity of early-onset PD (EOPD). Recently, two mutations in the DJ1 gene were described as a second cause of autosomal recessive EOPD (PARK7). Analyzing the PARK7/DJ1 gene in 104 EOPD patients, we identified a third mutation, c.192G>C (p.E64D), associated with EOPD in a patient of Turkish ancestry and characterized the functional significance of this amino acid substitution. In the patient, a substantial reduction of dopamine uptake transporter (DAT) binding was found in the striatum using [(18)F]FP-CIT and PET, indicating a serious loss of presynaptic dopaminergic afferents. His sister, homozygous for E64D, was clinically unaffected but showed reduced dopamine uptake when compared with a clinically unaffected brother, who is heterozygous for E64D. We demonstrate by crystallography that the E64D mutation does not alter the structure of the DJ1 protein, however we observe a tendency towards decreased levels of the mutant protein when overexpressed in HEK293 or COS7 cells. Using immunocytochemistry in contrast to the homogenous nuclear and cytoplasmic staining in HEK293 cells overexpressing wild-type DJ1, about 5% of the cells expressing E64D and up to 80% of the cells expressing the recently described L166P mutation displayed a predominant nuclear localization of the mutant DJ1 protein.
Collapse
Affiliation(s)
- Robert Hering
- Department of Medical Genetics, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Krüger R. The role of synphilin-1 in synaptic function and protein degradation. Cell Tissue Res 2004; 318:195-9. [PMID: 15322916 DOI: 10.1007/s00441-004-0953-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 07/02/2004] [Indexed: 10/26/2022]
Abstract
The name synphilin-1 comes from its identification as an alpha-synuclein-interacting protein (SNCAIP) in yeast two-hybrid screens. Since alpha-synuclein ( PARK1) was the first gene identified as causing inherited forms of Parkinson's disease (PD), synphilin-1 was quickly implicated in neurodegeneration in PD. Recently, the first genetic evidence for the direct contribution of synphilin-1 in the pathogenesis of PD has been defined with the identification of an R621C mutation as a susceptibility factor for PD in two German patients. Extensive in vitro studies have determined the physiological functions of synphilin-1, identified novel synphilin-1-interacting proteins, and linked synphilin-1 to ubiquitin-mediated protein degradation. The present article provides an overview of the current concepts of the role of synphilin-1 in synaptic function and protein degradation and in the molecular mechanisms leading to neurodegeneration in PD.
Collapse
Affiliation(s)
- Rejko Krüger
- Neurodegeneration Laboratory, Department of General Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany.
| |
Collapse
|
31
|
Healy DG, Abou-Sleiman PM, Wood NW. Genetic causes of Parkinson?s disease: UCHL-1. Cell Tissue Res 2004; 318:189-94. [PMID: 15221445 DOI: 10.1007/s00441-004-0917-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 05/07/2004] [Indexed: 01/02/2023]
Abstract
The ubiquitin proteasome system is an important cellular pathway that ubiquitinates damaged proteins and degrades them via the 26S proteasome. Abnormalities of this pathway can result in molecular protein aggregation and have been associated with Parkinson's disease (PD). UCHL-1, an enzyme central to the system, possesses catalytic hydrolase activity that can hydrolyze peptide-ubiquitin bonds and recycle ubiquitin monomers for re-use in the same process. Recently, UCHL-1 has been shown to possess a second dimerisation-dependent ligase activity and, at least in vitro, this ligase activity promotes alpha synuclein aggregation. UCHL-1 was first implicated in PD by the discovery of an I93M mutation identified in a German sib-pair with probable autosomal dominant PD. Although no further UCHL-1 mutations have been identified, a common non-synonymous S18Y polymorphism has been suggested to reduce disease susceptibility in non-mendelian forms of PD. In vitro functional data support this protective effect, with evidence that S18Y possesses reduced ligase activity compared with wild type UCHL-1. One study has found increased hydrolase activity associated with S18Y, although another study has not. Important issues regarding UCHL-1 and its role in PD remain inconclusive, especially regarding the pathogenicity of the mendelian I93M mutation. This review tries to address some of these uncertainties.
Collapse
Affiliation(s)
- Daniel G Healy
- Department of Molecular Neuroscience, Institute of Neurology, Queen Square, WC1N 3BG, London, UK.
