1
|
Kumar V, Turnbull WB. Targeted delivery of oligonucleotides using multivalent protein-carbohydrate interactions. Chem Soc Rev 2023; 52:1273-1287. [PMID: 36723021 PMCID: PMC9940626 DOI: 10.1039/d2cs00788f] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 02/02/2023]
Abstract
Cell surface protein-carbohydrate interactions are essential for tissue-specific recognition and endocytosis of viruses, some bacteria and their toxins, and many glycoproteins. Often protein-carbohydrate interactions are multivalent - multiple copies of glycans bind simultaneously to multimeric receptors. Multivalency enhances both affinity and binding specificity, and is of interest for targeted delivery of drugs to specific cell types. The first such example of carbohydrate-mediated drug delivery to reach the clinic is Givosiran, a small interfering ribonucleic acid (siRNA) that is conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand. This ligand enables efficient uptake of the nucleic acid by the asialoglycoprotein receptor (ASGP-R) on hepatocytes. Synthetic multivalent ligands for ASGP-R were among the first 'cluster glycosides' developed at the birth of multivalent glycoscience around 40 years ago. In this review we trace the history of 'GalNAc targeting' from early academic studies to current pharmaceuticals and consider what other opportunities could follow the success of this delivery technology.
Collapse
Affiliation(s)
- Vajinder Kumar
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab, India.
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
2
|
He Y, Wang C, Liang Q, Guo R, Jiang J, Shen W, Hu K. PKHB1 peptide induces antiviral effects through induction of immunogenic cell death in herpes simplex keratitis. Front Pharmacol 2022; 13:1048978. [PMID: 36532743 PMCID: PMC9751201 DOI: 10.3389/fphar.2022.1048978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/09/2022] [Indexed: 12/26/2023] Open
Abstract
Herpes simplex keratitis (HSK) is a severe, infectious corneal disease caused by herpes simplex virus type 1 (HSV-1) infection. The increasing prevalence of acyclovir resistance, the side effects of hormonal drugs, and the ease of recurrence after surgery have made it crucial to develop new methods of treating HSK. HSV-1 evades the host immune response through various mechanisms. Therefore, we explored the role of the immunogenic cell death inducer PKHB1 peptide in HSK. After subconjunctival injection of PKHB1 peptide, we observed the ocular surface lesions and survival of HSK mice and detected the virus levels in tear fluid, corneas, and trigeminal ganglions. We found that PKHB1 peptide reduced HSV-1 levels in the eye and alleviated the severity of HSK. Moreover, it increased the number of corneal infiltrating antigen-presenting cells (APCs), such as macrophages and dendritic cells, and CD8+ T cells in ocular draining lymph nodes. We further observed that PKHB1 peptide promoted the exposure of calreticulin, as well as the release of ATP and high-mobility group box 1 in HSV-1-infected cells in vitro. Our findings suggested that PKHB1 peptide promoted the recruitment and maturation of APCs by inducing the release of large amounts of damage-associated molecular patterns from infected cells. APCs then phagocytized antigenic materials and translocated to the lymph nodes, triggering a cytotoxic T lymphocyte-dependent immune response that ultimately alleviated HSK.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kai Hu
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Arnold JN, Mitchell DA. Tinker, tailor, soldier, cell: the role of C-type lectins in the defense and promotion of disease. Protein Cell 2022; 14:4-16. [PMID: 36726757 PMCID: PMC9871964 DOI: 10.1093/procel/pwac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
C-type lectins (CTLs) represent a large family of soluble and membrane-bound proteins which bind calcium dependently via carbohydrate recognition domains (CRDs) to glycan residues presented on the surface of a variety of pathogens. The deconvolution of a cell's glycan code by CTLs underpins several important physiological processes in mammals such as pathogen neutralization and opsonization, leukocyte trafficking, and the inflammatory response. However, as our knowledge of CTLs has developed it has become apparent that the role of this innate immune family of proteins can be double-edged, where some pathogens have developed approaches to subvert and exploit CTL interactions to promote infection and sustain the pathological state. Equally, CTL interactions with host glycoproteins can contribute to inflammatory diseases such as arthritis and cancer whereby, in certain contexts, they exacerbate inflammation and drive malignant progression. This review discusses the 'dual agent' roles of some of the major mammalian CTLs in both resolving and promoting infection, inflammation and inflammatory disease and highlights opportunities and emerging approaches for their therapeutic modulation.
Collapse
|
4
|
Cui H, Shen X, Zheng Y, Guo P, Gu Z, Gao Y, Zhao X, Cheng H, Xu J, Chen X, Ding Z. Identification, expression patterns, evolutionary characteristics and recombinant protein activities analysis of CD209 gene from Megalobrama amblycephala. FISH & SHELLFISH IMMUNOLOGY 2022; 126:47-56. [PMID: 35568142 DOI: 10.1016/j.fsi.2022.04.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
CD209 is a type II transmembrane protein in the C-type lectin family, which is involved in the regulation of innate and adaptive immune system. Although it has been widely studied in mammals, but little has been reported about fish CD209 genes. In the present study, Megalobrama amblycephala CD209 (MaCD209) gene was cloned and characterized, its expression patterns, evolutionary characteristics, agglutinative and bacteriostatic activities were analyzed. These results showed that the open reading frame (ORF) of MaCD209 gene was 795 bp, encoding 264 aa, and the calculated molecular weight of the encoded protein was 29.7 kDa. MaCD209 was predicted to contain 2 N-glycosylation sites, 1 functional domain (C-LECT-DC-SIGN-like) and 1 transmembrane domain. Multiple sequence alignment showed that the amino acid sequence of MaCD209 was highly homologous with that of partial fishes, especially the highly conserved C-LECT-DC-SIGN-like domain and functional sites of CD209. Phylogenetic analysis showed that the CD209 genes from M. amblycephala and other cypriniformes fishes were clustered into one group, which was reliable and could be used for evolutionary analysis. Then, adaptive evolutionary analysis of teleost CD209 was conducted, and several positively selected sites were identified using site and branch-site models. Quantitative real-time PCR analysis showed that MaCD209 gene was highly expressed in the liver and heart. Moreover, the expression of MaCD209 was significantly induced upon Aeromonas hydrophila infection, with the peak levels at 4 h or 12 h post infection. The immunohistochemical analysis also revealed increased distribution of MaCD209 protein post bacterial infection. In addition, recombinant MaCD209 (rMaCD209) protein was prepared using a pET32a expression system, which showed excellent bacterial binding and agglutinative activities in a Ca2+-independent manner. However, rMaCD209 could only inhibit the proliferation of Escherichia coli rather than A. hydrophila. In conclusion, this study identified the MaCD209 gene, detected its expression and evolutionary characteristics, and evaluated the biological activities of rMaCD209 protein, which would provide a theoretical basis for understanding the evolution and functions of fish CD209 genes.
Collapse
Affiliation(s)
- Hujun Cui
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiaoxue Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yancui Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Peng Guo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhaotian Gu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yanan Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiaoheng Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
5
|
Li J, Chen S, Li Y, Zhu Z, Huang H, Wang W, Yang Y, Liang Y, Shu L. Comprehensive Profiling Analysis of CD209 in Malignancies Reveals the Therapeutic Implication for Tumor Patients Infected With SARS-CoV-2. Front Genet 2022; 13:883234. [PMID: 35783255 PMCID: PMC9247358 DOI: 10.3389/fgene.2022.883234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is known to be caused by the virus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is characterized by pneumonia, cytokine storms, and lymphopenia. Patients with malignant tumors may be particularly vulnerable to SARS-CoV-2 infection and possibly more susceptible to severe complications due to immunosuppression. Recent studies have found that CD209 (DC-SIGN) might be a potential binding receptor for SARS-CoV-2 in addition to the well-known receptor ACE2. However, pan-cancer studies of CD209 remain unclear. In this study, we first comprehensively investigated the expression profiles of CD209 in malignancies in both pan-carcinomas and healthy tissues based on bioinformatic techniques. The CD209 expression declined dramatically in various cancer types infected by SARS-CoV-2. Remarkably, CD209 was linked with diverse immune checkpoint genes and infiltrating immune cells. These findings indicate that the elevation of CD209 among specific cancer patients may delineate a mechanism accounting for a higher vulnerability to infection by SARS-CoV-2, as well as giving rise to cytokine storms. Taken together, CD209 plays critical roles in both immunology and metabolism in various cancer types. Pharmacological inhibition of CD209 antigen (D-mannose), together with other anti-SARS-CoV-2 strategies, might provide beneficial therapeutic effects in specific cancer patients.
Collapse
Affiliation(s)
- Jinyuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuzhao Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ziang Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hanying Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weida Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yao Yang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Yang Liang, ; Lingling Shu,
| | - Lingling Shu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, SAR, China
- *Correspondence: Yang Liang, ; Lingling Shu,
| |
Collapse
|
6
|
Eshaghi B, Fofana J, Nodder SB, Gummuluru S, Reinhard BM. Virus-Mimicking Polymer Nanoparticles Targeting CD169 + Macrophages as Long-Acting Nanocarriers for Combination Antiretrovirals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2488-2500. [PMID: 34995059 PMCID: PMC9126061 DOI: 10.1021/acsami.1c17415] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Monosialodihexosylganglioside (GM3)-presenting lipid-coated polymer nanoparticles (NPs) that recapitulate the sequestration of human immunodeficiency virus-1 (HIV-1) particles in CD169+ virus-containing compartments (VCCs) of macrophages were developed as carriers for delivery and sustained release of a combination of two antiretrovirals (ARVs), rilpivirine (RPV) and cabotegravir (CAB). RPV and CAB were co-loaded into GM3-presenting lipid-coated polylactic acid (PLA) and poly(lactic-co-glycolic acid) (PLGA) NPs without loss in potency of the drugs. GM3-presenting PLA NPs demonstrated the most favorable release properties and achieved inhibition of HIV-1 infection of primary human macrophages for up to 35 days. Intracellular localization of GM3-presenting PLA NPs in VCCs correlated with retention of intracellular ARV concentrations and sustained inhibition of HIV-1 infection. This work elucidates the design criteria of lipid-coated polymer NPs to utilize CD169+ macrophages as cellular drug depots for eradicating the viral reservoir sites or to achieve long-acting prophylaxis against HIV-1 infection.