| | | | | |
Collapse
|
32
|
Marín I, Lucas JI, Gradilla AC, Ferrús A. Parkin and relatives: the RBR family of ubiquitin ligases. Physiol Genomics 2004; 17:253-63. [PMID: 15152079 DOI: 10.1152/physiolgenomics.00226.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in the parkin gene cause autosomal-recessive juvenile parkinsonism. Parkin encodes a ubiquitin-protein ligase characterized by having the RBR domain, composed of two RING fingers plus an IBR/DRIL domain. The RBR family is defined as the group of genes whose products contain an RBR domain. RBR family members exist in all eukaryotic species for which significant sequence data is available, including animals, plants, fungi, and several protists. The integration of comparative genomics with structural and functional data allows us to conclude that RBR proteins have multiple roles, not only in protein quality control mechanisms, but also as indirect regulators of transcription. A recently formulated hypothesis, based on a case of gene fusion, suggested that RBR proteins may be often part of cullin-containing ubiquitin ligase complexes. Recent data on Parkin protein agrees with that hypothesis. We discuss the involvement of RBR proteins in several neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Ignacio Marín
- Departamento de Genética, Universidad de Valencia, 46100 Burjassot, Valencia, Spain.
| | | | | | | |
Collapse
|
33
|
Krüger R, Fischer C, Schulte T, Strauss KM, Müller T, Woitalla D, Berg D, Hungs M, Gobbele R, Berger K, Epplen JT, Riess O, Schöls L. Mutation analysis of the neurofilament M gene in Parkinson's disease. Neurosci Lett 2004; 351:125-9. [PMID: 14583397 DOI: 10.1016/s0304-3940(03)00903-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurofilament M, a major component of Lewy bodies, represents an interesting candidate in the pathogenesis of Parkinson's disease (PD). We performed detailed mutation analyses of the NF-M gene in 322 familial and sporadic PD patients. Two polymorphisms (Ala475Thr and Gly697Arg) occurred at similar frequencies in PD patients and controls. A Pro725Gln substitution and a deletion of valine in position 829 were identified in two PD patients. These substitutions affect residues of the NF-M protein that are highly conserved among different species. None of our patients carried the Gly336Ser substitution, which has been described in familial PD. Our results argue against a major role of NF-M in PD. However, rare variants of the NF-M gene may act as susceptibility factors for PD and functional analyses of the identified variations are warranted to decipher possible mechanisms in neurodegeneration.
Collapse
Affiliation(s)
- Rejko Krüger
- Department of Neurology, Neurodegeneration Laboratory, University of Tübingen, Hoppe-Seyler-Strasse 3, D-72076, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ninkina N, Papachroni K, Robertson DC, Schmidt O, Delaney L, O'Neill F, Court F, Rosenthal A, Fleetwood-Walker SM, Davies AM, Buchman VL. Neurons expressing the highest levels of gamma-synuclein are unaffected by targeted inactivation of the gene. Mol Cell Biol 2003; 23:8233-45. [PMID: 14585981 PMCID: PMC262405 DOI: 10.1128/mcb.23.22.8233-8245.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Homologous recombination in ES cells was employed to generate mice with targeted deletion of the first three exons of the gamma-synuclein gene. Complete inactivation of gene expression in null mutant mice was confirmed on the mRNA and protein levels. Null mutant mice are viable, are fertile, and do not display evident phenotypical abnormalities. The effects of gamma-synuclein deficiency on motor and peripheral sensory neurons were studied by various methods in vivo and in vitro. These two types of neurons were selected because they both express high levels of gamma-synuclein from the early stages of mouse embryonic development but later in the development they display different patterns of intracellular compartmentalization of the protein. We found no difference in the number of neurons between wild-type and null mutant animals in several brain stem motor nuclei, in lumbar dorsal root ganglia, and in the trigeminal ganglion. The survival of gamma-synuclein-deficient trigeminal neurons in various culture conditions was not different from that of wild-type neurons. There was no difference in the numbers of myelinated and nonmyelinated fibers in the saphenous nerves of these animals, and sensory reflex thresholds were also intact in gamma-synuclein null mutant mice. Nerve injury led to similar changes in sensory function in wild-type and mutant mice. Taken together, our data suggest that like alpha-synuclein, gamma-synuclein is dispensable for the development and function of the nervous system.
Collapse
Affiliation(s)
- Natalia Ninkina
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, Scotland, U.K
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Son OL, Kim HT, Ji MH, Yoo KW, Rhee M, Kim CH. Cloning and expression analysis of a Parkinson’s disease gene, uch-L1, and its promoter in zebrafish. Biochem Biophys Res Commun 2003; 312:601-7. [PMID: 14680807 DOI: 10.1016/j.bbrc.2003.10.163] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Indexed: 11/30/2022]
Abstract
Three genes, alpha-synuclein, parkin, and ubiquitin C-terminal hydrolase L1 (UCH-L1), have been associated with inherited forms of Parkinson's disease (PD), although their in vivo functions have remained largely unknown. To develop an animal model for the molecular study of PD, we cloned zebrafish uch-L1 cDNA and its gene promoter. Sequence analysis revealed that the zebrafish Uch-L1 is highly homologous (79%) to the human UCH-L1, which is a member of the deubiquitinating enzymes. By whole-mount in situ hybridization, we examined the spatiotemporal expression of uch-L1 mRNA in developing zebrafish embryos. The uch-L1 mRNAs are detected in neuronal cells at the first day of embryo development. The expression domain of uch-L1 overlaps with that of tyrosine hydroxylase, a molecular marker for dopaminergic neurons, in the ventral diencephalon, an equivalent structure to the substantia nigra where PD progresses in human. To further analyze the tissue-specific regulation of uch-L1 gene expression, we also tested its gene promoter activity and showed a preferential neuronal expression in transient transgenic zebrafish embryos. These results suggest that uch-L1 may have an important role in the development of neuronal cells in early embryos as well as in the degeneration and disease of neuronal cells in late adult brain.
Collapse
Affiliation(s)
- Ok-Lye Son
- Department of Biology, Chungnam National University, Daejeon 305-764, South Korea
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is primarily characterized by the degeneration of dopaminergic neurons in the nigrostriatal pathway. The pathology of PD is typified by the presence of cytoplasmic inclusions (Lewy bodies) containing alpha-synuclein and ubiquitin. The pathogenesis of PD is not completely understood but environmental and genetic factors are thought to play important roles. To understand the pathophysiology of PD, and to develop novel therapies for improved symptomatic management, it is important to have relevant disease models. In this review, we summarize the available in vivo and in vitro models of PD and discuss their value.
Collapse
Affiliation(s)
- Shun Shimohama
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyoku, 606-8507 Kyoto, Japan.
| | | | | | | |
Collapse
|
37
|
Goellner GM, Rechsteiner M. Are Huntington's and polyglutamine-based ataxias proteasome storage diseases? Int J Biochem Cell Biol 2003; 35:562-71. [PMID: 12672449 DOI: 10.1016/s1357-2725(02)00388-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To date, 10 neurological diseases, including Huntington's and several ataxias, are caused by a lengthening of glutamine (Q) tracts in various proteins. Even though the Q expansions arise in unrelated proteins, the diseases share three striking features: (1) 35 contiguous glutamines constitutes the pathological threshold for 9 of the 10 diseases; (2) the Q-expanded proteins are expressed in many tissues, yet pathology is largely restricted to neurons; and (3) the Q-expanded proteins or fragments thereof form nuclear inclusions that also contain ubiquitin, proteasomes and chaperones. Our studies of the proteasome activator REGgamma suggest a possible explanation for these shared properties. REGgamma is highly expressed in brain, located in the nucleus and actually suppresses the proteasome active sites principally responsible for cleaving glutamine-MCA bonds. These observations coupled with reports that peptides longer than 35 residues, the polyQ pathology threshold, are unable to diffuse out of the proteasome suggest the following hypothesis. Proteins containing long glutamine tracts are efficiently pumped into REGgamma-capped 26S proteasomes, but REGgamma suppression of cleavage after glutamine produces polyQ fragments too long to diffuse out of the 20S proteolytic core thereby inactivating the 26S proteasome. In effect, we hypothesize that the polyQ pathologies may be proteasomal storage diseases analogous to disorders of lysosome catabolism.
Collapse
Affiliation(s)
- Geoffrey M Goellner
- Department of Biochemistry, University of Utah, 50 N Medical Drive, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
38
|
|
39
|
Abstract
Genetic studies in families with mendelian inheritance of Parkinson's disease (PD) have reported the cloning of several disease-associated genes. These studies of rare familial forms of the disease have cast doubt on our understanding of the role of genetics in typical PD and have complicated the classification of the disorder. However, this genetic information might help us to construct a hypothesis for the pathogenetic processes that underlie PD. In this review we describe the molecular genetics of PD as currently understood to help explain the pathways that underlie neurodegeneration.
Collapse
Affiliation(s)
- John Hardy
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
40
|
Salehi A, Delcroix JD, Mobley WC. Traffic at the intersection of neurotrophic factor signaling and neurodegeneration. Trends Neurosci 2003; 26:73-80. [PMID: 12536130 DOI: 10.1016/s0166-2236(02)00038-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Advances in understanding the biology of neurotrophic factors and their signaling pathways have provided important insights into the normal growth, differentiation and maintenance of neurons. Stimulated by neuropathological observations and genetic discoveries, studies in cell and animal models of neurodegenerative disorders have begun to clarify pathogenetic mechanisms. We examine the intersection of these research themes and identify several potential mechanisms for linking failed neurotrophic factor signaling to neurodegeneration. Studies of nerve growth factor signaling in a mouse model of Down syndrome encourage the views that neuronal dysfunction and atrophy might be linked to failed neurotrophic support and that additional studies focused on this possibility would enhance our understanding of the mechanisms of neurodegenerative disorders and their treatment.