Collapse
Affiliation(s)
- Behnaz Eshaghi
- Departments of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, United States
| | - Josiane Fofana
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Sarah B. Nodder
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Björn M. Reinhard
- Departments of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, United States
| |
Collapse
|
7
|
Abstract
Infectious diseases pose two main compelling issues. First, the identification of the molecular factors that allow chronic infections, that is, the often completely asymptomatic coexistence of infectious agents with the human host. Second, the definition of the mechanisms that allow the switch from pathogen dormancy to pathologic (re)activation. Furthering previous studies, the present study (1) analyzed the frequency of occurrence of synonymous codons in coding DNA, that is, codon usage, as a genetic tool that rules protein expression; (2) described how human codon usage can inhibit protein expression of infectious agents during latency, so that pathogen genes the codon usage of which does not conform to the human codon usage cannot be translated; and (3) framed human codon usage among the front-line instruments of the innate immunity against infections. In parallel, it was shown that, while genetics can account for the molecular basis of pathogen latency, the changes of the quantitative relationship between codon frequencies and isoaccepting tRNAs during cell proliferation offer a biochemical mechanism that explains the pathogen switching to (re)activation. Immunologically, this study warns that using codon optimization methodologies can (re)activate, potentiate, and immortalize otherwise quiescent, asymptomatic pathogens, thus leading to uncontrollable pandemics.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
8
|
Expression of the human or porcine C-type lectins DC-SIGN/L-SIGN confers susceptibility to porcine epidemic diarrhea virus entry and infection in otherwise refractory cell lines. Microb Pathog 2021; 157:104956. [PMID: 34022357 DOI: 10.1016/j.micpath.2021.104956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus that causes great economic losses in the porcine industry. Although the functional receptor for the virus has not been identified, multiple isolates are able to infect different cell lines. Recently, it has been shown that the human C-type lectin DC-SIGN/L-SIGN (hDC-SIGN/L-SIGN) can promote entry of several coronaviruses. Here we examined whether hDC-SIGN/L-SIGN and its porcine homolog (pDC-SIGN) are entry determinants for PEDV. Expression of hDC-SIGN/L-SIGN or pDC-SIGN in refractory cells dramatically increased infection by a recombinant PEDV expressing green fluorescent protein. In both cases, lectin-mediated infection was inhibited by mannan or anti-hDC-SIGN/L-SIGN or pDC-SIGN antibodies; however, d-galactose had no effect on the virus-infected cells. Our results demonstrate that hDC-SIGN/L-SIGN or pDC-SIGN can mediate the cellular entry and propagation of PEDV, which provides a new theoretical basis for further understanding the infection mechanism of PEDV, and will be helpful for the development of novel therapeutic agents.
Collapse
|
9
|
Lim CX, Lee B, Geiger O, Passegger C, Beitzinger M, Romberger J, Stracke A, Högenauer C, Stift A, Stoiber H, Poidinger M, Zebisch A, Meister G, Williams A, Flavell RA, Henao-Mejia J, Strobl H. miR-181a Modulation of ERK-MAPK Signaling Sustains DC-SIGN Expression and Limits Activation of Monocyte-Derived Dendritic Cells. Cell Rep 2021; 30:3793-3805.e5. [PMID: 32187550 DOI: 10.1016/j.celrep.2020.02.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/29/2019] [Accepted: 02/20/2020] [Indexed: 01/10/2023] Open
Abstract
DC-SIGN+ monocyte-derived dendritic cells (mo-DCs) play important roles in bacterial infections and inflammatory diseases, but the factors regulating their differentiation and proinflammatory status remain poorly defined. Here, we identify a microRNA, miR-181a, and a molecular mechanism that simultaneously regulate the acquisition of DC-SIGN expression and the activation state of DC-SIGN+ mo-DCs. Specifically, we show that miR-181a promotes DC-SIGN expression during terminal mo-DC differentiation and limits its sensitivity and responsiveness to TLR triggering and CD40 ligation. Mechanistically, miR-181a sustains ERK-MAPK signaling in mo-DCs, thereby enabling the maintenance of high levels of DC-SIGN and a high activation threshold. Low miR-181a levels during mo-DC differentiation, induced by inflammatory signals, do not support the high phospho-ERK signal transduction required for DC-SIGNhi mo-DCs and lead to development of proinflammatory DC-SIGNlo/- mo-DCs. Collectively, our study demonstrates that high DC-SIGN expression levels and a high activation threshold in mo-DCs are linked and simultaneously maintained by miR-181a.
Collapse
Affiliation(s)
- Clarice X Lim
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria; DK Inflammation & Immunity Program, Medical University of Vienna, 1090 Vienna, Austria
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Biopolis, 138648 Singapore, Singapore
| | - Olivia Geiger
- Division of Hematology, Medical University of Graz, 8010 Graz, Austria
| | - Christina Passegger
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Michaela Beitzinger
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, 93053 Regensburg, Germany
| | - Johann Romberger
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Anika Stracke
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Christoph Högenauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Anton Stift
- Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Biopolis, 138648 Singapore, Singapore
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, 8010 Graz, Austria; Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Gunter Meister
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, 93053 Regensburg, Germany
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Jorge Henao-Mejia
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Herbert Strobl
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
10
|
Chang M, Hou Z, Wang M, Li C, Lin J. Recent Advances in Hyperthermia Therapy-Based Synergistic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004788. [PMID: 33289219 DOI: 10.1002/adma.202004788] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Indexed: 06/12/2023]
Abstract
The past decades have witnessed hyperthermia therapy (HTT) as an emerging strategy against malignant tumors. Nanomaterial-based photothermal therapy (PTT) and magnetic hyperthermia (MHT), as highly effective and noninvasive treatment models, offer advantages over other strategies in the treatment of different types of tumors. However, both PTT and MHT cannot completely cure cancer due to recurrence and distal metastasis. In recent years, cancer immunotherapy has attracted widespread attention owing to its capability to activate the body's own natural defense to identify, attack, and eradicate cancer cells. Significant efforts have been devoted to studying the activated immune responses caused by hyperthermia-ablated tumors. In this article, the synergistic mechanism of HTT in immunotherapy, including immunogenic cell death and reversal of the immunosuppressive tumor microenvironment is discussed. The reports of the combination of HTT or HTT-based multimodal therapy with immunotherapy, including immunoadjuvant exploitation, immune checkpoint blockade therapy, and adoptive cellular immunotherapy are summarized. As highlighted, these strategies could achieve synergistically enhanced therapeutic outcomes against both primary tumors and metastatic lesions, prevent cancer recurrence, and prolong the survival period. Finally, current challenges and prospective developments in HTT-synergized immunotherapy are also reviewed.
Collapse
Affiliation(s)
- Mengyu Chang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangdong, 511436, P. R. China
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
11
|
Valverde P, Martínez JD, Cañada FJ, Ardá A, Jiménez-Barbero J. Molecular Recognition in C-Type Lectins: The Cases of DC-SIGN, Langerin, MGL, and L-Sectin. Chembiochem 2020; 21:2999-3025. [PMID: 32426893 PMCID: PMC7276794 DOI: 10.1002/cbic.202000238] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Carbohydrates play a pivotal role in intercellular communication processes. In particular, glycan antigens are key for sustaining homeostasis, helping leukocytes to distinguish damaged tissues and invading pathogens from healthy tissues. From a structural perspective, this cross-talk is fairly complex, and multiple membrane proteins guide these recognition processes, including lectins and Toll-like receptors. Since the beginning of this century, lectins have become potential targets for therapeutics for controlling and/or avoiding the progression of pathologies derived from an incorrect immune outcome, including infectious processes, cancer, or autoimmune diseases. Therefore, a detailed knowledge of these receptors is mandatory for the development of specific treatments. In this review, we summarize the current knowledge about four key C-type lectins whose importance has been steadily growing in recent years, focusing in particular on how glycan recognition takes place at the molecular level, but also looking at recent progresses in the quest for therapeutics.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - J Daniel Martínez
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - F Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940, Leioa, Spain
| |
Collapse
|
12
|
Naqvi KF, Endsley JJ. Myeloid C-Type Lectin Receptors in Tuberculosis and HIV Immunity: Insights Into Co-infection? Front Cell Infect Microbiol 2020; 10:263. [PMID: 32582566 PMCID: PMC7283559 DOI: 10.3389/fcimb.2020.00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
C-type lectin receptors (CLRs) are carbohydrate binding pattern recognition receptors (PRRs) which play a central role in host recognition of pathogenic microorganisms. Signaling through CLRs displayed on antigen presenting cells dictates important innate and adaptive immune responses. Several pathogens have evolved mechanisms to exploit the receptors or signaling pathways of the CLR system to gain entry or propagate in host cells. CLR responses to high priority pathogens such as Mycobacterium tuberculosis (Mtb), HIV, Ebola, and others are described and considered potential avenues for therapeutic intervention. Mtb and HIV are the leading causes of death due to infectious disease and have a synergistic relationship that further promotes aggressive disease in co-infected persons. Immune recognition through CLRs and other PRRs are important determinants of disease outcomes for both TB and HIV. Investigations of CLR responses to Mtb and HIV, to date, have primarily focused on single infection outcomes and do not account for the potential effects of co-infection. This review will focus on CLRs recognition of Mtb and HIV motifs. We will describe their respective roles in protective immunity and immune evasion or exploitation, as well as their potential as genetic determinants of disease susceptibility, and as avenues for development of therapeutic interventions. The potential convergence of CLR-driven responses of the innate and adaptive immune systems in the setting of Mtb and HIV co-infection will further be discussed relevant to disease pathogenesis and development of clinical interventions.
Collapse
Affiliation(s)
- Kubra F Naqvi
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Janice J Endsley
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
13
|
Souza ACO, Favali C, Soares NC, Tavares NM, Jerônimo MS, Veloso Junior PH, Marina CL, Santos C, Brodskyn C, Bocca AL. New Role of P. brasiliensis α-Glucan: Differentiation of Non-conventional Dendritic Cells. Front Microbiol 2019; 10:2445. [PMID: 31736892 PMCID: PMC6833476 DOI: 10.3389/fmicb.2019.02445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/11/2019] [Indexed: 01/22/2023] Open
Abstract
The cell wall has a critical role in the host immune response to fungal pathogens. In this study, we investigated the influence of two cell wall fractions of the dimorphic fungi Paracoccidioides brasiliensis (Pb) in the in vitro generation of monocyte-derived dendritic cells (MoDCs). Monocytes were purified from the peripheral blood of healthy donors and cultivated for 7 days in medium supplemented with IL-4 and GM-CSF in the presence of Pb cell wall fractions: the alkali-insoluble F1, constituted by β-1,3-glucans, chitin and proteins, and the alkali-soluble F2, mainly constituted by α-glucan. MoDCs phenotypes were evaluated regarding cell surface expression of CD1a, DC-SIGN, HLA-DR, CD80, and CD83 and production of cytokines. The α-glucan-rich cell wall fraction downregulated the differentiation of CD1a+ MoDCs, a dendritic cell subset that stimulate Th1 responses. The presence of both cell fractions inhibited DC-SIGN and HLA-DR expression, while the expression of maturation markers was differentially induced in CD1a– MoDCs. Differentiation upon F1 and F2 stimulation induced mixed profile of inflammatory cytokines. Altogether, these data demonstrate that Pb cell wall fractions differentially induce a dysregulation in DCs differentiation. Moreover, our results suggest that cell wall α-glucan promote the differentiation of CD1a– DCs, potentially favoring Th2 polarization and contributing to pathogen persistence.
Collapse
Affiliation(s)
| | - Cecília Favali
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | | | | | | | | | - Clara Luna Marina
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Claire Santos
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Cláudia Brodskyn
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | | |
Collapse
|
14
|
Valverde P, Delgado S, Martínez JD, Vendeville JB, Malassis J, Linclau B, Reichardt NC, Cañada FJ, Jiménez-Barbero J, Ardá A. Molecular Insights into DC-SIGN Binding to Self-Antigens: The Interaction with the Blood Group A/B Antigens. ACS Chem Biol 2019; 14:1660-1671. [PMID: 31283166 PMCID: PMC6646960 DOI: 10.1021/acschembio.9b00458] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The
dendritic cell-specific intracellular adhesion molecule-3-grabbing
nonintegrin (DC-SIGN) is an important receptor of the immune system.
Besides its role as pathogen recognition receptor (PRR), it also interacts
with endogenous glycoproteins through the specific recognition of
self-glycan epitopes, like LeX. However, this lectin represents
a paradigmatic case of glycan binding promiscuity, and it also has
been shown to recognize antigens with α1−α2 linked
fucose, such as the histo blood group antigens, with similar affinities
to LeX. Herein, we have studied the interaction in solution
between DC-SIGN and the blood group A and B antigens, to get insights
into the atomic details of such interaction. With a combination of
different NMR experiments, we demonstrate that the Fuc coordinates
the primary Ca2+ ion with a single binding mode through
3-OH and 4-OH. The terminal αGal/αGalNAc affords marginal
direct polar contacts with the protein, but provides a hydrophobic
hook in which V351 of the lectin perfectly fits. Moreover, we have
found that αGal, but not αGalNAc, is a weak binder itself
for DC-SIGN, which could endow an additional binding mode for the
blood group B antigen, but not for blood group A.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Sandra Delgado
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - J. Daniel Martínez
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | | | - Julien Malassis
- School of Chemistry, University of Southampton Highfield, Southampton SO17 1BJ, United Kingdom
| | - Bruno Linclau
- School of Chemistry, University of Southampton Highfield, Southampton SO17 1BJ, United Kingdom
| | | | | | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Bizkaia, Spain
- Department of Organic Chemistry II Faculty of Science and Technology, University of the Basque Country, EHU-UPV, Leioa, Spain
| | - Ana Ardá
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| |
Collapse
|
15
|
Santos K, Lukka PB, Grzegorzewicz A, Jackson M, Trivedi A, Pavan F, Chorilli M, Braunstein M, Hickey A, Meibohm B, Gonzalez-Juarrero M. Primary Lung Dendritic Cell Cultures to Assess Efficacy of Spectinamide-1599 Against Intracellular Mycobacterium tuberculosis. Front Microbiol 2018; 9:1895. [PMID: 30186246 PMCID: PMC6110900 DOI: 10.3389/fmicb.2018.01895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/27/2018] [Indexed: 01/12/2023] Open
Abstract
There is an urgent need to treat tuberculosis (TB) quickly, effectively and without side effects. Mycobacterium tuberculosis (Mtb), the causative organism of TB, can survive for long periods of time within macrophages and dendritic cells and these intracellular bacilli are difficult to eliminate with current drug regimens. It is well established that Mtb responds differentially to drug treatment depending on its extracellular and intracellular location and replicative state. In this study, we isolated and cultured lung derived dendritic cells to be used as a screening system for drug efficacy against intracellular mycobacteria. Using mono- or combination drug treatments, we studied the action of spectinamide-1599 and pyrazinamide (antibiotics targeting slow-growing bacilli) in killing bacilli located within lung derived dendritic cells. Furthermore, because IFN-γ is an essential cytokine produced in response to Mtb infection and present during TB chemotherapy, we also assessed the efficacy of these drugs in the presence and absence of IFN-γ. Our results demonstrated that monotherapy with either spectinamide-1599 or pyrazinamide can reduce the intracellular bacterial burden by more than 99.9%. Even more impressive is that when TB infected lung derived dendritic cells are treated with spectinamide-1599 and pyrazinamide in combination with IFN-γ a strong synergistic effect was observed, which reduced the intracellular burden below the limit of detection. We concluded that IFN-γ activation of lung derived dendritic cells is essential for synergy between spectinamide-1599 and pyrazinamide.
Collapse
Affiliation(s)
- Karen Santos
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, United States.,School of Pharmaceutical Sciences, São Paulo State University, São Paulo, Brazil
| | - Pradeep B Lukka
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Anne Grzegorzewicz
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, United States
| | - Ashit Trivedi
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fernando Pavan
- School of Pharmaceutical Sciences, São Paulo State University, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, São Paulo, Brazil
| | - Miriam Braunstein
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Anthony Hickey
- Discovery Science and Technology, RTI International, Durham, NC, United States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
16
|
Iqbal K, Imran M, Ullah S, Jamal M, Waheed Y, Ali Q. Correlation of Apolipoprotein B mRNA-editing Enzyme, Catalytic Polypeptide- like 3G Genetic Variant rs8177832 with HIV-1 Predisposition in Pakistani Population. Curr HIV Res 2018; 16:297-301. [PMID: 30338740 PMCID: PMC6416456 DOI: 10.2174/1570162x16666181018155827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Human immunodeficiency virus (HIV) infection is a global health burden which ultimately results in acquired immune deficiency syndrome (AIDS). There are multiple host factors which are capable of limiting HIV-1 replication. One of the most important host factors which inhibit HIV-1 DNA synthesis is the apolipoprotein B mRNA-editing enzyme, catalytic polypeptide- like 3G (APOBEC3G). Any genetic variation of this important host factor may influence the host susceptibility to viral infection. OBJECTIVE The aim of the current study was to evaluate any correlation of APOBEC3G genetic variation rs8177832 with HIV-1 infection. METHODS The study involved 142 healthy control and 100 HIV-1 infected subjects. The genetic variation rs8177832 of all studied subjects was determined by allele-specific polymerase chain reaction (AS-PCR). RESULTS The results showed that the distribution of rs8177832 genotypes AA, AG and GG in healthy subjects and HIV-1 subjects was; 42.253%, 42.957%, 14.788% and 66%, 27%, 7% respectively. Statistical analyses of data showed that there was a significant variation in rs8177832 genotype AA in healthy control and HIV-1 infected subjects (42.257% vs 66%; p-value<0.001). CONCLUSION Thus it was concluded that APOBEC3G rs8177832 AA genotype contributes in genetic predisposition to HIV-1 infection in Pakistani population.
Collapse
Affiliation(s)
- Khurshid Iqbal
- Address correspondence to this author at the Department of Medical Laboratory Sciences, Imperial College of Business Studies, Lahore, Pakistan; Tel: 00923028051657; E-mail:
| | | | | | | | | | | |
Collapse
|
17
|
Sardar MYR, Krishnamurthy VR, Park S, Mandhapati AR, Wever WJ, Park D, Cummings RD, Chaikof EL. Synthesis of Lewis X-O-Core-1 threonine: A building block for O-linked Lewis X glycopeptides. Carbohydr Res 2017; 452:47-53. [PMID: 29065342 PMCID: PMC5682196 DOI: 10.1016/j.carres.2017.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/07/2017] [Accepted: 10/07/2017] [Indexed: 01/05/2023]
Abstract
LewisX (LeX) is a branched trisaccharide Galβ1→4(Fucα1→3)GlcNAc that is expressed on many cell surface glycoproteins and plays critical roles in innate and adaptive immune responses. However, efficient synthesis of glycopeptides bearing LeX remains a major limitation for structure-function studies of the LeX determinant. Here we report a total synthesis of a LeX pentasaccharide 1 using a regioselective 1-benzenesulfinyl piperidine/triflic anhydride promoted [3 + 2] glycosylation. The presence of an Fmoc-threonine amino acid facilitates incorporation of the pentasaccharide in solid phase peptide synthesis, providing a route to diverse O-linked LeX glycopeptides. The described approach is broadly applicable to the synthesis of a variety of complex glycopeptides containing O-linked LeX or sialyl LewisX (sLeX).