Collapse
Affiliation(s)
- Ahmad Salehi
- Department of Neurology and Neurological Sciences, Stanford University Medical Center, 1201Welch Rd, MSLS Building, Stanford, CA 94305-5489, USA.
| | | | | |
Collapse
|
41
|
Inzelberg R, Schecthman E, Paleacu D, Zach L, Bonwitt R, Carasso RL, Nisipeanu P. Onset and progression of disease in familial and sporadic Parkinson's disease. ACTA ACUST UNITED AC 2003; 124A:255-8. [PMID: 14708097 DOI: 10.1002/ajmg.a.20405] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lately different and rare genetic forms of Parkinson's disease (PD) have been described. Complete genomic screening has suggested that still undefined multiple genetic factors might underlie the development of PD. The course of PD patients with and without genetic background might be different. We compared the age at onset and progression of PD with (FH) and without (NFH) family history. Two hundred forty PD patients attending the outpatient Movement Disorders Clinic were evaluated. The age of onset (AO), the duration of disease until stage III of Hoehn and Yahr (YST3), until dementia (YDEM) and family history of PD were determined by interview, examination of medical files and of affected family members. Patients with young onset who reported another PD patient among their siblings were tested for parkin mutations. Statistical analysis used ANOVA, Fisher's Least Significant Difference, log-rank and Wilcoxon's tests for Kaplan-Meier survival curves taking stage III and dementia as end-points. Of the 240 patients (age 73.3 +/- 10.9 years), 29 (12%) had positive FH. Six of them carried parkin mutations. The AO was 33.5 +/- 8.1 (range 19-42) years for parkin carriers, 59.3 +/- 11.3 (range 34-76) for FH and 66.5 +/- 11.8 (27-91) years for NFH (P < 0.0001). The three groups were significantly different from each other (alpha = 0.05). Stage III and dementia were reached only in non-parkin patients. YST3 was 12.6 +/- 6.6 years for FH and 6.5 +/- 5.0 years for NFH (P < 0.0001). YDEM was 10.1 +/- 6.0 years for FH versus 4.7 +/- 4.5 years for NFH (P = 0.002). Kaplan-Meier survival analysis revealed faster motor (P = 0.0016) and mental decline (P = 0.02) in NFH versus FH. Our results showed that the AO of PD is younger in patients with FH. Motor and mental deterioration, however, showed a less steep course in familial PD patients.
Collapse
Affiliation(s)
- R Inzelberg
- Department of Neurology, Hillel Yaffe Medical Center, Hadera, Israel.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Treatment of neurodegenerative diseases, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis (ALS), represents a major challenge for the pharmaceutical industry. These disorders have common and unique molecular pathological characteristics that result in serious reductions in nervous-system functionality. Key to developing novel and efficacious therapeutics is the discovery of new gene targets. Genomic, proteomics and bioinformatic analyses are identifying vast amounts of genes whose expression is associated with the pathology of a specific disease. Extensive validation studies performed in parallel with drug development are crucial for the selection of appropriate target genes. This review outlines some of the current progress in gene discovery for neurodegenerative disease.
Collapse
|
43
|
Lotharius J, Brundin P. Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 2002; 3:932-42. [PMID: 12461550 DOI: 10.1038/nrn983] [Citation(s) in RCA: 879] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Julie Lotharius
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Department of Physiological Sciences, Lund University, BMC A10, 221 84 Lund, Sweden.
| | | |
Collapse
|
44
|
Ubl A, Berg D, Holzmann C, Krüger R, Berger K, Arzberger T, Bornemann A, Riess O. 14-3-3 protein is a component of Lewy bodies in Parkinson's disease-mutation analysis and association studies of 14-3-3 eta. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 108:33-9. [PMID: 12480176 DOI: 10.1016/s0169-328x(02)00510-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mutations in alpha-synuclein have been identified in some rare families with autosomal dominant Parkinson's disease (PD). The synuclein gene family shares physical and functional homology with 14-3-3 proteins and binds to 14-3-3 proteins and to its ligands. We therefore investigated whether 14-3-3 proteins are also involved in the pathogenesis of PD. Here we demonstrate that 14-3-3 proteins are colocalized with Lewy bodies in PD. We investigated the 14-3-3 eta (YWHAH) gene by mutation analysis and association studies as it maps to human chromosome 22q12.1-q13.1, a region which has been recently implicated in PD and carried out immunohistochemical studies of Lewy bodies with two different 14-3-3 eta antibodies. In 358 sporadic and familial PD patients, disease causing mutations were not identified. Furthermore, association studies with intragenic polymorphisms do not provide evidence for an involvement of 14-3-3 eta in the pathogenesis of PD. In accordance with these findings, there was no staining of substantia nigra Lewy bodies with antibodies specific for the 14-3-3 eta subunit.
Collapse
Affiliation(s)
- Andreas Ubl
- Department of Medical Genetics, Children's Hospital, University Rostock, Rembrandt Str. 16/17, Germany
| | | | | | | | | | | | | | | |
Collapse
|