Collapse
Affiliation(s)
- Mohammed Y R Sardar
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Venkata R Krishnamurthy
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Simon Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Appi Reddy Mandhapati
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Walter J Wever
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Dayoung Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Richard D Cummings
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA
| | - Elliot L Chaikof
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Koch AS, Brites D, Stucki D, Evans JC, Seldon R, Heekes A, Mulder N, Nicol M, Oni T, Mizrahi V, Warner DF, Parkhill J, Gagneux S, Martin DP, Wilkinson RJ. The Influence of HIV on the Evolution of Mycobacterium tuberculosis. Mol Biol Evol 2017; 34:1654-1668. [PMID: 28369607 PMCID: PMC5455964 DOI: 10.1093/molbev/msx107] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
HIV significantly affects the immunological environment during tuberculosis coinfection, and therefore may influence the selective landscape upon which M. tuberculosis evolves. To test this hypothesis whole genome sequences were determined for 169 South African M. tuberculosis strains from HIV-1 coinfected and uninfected individuals and analyzed using two Bayesian codon-model based selection analysis approaches: FUBAR which was used to detect persistent positive and negative selection (selection respectively favoring and disfavoring nonsynonymous substitutions); and MEDS which was used to detect episodic directional selection specifically favoring nonsynonymous substitutions within HIV-1 infected individuals. Among the 25,251 polymorphic codon sites analyzed, FUBAR revealed that 189-fold more were detectably evolving under persistent negative selection than were evolving under persistent positive selection. Three specific codon sites within the genes celA2b, katG, and cyp138 were identified by MEDS as displaying significant evidence of evolving under directional selection influenced by HIV-1 coinfection. All three genes encode proteins that may indirectly interact with human proteins that, in turn, interact functionally with HIV proteins. Unexpectedly, epitope encoding regions were enriched for sites displaying weak evidence of directional selection influenced by HIV-1. Although the low degree of genetic diversity observed in our M. tuberculosis data set means that these results should be interpreted carefully, the effects of HIV-1 on epitope evolution in M. tuberculosis may have implications for the design of M. tuberculosis vaccines that are intended for use in populations with high HIV-1 infection rates.
Collapse
Affiliation(s)
- Anastasia S Koch
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Daniela Brites
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - David Stucki
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Joanna C Evans
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ronnett Seldon
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alexa Heekes
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicola Mulder
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mark Nicol
- University of Cape Town, and National Health Laboratory Service, Cape Town, South Africa
| | - Tolu Oni
- Division of Public Health Medicine, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa.,The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Valerie Mizrahi
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Digby F Warner
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Darren P Martin
- Division of Computational Biology, Department of Integrated Biology Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Imperial College, London, United Kingdom.,Francis Crick Institute, London, United Kingdom
| |
Collapse
|
19
|
Sadki K, Lamsyah H, Rueda B, Lahlou O, Aouad RE, Martin J. CD209Promoter Single Nucleotide Polymorphism -336A/G and the Risk of Susceptibility to Tuberculosis Disease in the Moroccan Population. INT J HUM GENET 2017. [DOI: 10.1080/09723757.2009.11886073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Khalid Sadki
- National Institute of Hygiene, Human Genomic Laboratory, Rabat, Morocco
| | - Hoda Lamsyah
- National Institute of Hygiene, Human Genomic Laboratory, Rabat, Morocco
- Department of Biology, Faculty of Science, University Mohammed V, Rabat Agdal, Morocco
| | - Blanca Rueda
- Instituto de Parasitología y Biomedicina, Granada, Spain
| | - Ouafae Lahlou
- National Institute of Hygiene, National Reference Laboratory of Tuberculosis, Rabat, Morocco
| | - Rajae El Aouad
- National Institute of Hygiene, Department of Immunology and Virology, Rabat, Morocco
| | - Javier Martin
- Instituto de Parasitología y Biomedicina, Granada, Spain
| |
Collapse
|
20
|
Abstract
Tuberculosis remains one of the greatest threats to human health. The causative bacterium, Mycobacterium tuberculosis, is acquired by the respiratory route. It is exquisitely adapted to humans and is a prototypic intracellular pathogen of macrophages, with alveolar macrophages being the primary conduit of infection and disease. However, M. tuberculosis bacilli interact with and are affected by several soluble and cellular components of the innate immune system which dictate the outcome of primary infection, most commonly a latently infected healthy human host, in whom the bacteria are held in check by the host immune response within the confines of tissue granuloma, the host histopathologic hallmark. Such individuals can develop active TB later in life with impairment in the immune system. In contrast, in a minority of infected individuals, the early host immune response fails to control bacterial growth, and progressive granulomatous disease develops, facilitating spread of the bacilli via infectious aerosols. The molecular details of the M. tuberculosis-host innate immune system interaction continue to be elucidated, particularly those occurring within the lung. However, it is clear that a number of complex processes are involved at the different stages of infection that may benefit either the bacterium or the host. In this article, we describe a contemporary view of the molecular events underlying the interaction between M. tuberculosis and a variety of cellular and soluble components and processes of the innate immune system.
Collapse
|
21
|
Bene KP, Kavanaugh DW, Leclaire C, Gunning AP, MacKenzie DA, Wittmann A, Young ID, Kawasaki N, Rajnavolgyi E, Juge N. Lactobacillus reuteri Surface Mucus Adhesins Upregulate Inflammatory Responses Through Interactions With Innate C-Type Lectin Receptors. Front Microbiol 2017; 8:321. [PMID: 28326063 PMCID: PMC5339304 DOI: 10.3389/fmicb.2017.00321] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/15/2017] [Indexed: 12/13/2022] Open
Abstract
The vertebrate gut symbiont Lactobacillus reuteri exhibits strain-specific adhesion and health-promoting properties. Here, we investigated the role of the mucus adhesins, CmbA and MUB, upon interaction of L. reuteri ATCC PTA 6475 and ATCC 53608 strains with human monocyte-derived dendritic cells (moDCs). We showed that mucus adhesins increased the capacity of L. reuteri strains to interact with moDCs and promoted phagocytosis. Our data also indicated that mucus adhesins mediate anti- and pro-inflammatory effects by the induction of interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), IL-1β, IL-6, and IL-12 cytokines. L. reuteri ATCC PTA 6475 and ATCC 53608 were exclusively able to induce moDC-mediated Th1 and Th17 immune responses. We further showed that purified MUB activates moDCs and induces Th1 polarized immune responses associated with increased IFNγ production. MUB appeared to mediate these effects via binding to C-type lectin receptors (CLRs), as shown using cell reporter assays. Blocking moDCs with antibodies against DC-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) or Dectin-2 did not affect the uptake of the MUB-expressing strain, but reduced the production of TNF-α and IL-6 by moDCs significantly, in line with the Th1 polarizing capacity of moDCs. The direct interaction between MUB and CLRs was further confirmed by atomic force spectroscopy. Taken together these data suggest that mucus adhesins expressed at the cell surface of L. reuteri strains may exert immunoregulatory effects in the gut through modulating the Th1-promoting capacity of DCs upon interaction with C-type lectins.
Collapse
Affiliation(s)
- Krisztián P Bene
- Department of Immunology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Devon W Kavanaugh
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | - Charlotte Leclaire
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | - Allan P Gunning
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | - Donald A MacKenzie
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | | | - Ian D Young
- Food and Health Programme, Institute of Food Research Norwich, UK
| | | | - Eva Rajnavolgyi
- Department of Immunology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Nathalie Juge
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| |
Collapse
|
22
|
Guzzi C, Alfarano P, Sutkeviciute I, Sattin S, Ribeiro-Viana R, Fieschi F, Bernardi A, Weiser J, Rojo J, Angulo J, Nieto PM. Detection and quantitative analysis of two independent binding modes of a small ligand responsible for DC-SIGN clustering. Org Biomol Chem 2016; 14:335-44. [DOI: 10.1039/c5ob02025e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multiple binding modes at the same binding site can explain the higher binding affinity of a pseudotrimannotrioside compared to a pseudomannobioside.
Collapse
Affiliation(s)
- C. Guzzi
- Glycosystems Laboratory. Instituto de Investigaciones Químicas (IIQ)/cicCartuja. CSIC/US
- 41092 Sevilla
- Spain
- Dept. of Biotechnology and Biosciences University of Millano-Bicocca Piazza della Scienza 2 20126
- Milan
| | - P. Alfarano
- Anterio Consult & Research GmbH
- Augustaanlage 23 68165 Mannheim
- Germany
| | - I. Sutkeviciute
- Univ. Grenoble Alpes
- Institut de Biologie Structurale (IBS)
- F-38044 Grenoble
- France
- CNRS
| | - S. Sattin
- Dipartimento di Chimica
- Universita’ degli Studi di Milano
- 20133 Milano
- Italy
| | - R. Ribeiro-Viana
- Glycosystems Laboratory. Instituto de Investigaciones Químicas (IIQ)/cicCartuja. CSIC/US
- 41092 Sevilla
- Spain
| | - F. Fieschi
- Univ. Grenoble Alpes
- Institut de Biologie Structurale (IBS)
- F-38044 Grenoble
- France
- CNRS
| | - A. Bernardi
- Dipartimento di Chimica
- Universita’ degli Studi di Milano
- 20133 Milano
- Italy
| | - J. Weiser
- Anterio Consult & Research GmbH
- Augustaanlage 23 68165 Mannheim
- Germany
| | - J. Rojo
- Glycosystems Laboratory. Instituto de Investigaciones Químicas (IIQ)/cicCartuja. CSIC/US
- 41092 Sevilla
- Spain
| | - J. Angulo
- Glycosystems Laboratory. Instituto de Investigaciones Químicas (IIQ)/cicCartuja. CSIC/US
- 41092 Sevilla
- Spain
- School of Pharmacy
- University of East Anglia
| | - P. M. Nieto
- Glycosystems Laboratory. Instituto de Investigaciones Químicas (IIQ)/cicCartuja. CSIC/US
- 41092 Sevilla
- Spain
| |
Collapse
|
23
|
Noble JA, Duru KC, Guindo A, Yi L, Imumorin IG, Diallo DA, Thomas BN. Interethnic diversity of the CD209 (rs4804803) gene promoter polymorphism in African but not American sickle cell disease. PeerJ 2015; 3:e799. [PMID: 25755928 PMCID: PMC4349147 DOI: 10.7717/peerj.799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/03/2015] [Indexed: 12/27/2022] Open
Abstract
Elucidating the genomic diversity of CD209 gene promoter polymorphism could assist in clarifying disease pathophysiology as well as contribution to co-morbidities. CD209 gene promoter polymorphism has been shown to be associated with susceptibility to infection. We hypothesize that CD209 mutant variants occur at a higher frequency among Africans and in sickle cell disease. We analyzed the frequency of the CD209 gene (rs4804803) in healthy control and sickle cell disease (SCD) populations and determined association with disease. Genomic DNA was extracted from blood samples collected from 145 SCD and 231 control Africans (from Mali), 331 SCD and 379 control African Americans and 159 Caucasians. Comparative analysis among and between groups was carried out by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Per ethnic diversification, we found significant disparity in genotypic (23.4% versus 16.9% versus 3.2%) and allelic frequencies (48.7% versus 42.1% versus 19.8%) of the homozygote mutant variant of the CD209 (snp 309A/G) gene promoter between Africans, African Americans and Caucasians respectively. Comparative evaluation between disease and control groups reveal a significant difference in genotypic (10.4% versus 23.4%; p = 0.002) and allelic frequencies (39.7% versus 48.7%; p = 0.02) of the homozygote mutant variant in African SCD and healthy controls respectively, an observation that is completely absent among Americans. Comparing disease groups, we found no difference in the genotypic (p = 0.19) or allelic (p = 0.72) frequencies of CD209 homozygote mutant variant between Africans and Americans with sickle cell disease. The higher frequency of CD209 homozygote mutant variants in the African control group reveals a potential impairment of the capacity to mount an immune response to infectious diseases, and possibly delineate susceptibility to or severity of infectious co-morbidities within and between groups.
Collapse
Affiliation(s)
- Jenelle A Noble
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology , Rochester, NY , USA
| | - Kimberley C Duru
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology , Rochester, NY , USA
| | - Aldiouma Guindo
- Centre de Recherche et de Lutte contre la Drepanocytose , Bamako , Mali
| | - Li Yi
- School of Statistics, Shanxi University of Finance and Economics , Shanxi , China
| | - Ikhide G Imumorin
- Animal Genetics and Genomics Lab, Office of International Programs, Cornell University , Ithaca, NY , USA
| | - Dapa A Diallo
- Centre de Recherche et de Lutte contre la Drepanocytose , Bamako , Mali
| | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology , Rochester, NY , USA
| |
Collapse
|
24
|
Trost B, Lucchese G, Stufano A, Bickis M, Kusalik A, Kanduc D. No human protein is exempt from bacterial motifs, not even one. SELF NONSELF 2014; 1:328-334. [PMID: 21487508 DOI: 10.4161/self.1.4.13315] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/10/2010] [Accepted: 08/11/2010] [Indexed: 02/08/2023]
Abstract
The hypothesis that mimicry between a self and a microbial peptide antigen is strictly related to autoimmune pathology remains a debated concept in autoimmunity research. Clear evidence for a causal link between molecular mimicry and autoimmunity is still lacking. In recent studies we have demonstrated that viruses and bacteria share amino acid sequences with the human proteome at such a high extent that the molecular mimicry hypothesis becomes questionable as a causal factor in autoimmunity. Expanding upon our analysis, here we detail the bacterial peptide overlapping to the human proteome at the penta-, hexa-, hepta- and octapeptide levels by exact peptide matching analysis and demonstrate that there does not exist a single human protein that does not harbor a bacterial pentapeptide or hexapeptide motif. This finding suggests that molecular mimicry between a self and a microbial peptide antigen cannot be assumed as a basis for autoimmune pathologies. Moreover, the data are discussed in relation to the microbial immune escape phenomenon and the possible vaccine-related autoimmune effects.
Collapse
Affiliation(s)
- Brett Trost
- Department of Computer Science; University of Saskatchewan; Saskatoon, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Monovalent mannose-based DC-SIGN antagonists: Targeting the hydrophobic groove of the receptor. Eur J Med Chem 2014; 75:308-26. [DOI: 10.1016/j.ejmech.2014.01.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/17/2014] [Accepted: 01/19/2014] [Indexed: 01/09/2023]
|
26
|
Peng J, Wu Z, Qi X, Chen Y, Li X. Dendrimers as potential therapeutic tools in HIV inhibition. Molecules 2013; 18:7912-29. [PMID: 23884127 PMCID: PMC6270362 DOI: 10.3390/molecules18077912] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 11/16/2022] Open
Abstract
The present treatments for HIV transfection include chemical agents and gene therapies. Although many chemical drugs, peptides and genes have been developed for HIV inhibition, a variety of non-ignorable drawbacks limited the efficiency of these materials. In this review, we discuss the application of dendrimers as both therapeutic agents and non-viral vectors of chemical agents and genes for HIV treatment. On the one hand, dendrimers with functional end groups combine with the gp120 of HIV and CD4 molecule of host cell to suppress the attachment of HIV to the host cell. Some of the dendrimers are capable of intruding into the cell and interfere with the later stages of HIV replication as well. On the other hand, dendrimers are also able to transfer chemical drugs and genes into the host cells, which conspicuously increase the anti-HIV activity of these materials. Dendrimers as therapeutic tools provide a potential treatment for HIV infection.
Collapse
Affiliation(s)
| | - Zhenghong Wu
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-150-6220-8341; Fax: +86-025-8317-9703
| | | | | | | |
Collapse
|
27
|
Abstract
Glycans are key participants in biological processes ranging from reproduction to cellular communication to infection. Revealing glycan roles and the underlying molecular mechanisms by which glycans manifest their function requires access to glycan derivatives that vary systematically. To this end, glycopolymers (polymers bearing pendant carbohydrates) have emerged as valuable glycan analogs. Because glycopolymers can readily be synthesized, their overall shape can be varied, and they can be altered systematically to dissect the structural features that underpin their activities. This review provides examples in which glycopolymers have been used to effect carbohydrate-mediated signal transduction. Our objective is to illustrate how these powerful tools can reveal the molecular mechanisms that underlie carbohydrate-mediated signal transduction.
Collapse
Affiliation(s)
- Laura L Kiessling
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA.
| | | |
Collapse
|
28
|
Polymorphic genetic variation in immune system genes: a study of two populations of Espirito Santo, Brazil. Mol Biol Rep 2013; 40:4843-9. [PMID: 23666056 PMCID: PMC7088621 DOI: 10.1007/s11033-013-2582-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 04/29/2013] [Indexed: 11/25/2022]
Abstract
Mapping single nucleotide polymorphisms (SNPs) in genes potentially involved in immune responses may help understand the pathophysiology of infectious diseases in specific geographical regions. In this context, we have aimed to analyze the frequency of immunogenetic markers, focusing on genes CD209 (SNP -336A/G), FCγRIIa (SNP -131H/R), TNF-α (SNP -308A/G) and VDR (SNP Taq I) in two populations of the Espirito Santo State (ES), Brazil: general and Pomeranian populations. Peripheral blood genomic DNA was extracted from one hundred healthy individuals of the general population and from 59 Pomeranians. Polymorphic variant identification was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR–RFLP). SNP genotype frequencies were in Hardy–Weinberg Equilibrium. There was no statistically significant difference in allelic and genotypic distributions between the two populations studied. Statistically significant differences were observed for SNP genotype distribution in genes CD209, TNF-α and VDR when comparing the ES populations with other Brazilian populations. This is the first report of CD209, FcγRIIa, TNF-α and VDR allelic frequencies for the general and Pomeranian populations of ES.
Collapse
|
29
|
Jayachandran R, Scherr N, Pieters J. Elimination of intracellularly residing Mycobacterium tuberculosis through targeting of host and bacterial signaling mechanisms. Expert Rev Anti Infect Ther 2013; 10:1007-22. [PMID: 23106276 DOI: 10.1586/eri.12.95] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With more than 2 billion latently infected people, TB continues to represent a serious threat to human health. According to the WHO, 1.1 million people died from TB in 2010, which is equal to approximately 3000 deaths per day. The causative agent of the disease, Mycobacterium tuberculosis, is a highly successful pathogen having evolved remarkable strategies to persist within the host. Although normally, upon phagocytosis by macrophages, bacteria are readily eliminated by lysosomes, pathogenic mycobacteria actively prevent destruction within macrophages. The strategies that pathogenic mycobacteria apply range from releasing virulence factors to manipulating host molecules resulting in the modulation of host signal transduction pathways in order to sustain their viability within the infected host. Here, we analyze the current status of how a better understanding of both the bacterial and host factors involved in virulence can be used to develop drugs that may be helpful to curb the TB epidemic.
Collapse
Affiliation(s)
- Rajesh Jayachandran
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | |
Collapse
|
30
|
Angerami M, Suarez G, Pascutti MF, Salomon H, Bottasso O, Quiroga MF. Modulation of the phenotype and function of Mycobacterium tuberculosis-stimulated dendritic cells by adrenal steroids. Int Immunol 2013; 25:405-11. [PMID: 23446847 DOI: 10.1093/intimm/dxt004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cell-mediated immunity, cytokines induced during the specific immune response and T-cell populations are crucial factors for containing Mycobacterium tuberculosis infection. Recent reports suggest a cross-regulation between adrenal steroids (glucocorticoids and dehydroepiandrosterone, DHEA) and the function of antigen-presenting cells (APCs). Therefore, we investigated the role of adrenal hormones on the functional capacity of M. tuberculosis-induced dendritic cells (DCs). Cortisol significantly inhibited the functions of M. tuberculosis-induced DCs. Interestingly, the presence of DHEA enhanced the M. tuberculosis-induced expression of MHC I, MHC II and CD86 and also increased ERK1/2 phosphorylation. Moreover, DHEA improved the production of IL-12 in response to M. tuberculosis stimulation, diminished IL-10 secretion and could not modify TNF-α synthesis. Importantly, we observed that DHEA enhanced the antigen-specific T-cell proliferation and IFN-γ production induced by M. tuberculosis-stimulated DC. These data show for the first time the relevance of the adrenal axis (especially of DHEA) in the modulation of DC function in the context of tuberculosis, a disease where the induction of a Th1 environment by APCs is crucial for the development of an effective immune response to the mycobacteria.
Collapse
Affiliation(s)
- Matias Angerami
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
31
|
Mazurek J, Ignatowicz L, Källenius G, Jansson M, Pawlowski A. Mycobacteria-infected bystander macrophages trigger maturation of dendritic cells and enhance their ability to mediate HIV transinfection. Eur J Immunol 2012; 42:1192-202. [PMID: 22539293 DOI: 10.1002/eji.201142049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Synergistic interplay between Mycobacterium tuberculosis (Mtb) and HIV in coinfected individuals leads to the acceleration of both tuberculosis and HIV disease. Mtb, as well as HIV, may modulate the function of many immune cells, including DCs. To dissect the bystander impact of Mφs infected with Mtb on DC functionality, we here investigated changes in DC phenotype, cytokine profiles, and HIV-1 transinfecting ability. An in vitro system was used in which human monocyte-derived DCs were exposed to soluble factors released by Mφs infected with mycobacteria, including virulent clinical Mtb isolates and nonvirulent BCG. Soluble factors secreted from Mtb-infected Mφs, and to a lesser extent BCG-infected Mφs, resulted in the production of proinflammatory cytokines and partial upregulation of DC maturation markers. Interestingly, the HIV-1 transinfecting ability of DCs was enhanced upon exposure to soluble factors released by Mtb-infected Mφs. In summary, our study shows that DCs exposed to soluble factors released by mycobacteria-infected Mφs undergo maturation and display an augmented ability to transmit HIV-1 in trans. These findings highlight the important role of bystander effects during the course of Mtb-HIV coinfection and suggest that Mtb-infected Mφs may contribute to an environment that supports DC-mediated spread and amplification of HIV in coinfected individuals.
Collapse
Affiliation(s)
- Jolanta Mazurek
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
32
|
Qidwai T, Jamal F, Khan MY. DNA Sequence Variation and Regulation of Genes Involved in Pathogenesis of Pulmonary Tuberculosis. Scand J Immunol 2012; 75:568-87. [DOI: 10.1111/j.1365-3083.2012.02696.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Abstract
Tuberculosis (TB) and HIV co-infections place an immense burden on health care systems and pose particular diagnostic and therapeutic challenges. Infection with HIV is the most powerful known risk factor predisposing for Mycobacterium tuberculosis infection and progression to active disease, which increases the risk of latent TB reactivation 20-fold. TB is also the most common cause of AIDS-related death. Thus, M. tuberculosis and HIV act in synergy, accelerating the decline of immunological functions and leading to subsequent death if untreated. The mechanisms behind the breakdown of the immune defense of the co-infected individual are not well known. The aim of this review is to highlight immunological events that may accelerate the development of one of the two diseases in the presence of the co-infecting organism. We also review possible animal models for studies of the interaction of the two pathogens, and describe gaps in knowledge and needs for future studies to develop preventive measures against the two diseases.
Collapse
|
34
|
Horton RE, Morrison NA, Beacham IR, Peak IR. Interaction of Burkholderia pseudomallei and Burkholderia thailandensis with human monocyte-derived dendritic cells. J Med Microbiol 2012; 61:607-614. [PMID: 22301613 DOI: 10.1099/jmm.0.038588-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic in areas of South-East Asia and northern Australia, and is classed as a category B select agent by the Centers for Disease Control and Prevention (CDC). Factors that determine whether host infection is achieved or if disease is chronic or acute are unknown but the type of host immune response that is mounted is important. B. pseudomallei can replicate within macrophages, causing them to multinucleate. In light of the common lineage of macrophages with dendritic cells (DCs), and the role played by DCs in orchestration of the immune response, we investigated the interactions of a variety of B. pseudomallei and B. thailandensis strains with DCs. This study demonstrates that, in the majority of cases, infection of human monocyte-derived dendritic cells is dramatically decreased or cleared by 12 h post-infection, showing a lack of ability to replicate and survive within DCs. Additionally we have shown that B. pseudomallei activates DCs, as measured by cytokine secretion, and live bacteria are not required for activation.
Collapse
Affiliation(s)
- Rachel E Horton
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Nigel A Morrison
- School of Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Ifor R Beacham
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Ian R Peak
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
35
|
Abstract
In the immune system, C-type lectins and CTLDs have been shown to act both as adhesion and as pathogen recognition receptors. The Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) and its homologs in human and mouse represent an important C-type lectin family. DC-SIGN contains a lectin domain that recognizes in a Ca2+-dependent manner carbohydrates such as mannose-containing structures present on glycoproteins such as ICAM-2 and ICAM-3. DC-SIGN is a prototype C-type lectin organized in microdomains, which have their role as pathogen recognition receptors in sensing microbes. Although the integrin LFA-1 is a counter-receptor for both ICAM-2 and ICAM-3 on DC, DC-SIGN is the high affinity adhesion receptor for ICAM-2/-3. While cell–cell contact is a primary function of selectins, collectins are specialized in recognition of pathogens. Interestingly, DC-SIGN is a cell adhesion receptor as well as a pathogen recognition receptor. As adhesion receptor, DC-SIGN mediates the contact between dendritic cells (DCs) and T lymphocytes, by binding to ICAM-3, and mediates rolling of DCs on endothelium, by interacting with ICAM-2. As pathogen receptor, DC-SIGN recognizes a variety of microorganisms, including viruses, bacteria, fungi and several parasites (Cambi et al. 2005). The natural ligands of DC-SIGN consist of mannose oligosaccharides or fucose-containing Lewis-type determinants. In this chapter, we shall focus on the structure and functions of DC-SIGN and related CTLDs in the recognition of pathogens, the molecular and structural determinants that regulate the interaction with pathogen-associated molecular patterns. The heterogeneity of carbohydrate residues exposed on cellular proteins and pathogens regulates specific binding of DC-expressed C-type lectins that contribute to the diversity of immune responses created by DCs (van Kooyk et al. 2003a; Cambi et al. 2005).
Collapse
|
36
|
Obermajer N, Sattin S, Colombo C, Bruno M, Švajger U, Anderluh M, Bernardi A. Design, synthesis and activity evaluation of mannose-based DC-SIGN antagonists. Mol Divers 2011; 15:347-60. [PMID: 21076980 PMCID: PMC7089406 DOI: 10.1007/s11030-010-9285-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 10/18/2010] [Indexed: 01/12/2023]
Abstract
In this article, we describe the design, synthesis and activity evaluation of glycomimetic DC-SIGN antagonists, that use a mannose residue to anchor to the protein carbohydrate recognition domain (CRD). The molecules were designed from the structure of the known pseudo-mannobioside antagonist 1, by including additional hydrophobic groups, which were expected to engage lipophilic areas of DC-SIGN CRD. The results demonstrate that the synthesized compounds potently inhibit DC-SIGN-mediated adhesion to mannan coated plates. Additionally, in silico docking studies were performed to rationalize the results and to suggest further optimization.
Collapse
Affiliation(s)
- Nataša Obermajer
- Department of Biotechnology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Sara Sattin
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - Cinzia Colombo
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - Michela Bruno
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - Urban Švajger
- Blood Transfusion Center of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia
| | - Marko Anderluh
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Anna Bernardi
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
37
|
Singh N, Thangaraju M, Prasad PD, Martin PM, Lambert NA, Boettger T, Offermanns S, Ganapathy V. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases. J Biol Chem 2010; 285:27601-8. [PMID: 20601425 DOI: 10.1074/jbc.m110.102947] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mammalian colon harbors trillions of bacteria, yet there is no undue inflammatory response by the host against these bacteria under normal conditions. The bacterial fermentation products acetate, propionate, and butyrate are believed, at least in part, to be responsible for these immunosuppressive effects. Dendritic cells play an essential role in presentation of antigens to T lymphocytes and initiation of adaptive immune responses. Here we report that butyrate and propionate block the generation of dendritic cells from bone marrow stem cells, without affecting the generation of granulocytes. This effect is dependent on the Na(+)-coupled monocarboxylate transporter Slc5a8, which transports butyrate and propionate into cells, and on the ability of these two bacterial metabolites to inhibit histone deacetylases. Acetate, which is also a substrate for Slc5a8 but not an inhibitor of histone deacetylases, does not affect dendritic cell development, indicating the essential role of histone deacetylase inhibition in the process. The blockade of dendritic cell development by butyrate and propionate is associated with decreased expression of the transcription factors PU.1 and RelB. Butyrate also elicits its biologic effects through its ability to activate the G-protein-coupled receptor Gpr109a, but this mechanism is not involved in butyrate-induced blockade of dendritic cell development. The participation of Slc5a8 and the non-involvement of Gpr109a in butyrate effects have been substantiated using bone marrow cells obtained from Slc5a8(-/-) and Gpr109a(-/-) mice. These findings uncover an important mechanism underlying the anti-inflammatory functions of the bacterial fermentation products butyrate and propionate.
Collapse
Affiliation(s)
- Nagendra Singh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
C-type lectin DC-SIGN: an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell Signal 2010; 22:1397-405. [PMID: 20363321 PMCID: PMC7127357 DOI: 10.1016/j.cellsig.2010.03.018] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 03/25/2010] [Indexed: 11/30/2022]
Abstract
The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a type II C-type lectin whose expression is restricted to the most potent antigen-presenting cells (APCs), the dendritic cells (DCs). In recent years, DC-SIGN has gained an exponential increase in attention because of its involvement in multiple aspects of immune function. Besides being an adhesion molecule, particularly in binding ICAM-2 and ICAM-3, it is also crucial in recognizing several endogenous and exogenous antigens. Additionally, the intracellular domain of DC-SIGN includes molecular motifs, which enable the activation of signal transduction pathways involving Raf-1 and subsequent modulation of DC-maturation status, through direct modification of nuclear factor Nf-κB in DCs. Upon DC-SIGN engagement by mannose- or fucose-containing oligosaccharides, the latter leads to a tailored Toll-like receptor signalling, resulting in an altered DC-cytokine profile and skewing of Th1/Th2 responses. In this article, we will discuss recent advances on a broad perspective concerning DC-SIGN structure, signalling and immune function.
Collapse
|
39
|
Gajbhiye V, Palanirajan VK, Tekade RK, Jain NK. Dendrimers as therapeutic agents: a systematic review. J Pharm Pharmacol 2010. [PMID: 19703342 DOI: 10.1211/jpp.61.08.0002] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Objectives
Dendrimers by virtue of their therapeutic value have recently generated enormous interest among biomedical scientists. This review describes the therapeutic prospects of the dendrimer system.
Key findings
Their bioactivity suggests them to be promising therapeutic agents, especially in wound healing, bone mineralisation, cartilage formation and tissue repair, and in topical treatments to prevent HIV transmission. Findings also demonstrate their potential as anti-prion, anti-Alzheimer's, anticoagulant, antidote, anti-inflammatory and anticancer agents. One of the dendrimer-based formulations with activity against herpes simplex virus (VivaGel from Starpharma) has successfully completed phase I clinical trials and is expected to be available on the market soon.
Summary
All reports cited in this review demonstrate the use of dendrimers as medical therapeutics in different ailments. The review focuses on the current state of therapeutic potential of the dendrimer system.
Collapse
Affiliation(s)
- Virendra Gajbhiye
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr Hari Singh Gour University, Sagar, India
| | - Vijayaraj K Palanirajan
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr Hari Singh Gour University, Sagar, India
| | - Rakesh K Tekade
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr Hari Singh Gour University, Sagar, India
| | - Narendra K Jain
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr Hari Singh Gour University, Sagar, India
| |
Collapse
|
40
|
Abstract
Dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN). DC-SIGN is a C-type lectin receptor that recognizes N-linked high-mannose oligosaccharides and branched fucosylated structures. It is now clear that the biological role of DC-SIGN is two-fold. It is primarily expressed by dendritic cells and mediates important functions necessary for the induction of successful immune responses that are essential for the clearance of microbial infections, such as the capture, destruction, and presentation of microbial pathogens to induce successful immune responses. Yet, on the other hand, pathogens may also exploit DC-SIGN to modulate DC functioning thereby skewing the immune response and promoting their own survival. This chapter presents an overview of the structure of DC-SIGN and its expression pattern among immune cells. The current state of knowledge of DC-SIGN-carbohydrate interactions is discussed and how these interactions influence dendritic cell functioning is examined. The molecular aspects that underlie the selectivity of DC-SIGN for mannose-and fucose-containing carbohydrates are detailed. Furthermore, the chapter discusses the role of DC-SIGN in dendritic cell biology and how certain bacterial pathogens exploit DC-SIGN to escape immune surveillance.
Collapse
|
41
|
Kishore U, Plüddemann A, Gordon S. Macrophage pattern recognition receptors in immunity, homeostasis and self tolerance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 653:1-14. [PMID: 19799108 PMCID: PMC7123833 DOI: 10.1007/978-1-4419-0901-5_1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophages, a major component of innate immune defence, express a large repertoire of different classes of pattern recognition receptors and other surface antigens which determine the immunologic and homeostatic potential of these versatile cells. In the light of present knowledge ofmacrophage surface antigens, we discuss self versus nonself recognition, microbicidal effector functions and self tolerance in the innate immune system.
Collapse
Affiliation(s)
- Uday Kishore
- Laboratory of Human Immunology and Infection Biology, Biosciences Division, School of Health Sciences and Social Care, Brunei University, Uxbridge, London, UK
| | | | | |
Collapse
|
42
|
Ehlers S. DC-SIGN and mannosylated surface structures of Mycobacterium tuberculosis: a deceptive liaison. Eur J Cell Biol 2009; 89:95-101. [PMID: 19892432 DOI: 10.1016/j.ejcb.2009.10.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is recognized by pattern recognition receptors on macrophages and dendritic cells, thereby triggering phagocytosis, antigen presentation to T cells and cytokine secretion. The dendritic cell-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN) is a calcium-dependent carbohydrate-binding protein with specificity for mannose-containing glycoconjugates and fucose-containing Lewis antigens. Mannosylated moieties of the mycobacterial cell wall, such as mannose-capped lipoarabinomannan (manLAM) or higher-order phosphatidylinositol-mannosides (PIMs) of Mtb, were previously shown to bind to DC-SIGN on immature dendritic cells and macrophage subpopulations. This interaction reportedly impaired dendritic cell maturation, modulated cytokine secretion by phagocytes and dendritic cells and was postulated to cause suppression of protective immunity to TB. However, experimental Mtb infections in mice transgenic for human DC-SIGN revealed that, instead of favoring immune evasion of mycobacteria, DC-SIGN may promote host protection by limiting tissue pathology. Furthermore, infection studies with mycobacterial strains genetically engineered to lack manLAM or PIMs demonstrated that the manLAM/PIM-DC-SIGN interaction was not critical for cytokine secretion in vitro and protective immunity in vivo. The dominant Mtb-derived ligands for DC-SIGN are presently unknown, and a major role of DC-SIGN in the immune response to Mtb infection may lie in its capacity to maintain a balanced inflammatory state during chronic TB.
Collapse
Affiliation(s)
- Stefan Ehlers
- Microbial Inflammation Research, Research Center Borstel, Parkallee 1, 23845 Borstel, Germany.
| |
Collapse
|
43
|
Mittal R, Bulgheresi S, Emami C, Prasadarao NV. Enterobacter sakazakii targets DC-SIGN to induce immunosuppressive responses in dendritic cells by modulating MAPKs. THE JOURNAL OF IMMUNOLOGY 2009; 183:6588-99. [PMID: 19846880 DOI: 10.4049/jimmunol.0902029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enterobacter sakazakii (ES) is an emerging pathogen that causes meningitis and necrotizing enterocolitis in infants. Dendritic cells (DCs) are professional phagocytic cells that play an essential role in host defense against invading pathogens; however, the interaction of ES with DCs is not known. In this study, we demonstrate that ES targets DC-specific ICAM nonintegrin (DC-SIGN) to survive in myeloid DCs for which outer membrane protein A (OmpA) expression in ES is critical, although it is not required for uptake. In addition, DC-SIGN expression was sufficient to cause a significant invasion by ES in HeLa cells and intestinal epithelial cells, which are normally not invaded by ES. OmpA(+) ES prevented the maturation of DCs by triggering the production of high levels of IL-10 and TGF-beta and by suppressing the activation of MAPKs. Pretreatment of DCs with Abs to IL-10 and TGF-beta or of bacteria with anti-OmpA Abs significantly enhanced the maturation markers on DCs. Furthermore, DCs pretreated with various inhibitors of MAPKs prohibited the increased production of proinflammatory cytokines stimulated by LPS or OmpA(-) ES. LPS pretreatment followed by OmpA(+) ES infection of DCs failed to induce maturation of DCs, indicating that OmpA(+) ES renders the cells in immunosuppressive state to external stimuli. Similarly, OmpA(+) ES-infected DCs failed to present Ag to T cells as indicated by the inability of T cells to proliferate in MLR. We conclude that ES interacts with DC-SIGN to subvert the host immune responses by disarming MAPK pathway in DCs.
Collapse
Affiliation(s)
- Rahul Mittal
- Division of Infectious Diseases, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | |
Collapse
|
44
|
Role of phosphatidylinositol mannosides in the interaction between mycobacteria and DC-SIGN. Infect Immun 2009; 77:4538-47. [PMID: 19651855 DOI: 10.1128/iai.01256-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The C-type lectin dendritic cell (DC)-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) is the major receptor on DCs for mycobacteria of the Mycobacterium tuberculosis complex. Recently, we have shown that although the mannose caps of the mycobacterial surface glycolipid lipoarabinomannan (ManLAM) are essential for the binding to DC-SIGN, genetic removal of these caps did not diminish the interaction of whole mycobacteria with DC-SIGN and DCs. Here we investigated the role of the structurally related glycolipids phosphatidylinositol mannosides (PIMs) as possible ligands for DC-SIGN. In a binding assay with both synthetic and natural PIMs, DC-SIGN exhibited a high affinity for hexamannosylated PIM(6), which contains terminal alpha(1-->2)-linked mannosyl residues identical to the mannose cap on ManLAM, but not for di- and tetramannosylated PIM(2) and PIM(4), respectively. To determine the role of PIM(6) in the binding of whole mycobacteria to DC-SIGN, a mutant strain of M. bovis bacillus Calmette-Guérin deficient in the production of PIM(6) (Delta pimE) was created, as well as a double knockout deficient in the production of both PIM(6) and the mannose caps on LAM (Delta pimE Delta capA). Compared to the wild-type strain, both mutant strains bound similarly well to DC-SIGN and DCs. Furthermore, the wild-type and mutant strains induced comparable levels of interleukin-10 and interleukin-12p40 when used to stimulate DCs. Hence, we conclude that, like ManLAM, PIM(6) represents a bona fide DC-SIGN ligand but that other, as-yet-unknown, ligands dominate in the interaction between mycobacteria and DCs.
Collapse
|
45
|
Identification of pathogen receptors on dendritic cells to understand their function and to identify new drug targets. Methods Mol Biol 2009; 531:267-85. [PMID: 19347323 DOI: 10.1007/978-1-59745-396-7_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) are crucial in the defence against invading pathogens. These professional antigen-presenting cells express a diversity of pattern recognition receptors to recognize pathogens and to induce adaptive immune responses. However, pathogens have also developed several mechanisms to suppress or modulate DC function through specific receptors, thereby ensuring pathogen survival and dissemination. In this chapter, we will discuss techniques to identify and functionally characterize pathogen receptors on DCs and to determine whether DCs elicit protective immune responses or whether pathogens subvert these responses to escape immunity.
Collapse
|
46
|
Reina JJ, Díaz I, Nieto PM, Campillo NE, Páez JA, Tabarani G, Fieschi F, Rojo J. Docking, synthesis, and NMR studies of mannosyl trisaccharide ligands for DC-SIGN lectin. Org Biomol Chem 2008; 6:2743-54. [PMID: 18633532 DOI: 10.1039/b802144a] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DC-SIGN, a lectin, which presents at the surface of immature dendritic cells, constitutes nowadays a promising target for the design of new antiviral drugs. This lectin recognizes highly glycosylated proteins present at the surface of several pathogens such as HIV, Ebola virus, Candida albicans, Mycobacterium tuberculosis, etc. Understanding the binding mode of this lectin is a topic of tremendous interest and will permit a rational design of new and more selective ligands. Here, we present computational and experimental tools to study the interaction of di- and trisaccharides with DC-SIGN. Docking analysis of complexes involving mannosyl di- and trisaccharides and the carbohydrate recognition domain (CRD) of DC-SIGN have been performed. Trisaccharides Manalpha1,2[Manalpha1,6]Man 1 and Manalpha1,3[Manalpha1,6]Man 2 were synthesized from an orthogonally protected mannose as a common intermediate. Using these ligands and the soluble extracellular domain (ECD) of DC-SIGN, NMR experiments based on STD and transfer-NOE were performed providing additional information. Conformational analysis of the mannosyl ligands in the free and bound states was done. These studies have demonstrated that terminal mannoses at positions 2 or 3 in the trisaccharides are the most important moiety and present the strongest contact with the binding site of the lectin. Multiple binding modes could be proposed and therefore should be considered in the design of new ligands.
Collapse
Affiliation(s)
- José J Reina
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC, Universidad de Sevilla, Américo Vespucio 49, Seville, Spain
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Vannberg FO, Chapman SJ, Khor CC, Tosh K, Floyd S, Jackson-Sillah D, Crampin A, Sichali L, Bah B, Gustafson P, Aaby P, McAdam KPWJ, Bah-Sow O, Lienhardt C, Sirugo G, Fine P, Hill AVS. CD209 genetic polymorphism and tuberculosis disease. PLoS One 2008; 3:e1388. [PMID: 18167547 PMCID: PMC2148105 DOI: 10.1371/journal.pone.0001388] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 10/31/2007] [Indexed: 01/08/2023] Open
Abstract
Background Tuberculosis causes significant morbidity and mortality worldwide, especially in sub-Saharan Africa. DC-SIGN, encoded by CD209, is a receptor capable of binding and internalizing Mycobacterium tuberculosis. Previous studies have reported that the CD209 promoter single nucleotide polymorphism (SNP)-336A/G exerts an effect on CD209 expression and is associated with human susceptibility to dengue, HIV-1 and tuberculosis in humans. The present study investigates the role of the CD209 -336A/G variant in susceptibility to tuberculosis in a large sample of individuals from sub-Saharan Africa. Methods and Findings A total of 2,176 individuals enrolled in tuberculosis case-control studies from four sub-Saharan Africa countries were genotyped for the CD209 -336A/G SNP (rs4804803). Significant overall protection against pulmonary tuberculosis was observed with the -336G allele when the study groups were combined (n = 914 controls vs. 1262 cases, Mantel-Haenszel 2x2 χ2 = 7.47, P = 0.006, odds ratio = 0.86, 95%CI 0.77–0.96). In addition, the patients with -336GG were associated with a decreased risk of cavitory tuberculosis, a severe form of tuberculosis disease (n = 557, Pearson's 2×2 χ2 = 17.34, P = 0.00003, odds ratio = 0.42, 95%CI 0.27–0.65). This direction of association is opposite to a previously observed result in a smaller study of susceptibility to tuberculosis in a South African Coloured population, but entirely in keeping with the previously observed protective effect of the -336G allele. Conclusion This study finds that the CD209 -336G variant allele is associated with significant protection against tuberculosis in individuals from sub-Saharan Africa and, furthermore, cases with -336GG were significantly less likely to develop tuberculosis-induced lung cavitation. Previous in vitro work demonstrated that the promoter variant -336G allele causes down-regulation of CD209 mRNA expression. Our present work suggests that decreased levels of the DC-SIGN receptor may therefore be protective against both clinical tuberculosis in general and cavitory tuberculosis disease in particular. This is consistent with evidence that Mycobacteria can utilize DC-SIGN binding to suppress the protective pro-inflammatory immune response.
Collapse
Affiliation(s)
- Fredrik O Vannberg
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Denis M, Buddle BM. Bovine dendritic cells are more permissive for Mycobacterium bovis
replication than macrophages, but release more IL-12 and induce better immune T-cell proliferation. Immunol Cell Biol 2007; 86:185-91. [DOI: 10.1038/sj.icb.7100124] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michel Denis
- AgResearch, Hopkirk Research Institute, AgResearch Grasslands; New Zealand
| | - Bryce M Buddle
- AgResearch, Hopkirk Research Institute, AgResearch Grasslands; New Zealand
| |
Collapse
|
49
|
Abstract
Dendritic cells (DCs) act not only as sentinels for detection of, but also as target cells for viruses, and this can be important for viral transport and spread. All subsets of DCs are equipped with a battery of receptors recognizing virus‐associated molecular signatures, and recognition of those launches a maturation programme that results in substantial alterations of morphology, motility and the DCs' interactive properties with the extracellular matrix and scanning T cells. In addition to being sensed, viruses are internalized into DCs and, for the major proportion, processed into peptides that are subsequently presented by major histocompatibility complex (MHC) molecules. Transmission of virus to T cells can occur after completion of their replication cycle if the intracellular milieu of the DC permits that. Alternatively, viruses can remain protected from degradation following entrapment by pattern recognition receptors in intracellular compartments, also referred to as virosomes, which translocate towards the DC/T cell interface. Most likely, transfer of virus to T cells occurs in these junctions, referred to as infectious synapses. In addition to promoting DC maturation, many viruses are able to downmodulate DC development and functions in order to evade immune recognition or to induce a generalized immunosuppression.
Collapse
Affiliation(s)
- Christine Pohl
- University of Wuerzburg, Institute for Virology and Immunobiology, Versbacher Str. 7, D-97078 Wuerzburg, Germany
| | | | | |
Collapse
|
50
|
Djoba Siawaya JF, Ruhwald M, Eugen-Olsen J, Walzl G. Correlates for disease progression and prognosis during concurrent HIV/TB infection. Int J Infect Dis 2007; 11:289-99. [PMID: 17446108 DOI: 10.1016/j.ijid.2007.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 11/09/2006] [Accepted: 02/01/2007] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) and the human immunodeficiency virus (HIV) are both life-threatening pathogens in their own right, but their synergic effects on the immune system during co-infection markedly enhance their effect on the host. This review focuses on the bidirectional interaction between HIV and Mtb and discusses the relevance of sputum smear examination, CD4+ counts, viral load at baseline and after initiation of anti-retroviral therapy, as well as additional existing and new potential immune correlates of disease progression and prognosis. These markers include beta2-microglobulin, neopterin, tumor necrosis factor receptor II (TNFRII), CD8+/CD38+, soluble urokinase plasminogen activator receptor (suPAR) and CXCL10 (or IP-10).
Collapse
Affiliation(s)
- Joel Fleury Djoba Siawaya
- Immunology Unit, Department of Biomedical Sciences, DST/NRF Center of Excellence in Biomedical TB Research, Faculty of Health Sciences, University of Stellenbosch, PO Box 19063, Tygerberg 7505, South Africa.
| | | | | | | |
Collapse
|